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ABSTRACT

Fracture causes enormous material and energy waste per annum, with large economical, in-
dustrial and environmental impact. In particular, ductile failure under shear-dominated loading
pervades in many areas of manufacturing, load-bearing structures and impact protection systems.
However, failure in shear remain elusive there being no complete theory of ductile fracture with-
out a physics-based model. A robust micromechanics-based constitutive framework, founded on
mechanism-based yield criteria for materials with evolution laws accounting for microstructural
evolution, is essential to this end. Experimental observations reveal cell-level plastic deformation
as homogeneous or inhomogeneous, the latter being idealized with plasticity confined within in-
tervoid ligaments or occasionally within intervoid plugs. The present thesis is partly targeted to
the development of analytical yield functions that predict yielding by either mechanism, attained
by limit analysis over a cylindrical cell containing a coaxial void. Nonetheless, existing outcomes
indicate the shear-dominated deformation process at early stages as an intermediate state between
a homogeneous and an ideally localized one. Correspondingly, a hybrid model is adopted consists-
ing of simple modifications to both an existing homogeneous yield criterion as well as a derived
localized yield function. Upon current limitations of a highly complex physical process, a sur-
rogate microstructure, tied to a possible localization plane, is invoked. The next missing link to
the constitutive framework calls for microstructural evolution equations during localized deforma-
tion, which sets the second objective of the present work. The body of existing and derived yield
criteria supplemented with available and derived evolution equations sets enough grounds for the
numerical simulation of ductile fracture, thus the third milestone. The hybrid model predictions
are firstly borne out by existing numerical outcomes under combined loading. The parametric
studies are then carried through a complete range of loading combinations from uniaxial to pure
shear loading. The effects of initial porosity, void shape, relative spacing, void misalignment with
the principal loading directions, and matrix plastic anisotropy are accounted for. Furthermore, the

strain to failure is evaluated vs. a complete scope of stress triaxialities. The thesis closes with
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proposed extensions to 3D voids, void coalescence along columns and other potential prospects
for more robust numerical implementation.
Key Words: Ductile fracture; Void coalescence; Combined tension and shear; Homogeneous/

Inhomogeneous Yielding; Strain localization; Simple/Pure shear.
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CHAPTER1 INTRODUCTION

1.1 Overview and Significance

The amount of material and energy waste induced by fracture is among the most remarkable
ones per annum, baring large economical, industrial and environmental impacts. Hence, fracture
is mostly deemed deleterious, thus to be avoided, as far as the safety in infrastructure or structural
integrity is concerned. In fact, the genesis of the knowledge known today as fracture mechanics
dates back to the catastrophic damages that took place in the American Liberty ships due to the
ductile-to-brittle transition (DBT) of solids in freezing waters of North Atlantic. In the course of
seven years, between 1939 to 1946, 1038 from the 2708 constructed Liberty ships were reported
to have damaged, more than 200 of which sank or were damaged beyond repair (including the
"Schenectady") [22,23]. Several other catastrophies have been observed since, including but not
limited to the de Havilland Comet [24] and Aloha Airlines Flight 243 [25] crashes in 1954 and
1988, respectively, due to fuselage failure triggered by fatigue and corrosion cracks. Apart from
the shipping and air industries, leakage of chemicals from reservoirs has been counted as the source
of dramatic fatalities. In the Ajka alumina sludge spill in 2010, for instance, the collapse of the
northwestern dam corner led to the realease of approximately one million cubic meters (35 million
cubic feet) of liquid waste [26].

Just as fracture can be harmful, so too it can be desirable. By virtue of proper engineering
of fracture paths, as in metal cutting and/or trimming, material imperfections at the macroscopic
level can be avoided or minimized. For instance, burring in machined workpieces is a serious
cause for fabrication deficiency. Burrs require additional finishing operations, known as deburring
techniques, and they further complicate the assembly. A careful choice of the machining tool path
can minimize burrs within metal pieces [27].

Fracture modes and failure mechanisms are primarily driven by the loading condition. Among

the three basic fracture modes (mode I, II, and III), mode I is mainly driven by normal load-



ing whereas modes II and III are triggered by shear [23]. Ductile failure under shear-dominated
loading pervades in many areas of manufacturing, load-bearing structures and impact protection
systems. The effect of shearing has thus been a prime concern in fracture mechanics and failure
prediction from early days. In particular, ductile failure under combined tension and shear has
received extensive attention in the past decades for both gaining insight into undesirable failures
such as crack propagation under DBT (e.g. in welded structures; see [28,29]), penetration, efc. as
well as desirable engineering manufacturing processes such as metal forming, cutting, trimming,

extrusion, efc.

Figure 1.1: (a) Weld failure under combined tension and shear after the 2011 Tohoku Japan Earth-
quake (reprinted with permission from the Earthquake Engineering Research Institute (EERI),
Ltd) [1], (b) beam-to-column joint connection failure under combined bending and shear test-
ing [2] (reprinted with permission from Elsevier, Ltd).

Figure 1.1a shows failure of a beam-to-column steel connection due to weld tearing under
earthquake-induced tensile and shear loads [1]. For design purposes, the cross sections of connect-
ing constituents should be designed based on a predicted ductility behavior germane to earthquake-
like lateral loads. A combination of high tensile coupled with significant shear loads can be prop-
erly exerted by actuation of the beam from the location of a potential plastic hinge. Figure 1.1b
shows an example beam-to-column connection failing under a shear-induced yielding in the web

and flange yielding and buckling due to tension and compression, respectively [2].
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Figure 1.2: Ballistic penetration test carried out by Borvik et al. [3] (reprinted with permission
from Elsevier, Ltd).
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Figure 1.3: (a) Schematic outline of the localized damage zone in a penetration test, (b) tomo-
graphical images of localized damage [4] (reprinted with permission from Elsevier, Ltd).

Ballistic penetration, as shown in Fig. 1.2, is another practical example triggered by extreme
shearing with high shear strains advancing through a small or finite thickness [3,4]. The overall
plug formation process consists of a combination of local bulging and global dishing. The former
dominates at early stages, and the latter becomes prominent towards the end of penetration, as
observed in Fig. 1.2a. Further details in this regard can be viewed in Fig. 1.3. The fracture
surfaces shown in Fig. 1.3b have been generated from spectral microscopy. They clearly convey
the existence of combined tensile and shear loading at the failure stage. The onset of the fracture
process corresponds to a plug movement equaling about half of the plate thickness [4].

The target undergoes permanent deformation as increasing function of the projectile velocity,

which reaches a maximum at the so-called "ballistic limit" of the velocity. After penetration is



complete, the deformation decreases with velocity until it saturates at a velocity well beyond the
ballistic limit. Static and dynamic tests have demonstrated that the maximum deformation within
the target towards the onset of fracture is about twice the permanent deformation thereof, indicating
remarkable elastic recoil [3,4].

In forming processes, the boundary conditions corresponding to the existence of rigid zones
(such as dies) lead to a build-up of initial shear stresses cutting [6]. The similar phenomenon
occurs by introduction of a small sharp notch at the cutting starting point in a cutting experiment

or simulation [30,31].
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Figure 1.4: (a) Schematic blanking setup (reprinted from [5]), (b) example contours for the
void volume fraction f resulting from the simulation of the blanking process by Mediavilla [6]
(reprinted with permission from Elsevier, Ltd).

Figure 1.4a depicts a schematic setup pertaining to a forming process known as "blanking". A
common defect left in a formed specimen is burrs. As stated above, burrs can be minimized with
proper engineering of the die and the blanking path. Figure 1.4b presents an example simulation
of the blanking process by Mediavilla [6].

The basic failure modes observed in engineering metals at the microscopic level are cleav-
age, intergranular, and ductile fracture [32]. Ductile fracture occurring by the nucleation, growth,

and coalescence of voids is a prime failure mechanism in ductile materials. Fracture can happen



in amorphous, single-crystalline or poly-crystalline materials. More specifically, poly-crystalline
metals that do not cleave can fail in a ductile, mostly transgranular manner [13]. In structural
materials, voids may nucleate by particle cracking or by decohesion between the particles and ma-
trix. Subsequently, void growth is driven by plastic deformation within the matrix surrounding the
voids, and is commonly accompanied by void expansion/contraction, elongation/shortening, and
distortion. Void coalescence, which is normally ensued by crack propagation and ultimate failure,
is associated with plastic deformation being localized in the intervoid ligaments [13,33,34]. The
present work is a step forward to the computational modeling of ductile fracture under combined

tension and shear, with particular focus on shear-dominated loadings.
1.2 Experimental Facts

Failure in a ductile material can occur by some mechanical instability of a test piece or by
damage propagation to cracking. The former can best be exemplified by the formation of a shear
band, and the latter stems from plastic flow localizing in microscopic intervoid ligaments, mostly
known as "void coalescence" [13,35]. Experimental characterization of fracture can be reflected

partly through macroscopic and partly through microscopic observation of fracture surfaces.



1.2.1 Macroscopic observations

(a)

10

Figure 1.5: Effect of shear strain rate on the average shear strain to fracture for engineering metals:
(a) ductile metals [7], (b) less ductile metals [8].

Experimental observation of ductile fracture under shear-dominated loading at the macro scale
has been conveyed through bulk or sheet specimens. In the former, combined tensile and shear

loads are applied on thin-walled torsion tubes. By virtue of the Saint-Venant principle, the shear

—————————— e Nickel 200
N

" 1006 steel

Cartridge brass
Carpenter electrical iron |
Armco IF iron

107

il
10"

-

—me= TN

ul Ll
10°

et

(b)

— e ——

S-7 tool steel

Tungsten alloy |

- Low-alloy steel 1

_;\'$\\ -t
— \'

N
ol L Hull il
1010 10
Y

strains can be regarded as constant over a large portion of the specimen length.

Among the most comprehensive studies using this method is the reported measurement of
ductility for varieties of engineering metal alloys by Johnson et al. [7, 8], who came to divide the
investigated metals into ductile and less ductile. Figure 1.5 shows the effect of torsion-induced
shear strain rate on the average shear strain to fracture according to [7, 8]. One can observe at
least 2 orders of magnitude of difference in ¢ from the lower to the upper limit, keeping mindful

that the tensile ductility variation is, by no means, found to be as wide. A compelling explanation

regarding these remarkable differences in the measured ductilities still remains elusive.




