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three-dimensional gauge field theory with two supercharges.

Keywords: Brane Dynamics in Gauge Theories, AdS-CFT Correspondance.

mailto:martin@ctpbeaker.mit.edu
mailto:tuan@rainbow.physics.tamu.edu
http://jhep.sissa.it/stdsearch?keywords=Brane_Dynamics_in_Gauge_Theories+AdS-CFT_Correspondance


J
H
E
P
0
6
(
2
0
0
1
)
0
2
5

Contents

1. Introduction 1

2. The Romans’ theories in 5 dimensions 3

3. Obtaining five-dimensional Romans’ theory 4

4. Duals of 3-dimensional N = 1 SYM theory on a torus 7

5. Discussion 13

1. Introduction

Finding dual field theories of gauged supergravities with solutions involving curved

manifolds gives the possibility to explore some aspects of supergravity theories re-

lated to twisted field theories through the well-known AdS/CFT duality [1, 2, 3].

Furthermore, this searching certainly provides new examples of the AdS/CFT dual-

ity which turn out to be interesting on their own right.

When brane worldvolumes are wrapped on different compact spaces [4]–[10],

there are several situations where twisted gauge field theories [11] appear. Particu-

larly, fivebranes and D3-branes wrapped on holomorphic curves were studied [4, 5].

Also, fivebranes [6] and D3-branes [7] wrapped on associative 3-cycles have been

investigated, while extensions to M-fivebranes wrapping Kähler 4-cycles, special la-

grangian 3-, 4- and 5-cycles, co-associative 4-cycles and Cayley 4-cycles have been

systematically studied in reference [8]. In a recent paper, we have studied supergrav-

ity solutions describing the flows from AdS6-type regions to AdS4 and AdS3 regions,

by considering the large-N limit of D4-branes on 2- and 3-cycles, as well as, wrapped

NS-fivebranes [9].

In this paper, we concentrate on a system which, when up-lifted to ten dimen-

sions, can be interpreted as type-IIB NS-fivebranes wrapped on S3×T 2. In particu-
lar, this S3 is embedded in a seven-dimensional G2 holonomy manifold. We consider

the decoupling limit of N NS-fivebranes wrapped on S3 × T 2 [12], keeping the radii
fixed. Since the brane worldvolume is curved, in order to define covariantly constant

Killing spinors, the resulting field theory on the brane worldvolume will be twisted.

In order to describe the flows between the 5+1-dimensional field theory (defined in

the NS-fivebrane worldvolume in the UV) and the 2+1-dimensional field theory in
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the IR, we will start with the SO(4)-symmetric solution, obtained by [13] of the five-

dimensional SU(2) gauged N = 4 supergravity constructed by Romans [14]. That
solution only contains magnetic non-abelian and electric abelian fields. We will show

how the five-dimensional supergravity can be obtained from a reduction of the seven-

dimensional gauged supergravity theory on a torus. This seven-dimensional theory

is obtained by reducing type-IIB supergravity on S3. The dual twisted field theory

is defined on the NS-fivebrane worldvolume wrapped on S3, whereas the other two

spatial directions are wrapped on a torus. In the IR limit it corresponds to a three-

dimensional twisted gauge field theory on R1×T 2, with two supercharges. It is worth
noting that this theory does not come from an AdS4-like manifold since its spatial

directions does not live in the spatial sector of five-dimensional supergravity, but on

the torus in the ten-dimensional theory. In addition, we will see that in the IR the

theory is confining. On the other hand, the five-dimensional theory can be viewed

as a reduction of six-dimensional gauged supergravity on a circle. This relates it to

the Romans’ six-dimensional F (4) gauged supergravity theory [15]. Several aspects

of this theory as seen from the gauge field theory point of view, including some dual

twisted gauge field theories, have been analyzed in reference [9]. We then up-lift the

previously mentioned solution to massless type-IIA supergravity on S1 × S3.
If we turn off the electric abelian fields, it is also possible to find a solution for

the five-dimensional gauged supergravity [13], which indeed is singular. Using the

criterion given in reference [4], one can see that the singularity of that solution is bad,

so that in the IR this solution does not represent a gauge field theory. Therefore,

one may say that the electric abelian fields remove the singularity. It would be inter-

esting to know whether the non-singular solution with non-vanishing abelian 2-form

is related to the rotation of the NS-fivebrane. If it were the case, it would probably

be related to the mechanism studied in reference [16], leading to a desingularization

by rotation.