(a) (b) (c)

Figure 1.6: Typical combined tensile-shear test specimens: (a) hollow tubes utilized by Barsoum
and Faleskog [9, 10], (b) butterfly specimens used by Bao and Wierzbicki [11], (c) hollow tubes
employed by Haltom et al. [12] (reprinted with permission from Elsevier, Ltd).

Later on, Barsoum and Faleskog [36] conducted similar experiments by the introduction of
notches to hollow tubes for illustrating the effect of triaxiality. They characterized the stress state
in terms of stress triaxiality 7" and the Lode parameter L by imposing a combined state of tensile
and torsion loading at fixed ratio. They employed extensometers and gauge clips (tied to the tube
gauge section) to measure tensile displacements and torsion angles, respectively. See Fig. 1.6a. In
order to realize straightly oriented fracture surfaces under pure torsion, the ratio between the gauge
section length and the notch height was taken as 120. Further, the gauge and notch thicknesses
were considered 1.6 and 0.6 (mm), respectively so an almost uniformly distributed shear stress
would be witnessed . They further evaluated the stress state inside the notched region from FEM
simulations using axisymmetric elements. Notably, their observations from spectral-microscopy
fractographs indicated clear distinction among fracture surfaces at low to high triaxialities. They
witnessed elliptical dimples at 7" < 0.5, parabolic dimples at 7" > 1, and a transition between the
two at 7" = 0.85.

Due to the existing difficulties in the exertion of pure torsion, Arcan sheet specimens were con-
currently designed for shearing experimentation on thin sheets [37,38], and have been both widely

employed and modified in the past decades for metals [39], composites [40,41], polymers [42],

! At such small thicknesses, the intervoid distances can come down to be comparable to the void sizes. Therefore,
the notion of a representative volume element (RVE) would become questionable.
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magnesium [43], etc. The main limitation within the Arcan method, however, lies in stress concen-
tration at the vicinity of free surfaces at the sheared cross section, which prompts fracture from the
free surface zone, which is not essentially driven by shear. To this challenge, butterfly specimens
later attracted some researchers for the sake of more uniformity in shear stresses (Fig. 1.6b). Bao

and Wierzbicki [11] were among those who explored shear failure in butterfly specimens.
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Figure 1.7: Equivalent strain to fracture vs stress triaxiality, resulting from experiments conducted
by Bao and Wierzbicki [11], Barsoum and Faleskog [9], and Haltom et al. [12].

Yet, butterfly specimens have not duly fulfilled the expected shear uniformity. Hence, Haltom
et al. [12] have recently conducted torsion experiments with the test specimen revisited (Fig. 1.6¢),
which unravelled a new finding. See Fig. 1.7.

Fig. 1.7 presents equivalent plastic strain at the failure point, concisely termed "strain to fail-
ure" €7, in terms of stress triaxiality. Earlier torsion experiments on aluminum alloys and steels
indicated that the materials were less ductile in shear than under uniaxial tension [9, 11] whereas
Haltom et al.’s experiments showed the opposite trend [12]. A deep insight into the driving trend
can be acquired only with a robust constitutive development of the fracture model. Altogether,
experiments, though being revealing, are hard to conduct, especially in presence of shear, and may
lead to conflicting results. All the same, numerous studies have striven to incorporate the effect of
shear in ductile fracture. Keeping in mind specimen geometry and material variability, the extent

to which shear affects ductile fracture remains fairly unsettled.



1.2.2  Microscopic observations

The microscopic texture of fracture surfaces is conventionally examined through spectral elec-
tron microscopy (SEM) [44]. Plastic flow at the micro scale can localize due to enlargement or
rotation and/or elongation of voids. Void growth emanates from plastic deformation of the mate-
rial surrounding the void. All the same, void coalescence is governed by plasticity that is localized
within a directed intervoid ligament. Therefore, plastic dilatancy, being diffuse or localized, is
intertwined with both growth and coalescence. To date, the failure mechanism subsequent to void
coalescence that is best understood is by internal necking (see [45] and references therein) moti-
vated by the pioneering computational work of Koplik and Needleman [46]. On the other hand,
microscale localization by so-called internal shearing has also been noticed on the basis of cell
model calculations [17,36,47,48]. In a weakly rate-sensitive material, void coalescence by inter-
nal necking or shearing manifests by the onset of elastic unloading in layers above and below the
void [20,46,48,49]. Occasionally, strains can localize along intervoid plugs forming columns of lo-

calized deformation. The latter is termed coalescence in columns or necklace coalescence [33,50].

Figure 1.8: Typical fracture surfaces of metals failing in (a) tension, and (b) shear [13] (reprinted
with permission from Elsevier, Ltd).

The de facto failure mechanism under any loading condition can be envisaged from tomog-
raphy. Fig. 1.8 compares two typical fracture surfaces exhibiting in the form of dimples. The

plastic enlargement of microvoids dominates at moderate to high ratios of tension-to-shear stress
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(tension-dominated loading), Fig. 1.8a. Voids are also observed to distort significantly at low
tension-to-shear ratios (shear-dominated loading), Fig. 1.8b [13].

Another prominent indication of failure in shear is shear failure, i.e. failure by shear banding as
an instability phenomenon. The latter pervasive in complex fluids [51], granular materials [52,53],
rocks [54], polycrystals [55,56], polymers, [57] and amorphous metals (metallic glasses) [58,59].
However, the mechanism of material separation under shear-dominated loadings as well as inside
shear bands has remained elusive by far. Understanding it will not only potentially retard failure
in shear bands, if desired, but also impact other applications where failure occurs under shear
dominated loadings. The stress state in shear bands is generally complex depending on the loading
path prior to the onset of strain localization [60]. Correspondingly, shear bands are generally
dilational. Hence, upon favorable conditions, void coalescence can also take place inside a shear
band. Yet, the arbitrarily small to large tension-to-shear ratios that may be encountered inside shear
bands warrants a deeper insight into a physics-based failure mechanism under combined tension

and shear.
1.3 Challenges and Objectives

Ductile fracture is a complex phenomenon in the mechanics of materials with both intrinsic
and extrinsic effects being involved. Intrinsic effects include induced anisotropies mediated by
large plastic deformations, microstructural evolution (void expansions, rotations and distortions),
and stress state. Extrinsic effects are relevant to boundary conditions and to the states of incipient
plastic instabilities, be it at the material (e.g., shear bands) or structural (e.g., necking) level [61—
63].

Void nucleation under predominant shearing involves complex void-particle interactions [64].
Micromechanical void nucleation analyses of the kind pioneered by Needleman [65] are still not
available for such loadings. Whether these nucleation conditions fundamentally differ from those
under tension with particle locking effects [66,67] remains to be investigated. Void enlargement
at medium to high triaxialities, as well as void shrinking at the limit of low triaxialities are usually

accompanied with void shape changes and distortion. Yet, the latter is more prominent at low
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stress triaxialities characteristic of remarkable shear stresses. In this regime, void distortion is a
key origin to failure. Void distortion can be influenced by several factors, including the presence of
shear stresses and void-particle interactions [66,68]. Void locking and formation of penny-shaped
cracks under limited void growth are among the clear examples [67, 69, 70].

A major drawback within the established caliber of work on the effects induced by shear is a
missing constitutive framework that takes into account the effective internal state variables that are
both measurable and observable. These variables pertain mainly to the rotation and distortion of
the microstructure under the effect of shear. Therefore, the major challenges to this task are pri-
marily related to the void-mediated microstructural evolutions mainly associated with void rotation
and distortion under the effect of combined tension and shear. Constitutive frameworks merely re-
lying on heurism fail to reveal the physics behind the plastic process, and thus their limitations
cannot be revealed unless upon high through-put calculations or heavy experiments [71,72]. More
importantly, the constitutive behavior of porous materials in a state of incipient void coalescence is
still at premature stage. Rather than merely on heuristics, plasticity models predicting void growth
and coalescence (see Sec. 1.5 for definitions) under combined tension and shear should be derived
with a deeper insight into the physics of this process. Apropos of void coalescence, in particular,
analytical physics-based models accounting for void coalescence under combined loading from
first principles have been lacking. Moreover, a set of equations accounting for the evolution of
effective parameters governing the post-coalescence microstructure is far from established. The
only way to explore this problem without the present controversies is by adopting a mechanism-
based approach, which is true to the spirit of the local approach [33,34]. The present work is thus
a step forward to the extraction of a more comprehensive constitutive theory for modeling duc-
tile fracture under combined tension and shear, with particular focus on shear-dominated loadings.
Without this step forward, the link between the real failure mechanism and the simulated process
would still be missing. The virtues of a mechanism-based constitutive framework abound. In the
least, the fracture process can be simulated with measurable and observable state variables. The

clear physical demonstration of involved state variables leads to vivid elucidation of the model
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limitations at extreme cases. It also eases the calibration of the model by means of adjustable
parameters if need be.
In the interest of the foregoing challenges, the following main objectives can be outlined in the

following items:

1. Develop and validate a micromechanics-based void coalescence model under combined

loading accounting for the effects of stress state and microstructure.

2. Simulate complete fracture processes from micro-void growth to coalescence up to fail-
ure, and reconcile failure mechanisms under combined tension and shear with evolving mi-

crostructural parameters.

3. Investigate the effects of stress state, strain history, and microstructure on the failure maps

of engineering materials representative of structural alloys.

4. Extend the realm of the implemented constitutive framework with some of the more influen-

tial underlying assumptions relaxed.

A clearer illustration of the above objectives is demonstrated in Sec. 1.6.
1.4 Approach

In a global approach, essentially based on linear elastic (LEFM) and elastic-plastic (EPFM)
fracture mechanics, it is generally assumed that fracture can be described by a single, or utmost
two, loading parameter, such as K. or Ji., or any equivalent thereof, such as the crack-tip opening
displacement (CTOD) [13, 34]. More recent methods based on the global approach have incor-
porated a second parameter, the 7" or () stress [73]. The limitations associated with the global
approach, including but not limited to the loss of size effect predictions and inapplicability to
non-isothermal loading conditions, have driven the researchers towards adopting a second type of
approach, known as the local approach, also termed the top-down approach [33, 34, 74]. In the

latter, fracture parameters are modeled based on local fracture criteria that are established from
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tests on bulk specimens (especially notched specimens) or from computational analysis over an el-
ementary cell, usually referred to as a reference volume element (RVE). Within this realm, the key
concepts such as void growth and void coalescence, on the one hand, and matrix plasticity, on the
other hand, are inherently coupled. One established way to tackle fracture using a local approach
is to calibrate the internal state variables [72,75]. However, provided that the model is quantita-
tively robust, the need to the calibration of parameters will be eliminated. Accordingly, the present
work aims at prediction of critical parameters rather than mere calibration. This sets a paradigm
for developing future predictive models and discovering the limitations of existing models.

In the reported literature, a tentative understanding on the effect of stress state on ductile frac-
ture is carried through macroscopic nondimensional descriptors expressed in terms of stress invari-
ants or some equivalent invariant of the stress deviator at the cell level. Among the most widely
used are stress triaxiality T = 0y,/0, and the Lode parameter L = — cos36. The former is
so defined as the ratio of the mean normal stress to the Mises equivalent stress, and the latter is
function of the Lode angle or, equivalently, the third invariant of the stress deviator, J3. Unless
quite lately, isotropic damage models have been expressed exclusively in terms of triaxiality, and
have thus failed to capture the essential behaviors in presence of remarkable Lode effects [75—-80].
While this class of models have gained in maturity and accuracy, e.g. [14, 81-83], other groups
have investigated the tentative effect of .J3 on the stress and microstructural state [36,71, 84, 85].
However, neither parameter can reveal the essential behaviors in presence of low stress triaxialities.
In other terms, this type of work is formulated upon the basic properties of isotropic scalar-valued
tensor functions. Deformation-induced anisotropies, however, constitute the essence of the dam-
age mechanics of shear-dominated ductile fracture [32, 86]. This anisotropy is of two types: that
related to the voids themselves (large plastic strains, changes in void shape and orientation); and
that related to their spatial arrangement. Thus, analyses of ductile fracture under shear-dominated
loading and interpretation of currently available experiments rely, to a large extent, on accounting
for the induced, and eventually initial anisotropies. At this stage, the material response is strictly

sensitive towards the loading path, initial microstructure, and void distribution. The reader can

13



consult [87, 88] for more details. The additional downside within isotropic models is the descrip-
tion of fracture in macroscopic terms, which leaves the fundamental mechanisms underlying such
effects elusive. Therefore, the constitutive framework demands a paradigm shift in approaching
ductile fracture in combined shear and tension, particularly at low stress triaxialities even if the
anisotropy of the material is disregarded.

Interestingly, the micromechanical basis for an understanding of low-triaxiality fracture has
been available since the early nineties [89-92] and has been used to model fracture in engineer-
ing materials, e.g. [93]. The constitutive model expanded in the present context will be in part
supplemented with some of the earlier work [91,94] and, in part, with more sophisticated models
developed in more recent years [14,95]. The lack of physics-based micromechanical models sup-
plemented with mechanism-based evolution equations of effective state variables, however, calls
for more extensive work in this regard. In essence, work on yield criteria and plastic flow potentials
accounting for the effects of void shape, volume fraction, and rotation is still scarce. Besides, evo-

lution of state variables affected by shear loading has not been formulated to the adequate extent.
1.5 Potential Impacts

An appropriate constitutive framework, including yield criteria and evolution equations that
can quantitatively and qualitatively mimic the physics, would be conducive to an effective way to
simulate fracture process up to failure with measurable and observable parameters. The numerical
work carried out by Tvergaard and coworkers [16, 17,21] for combined tension and shear aiming
at the cell-level simulation of ductile fracture under combined loading has set a landmark in this
field. Nonetheless, it clearly demonstrates that numerical cell-model studies, let alone structural
calculations, of porous plasticity under combined loading is not only cumbersome, but also unfea-
sible at times, e.g. in the case of extreme shearing over 3D unit cells [17]. Micromechanics-based
modeling would, in effect, eliminate the need for lengthy cell-model calculations and significantly
contract voluminous structural calculation thanks to homogenized modeling. Moreover, a consti-
tutive framework developed based on physical parameters would reveal its realm and limitations

in conformity with physical processes.
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Apart from verifiable simulation of the fracture process under combined tension and shear,
another major contribution of the present study is to predict the evolution of strain to failure €
in terms of stress triaxiality 7" in a plot known as fracture locus, particularly in the 0 < T' <
1/3 interval characteristic of shear prevalence. The reported literature lacks a clear dichotomy of
important factors such as loading history and microstructural effects at this interval.

The constitutive framework will further allow for a better rationale regarding the significant
differences in the ductility of materials subject to shear, as explored by Johnson et al. [7, 8], for
instance, from torsion experiments. A perspicuous explanation about this wide range of differences
lies in the initial microscopic intervoid relative distances. Results in Chapter 7 will further clarify
this effect.

Above all, the numerically implemented algorithm can be utilized as a tool for structural cal-
culations. To this end, the numerical framework can be translated into a user-defined subrou-
tine (UMAT) to solve structural boundary-value problems on porous materials. The user-defined
subroutine conspicuously eliminates the need to model the microstructure by accounting for the

evolution of corresponding microstructural parameters.
1.6 Research Objectives

In this section, the broad objectives stated in Sec. 1.3 are elaborated upon as follows:
1.6.1 Activities under Objective 1

Development of yield criteria encompassing essential microstructural parameters is the first ob-
jective. The models are developed from first principles, and are capable of describing the yielding
and subsequent flow of a material containing voids in configurations such that microscale localiza-
tion of plastic flow is possible under combined shear and triaxial tension. Such models would di-
rectly be relevant to modeling ductile failure by internal necking, internal shearing or both. Model
versions can vary mainly due to uncertainties in the assumptions made on the availability of bench-
mark solutions. Therefore, inhomogeneous models can be seamlessly juxtaposed to an originally

identified unified model accounting for both void growth and coalescence. Meanwhile, assessment
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of the models in accordance with finite element-based numerical values is indispensable. There-
fore, FEM cell-model limit-analysis calculations are carried out on the same cell geometry in that
interest. Chapter 5 collectively presents all the newly derived yield criteria within the present

context.
1.6.2  Activities under Objective 2

The numerical implementation of the constitutive framework at hand allows for the apportion-
ing of the inevitably coupled effects of stress state, loading path, and material microstructure on
the effective state variables describing ductile fracture of structural materials. To this end, selected
inhomogeneous yield criteria along with a judicious choice of the homogeneous yield criterion is
the second objective with the aim of simulating the entire process of ductile fracture under com-
bined tension and shear up to ultimate failure. In case the two yeild criteria are derived on the
basis of different elementary cell geometries, the resulting multi-surface model is termed hybrid.
Further clarification on this definition will be provided in Chapters 3 and 6. Alongside, existing
evolution equations for internal state variables will be supplemented to the homogeneous model.
Yet, since some counterparts for those equations are missing in the reported literature, they need
be originally derived for the inhomogeneous process under combined tension and shear. Existing
body of equations in this respect is far from established. In particular, the mechanism-based set
of post-localized evolution equations should account for the rotation and distortion of voids under
combined tension and shear. The model will be assessed with reference to the numerical analyses
at the material cell-level carried out by Pardoen and Hutchinson [20] for triaxial loading as well
as Tvergaard and coworkers [16, 17] for combined tension and shear. The parametric results will
then extend into the states of near-simple and near-pure shearing. Further, example finite-element
simulations will be presented to demonstrate the capability of the hybrid model to solve struc-
tural boundary-value problems. To this end, the constitutive framework for the porous material is
implemented in an ABAQUS user-defined subroutine (UMAT) for the homogenized analysis of

boundary-value problems.
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1.6.3 Activities under Objective 3

Typical plots known as "fracture loci" present the effective plastic strain to failure €7 in terms
of stress triaxiality. Fracture loci are efficacious measures of intrinsic ductile behavior, and are
attractive to the industrial sector involved in forming processes. Inasmuch as the low-triaxiality
regime is strictly dependent on the loading path, several loading paths with piecewise-constant tri-
axialities will be adopted in the 0 < 7" < 1/3 interval, and the constitutive framework is integrated
with respect to time along every loading path, whereby the cumulative strain to failure is calculated
in each case. Finally, the e, curve for 0 < 7" < 1/3 is supplemented to that for 7" > 1/3. There is

a singularity at 7" = 1/3 except for a random distribution of voids [88].
1.6.4  Activities under Objective 4

The underlying assumptions employed in the models create limitations in their predictive ca-
pabilities. With some of the more influential assumptions relaxed, various extensions can emerge
from the same guiding principles. Among all, the following extensions are developed within the

confines of the present thesis:

e In conformity with the results of void distortion in a shear field [16], the sheared microstruc-
ture can be better represented by introducing a unit cell with non-circular bases. A counter-
part of the model accounting for void coalescence under combined tension and shear is thus
introduced based on 3D voids. The corresponding microstructure would be represented by
cylindrical voids embedded in cylindrical cells, both with elliptical cross sections. The ana-
lytical yield loci will be compared to their FEM counterparts emanating from quasi-periodic
cell-model calculations with the same cell geometry for selective geometric configurations.
The difference between analytical and numerical yield surfaces in some load or microstruc-
ture ranges will be suggestive of simple heuristic modifications to the parameters involved

in the models.

e The model can further be extended being incorporated with matrix anisotropy (mainly of

Hill’s identity). Following the model introduced by the present author [15], a micromechanics-
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based void coalescence yield function with this capability has been worked out in a recent
work by Keralavarma and Chockalingam [96]. Along with the former void growth model
presented by Keralavarma et al. [14], the present work implements the hybrid model com-
posed of the above two models to investigate the effect of shear in combination with matrix

anisotropy.

e In a continuum under arbitrary loading, voids may impinge their lateral or vertical adjacent
voids. The failure mechanism in the former is known as coalescence in layers and the latter
is named coalescence in columns or necklace coalescence [33]. An analytical criterion de-
scribing this mechanism will be developed in terms of the stress and microstructural states
based on tentative velocity fields mimicing the plastic deformation concentrated in the plugs
connecting voids on top of one another. With every specific microstructure, one of the two
coalescence mechanisms has more propensity to occur, depending on which yield criterion
is met first. Accordingly, the effective failure mechanism will be realized by the innermost
yield surface among those emanating from the models accounting for void growth, void
coalescence in columns, and void coalescence in layers. The model will be compared to
previously predicted values from Gologanu [50] as well as to more exhaustive FEM coun-
terparts from the present study. The present results will investigate the effects induced by all

the independent microstructural parameters on the bounds to the yield sufrace.