This paper is organized as follows. In section 2 we review the basic formalism and

set-up of the five-dimensional Romans’ theories [14]. The five-dimensional N = 4
AdS supergroup is SU(2, 2|2) whose maximal bosonic supergroup is SU(2, 2)×SU(2)×
U(1). Furthermore, the SU(2, 2) group is isomorphic to SO(4, 2) AdS group in five

dimensions. The field content and the lagrangian of this theory will be introduced

in the next section, however here we briefly discuss some features of the N = 4
supergravity given in [14]. In fact, the gauge group SU(2) × U(1) generically leads
to two coupling constants g1 and g2, corresponding to U(1) and SU(2), respectively.

In the theories analyzed in [14], four cases are considered depending on the values of

g2 and g1. In the Romans’ paper g1 is always assumed to be non-zero because in the

kinetic term for the self-dual tensor it enters as the factor like 1/g1. However, it was

pointed out that the limit g1 → 0 can be taken after some appropriate re-scalings
and dualization [17, 13]. Indeed, we will study a solution having only SU(2) gauge

symmetry. Hereafter, we will assume g = g2 and g1 = 0, i.e. the U(1) ungauged
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theory and there are not two 2-index potentials. In section 3, we show how to obtain

the five-dimensional SU(2)×U(1) gaugedN = 4 supergravity from seven-dimensional
supergravity, which is obtained by reducing type-IIB supergravity on S3, on a torus.

We also consider the relation to the massless six-dimensional supergravity theory via

Kaluza-Klein reduction on a circle. The flow between the 5+1-dimensional gauge

theory and the 3-dimensional N = 1 SYM theory on a torus is studied in section 4.
This flow is driven by the SO(4)-symmetric solution of the Romans’ theory in five

dimensions obtained in [13]. Discussion will be given in section 5.

2. The Romans’ theories in 5 dimensions

In this section we review the five-dimensional SU(2)×U(1) gauged N = 4 supergrav-
ity constructed by Romans [14], whose conventions we follow. The theory consists

of a graviton eαµ, three SU(2) gauge potentials A
I
µ, an U(1) gauge potential Aµ, two

2-index tensor gauge fields Bαµν which transform as a doublet of U(1), a scalar φ,

four gravitinos ψµ i and four gauginos χµ. We are interested in the case in which the

U(1) coupling constant and two 2-index tensor gauge fields are zero. The bosonic

lagrangian of the theory without the two 2-form potentials and U(1) gauge coupling is

e−1 L = −1
4
R +

1

2
(∂µφ) (∂µφ)− 1

4
e
4√
6
φ
F I µν F Iµν −

1

4
e
− 8√

6
φAµν Aµν +

+
1

8
g2 e

− 4√
6
φ − 1
4
e−1 εµνρστ F Iµν F

I
ρσAτ , (2.1)

where e is the determinant of the vielbein, g is the SU(2) coupling constant and εµνρστ
is a Levi-Civita tensor density. The abelian field strength Aµν and non-abelian field
strength F Iµν are given by

Fµν ≡ ∂µAν − ∂νAµ ,
F Iµν ≡ ∂µA

I
ν − ∂νAIµ + g εIJK AJµ AKν , (2.2)

respectively. The supersymmetry transformations for the gauginos and gravitinos are

δχa =
1√
2
γµ(∂µφ)εa +

√
3Tabε

b − 1

2
√
6
γµν(Hµν ab −

√
2hµν ab)ε

b , (2.3)

δψµa = Dµεa + γµTabεb − 1

6
√
2
(γνρµ − 4δνµγρ)

(
Hνρ ab +

1√
2
hνρ ab

)
εb , (2.4)

where Tab, Hµν ab and hµν ab are defined as follows

T ab ≡ 1

6
√
2
g e
− 2√

6
φ
(Γ45)

ab , habµν ≡ e−
4√
6
φ
Ωab Fµν , Habµν ≡ e

2√
6
φ
F Iµν (ΓI)

ab . (2.5)

The gauge-covariant derivative Dµ acting on the Killing spinor is

Dµ εa = ∇µ εa + 1
2
g AIµ (ΓI 45)

b
a εb , (2.6)
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with

∇µεa ≡
(
∂µ +

1

4
ω αβµ γαβ

)
εa , (2.7)

where ω αβ
µ is the spin connection. Indices α, β are tangent space (or flat) indices,

while µ, ν are spacetime (or curved) indices. The γαβ··· are the five-dimensional Dirac
matrices,

γα1...αn =
1

n !
γ[α1 . . . γαn] , n = 1, · · · , 5 .