1.7 Structure of the Thesis

This document is organized in 9 review chapters appended with 11 paper chapters and an
additional appendix. The first four chapters introduce backgrounds and fundamental concepts, and
the rest provide selective results which are thematically connected to paper chapters (prefixed with
"P") elaborating on the summarized results. The additional appendix is provided illustrating a
modified cutting-plane algorithm for stress state control in the simulations.

Chapter 1 a general introduction motivating the research carried out, the main goal reflected

through objectives, the approach followed in the context of the state of the art, and the existing
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challenges in the course of modeling ductile fracture under combined loading.

Chapter 2 reviews the most fundamental plasticity models that function in terms of invariants
of the stress tensor and/or its deviator. Especially, the third invariant of the stress deviator Js
and its effect on failure in shear will be given closer attention. Moreover, the Hill-type plasticity
model accounting for matrix anisotropy will be introduced with its underlying assumptions and
limitations.

Chapter 3 presents an outline of physics-based models of ductile fracture, that can be coupled
with the hardening and microstructural effects or uncoupled from them. The majority of existing
models are, however, coupled. The main body of homogeneous and inhomogeneous models and
the essence of their different paradigms as well as applicability scopes will be presented therein.

In Chapter 4, the rudiments of the modeling methodology in the present work will be examined
in brief. The steps to analytical modeling based on limit analysis, and some numerical strategies
for FEM-based limit analysis at the cell level will be elucidated. With the lateral target velocities
vanishing, the limit load would pertain to inhomogeneous yielding. It further examines the basic
foundations of implementing a hybrid model with specific focus placed on the time integration
of constitutive equations. Notions of residuals, Jacobians, the Newton-Raphson method, and the
consistent tangent matrix will be overviewed.

Chapter 6 collectively reviews all the analytical models exploited for homogeneous yielding
and derived for inhomogeneous yielding within the realm of the present work. Selective yield
surfaces will be exhibited for various microstructural variables in comparison with their numerical
counterparts. A recent inhomogeneous model accounting for a Hill-type matrix anisotropy [96]
will further be introduced in the interest of being utilized as an alternative to that derived by the
present author. Moreover, a multi-surface model invoking the effective yield mechanism from a
combination of homogeneous and inhomogeneous yieldings will be presented at the limit of an
isotropic material characterized by a random distribution of voids with equal void shapes. To this
end, the effective yield surface will be showcased on principal and meridian planes. Moreover,

fracture loci exhibiting strain to failure in terms of triaxiality will be shown at this limit. The chap-
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ter finally introduces a unified model, in extension to that derived by Morin et al. [97], derived to
incorporate both homogeneous and inhomogeneous processes under combined tension and shear.
Example yield surfaces will be shown in the combined stress space with clear indication of smooth
transition between homogeneous and inhomogeneous regimes.

Chapter 7 presents the results of micromechanical simulation of ductile fracture under triaxial
and combined loadings emanating from the method outlined in Chapter 4 specified into the present
constitutive framework. The whole deformation history will be analyzed under several loading
and microstructural conditions. Selective state variables comprising equivalent plastic strain, void
volume fraction, void aspect ratio and orientation, and relative void spacing will be presented. The
effects induced by load combination, initial porosity, elementary cell size, void shape and aspect
ratio will be assessed. Furthermore, the strain to failure will be evaluated in terms of stress triaxi-
ality for a wide range of stress triaxialities ranging from zero to 1/3 and from 1/3 to 3. Finally, an
example finite-element simulation will be presented to demonstrate the capability of the model for
structural boundary-value problems. Alternatively, similar effects coupled with matrix anisotropy
with reference to a hybrid model consisting of the models proposed in Ref’s [14] and [96] will be
investigated.

Chapter 8 extends the realm of the models introduced in Chapter 5 in certain respects. It partly
proposes a counterpart of the void coalescence criterion introduced in Chapter 5 for 3D voids,
that is founded on limit analysis over a cylindrical cell with an elliptical base containing a void
with similar geometry. It further introduces an analytical criterion describing void coalescence
in columns based on tentative velocity fields mimicing plastic deformation concentrated in the
plugs connecting voids along the vertical direction. For fixed microstructural states, the effective
failure mechanism will be predicted with reference to the innermost yield surface among those
representing void growth, void coalescence in columns, and void coalescence in layers for the
same microstructure.

Finally, in Chapter 9, some concluding remarks will be encapsulated, and potential extensions

will be projected for consideration in future work.
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CHAPTER 2 PLASTIC FLOW THEORIES

The present chapter lists some fundamental concepts constituting the plasticity theory plus
some of the most featured yield criteria that can reasonably be employed in deriving effective
plasticity models at larger scales. Chapter 3 introduces other yield criteria accounting for plasticity
in ductile porous materials.

A typical constitutive framework of plastic deformation consists of four classes of equations:
(1) a yield criterion by which yielding is evaluated based on the current stress state; (ii) a flow
rule that describes the increment of plastic strain when yielding occurs or proceeds; (iii) a strain-
hardening rule to express the material strength in terms of its conjugate plastic strain; (iv) evolution
equations of additional state variables upon which the yield criterion may depend. The latter can
be scalars, vectors or tensors (as in the case of some kinematic hardening models; see [98] for

instance).
2.1 Small Deformation Theory

Plastic flow theories in the small-strain framework are developed on the basis of the following

underlying principles:

1. Elasticity: The stress and elastic strain tensors in the elastic regime are linearly related by

o=0L:e€ 2.1

where L is the elasticity tensor that, assuming the material is isotropic, can be expressed as

L=2ud+KI®I (2.2)

where @ denotes the dyadic product which, within a Cartesian coordinate representation,
(I ® I, ;4 = 6ijor. Moreover, K = E/3(1 — 2v) is the bulk modulus and p = E/2(1 + v)

is the shear modulus, I is the second-order identity tensor, and J is the fourth-order tensor
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transforming a stress tensor into its deviator through a double contraction, i.e. J : o0 = o7,

that can be written equivalently as

JEU—%I@I (2.3)

where [ is the fourth-order identity tensor transforming any second-order tensor into itself

through a double contraction, i.e. | : S = S, with S representing any second-order tensor.

. Plasticity: Beyond the elastic limit, the stress components are related through a yield func-
tion:

d(o;a) =0 (2.4)

with o representing a collection of state variables affecting ® which, for a hardening ma-
terial, normally includes but is not limited to the equivalent plastic strain €. For an elastic-

perfectly plastic isotropic material, (2.4) would simplify into ®(o) = 0.

. Stability: The stability postulate, addressed first by Drucker [99], entails, for every incre-
ment in o and €:

do :de > 0 (2.5

which is equivalent to Hill’s principle of maximum plastic work [100]. In a general ther-
momechanical framework, both statements follow from the second law of thermodynam-

ics [101].

. Loading/Unloading: The loading and unloading condition is known as the Kuhn-Tucker
condition [102]. It asserts that, for any admissible stress state o, the plastic strain increment

(or the plastic rate of deformation accordingly) can be uniquely described as
de? = ysgn(o) (2.6)

provided v and o are constrained by the following unilateral constraints:
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(a) Admissibility of o:
y>0 , ®(0:6) <0 2.7

(b) y=0if® <0,andy > 0 only if = 0.
Altogether:
Yy>0 , ®0;6)<0 , vP(o;6)=0 (2.8)

5. Normality: Subsequent to Drucker’s postulate or Hill’s principle of maximum plastic work
[100], the plastic part of the strain increment and the normal to the yield surface are co-

directional when the effective yield surface ® = 0 is smooth. That is

deP = dAa—(I) (2.9)
Jdo

where dA denotes a plastic multiplier. Equation (2.9) is also known as the associated flow
rule !. In case the surface is not smooth, the normal belongs to a hypercone of normals to

the yield surface. Koiter [103] proposed the following generalized flow rule:

9¢i

de? = dA;
€ oo

(2.10)

with a summation implied on ¢, where d/\; are nonnegative and ¢; are linearly independent

flow potentials.

6. Additivity: The total strain increment can be decomposed into elastic and plastic parts:

de = de® + de® (2.11)

where the elastic part stems from elasticity (2.1) such that

de* =L do (2.12)

'In the case of a non-associated flow rule, a flow potential ¢ enters into (2.9), which is non-identical to the yield
function, i.e. ¢ # P.
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with L~! denotes the formal inverse of the elasticity tensor, which obeys

1 1
L~ = ﬂj + 9—KI QI (2.13)

and the plastic part is determined from the flow rule (2.9). Equation (2.13) follows the trace

of both sides within o = L : €, with L obeying (2.2), and J has been defined in advance.

7. Consistency: The Prager consistency condition [104], is required to close the set of con-
stitutive equations, especially to eliminate the unknown parameter dA from the system of

equations. This condition reads

d¢:a—®:da+a—q>:da:0 (2.14)
Jo da

with o defined below (2.4). The consistency condition implies that any strain increment dur-
ing plastic loading occurs tangential to the yield surface, i.e. the subsequent stress state must
remain on the subsequent yield surface. Namely, plastic loading over a plastic deformation

should result in another plastic deformation.

2.2 Finite Deformation Theory

Within the finite deformation theory, it is typically assumed that the rate of deformation tensor

D can be additively decomposed into an elastic and a plastic part. That is
D = D°+ D? (2.15)
where the elastic part is given by:
D°=L":¢ (2.16)

Further, the loading response of a continuum must be frame-indifferent (objective), viz. inde-
pendent of the observer. Depending on the class of problem, several objective stress rates have

been identified [105]. Within the context of ductile fracture models, the Jaumann objective stress
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rate o is frequently used. Upon definition:
o=6+0Q - Qo (2.17)

where (2 is the skew symmetric part of the velocity gradient.

All the same, it is typically assumed that the plastic strain increment and the normal to the
yield surface are co-directional. Accordingly, the plastic part of D originates from the normality
condition via the following rule:

L 0P

DP =A— 2.1
pp (2.18)

where A is a rate-form plastic multiplier associated with the plastic strain tensor, and ® is termed
Sflow potential, taken equal to the yield function at the prevailing case of an associated flow rule.
The hybrid model presented in Chapter 6 will be formulated in a corotational framework. That
is, the constitutive relations are expressed in a local coordinate tied to the current material configu-
ration, which is rotated from the initial configuration by the rotation tensor R that results from the

polar decomposition of the deformation gradient F' as
F =RU (2.19)

where U is a positive-definite symmetric tensor. Correspondingly, constitutive laws need be writ-
ten in the rotated configuration. The so-derived equations relate merely with the stretch part of
deformations, and the rotation part is admitted by rotating quantities to the intermediate configura-
tion. The objective rate of stress o in (2.17) will be then replaced with its time derivative o so that
the constitutive relation in rate form appears similar to their small-deformation counterparts in the

corotational frame.
2.3 Isotropic Models

Every isotropic yield function can be expressed in terms of at least one of the three principal

invariants of the stress tensor or, eventually, its deviator. Among all, the invariants typically utilized
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in the plasticity theory are the first principal invariant (/;) of o, and the second and third principal

invariants of o’ (Js, J3), defined as [101]:

I =tro =01 + 09+ 03

1 1
o= 50" 0’ = < [(01 = 02 + (02 = 03)? + (01 — 0)?] (2.20)

o R
J3 =det o’ = 070504

with o; and o} denoting the principal values of o and o', respectively. Another relevant set
of widely used invariants is (£, p, #) which represent a cylindrical coordinate system termed the

Haigh-Westergaard coordinates. Upon definition:

52%115\/@7

2
p=\2J = \/;q (2.21)
3
cos 30 = (t) = 3V3 T3

q 2 g2

where r = 3(%J3)1/ 3. The &—p plane is called the Rendulic plane, and 6 is called the Lode angle
[101]. The above-defined coordinates will be used in Chapter 5 and its corresponding paper, Paper

P4 .
2.3.1 Pressure-independent models

An isotropic yield flow theory is generally dependent upon all the three principal stress invari-
ants. For a wide variety of ductile materials, however, the effect of /; can be neglected. Amongst
the most widely-used models in this category is the .J; flow theory [101], which expresses the yield

condition to be met on the condition of ./, equaling the material yield stress in pure shear. That is
Jy =7 (2.22)
where 7 = & /+/3 is the material shear strength, and & is the uniaxial yield strength.
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In porous plasticity at the cell-level, the plastic deformation for the whole reference volume
element (RVE), here denoted with €2, is generally pressure-dependent due to the presence of voids.
The ductile matrix, however, with the void excluded (2 \ w, with w representing the void and its
volume), is mostly assumed to obey the von Mises theory with an associative flow rule. Hence,

yielding occurs upon with the following condition being met:

(2.23)with the associative flow rule reflected by

(2.24)

where 0., and d., denote the von Mises equivalent stress and equivalent strain rate, respectively.
Criterion (2.3.1) is characteristic of the boundary to the microscopic reversibility domain C, the
macroscopic counterpart of which (C) constitutes the effective yield criterion for a porous ductile

material [45].
2.3.2  Pressure-dependent models

Pressure independence, though proving efficacious in a wide range of conditions, cannot cap-
ture the salient features of plastic deformation in so many materials including porous and granular
materials (rocks, soil, etc.). Depending on the sensitivity and correlation of the plastic deforma-
tion with Iy, several models have been advanced in the literature. From a broad perspective, the

dependence of a yield criterion upon pressure can be of two types:

e Some models are parametrized based on pressure. That is, the parameters subject to change
from material to material are functions of /;. Examples include, but not limited to, Mohr-
Coulomb [106] (see Sec. 2.3.3 for the expression) and Drucker-Prager [107] models mainly

for granular materials, the Burzynski-Yagn [108, 109] model for materials with tension-
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compression and/or tension-torsion asymmetry, Bresler-Pister [110] and Willam-Warnke
[111] models for quasi-brittle and frictional materials as well as concrete, Bigoni-Piccolroaz
[112,113] and Altenbach-Bolchoun-Kolupaev [114] models for quasi-brittle, frictional, and

ductile materials, respectively.

The Mohr-Coulomb model, for instance, predicts yielding not based merely on maximum
normal or shear stress, rather through a maximized linear combination of normal and shear
tractions on the plane that generates this maximum [106]. In another sense, The Mohr-
Coulomb criterion represents the linear envelope of the material shear strength vs. the ap-
plied normal stress, that reads

Tn —Optang = c (2.25)

where o, and 7, represent the normal and shear tractions on the plane of maximization, re-
spectively, and c and ¢ are material-specific parameters termed cohesion and internal friction

angle, respectively.

As another instance, the Drucker-Prager model can be expressed, in its basic form, as [107]:

Vo =A+ Bl (2.26)

where constants A and B are determined from experiment.

Some other models are directly derived in correlation with pressure. Likewise, several mod-
els exist in this subcategory. Yet two most popular ones are the Gurson [115] and Rousse-

lier [116] models. The algebraic statement of the former can be found in Chapter 3.

2.3.3 Js Dependent Models

Apart from being partly representative of macroscopic shearing effects at low-triaxiality stress

regimes [36,71,84,85], J5 is known to influence the hardening effect [117,118]. Yet, a conspicuous

explanation on the microscopic effect of J5 on ductile fracture is still lacking. The effect induced

by J5 is extensively referred to as the Lode effect by virtue of the correlation of the Lode parameter.
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It was originally introduced by Lode [119], to differentiate between the Tresca and von-Mises yield

criteria. Accordingly, the Lode parameter and the corresponding Lode angle can be written as

/
L= —cos30 = —277 det (U ) (2.27)

Oeq

with o, denoting the Mises equivalent stress. In an axisymmetric stress state superposed by an
axial stress, L. = —1 in case the major load is the axial, and L. = —1 if the converse is the case.
Indubitably, L = 0 at simple shear or pure shear, the latter being equivalent to a biaxial stress state
with equal and opposite stresses.

Mohr-Coulomb [106] and Drucker-Prager [107] models, as clear instances, take into account
the effect of .J5 in addition to /;. In a non-associative yielding, the yield function and flow potential

in the Mohr-Coulomb model are expressed in terms of the above quantities as [120]:

1
¢ = I sinp + 3 [3(1 — sin ) sin @ 4 V/3(3 + sin p) cos@] V J2 — 3ccos g
(2.28)

¢ =Isingy +% [3(1 — sint) sin 6 4 V/3(3 + sin ) COS@] V/Jzy — 3ccos v

where ¢ is the internal friction angle, v is the dilation angle, ¢ is the material cohesion, and 6 is the
Lode angle. In a recent endeavor, Bai and Wierzbicki [121] revisited the Mohr-Coulomb fracture
criterion with an objective of ductile fracture description in isotropic solids under proportional
loading paths.

Alternative to the Drucker-Prager model, Drucker [122] proposed a yield function, suitable to
ductile materials, that is directly expressed in terms of J, and J5, by virtue of which the yield

surface lies between the von Mises and Tresca yield surfaces:
I3 —aJi =k (2.29)

where « is a constant lying between -27/8 and 9/4 for the fulfillment of yield surface convexity,

and k is a material constant. Brunig et al. [117] proposed the following more general based on
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numerical analyses:

N (1 —al — 5J§/3> —0 (2.30)

where o and [ are material constants and coefficient ¢ is obtained from the strain state. All the
same, Hu and Wang [123] proposed a stress state-based yield criterion for isotropic ductile mate-

rials:

J.
ol; + \/J2+BJT§2 —c (2.31)
2

where «, (3, and c are material constants determined from experiment.

Several extended models have been developed to better predict the correlations among the
three stress invariants. For isotropic ductile materials, models such as that of Altenbach-Bolchoun-
Kolupaev [114], extended Drucker-Prager model expanded by Subramanya et al. [124], the model
introduced by Kuroda [125], and Yang et al.’s Mises-like yield criterion [126] have been reported

in the literature to account for Lode dependence.
2.4 Anisotropic Models

There are several limitations attributive of isotropic plasticity that warrant the advancement of
anisotropic models. Due to microstructural effects induced by atomic arrangements, grain mor-
phology and/or texture, wrought engineering materials are often plastically anisotropic even when
elastically isotropic. Moreover, large plastic strains, as opposed to infinitesimal deformation, lead
to texture development, which itself is a matter of anisotropy. Besides, the formation of intragran-
ular cavities may generate an anisotropic crystalline matrix. The simplest anisotropic plasticity
model was developed by Hill [101] in the form of a phenomenological quadratic form expressed

as follows:
F(O'll — 0'22)2 + G(O’QQ — 0'33)2 + H(O’H — 0'33)2 + 2([40’%2 + MO'gg + NO'%?)) = 1 (232)

where Here F/, ..., N are constants to be determined experimentally. Hill’s criterion follows sim-

plistic underlying premises. It assumes orthotropy (planar isotropy), tension-compression symme-
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try, and pressure independence.
After three decades from this model, Hill proposed the following more general criterion for

textured aggregates [127]:

Hiloy — 03|™ + Halos — o3|™ + Hsloy — o3|™ 4+ Ki|201 — (02 + 03)|™ + K3|205 — (01 + 03)|™ + K3|203 — (01 4 02)|™ = &2

(2.33)
where Here H; and K; are constants to be determined experimentally, and & is the material yield
strength along one benchmark direction. For plane problems, the value of m is suggested to be
taken 6 or 8 for anisotropic metals. Other more general criteria analogous to (2.33) have been pro-
posed in the literature. One widely used counterpart is the Logan-Hosford model [128] expressed
as

F1|O'1—02‘n+F2|O'2—O'3’n+F3‘0'1—O'2|n: 1 (234)

where F; are experimentally-determined values, and the exponent n depends on the crystallo-
graphic structure. It is mostly considered to be 6 for BCC and 8 for FCC materials. For isotropic

materials, this criterion simplifies into the following form, after Hosford [129]:

|O'1—O'2|n—|—|0'2—0'3|n—|—|O'1—O'2|n:25'2 (235)

Barlat ef al. [130] and Karafillis and Boyce [131] proposed a procedure to incorporate anisotropy
in pressure-independent models by the application of a fourth order linear transformation operator
on the stress or its deviator, e.g. & = Q : o0 or ' = Q : ¢’. The corresponding yield function
is then obtained from an isotropic function by substituting the principal stress (or stress deviator)
values by the principal value for & (or &’). Other anisotropic models have also been developed
in extension to established models with isotropic basic forms. Among the featured ones are the
Caddell-Raghava-Atkins (CRA) model [132] accounting for pressure dependence, the Deshpande-
Fleck-Ashby (DFA) model [42] mainly developed for honeycomb structures, and Soare et al.’s

model [133], mainly employed for sheet metal forming simulations, etc.
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CHAPTER 3 DUCTILE FRACTURE MODELS

Ductile fracture models are developed to mimic the physical phenomena that trigger fracture,
and hence, should be able to capture the salient features of failure mechanisms. The major ob-
served failure mechanisms, subsequent to nucleation of voids by decohesion of the particle-matrix
interface or by particle cracking, are void growth and void coalescence, which is ensued by ulti-
mate failure. The credibility of the simulated mechanisms lies in typical fracture surfaces, as those
shown in Fig. 1.8.