The equations of motion of the lagrangian (2.1) are

Rµν = 2∂µφ∂νφ− 2e−
8√
6
φ

(
F ρ
µ Fνρ −

1

6
gµνFρσFρσ

)
−

−2e 4√6φ
(
F I ρµ F Iνρ −

1

6
gµνF

I
ρσF

I ρσ

)
+
1

6
gµνg

2e
− 4√

6
φ
, (2.8)

�φ = − 1

2
√
6
g2e
− 4√

6
φ
+
2√
6
e
− 8√

6
φFµνFµν − 1√

6
e
4√
6
φ
F I µνF Iµν , (2.9)

Dν
(
e
− 8√

6
φFνµ

)
=
1

4
eεµνρστF IνρF

I
στ , (2.10)

Dν
(
e
4√
6
φ
F I νµ

)
=
1

2
eεµνρστF IνρFστ . (2.11)

After some appropriate rescalings of the fields, the lagrangian (2.1) can be written

as

e−1 L = R− 1
2
(∂µφ) (∂µφ)− 1

4
e
− 2√

6
φ
F I µν F Iµν −

1

4
e
4√
6
φFµν Fµν +

+4 g2 e
2√
6
φ − 1
8
e−1 εµνρστ F Iρσ F

I
τκFτ . (2.12)

The eq. (2.12) is the lagrangian presented in reference [17] with G
(1)
2 = G

(2)
2 = 0.

3. Obtaining five-dimensional Romans’ theory

It was shown in [18] that the five-dimensional SU(2) × U(1) gauged N = 4 super-
gravity can be obtained from reduction of type-IIB supergravity on S5. For our

purpose, we are interested in getting the five-dimensional gauged supergravity with-

out the U(1) gauge coupling. Turning off the U(1) gauge coupling can be thought of

as taking a singular limit of S5. In this limit S5 is deformed to S3 × T 2. Following
this observation, instead of taking the singular limit of the metric and field strength

presented in [18], we will show that the SU(2) gauged supergravity in five dimensions

can be derived from type IIB on S3 × T 2.
Let us begin with a subset of the bosonic sector of the ten-dimensional type-IIB

supergravity

L10 = R̂∗̂1l− 1
2
∗̂dφ̂ ∧ dφ̂− 1

2
e−φ̂ ∗̂F̂3 ∧ F̂3 . (3.1)

4
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The equations of motion of the ten-dimensional theory are

d(e−φ̂∗̂F̂3) = 0 ,
d(∗̂dφ̂) = −1

2
e−φ̂ ∗̂F̂3 ∧ F̂3 ,

R̂µν =
1

2
∂µφ̂∂ν φ̂+

1

2
e−φ̂
[
F̂µρσF̂

ρσ
ν − 1

12
ĝµν F̂ρστ F̂

ρστ

]
. (3.2)

Following the procedure in [19], we reduce the ten-dimensional theory on S3 and

retain only SU(2) subgroup of a full SO(4) isometry group of S3. The ansätze for

the metric, the scalar and the three form field are

dŝ210 = e
3√
10
φ̃
ds̃27 +

1

4g2
e
− 5√

10
φ̃

3∑
i=1

(σi − g Ai1)2 ,

F̂3 = F̃3 − 1

24g2
εijkh̃

i ∧ h̃j ∧ h̃k + 1
4g
F̃ i2 ∧ h̃i ,

φ̂ =
√
10 φ̃ ,

h̃i = σi − g Ãi , (3.3)

where F̃3 = dÃ2 +
1
4
F̃ i2 ∧ Ãi1 − 1

24
g εijkÃ

i
1 ∧ Ãj1 ∧ Ãk1. Substituting the ansätze (3.3)

into eq. (3.2), we obtain

d F̃3 =
1

4
F̃ i2 ∧ F̃ i2 , d(e

− 4√
10
φ̃ ∗̃F̃3) = 0 ,

D(e− 2√
10
φ̃ ∗̃F̃ i2) =

1

2
e
− 4√

10
φ̃ ∗̃F̃3 ∧ F̃ i2 ,

d(∗̃dφ̃) = − 2√
10
e
− 4√

10
φ̃ ∗̃F̃3 ∧ F̃3 − 1√

10
e
− 2√

10
φ̃ ∗̃F̃ i2 ∧ F̃ i2 −

− 8√
10
g2 e

2√
10
φ̃∗̃1l ,

R̃µν =
1

2
∂µφ̃∂νφ̃+

1

4
e
− 4√

10
φ̃

[
F̃µρσF̃

ρσ
ν − 1

9
g̃µν F̃ρστ F̃

ρστ

]

1

2
e
− 2√

10
φ̃

[
F̃µρF̃

ρ
ν −

1

9
g̃µν F̃ρσF̃

ρσ

]
− 2
3
g2 e

2√
10
φ̃
g̃µν . (3.4)