The present chapter presents an overview of the most prevailing ductile fracture models based
on dilatant plasticity reported in the literature to date. It is, however, important to note that these
models are mainly developed as means of constitutive modeling rather than fracture modeling per
se. Meanwhile, studies such as [134—138] have considered developing or utilizing methods in the

simulation of crack growth in solids.

3.1 Homogeneous vs. Inhomogeneous Yielding

-

&

Figure 3.1: Schematic outline of a reference volume element (RVE) with arbitrary geometry un-
dergoing inhomogeneous yielding.

The distinction between homogeneous and inhomogeneous yielding pertains to plastic defor-
mation in the unit cell. If a unit cell of arbitrary geometry, as shown in Fig. 3.1, deforms uniformly
over its boundary, the plastic deformation is named "homogeneous", otherwise termed "inhomo-
geneous". In the exemplified RVE of Fig. 3.1, yielding is considered homogeneous in the case of

¢ = ¢ = ¢B)and is inhomogeneous if €2 £ ¢(1) and ¢B) £ ¢,
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In particular, ¢ % 0 and ¢€® = ¢®) = 0 is a special case of inhomogeneous yielding that
arises from elastic unloading in regions (2) and (3).

In a solid material, strain rates can localize inside a band with vanishing thickness, the ori-
entation of which can be evaluated from Rice’s theory of plastic localization [61]. This must,
however, be clearly dissociated from the presently identified concept, with the distinction being of
utmost importance in porous materials particularly because voids, when explicitly represented, can
act as initial inhomogeneity. In the latter, the plastic strain after elastic unloading becomes local-
ized inside an inner-void ligament with finite rather than zero thickness, with the band thickness

determined by the void size.
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Figure 3.2: Schematic space distribution of plastic deformation at the cell level, with the cross-
hatched regions representing elastic unloading: (a) homogeneous yielding, (b) idealized homoge-
neous yielding, (c) inhomogeneous yielding, (d) idealized inhomogeneous yielding.

Homogeneous yielding is often known to be associated with void growth. Also, among the
featured inhomogeneous yielding processes is void coalescence. Nevertheless, the present-invoked
terminology is more inclusive than the given examples. Consequent to tension superposed with
shear, for instance, voids may grow or shrink down to void closure while plastic deformation is
homogeneous at the cell level (depending on the ratio between normal and shear stresses). By
the same token, yielding is inhomogeneous (almost) from the outset under intense shearing in that
plasticity is majorly confined to a close vicinity of the void. Yet, void coalescence and failure might

never be realized when the void volume fraction approaches zero. The terms "homogeneous" and
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"inhomogeneous" will be thus used throughout the thesis.

A parametric representation of homogeneous or inhomogeneous yielding at the macro scale
entails the notion of a reference volume element (RVE), with the equivalent plastic deformation
rate homogenized over its whole volume or a subvolume consisting of the intervoid ligament. Both
are schematized in Fig. 3.2 (the hatched zones represent elastic unloading). Elastic unloading can
be triggered both at early stages, as indicated by Fig. 3.2a, and after significant plastic deforma-
tion, as shown in Fig. 3.2c. Nevertheless, mathematical representation of yielding at the macro
scale often calls for simplifying assumptions. Therefore, stages such as Fig. 3.2a may be ide-
alized with homogeneous yielding exhibited in Fig. 3.2b so long as considerable lateral plastic
deformation is developed above and below the void. Subsequent to further deformation, when
elastic unloading spreads further around the void, continued lateral deformation is precluded from
part of the zones above and below the void (Fig. 3.2c). Within the realm of the present work,
the latter inhomogeneity is taken to be ideally confined to a planar ligament that is intercepted by
the void poles, as shown in Fig. 3.2d. The same approach was adopted in numerous previous
references [45,97, 139, 140]. In a recent endeavor, Morin et al. [141] investigated the effects on
the limit load induced by more general velocity fields, e.g. admitting non-planar interfaces (as
shown in Fig. 3.2c) or satisfy higher degrees of continuity between the plastically deformable and
elastically unloaded (rigid-like) zones.

Mathematically, in case the velocity inside the RVE admits uniform strain-rate boundary condi-
tions, the deformation process can be regarded as homogeneous. In this case, the remotely-applied
macroscopic rate of deformation D correlates with the internal velocity field through the position

vector:

Ve e o)l v=Dx (3.1

where 2 and OS2 represent the cell domain and boundary, respectively, and & denotes the current
position. Equivalently, on account of a constant deformation gradient tensor F', one can express
(3.1) as

Veed)l x=FX (3.2)

34



where X denotes the initial position.
For inhomogeneous yielding, however, such boundary conditions don’t exist (except eventually
at the plastically-deformable sub-cell level). The reader is referred to Chapter 4 for more details

regarding how to derive plasticity models from tentative velocity fields.
3.2 Void Growth Models

Homogeneous yielding has been described via void growth models in the literature. Earlier
micromechanical treatment of homogeneous yielding was founded on mere consideration of iso-
lated voids. Of the notable models of this caliber are those proposed by McClintock [76], and Rice
and Tracey [77]. Later models were developed based on homogenization over a reference volume
element (RVE) in a periodic medium of voids. Gurson’s model for spherical and cylindrical voids
is among the most extensively known. This model sets a yield criterion for a porous material at
the macro scale, and correlates with an evolution law for a single microstructural variable, the void
volume fraction f. It assumes a plastically isotropic matrix.

Within the deformation process, however, anisotropies associated with matrix deformation and
void shape would emerge. Several extensions of the Gurson model have been developed over
the past decades to account for these anisotropies. For homogeneous yielding, Gurson’s model
and its extensions have set the caliber for decades. The Gurson-Tvergaard—Needleman (GTN)
model, for instance, follows Tvergaard’s and Needleman’s modifications to Gurson’s model to
encompass the effects due to void interaction and void nucleation [75, 142, 143]. In passing, the
Gologanu-Leblond-Devaux (GLD) model [89] extended Gurson for non-spherical voids. This
line of models was further extended into incorporation of plastic anisotropy in [14,95]. Alongside,
other micromechanics—based models, mostly in parametric rather than closed form, have been
developed for homogeneous yielding driven by shear. This mechanism was investigated in the
pioneering work of Fleck and Hutchinson [68] while failure under the same effect was missing in
work of the like.

A considerable fraction of work on shear-dominated ductile failure prediction in porous mate-

rials addresses supplementing existing Gurson-type yield criteria with damage models. Nahshon
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and Hutchinson [71], for instance, proposed a modified damage parameter (denoting porosity in
absence of shear) through the addition of a heuristic function of J5. This damage parameter, while
remaining of a heuristic nature, could not preserve the identity of a physical parameter such as
porosity. Morgeneyer and Besson [144] introduced a modified strain rate as function of the Lode
parameter based on a Gurson-type yield criterion in order to simulate the transition from flat to
shear-induced crack propagation. Other efforts in the same respect have been made in [145, 146].
Another class of work, including [16, 17, 147], examine failure mechanisms via cell-model evolu-
tion analysis. This class of analyses can be considered as benchmark, but are not well suited for
parametric studies due to high computational cost. Micromechanics—based models are thus more
extensively sought. Some researchers have striven to introduce such models founded on cell-model
calculations. Amongst the featured examples, proposed mainly for triaxial loading, is the model
introduced by Thomason [148, 149], later advanced by Benzerga [150] and Tekoglu et al. [140],
and that of Pardoen and Hutchinson [20], accounting for void growth and coalescence in a wider
range of porosities and void shapes.

The following subsections briefly introduce the essence of foregoing models and their limita-

tions.
3.2.1 Rice and Tracey

Rice and Tracey [77] characterized the flow field in an infinite medium made of an rigid—
perfectly plastic incompressible non-hardening material containing an isolated spherical void, and
subjected the material to remotely uniform tensile with superposed hydrostatic stresses. They
adopted a Rayleigh—Ritz procedure to evaluate the enlargement rate of the void. To this end, they
assumed a tentative velocity field composed of a remote strain rate, an expansion and a deviatoric
isochoric (volume-preserving) field. For the specific case of a triaxial field, the assumed velocity
field is of the following form, which consists of an incompressible expansion field superposed by

a linear field associated with a uniform deformation rate:

R 3
v = Dz + DD, <EO) x (3.3)
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with Do = 1/2/3 D : D denoting the remote equivalent strain rate, and D being the remote rate
of deformation tensor. Ry and R are the initial and current void radii, respectively, and @ is the
position vector. In both low and high triaxiality ranges, D is found to obey an exponential form.

For sufficiently high triaxiality fields, for instance, D is written as

D= Cexp @&) 34

g

where >, and & are, respectively, the remote hydrostatic stress and material yield strength, and

1 1
C’:Zexp /0

2 _ 2
AlnA+V§ B A vA— B ac

where

_ /2 _ 2
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where Dy > Dy > Dy are the principal components of the remote strain rate field. Under
axisymmetric tensile loading (v = +1), C' = 0.283. Based on more accurate dilatation rates,
Huang [151] suggested C' = 0.427 for axisymmetric loading. For more general loading conditions,

Rice and Tracey proposed the following heuristic extension:

D=2 [o/ sinh (§&) + Bv cosh (§&>] (3.5)
20 20

only for spherical voids and using Huang’s o/ = 0.427.