Using odd-dimensional dualization [20] we change 3-form to 4-form

F̃4 = e
− 4√

10
φ̃ ∗̃ F̃3 , or F̃3 = −e

4√
10
φ̃ ∗̃ F̃4 . (3.5)

In terms of the 4-form field strength, the eqs. (3.4) become

d(e
4√
10
φ̃ ∗̃F̃4) = 1

4
F̃ i2 ∧ F̃ i2 ,

D(e− 2√
10
φ̃ ∗̃F̃ i2) =

1

2
F̃4 ∧ F̃ i2 , (3.6)

d(∗̃dφ̃) = 2√
10
e
4√
10
φ̃ ∗̃F̃4 ∧ F̃4 − 1√

10
e
− 2√

10
φ̃ ∗̃F̃ i2 ∧ F̃ i2 −

8√
10
g2 e

2√
10
φ̃∗̃1l .

5
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Eqs. (3.6) together with Einstein’s equations (for simplicity, we do not write them

down in (3.6)) constitute the equations of motion derived from the lagrangian of

SU(2) gauged N = 2 supergravity in seven dimensions without topological mass
term [21, 22]

L7 = R̃∗̃1l− 1
2
∗̃dφ̃ ∧ dφ̃− 1

2
e
4√
10
φ̃ ∗̃F̃4 ∧ F̃4 − 1

2
e
− 2√

10
φ̃ ∗̃F̃ i2 ∧ F̃ i2 +

+4 g2 e
2√
10
φ̃ ∗̃1l + 1

4
F̃ i2 ∧ F̃ i2 ∧ Ã3 , (3.7)

where

F̃4 = dÃ3 , and F̃ i2 = dÃ
i
1 +
1

2
εijk Ã

j
1 ∧ Ãk1. (3.8)

The above seven-dimensional gauged supergravity whose lagrangian is eq. (3.7) can

also be obtained from an appropriate truncation of a gauged supergravity derived

from reducing type-IIA supergravity on S3 [23]. Having obtained the seven-dimen-

sional gauged supergravity, we reduce it on T 2 following [24, 25, 17]. The ansatz for

reduction of the seven-dimensional gauged supergravity on T 2 is

ds27 = e
4
5
√
6
φ
ds25 + e

− 6
5
√
6
φ
(dY 2 + dZ2) ,

F̃3 = F2 ∧ dZ ∧ dY ,
F̃ i2 = F i2 . (3.9)

The five-dimensional lagrangian obtained from this process is

L5 = R ∗ 1l− 1
2
∗ dφ ∧ dφ− 1

2
e
− 2√

6
φ ∗ F i2 ∧ F i2 −

1

2
e
4√
6
φ ∗ F2 ∧ F2 +

+
1

4
F i2 ∧ F i2 ∧ A1 + 4 g2 e

2√
6
φ ∗ 1l , (3.10)

where

F2 = dA1 , and F i2 = dA
i
1 +
1

2
εijk A

j
1 ∧Ak1 . (3.11)

The lagrangian (3.10) is the SU(2) gauged N = 4 supergravity with vanishing U(1)
coupling constant and without two 2-form potentials. Eq. (3.10) is written in terms

of canonical normalized scalar φ and the signature of the space time is mostly plus.

The complete reduction ansatz from 10 to 5 dimensions is

dŝ210 = e
13
5
√
6
φ
ds25 + e

3
5
√
6
φ
(dY 2 + dZ2) +

1

4g2
e
− 3√

6
φ

3∑
i=1

(σi − g Ai1)2 ,

F̂3 = e
4√
6
φ ∗ F2 − 1

24g2
εijk h

i ∧ hj ∧ hk + 1
4

3∑
i=1

F i2 ∧ hi ,

φ̂ =
√
6φ , and hi = σi − g Ai1 . (3.12)

The ansatz (3.12) tells us that any solution of the five-dimensional gauged super-

gravity can be up-lifted to ten dimensions and, this is a solution corresponding to

6
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the NS-fivebrane. It is not clear that a supergravity obtained from reducing type

IIA on S3 is dual to a theory obtained from reducing type IIB on S3 in the same

sense as T-duality. However, for a particular subset of type-IIA and type-IIB, we

will show that type IIA on S1 × S3 is equivalent to type IIB on S3 × S1. Therefore,
any solution of the six-dimensional and the five-dimensional gauged supergravities

can be uplifted to either type-IIA or type-IIB supergravities.