Rice and Tracey’s model ignores hardening and the interactions between voids. It also overesti-
mates void growth rates in moderate-triaxiality regions. Aside from that, the model is differential,
i.e. expressed based on remote strain rates rather than merely on stresses. Moreover, this model is

not coupled with microstrucrural parameters.
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3.2.2  McClintock and coworkers

Among the landmark differential criteria for predicting void growth rate are the models after
McClintock et al. [152] for the growth and coalescence of voids under combined tension and
shear for linearly viscous materials, and McClintock [76] regarding fracture by void growth under
generalized plane-strain conditions for linearly viscous and plastically hardening materials with
moderate hardening. In the former, the rate of variation in the mean void radius R = (a + b)/2
for an elliptical void with major and minor semi-axes a and b for a linearly viscous material was

obtained as
OR R
— = ———sinh(1 =N 3.6
9y o= ) S = N)w (36
with - denoting the shear strain, N being the hardening exponent, and x = o /7 the ratio between
the macroscopic normal and shear stresses. In the latter, the current normalized mean radius in a

linearly viscous and a plastic material were derived, respectively, as

R t
In — = (0an — 3.7
n RO (O’ +O-bb>4,u ( )
and
R E\/g . \/§ Oaa + Obb €aa + €bb
In—=——"——sinh | —(1 — N 3.8
N T ooy b G eV A (3:8)

where (044, €22) and (oyp, €p,) are the normal stresses and their conjugate strains along the major
and minor semi-axes, respectively, and (7, €) are the material yield strength and its conjugate plastic
strain. Moreover, 14 denotes the viscosity coefficient, and ¢ represents time (scaled in respect to the

total time).
3.2.3  Gurson and Extensions

The Gurson model considers three underlying assumptions in the homogenization problem
[33]:
(i) The RVE consists of a hollow sphere containing a concentric spherical void, and porosity f is

the only effective microstructural variable.
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(i1) Plastic flow within the matrix admits the ./, flow theory with an associated flow rule.
(iii) The trial velocity field consists of an isochoric, isotropic expansion field superposed by a
linear field that generates a uniform deformation rate. Having satisfied the boundary conditions,
the velocity field can be expressed as
b D,
v=—5e + D'z (3.9)
r

where b is the outer cell radius, D,, = %tr(D), and e, is the unit vector along the radius and

directed outward. Accordingly, the microscopic yield criterion and flow rule read

3 3d, 2
Ooq = 50’:a’<5 , d==-"g" | dy= gd:d (3.10)

where d. is the microscopic equivalent rate of deformation, and the rest of the notions have been
defined in Paper 2. Details aside, the microscopic dissipation function 7(d) = 7d., (only nonzero
inside the matrix volume, and zero in the void) homogenized over the RVE, and subsequent elimi-

nation of D, and D, leads to the following yield function:

2
b = <E_eq) + 2q1 f cosh <§Q2%> — [1 + (qlf)Z] (3.11)
o 27 0

with ¢; = ¢o = 1. The porosity evolution equation corresponding to (3.11) may be written as

Deq (3.12)

which emanates basically from incompressibility within the matrix, where , is short-hand notation
with a derivative with respect to the underscored variable.

Several heuristic modifications, mainly based on micromechanical cell model calculations,
have been exerted onto Gurson’s basic model in order that the model be capable of represent-

ing limited strain hardening and void interaction effects as well as predicting void nucleation and
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coalescence. Tvergaard [143] introduced ¢; and ¢, factors in (3.11) to account for weak interac-
tions among voids. From an analytical solution to a hollow sphere under hydrostatic loadeding,
Perrin and Leblond [153] proposed ¢; = 4/e ~ 1.47 assuming ¢» = 1, close to the value of 1.5
proposed by Tvergaard [143]. Subsequent cell model studies have demonstrated that ¢; and ¢,
factors are not all-embracing. In particular, they have been shown to depend heavily on geometry
and stress state [46, 154].

As earlier stated in Chapter 1, a tentative understanding of the shear effect has been developed
in the literature in terms of the effect of the third invariant of the stress deviator, J;3. Within the
existing body of models, this effect is basically of a heuristic nature. A subset of models, as
those in [71, 85], in particular, rely on a modification to the Gurson-Tvergaard-Needleman void
growth model [75,78] to account for the effects of shear by virtue of J3. At the shear-dominated
limit, the rate of deformation D is associated with a vanishingly small trace, so that the main
damage parameter being the porosity does not evolve. Nahshon and Hutchinson [71], therefore,
added a heuristic term, as function of J3, to the damage evolution equation such that the effect
of shear could be incorporated via J3. Yet, the real physical process behind this heurism remains
elusive. Apart from being heuristic, these models tacitly assume that the Lode effect is rooted in the
homogeneous deformation process. However, cell model calculations at the micro scale [155-157]
have demonstrated that the effect of the Lode parameter on homogeneous yielding is not strong
enough to explain the experimental observations. In fact, a complete illustration of void growth
in shear cannot be feasible without a clear explanation of the anisotropies induced by intense void
elongation and rotation under the effect of shear as well as by the localized plastic deformation

realized during inhomogeneous yielding.
3.3 Void Coalescence Models

All models reported as void coalescence models describe inhomogeneous yielding processes
even though the majority of existing models in this regard are not based on real inhomogeneous
mechanisms. On the one hand, since homogeneous yielding is mainly driven by diffuse plastic

flow in the matrix, the ductility and/or strain to failure predicted by homogeneous plasticity models
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overestimates values measured from experiments. On the other hand, heuristic corrections with the
aim of quantitative improvement in this respect would be phenomenological, added to the fact that
the physical mechanism of flow localization that gives rise to failure remains elusive. Mechanism—
based analytical models derived from first principles would be, therefore, desirable so that the
material behavior is simulated with mere integration of a system of constitutive equations based
on a robust establishment of the physical process.

Modeling of inhomogeneous yielding in the existing literature is still in early stages. This can
be recognized from the majority of existing models pertaining to the growth regime, and consider-
ing the complexities and limitations arising when interpreting coalescence as a strain localization
phenomenon [141]. Established homogenization methods relying on clear separation of scales will
be rather idealistic [150]. Yet, the use of an elementary cell under periodic boundary conditions
proves efficacious, and volumetric averaging would remain valid in all deformation processes [33].

A first class of porous plasticity models account for the inhomogeneous process via a critical
microstructural parameter. Examples include a critical normalized lateral void size [13] and a
critical void volume fraction (porosity) [75]. In the latter approach, the post-localized deformation
process is simulated with a heuristic introduction of a porosity acceleration factor, without the
physics underlying the process being known [75,97]. In a second class of models, homogeneous
and inhomogeneous yieldings are founded on intrinsic yield criteria. Mathematical models for both
processes are carried out through limit analysis. In doing so, homogeneous and inhomogeneous
plasticity models, distinguished as being diffuse and localized, respectively, are derived either
separately and combined into the so-called hybrid approach or in unification. Each category is

briefly introduced in the sequel.
3.3.1 Criticality models

Due to the complexities arising at the modeling of inhomogeneous yielding, earlier models pre-
dicted the onset of void impingement in terms of a critical internal state parameter. Depending on
the parameter of interest, the corresponding model can be uncoupled or coupled. The former can be

illustrated by void coalescence represented by the normalized lateral void radius (R / RO) .» hamed
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void growth ratio. The critical void growth ratio is a constant at the limit of random void distri-
bution, and proves a function of stress triaxiality when the microstructure is periodic or clustered.
For an initial void relative spacing of 0.04, for instance, it varies between 4 and 25 as function of
triaxiality [13]. In the latter, however, the yield criterion is coupled with the state variable passing
through a critical value. In this respect, a critical void volume fraction f. has been pervasively
considered as a criterion for the onset of inhomogeneous yielding [75]. A recent study by Morin

et al. [72] has introduced a critical combination as (f + g)., with g denoting a secondary porosity.
3.3.2  Failure in shear

One of the earliest models developed to predict failure under shear-dominated loading was that
introduced by McClintock [152] for the void impingement instant in linearly viscous materials.
Rather than being a yield function, this model is a micromechanical one that was expanded based
on the ability of a distorted void to touch the distorted cell boundaries at the vicinity of the major or
minor diagonals. In effect, this model is suggestive of a criticality perspective through an analytical
acquisition of the critical state. Following Eq. (3.6) for a constant « ratio, the condition for voids
impinging along the longitudinal direction of the intervoid ligament reads

lnR£ =In (\/1—1—725) (3.13)

0 RO

where 2L is the intervoid distance along the shearing direction. All the same, the condition for

voids impinging along the vertical direction of the intervoid ligament reads

H
In—=In( — .14
nRO n(R0> (3.14)

with 2H being the intervoid distance along the direction normal to the plane of shearing. The main
downside within the above relations is considering plastic deformation as diffuse while the de facto
mechanism is localized around the ligament. Xue [158] introduced a modified heuristic damage

parameter D for shear-dominated loadings rooted in the criterion proposed by McClintock et al.
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in (3.13) as

D = Kp(qif + Dgn) (3.15)
where
1 forD < D,
Kn = 3.16
b 1/Q1 - fc ( )
——— forD > D,
ff - fc
and

/ 2
Dy, = u (3.17)

L
2R

which is further approximated in terms of porosity and € in [158]. In (3.15) and (3.16), ¢ is
the Tvergaard parameter, f; and f. are, respectively, the porosity at the onset of inhomogeneous
yielding and the critical porosity, and D, = ¢, f.. The modified damage parameter D thus replaces

f in the G-=T-N model.
3.3.3 Limit analysis—based models

Another subset of models, heuristic or analytical, relies on the attainment of some plastic limit
load over an inter-void ligament within an elementary cell. Thomason [159] was the first to employ
this principle to predict the onset of void impingement by internal necking. His first model was
two-dimensional, and was later extended by consideration of a square-prismatic cell containing a
coaxial square-prismatic void [149]. The sub-volumes above and below the void were considered
as rigid, and the axial stress that would create plastic flow in the intervoid ligament was calculated
numerically. Thomason used discontinuous but kinematically admissible velocity fields to obtain
upper-bound estimates of the limit load. He did not provide an analytical solution to the problem.
Instead, he obtained numerical solutions and proposed a heuristic formula estimating the limit load
at localization as a function of geometric parameters. Subsequent improvements of his model have
focused on deriving evolution equations of the microstructural variables [20, 150] with heuristic
modifications to Thomason’s formula. Nevertheless, none of the above models takes into account

combined tension and shear loadings.
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Following the work of Thomason, Benzerga [150] extended the applicability of Thomason’s
model into penny-shaped cracks characterized by void aspect ratios significantly below unity. After
a decade-long juncture, work in this field received another headway with the featured microme-
chanical models proposed by Pardoen and Hutchinson [20] and Nahshon and Hutchinson [71])
for triaxial and shear-dominated loading conditions, respectively. The latter introduced a modi-
fied damage parameter (denoting porosity in absence of shear) through the addition of a heuristic
function of J;5. This damage parameter, while remaining of a heuristic nature, could not preserve
the identity of a physical parameter such as porosity. Meanwhile, Morgeneyer and Besson [144]
introduced a modified strain rate as function of the Lode parameter based on a Gurson-type yield
criterion in order to simulate the transition from flat to shear-induced crack propagation. In retro-
spect to the work of Thomason [149] and Benzerga [150], Tekoglu et al. [140] extended the realm
of those models into combined tension and shear.