The reduction of a subset of type-IIB supergravity on S3×S1 is presented above.
It is not hard to see that reducing the seven-dimensional theory whose lagrangian is

eq. (3.7) on a circle produces a subset of Romans’ theory in six dimensions. On the

other hand, the same subset of the Romans’ theory in six dimensions was obtained

by reducing type IIA on S1 × S3 [9], together with the dualization of the 3-form

field. The lagrangian and equations of motion of the six-dimensional theory [9] after

dualizing the 3-form field are

L6 = R̄− 1
2
(∂φ̄)2 − 1

2
e
− 1√

2
φ̄ ∗̄F̄ i2 ∧ F̄ i2 + 4 g2e

1√
2
φ̄ ∗̄1l + 1

4
F̄ i2 ∧ F̄ i2 ∧ Ā2 −

−1
2
e
√
2φ̄F̄3 ∧ F̄3 ,

d(e
√
2φ̄ ∗̄F̄3) = 1

4

3∑
i=1

F̄ i2 ∧ F̄ i2 ,

D(e− 1√
2
φ̄ ∗̄F̄ i2) =

1

2
F̄3 ∧ F̄ i2 , (3.13)

d(φ̄ ∗̄dφ̄) = − 1√
2
e
√
2φ̄ ∗̄F̄3 ∧ F̄3 + 1

2
√
2
e
− 1√

2
φ̄

3∑
i=1

∗̄F̄ i2 ∧ F̄ i2 +
4√
2
g2 e

1√
2
φ̄ ∗̄1l ,

where F̄3 = dĀ2 and F̄
i
2 = dĀ

i
1 +

1
2
εijk Ā

j
1 ∧ Āk1. Reducing the above six-dimensional

theory on a circle gives the five-dimensional theory without U(1) gauged coupling.

The ansatz of reduction from type-IIA supergravity on S1 × S3 × S1 is

dŝ210 = e
7
8
√
6
φ
ds25 +

1

4g2
e
− 9
8
√
6
φ

3∑
i=1

(
σi − g Ai1

)2
+ e

15
8
√
6
φ
dY 2 + e

− 9
8
√
6
φ
dZ2 ,

F̂4 =

(
e
4√
6
φ ∗ F2 − 1

24g2
εijk h

i ∧ hj ∧ hk + 1
4g
F i2 ∧ hi

)
∧ dY ,

φ̂ =
3

4
√
6
φ . (3.14)

4. Duals of 3-dimensional N = 1 SYM theory on a torus
In this section we study the supergravity dual of a 3-dimensional N = 1 SYM

theory on a torus. The gravitational system we are dealing with can be under-

stood as follows. Let us consider N type-IIB NS-fivebranes. If the fivebranes

were flat, the isometries of this system would be SO(1, 5)× SO(4). The first corre-
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sponds to the Lorentz group on the flat fivebrane worldvolumes, while the second

one is the corresponding rotation group of the S3 tranverse to the fivebrane direc-

tions. Since the NS-fivebranes are not flat but wrapped on a second S3 (in the

five-dimensional Romans’ theory), we have the following chain of breaking of the

isometries SO(1, 9) → SO(1, 5) × SO(4) → SO(4) × SO(4). There is also an addi-
tional isometry group corresponding to the torus, where the two additional spatial

directions of the fivebrane are wrapped. On the other hand, the supergravity solution

that we consider here has a global SO(4) symmetry, and its corresponding ansatz for

the five-dimensional metric has the R1 × S3 ×R1 geometry. The R1’s correspond to
the time and the radial coordinate, respectively. In ten dimensions, the solution has

the geometry of the form (R10 × S31,2,3 × R14) × T 25,6 × S37,8,9, where the lower indices
label the coordinates. Recall from the previous section that the seven-dimensional

supergravity is related to the five-dimensional one through a T 2 reduction, whereas

the up-lifting to 10-dimensional theory is obtained through an S3. In the table be-

low, we schematically show the global structure of the ten-dimensional metric. The

first five coordinates are arbitrarily chosen to represent the five-dimensional metric

for the Romans’ theory.

0 1 2 3 4 5 6 7 8 9

R
1
0 S31,2,3 R

1
4 T 25,6 S37,8,9

(4.1)

From the table 4.1, one can see that the NS-fivebrane is wrapped on the S3 (which

belongs to the five-dimensional SU(2) gauged supergravity metric ansatz), while its

other two spatial directions are wrapped on T 25,6, i.e. the directions 5 and 6.

Now, we focus on the twisting preserving two supercharges. As already men-

tioned above, there are three spatial directions of the NS-fivebranes wrapped on S3.

Therefore, the supersymmetry will be realized through a twisting. Also notice that

the NS-fivebranes have two directions on a torus, so that these are not involved in a

twisting. The brane worldvolume is on R1×S3×T 2. The non-trivial part of the spin
connection on this worlvolume is the SU(2) connection on the spin bundle of S3. On

the other hand, the normal bundle to the NS-fivebrane in the G2 manifold is given

by SU(2)×SU(2), one of them being the spin bundle of S3. In this case, the twisting
consists in the indentification of the SU(2) group of the spin bundle with one of the

factors in the R-symmetry group of the fivebrane, i.e. SO(4)R → SU(2)L × SU(2)R.
It leads to a diagonal group SU(2)D, so that it gives a twisted gauge theory. The

resulting symmetry group is SO(1, 2)×SU(2)D×SU(2)R. In the UV limit the global
symmetry is SO(1, 5)× SU(2)L × SU(2)R, so that the four scalars transform as the
representation (1, 2, 2) and there are also 16 supercharges. After the twisting we get

2 fermions (which are the two supercharges of the remaining unbroken supersym-

metry) transforming in the (2, 1, 1) representation of SO(1, 2) × SU(2)D × SU(2)R.
There are no scalars after twisting, while we get one vector field as it is before the

twisting. Therefore, 1/8 of the supersymmetries are preserved, which is related to
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the fact that the two S3’s, together with the radial coordinate are embedded in a G2
manifold. In this way, since our IR limit corresponds to set the radial coordinate to

be zero, it implies (as we will see) that the S3 part of the fivebrane will reduce to

a point. This is in contrast with the fact that the transverse S3 and the torus get

fixed radii. It shows that when one moves to the IR of the gauge theory (flowing

in the radial coordinate on the gravity dual) three of the dimensions become very

small and no low energy massless modes are excited on this two-space. Therefore,

effectively far in the IR the gauge theory is three-dimensional.

In order to show explicitly how the theory flows to a 3-dimensional SYM theory

on a torus, we briefly describe the SO(4)-symmetric solution of the five-dimensional

Romans’ supergravity presented in [13]. Following that reference, let us consider a

static field configuration, invariant under the SO(4) global symmetry group of spatial

rotations. As we already mentioned, the metric ansatz has the structure R×S3×R
and it can be written as

ds25 = e
2ν(r) dt2 − 1

M(r)
dr2 − r2 dΩ23 , (4.2)

where dΩ23 is the metric on S
3. Notice that here we have adopted the mostly minus

signature. In order to define the field configurations on this geometry it is useful to

introduce the left-invariant forms σi on S3, such that they satisfy the Maurer-Cartan

equation

dσi + εijk σ
j ∧ σk = 0 , (4.3)

and consequently dΩ23 = σ
i σi. We consider the non-abelian gauge potential compo-

nents written in terms of the left-invariant forms

Ai = Aiµ dx
µ = [w(r) + 1] σi , (4.4)

so that they are invariant under the combined action of the SO(4) rotations and the

SU(2) gauge transformations. The corresponding field strength is purely magnetic

and is given by

F i = dw ∧ σi + 1
2
[w(r)2 − 1] εijk σj ∧ σk , (4.5)

while for the abelian gauge potential we consider a purely electric ansatz

f(r) = Q(r) dt ∧ dr . (4.6)

All the rest of functions, i.e. ν, M , w, Q and the dilaton φ are only dependent of the

radial coordinate r. From the equation of motion of the dilaton the relation

ν(r) =

√
2

3
(φ(r)− φ0) (4.7)
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can be obtained, where φ0 is an integration constant. On the other hand, from the

equation of motion of the abelian field, the following result

Q(r) =
e5ν(r)√
M(r) r3

[2w(r)3 − 6w(r) +H ] (4.8)

is derived, where H is an integration constant. The rest of equations of motion

with the field configuration and the metric ansatz described above, can be found in

reference [13]. The solution must satisfy the equations obtained by setting to zero

the supersymmetry transformations for gauginos and gravitinos eqs.(2.3) and (2.4),

such that the following first order differential equations are obtained

M(r) =

(
1

3
ζ2 V − w

)2
+ 2 ζ2 (w2 − 1)2 − 2

3
(w2 − 1) + 1

18ζ2
,

dw(r)

d log r
=

1

6 ζ2M

{−2 V (w2 − 1) ζ4 + (H − 4w3) ζ2 − w} ,
dζ(r)

d log r
= − ζ

3M

{
V 2 ζ4 + 12 ζ2 (w2 − 1)2 − 4 V w ζ2 + w2 + 2} , (4.9)

where we have defined ζ(r) = exp[ν]/r and V (r) = 2w(r)3 − 6w(r) + H . These
equations are compatible with the equations of motion derived from the Romans’

five dimensional lagrangian given in section 2, and any solution of these first order

differential equations preserves two supersymmetries.

Since we are interested in the IR limit, i.e. when r → 0, we obtain the expansions
of the functions defining the metric, the magnetic non-abelian and the electric abelian

fields for the five-dimensional ansatz. They are

w(r) = 1− 1
24
r2 + · · · ,

ζ(r) =
1

r
+
7

288
r + · · · ,

M(r) = 1 +
5

144
r2 + · · · , (4.10)

and straightforwardly

ν(r) =
7

288
r2 + · · · , (4.11)

while for the dilaton we obtain

φ(r) = φ0 +
7

288

√
3

2
r2 + · · · . (4.12)

In this case we have taken H to be 4. Also, we get

Q(r) =
1

96
r +

13

13824
r3 + · · · . (4.13)
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In this way, one can see that in the IR limit the non-abelian gauge potential has a

core, while both field strengths, i.e. the abelian and the non-abelian one are of the

order r around r = 0. Futhermore, the above solution can be up-lifted, following the

ansätze presented in the section 3, to either type-IIA or type-IIB theories. In these

two cases, the IR limit turns out to be the same.

Up-lifting to type-IIB theory. Firstly, we consider the case when the solution

is up-lifted to type-IIB supergravity. From eq. (3.12) the 10-dimensional metric is

dŝ210 = −e
13
5
√
6
φ

(
e2ν(r) dt2 − 1

M(r)
dr2 − r2 dΩ23

)
+ e

3
5
√
6
φ
(dY 2 + dZ2) +

+
1

4g2
e
− 3√

6
φ

3∑
i=1

(σi − g Ai1)2 ,

φ̂ =
√
6φ . (4.14)

Therefore, using the previously calculated IR expansion we can obtain the radii of

the different manifolds. Thus, for the S3 involving the coordinates 1, 2, and 3, the

radius is given by

R21,2,3 = e
13φ0/5

√
6 r2 +O(r4) , (4.15)

so that we can see how the radius of the S3 in the five-dimensional metric ansatz

shrinks to zero in the IR. On the other hand, the radii of T 25,6, S
3
7,8,9 remain finite as

we can see as follows

R2T = e
√
3

5
√
2
φ0

(
1− 7

960
r2 +O(r3)

)
,

R27,8,9 =
1

4g2
e
− 3√

6
φ0

(
1− 21
576

r2 +O(r3)
)
. (4.16)

Without loss of generality, we can set φ0 to zero. It is obvious from eqs. (4.15)

and (4.16) that in the limit r → 0, RT and R7,8,9 remain finite, while R1,2,3 → 0.
Since the type-IIB NS-fivebrane is wrapped on S31,2,3, T

2, and in the IR limit S31,2,3
effectively reduces to a point, in this limit we obtain a twisted gauge field theory

defined on the torus.

Up-lifting to type-IIA theory. Now, we consider the metric given in eq. (3.14)

dŝ210 = −e
7
8
√
6
φ

(
e2ν(r) dt2 − 1

M(r)
dr2 − r2 dΩ23

)
+

+
1

4g2
e
− 9
8
√
6
φ

3∑
i=1

(
σi − g Ai1

)2
+ e

− 9
8
√
6
φ
dZ2 + e

15
8
√
6
φ
dY 2 ,

φ̂ =
3

4
√
6
φ . (4.17)
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Therefore, as we did for the type-IIB case, we can obtain the radius

R21,2,3 = e
7
8
√
6
φ0 r2 +O(r4) , (4.18)

which shrinks to zero in the IR limit. In addition, the radii of S15 , S
3
6,7,8 and S

1
9 are

finite

R25 = e
15
8
√
6
φ0

(
1 +

105

4608
r2 +O(r3)

)
,

R26,7,8 =
1

4g2
e
− 9
8
√
6
φ0

(
1− 27

4608
r2 +O(r3)

)
,

R29 = e
− 9
8
√
6
φ0

(
1− 27

4608
r2 +O(r3)

)
. (4.19)

Again, by considering φ0 = 0, in the IR, the radii R5 = R9 and R6,7,8 = 1/(2g), while

R1,2,3 → 0. Since the type-IIA NS-fivebrane is wrapped on S31,2,3, S15 and S19 , and in
the IR limit S31,2,3 effectively shrinks to a point as in the type-IIB case, we get the

same geometric reduction as in the previous case. Note that this can be obtained

when φ0 = 0, so that the radii of the torus (in type-IIB case) and the two S
1’s (in

type-IIA case) are exactly the same.

In addition, in both cases one can use the criterion for confinement given in ref-

erences [26, 27], in order to show that the corresponding static potential is confining.

The singular SO(4)-symmetric solution. A solution with no electric abelian

fields can be obtained by setting H to zero. It implies that w, V and also Q are

zeros, as we expected since no electric field are excited. In this way, the first order

differential equations (4.9) can be easily integrated, yielding the relation

r = r0
e1/24ζ

2

√
ζ

, (4.20)

where r0 is an integration constant. The metric is given by

ds25 = r
2
0 e
1/(12ζ2)

(
ζ dt2 − 1

8 ζ5
dζ2 − 1

ζ
dΩ23

)
. (4.21)

In adition, for the dilaton we have the following relation

e
√
2φ/
√
3 = r0 e

1/24ζ2
√
ζ . (4.22)

Using the criterion of reference [4] it is straightforward to see that the IR singularity

is not acceptable, both in type-IIA and type-IIB theories.
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5. Discussion

From the point of view of the supergravity theories, the SO(4)-symmetric solution

of the Romans’ five-dimensional theory can be up-lifted to either type-IIB or type-

IIA supergravities. These are obtained through the up-lifting to seven and six-

dimensional supergravities, respectively. It means that the 10-dimensional system

consists of NS fivebranes, either type IIB or IIA. On the other hand, in our previous

paper [9], we constructed a non-abelian solution that is identical to the solution ob-

tained in references [28, 29]. It has been interpreted in [5] as a wrapped NS-fivebrane.

In this case, it was a gravity dual of a theory very similar to N = 1 super Yang-Mills.
In addition, in [9] we interpreted the massless solution of the Romans’ six-dimensional

theory as the same NS-fivebrane with a compactified direction. In such a situation,

the IR theory was N = 2 SYM in three dimensions. In these cases, the fact that
their actions in the string frame are similar, for the massless six-dimensional su-

pergravity and the corresponding seven-dimensional one with vanishing topological

mass, indicates that those are the same system. We can see a similar issue in the

five-dimensional supergravity studied here, since again the 10-dimensional system

involves NS-fivebranes. Thus, from the analysis in the present paper, we conclude

that this is the natural extension of the six and seven-dimensional results to five

dimensions. In fact, in the IR limit this case corresponds to N = 1 super Yang-
Mills theory on a torus, which is confining. This IR theory is interesting on its own.

Although many aspects of three-dimensional super Yang-Mills theories have been

considered [30, 31, 32], some aspects of three-dimensional N = 1 super Yang-Mills
theory on a torus are still poorly understood. Therefore, the results obtained here

can be an interesting motivation for further studies since we have presented a gravity

dual of N = 1 super Yang-Mills theory on a torus.
We remark that the singular solution obtained in [13] is produced when the

electric abelian fields are turn off. This solution has a singular g00 even when it is

considered in the ten-dimensional theory. This means that this solution does not

represent any gauge field theory in the IR. We think that it would be interesting to

know if the presence of electric abelian fields is related to a rotation of the fivebranes,

leading to a desingularization of the solution. Although, we think that this point

deserves further investigation, we can discuss here a little about this mechanism.

The issue of the resolution of the singularity can be understood as follows. We recall

one of the cases studied in [9], which has been interpreted as the gravity dual of

the three-dimensional N = 2 super Yang-Mills theory. Actually, this solution is
related to the one given in [5], and it represents a smeared NS-fivebrane on S2 after

T-duality. What is worth stressing is that the resolution of the singularity in this

case was produced by the excitation of non-abelian fields. In the case of the metric

of eq. (4.2), as we have seen, in order to obtain a non-singular metric it is necessary

to turn on the electric abelian fields. We also have to recall that for that particular
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case one forced the metric on the S3 to be r2. We think that this fact induces the

singularity, so that the non-abelian fields are not enough in order to prevent it, as

in the cases of [5, 9]. It would be interesting to see what happens if instead of r2 we

write a more general function of r. It would probably render a similar situation as

in [5, 9], i.e. the resolution of the singularity with only non-abelian fields.
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[10] J.D. Edelstein and C. Nuñez, D6 branes and M-theory geometrical transitions from

gauged supergravity, J. High Energy Phys. 04 (2001) 028 [hep-th/0103167].

[11] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl.

Phys. B 463 (1996) 420 [hep-th/9511222].

[12] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and

the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004

[hep-th/9802042].

[13] A.H. Chamseddine and M.S. Volkov, Non-abelian vacua in D = 5, N = 4 gauged

supergravity, J. High Energy Phys. 04 (2001) 023 [hep-th/0101202].

[14] L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac

backgrounds, Nucl. Phys. B 267 (1986) 433.

[15] L.J. Romans, The F (4) gauged supergravity in six-dimensions, Nucl. Phys. B 269

(1986) 691;

For more recent developments of F(4) gauged supergravity in six-dimensions coupled to

matter see R. D’Auria, S. Ferrara and S. Vaulà, Matter coupled F4 supergravity and the
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