More recent studies tend to describe homogeneous and inhomogeneous yieldings under gen-
eral loading conditions by combining the effects of various independent stress—based parameters
in a unit cell. Tekoglu [160] introduced an effective method to keep track of three independent
parameters including the Lode parameter, stress triaxiality, and the normal-to-shear stress ratio.
Alternatively, Liu et al. [161] developed, based on energy principles in a derivative format, a uni-
fied method to establish a consistent criterion accounting for tensile and shear-dominated types of
void coalescence.

It remained for Benzerga and Leblond [45], the present author with coworkers, and Morin
and coworkers [97,141] to develop inhomogeneous plasticity models under combined tension and
shear from first principles, with the cell-level plastic deformation considered localized within the
intervoid ligament. Benzerga and Leblond [45] derived a fully analytical expression for the co-
alescence of voids under triaxial loading from limit analysis over a cylindrical cell embedding a
coaxial cylindrical void. Incidentally, their solution revealed some inaccuracy in the fitting proce-
dure proposed by Thomason [148]. More recently, Morin et al. [141] developed improved models

by considering continuous and generalized discontinuous velocity fields. Their models provide,
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in general, tighter upper bounds to the exact yield surface, albeit for different ranges of structural
paramaters. The models in [45, 141] are valid under axisymmetric loadings.

Within the present work, the criterion in [45] will be revisited and extended into a state of
combined triaxial and shear loading by adding a linear shear-induced velocity field. Thanks to the
discontinuous velocity field invoked in [45], a piecewise quadratic yield function will be obtained.
See further details in Chapter 5.

The main body of mathematical models of ductile fracture developed from first principles is
representative of a periodic or quasi-periodic medium. The effect of void distribution can be dom-
inant when scaling becomes a matter of prominence. A well-motivated discussion on the effect of

void distribution can be found in [47,48, 160, 162-166].
3.4 Evolution Equations of State Variables

The state of the art in ductile fracture modeling relies on a set of yield functions or flow po-
tentials for porous materials. Without supplementing these functions with evolution equations for
the state variables, they can be essentially used merely for predicting the onset of inhomogeneous
yielding, which is occasionally considered sufficient to estimate strains to failure as a function
of loading parameters [88, 167]. For ductile fracture simulations, however, yield functions must
be supplemented with evolution laws for effective microstructural parameters. These evolution
laws can be presented either as explicit functions of the current state or in time rate form. Evolu-
tion equations corresponding to homogeneous deformation have been developed to a remarkable
extent in the past decades. In particular, the evolution of void aspect ratio and orientation associ-
ated with homogeneous deformation has been represented in mathematical rate form by Gologanu,
Ponte Castafieda, and coworkers [91,92,94]. In a recent numerics—based study, Madou et al. [83]
revisited the basic form of evolution equation for void shape and orientation in [91,92,94] utilizing
elastic Eshelby tensors, and proposed modified equations that are calibrated in terms of porosity
and stress triaxiality.

The current state of the art with regards to post-localized evolution equations is, however, not

sophisticated to the expected level. The first endeavors on this task was undertaken by Benzerga
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[86, 150] as well as Pardoen and Hutchinson [20]. The former derived evolution equations for the
post-localized effective damage state variables reflected through the void relative spacing y and
void aspect ratio w on the basis of boundary conditions and matrix incompressibility. The latter,
however, derived phenomenological equations for the post-localized evolution of porosity f and
void aspect ratio w based on cell model calculations. Meanwhile, an evolving shape factor v was
introduced by Benzerga [150] along with w in the spirit of void shape changes in the post-localized
regime. With a void shape taken to evolve from spheroidal at the onset of inhomogeneous yielding
by internal necking to conical at complete failure, the shape factor would evolve from v = 1/2 to
v =1

Under a combined effect of tensile and shear loadings, however, homogeneous yielding is
coupled with the effects of void elongation and rotation. Hence, the existing equations are not
consistent with the post-localized state evolution under the effect of shear. To the best of the
author’s knowledge, evolution equations of this capacity are still lacking in the literature. Chapter

6 in the present work introduces this set of equations.
3.5 Unified vs. Hybrid Models

Based on analytical limit analysis, homogeneous and inhomogeneous plasticity models can be
derived either independently and combined in a hybrid approach or based on the same velocity
fields in a unified fashion. There are pros and cons associated with the hybrid perspective, consid-
ering different cell-level geometries before and after the onset of inhomogeneous yielding. Among
its notable virtues is better coincidence with numerical results in comparison to that in the unified
model, esp. at low porosities and/or higher shear stresses. Nevertheless, the hybrid model ex-
hibits corners in its corresponding yield surface, which constitutes some undesirable features from

a computational viewpoint.
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Figure 3.3: (a) Schematic comparison between a unified and a hybrid yield locus (e.g. consti-
tuted by the Keralavarma—Benzerga homogeneous yield model [14] and the here—derived inho-
mogeneous criterion. See Chapter 5); (b) schematic stress—strain curves in an arbitrary evolution
problem corresponding to a hybrid and a unified model (reprinted with permission from Elsevier,
Ltd).

Figure 3.3 depicts an example hybrid model invoking the Keralavarma-Benzerga [14] and uni-
fied models before and after inhomogeneous yielding occurs. Upon the use of a more general
velocity field resembling that utilized by Gurson, Morin et al. [97] introduced a unified model
accounting for both homogeneous and inhomogeneous yieldings. Within the confines of this re-
search, the same shear velocity field employed in the derivation of the inhomogeneous yield cri-
terion is further superposed to a more universal counterpart of the unified model in [97] under
combined axial, lateral, and shear loading (see Paper P3 for derivations). See Chapter 5 for a
clearer image on the unified yield criterion derived in the present work.

The plastic framework within the present context is developed based on a hybrid model. A
hybrid model may trigger numerical issues resulting from an ill-defined normal to the surface at
the point of transition between the two yield surfaces, except when a multi-surface formulation is
employed. The latter operates in such a way that the plastic rate of deformation is expressed as a
linear combination of all the active surfaces, with the multipliers equaling the plastic multipliers

associated with every yield criterion. For the sake of simplicity, however, one can refer to only

47



one surface at a specific step, and disregard other less effective surfaces. On the other hand,
voids at the post-localized process can interconnect only along a discrete set of directions, each
possible direction uniquely identified by a unit vector normal to is associated plane of localization
n. Accordingly, there are k£ > 1 post-localized yield functions affecting the constitutive framework
(a detailed elaboration on the value of £ will be given in Chapter 6). The hybrid and/or multi-
surface model should then consist of k& + 1 yield surfaces, with k£ denoting the selected number of

possible localization systems and 1 pertaining to homogeneous yielding.
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CHAPTER 4 MODELING METHODOLOGY

Considering the discussed epistemology of ductile fracture modeling in Chapter 1, the present
thesis partly aims at developing a micromechanics-based model from first principles that is equipped
with measurable and/or observable internal parameters. Not only can such a model predict the crit-
ical parameters at failure instants but it can also mimic the active physical fracture processes. The
present chapter addresses the principles underlying the analytical modeling and numerical imple-
mentation of models in the course of this work. It thus begins with a brief introduction on homoge-
nization and limit analysis, as the cornerstones of modeling in the present work. The model should
further be well predictive. The following sections would then comprise a briefing over a recently
developed finite element-based numerical method for the assessment and potential calibration of
the derived models. On the other hand, due to the very nature of inhomogeneous deformation,
plastic strains can, in general, localize within various possible planes while one plane proves the
most effective at every current state. This chapter will, therefore, conceptualize the notion of mul-
tiple localization systems that can realize the inhomogeneous yielding mechanism that is true to
the spirit of the derived models. For complete simulation purposes, however, the model should
eventually be supplemented with mechanism-based evolution equations for the internal state vari-
ables. This chapter will further present an overview of the numerical path towards the integration

of the constitutive framework that encompasses the evolution equations.
4.1 Homogenization Theory

Homogenization is among the most pivotal theories, generally, in all studies related to porous
materials, and in pertaining ductile fracture processes in particular. The interest towards homog-
enization methods stems from the inherent anisotropies in ductile materials at sufficiently small
scales. These anisotropies can be attributed to the intrinsic nonlinearities within the constitutive
behavior or to the geometric nonlinearities arising in presence of finite strains and rotations. The

former is partly rooted in the micro-scale or atomic-scale morphology. Examples in this respect
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abound in engineering metals. Homogenization proves efficacious in a range as wide as to include,
for instance, steel and aluminum alloys to fiber-reinforced elastomers. The former is representa-
tive of poly-crystalline aggregates of randomly oriented single crystals and the latter is a two-phase
material system consisting of a second (inclusion) phase distributed randomly or periodically in a

surrounding matrix [168].
4.1.1 Characterization of classical homogenization

The basics of classical micromechanics-based homogenization are founded on the Hill-Mandel
theorems [169, 170]. Depending on the type of boundary conditions at the cell level, there are
basically two approaches possible: the kinematic and the static approach.

Kinematic boundary conditions are conceived of when the reference volume element (RVE) is
subjected to uniform boundary strain rates, as stated in Eq. (3.1) and repeated herein for ease of

reference. On this account, there exists a constant tensor D such that

Veedl v=Dx 4.1

where () and OS2 represent the cell domain and boundary, respectively, and « is the position vector.
All the same, static boundary conditions are considered such that the local tractions at the boundary

are equal to those induced by an applied macroscopic stress tensor 3 through

Va € 0f) on=2X%n 4.2)

with 12 being the outward boundary unit normal.
Under both circumstances, the Hill-Mandel Lemma states that, letting v be a kinematically

admissible velocity field and o a statically admissible stress field, it can be deduced that

(c:d)g=%:D 4.3)

where ¥ = (o) and D = (d)q denote volume averages of micro-scale stress and deformation-
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rate tensors, and () represents both the RVE domain and its volume. The reader can consult [33]
for more details.

Remark 1: The ¥ = (o), identity is a definition in the kinematic approach whereas it is a
theorem in the static approach. The latter can follow from a uniform admissible microscopic rate
of deformation d in the Hill-Mandel lemma in (4.3) under static boundary conditions. See [33] for
more details.

Remark 2: In the Hill-Mandel lemma, o and d need not relate through a constitutive conjunc-
tion.

Remark 3: Under kinematic boundary conditions, v should admit the kinematic relation in
(4.1) whereas, with static boundary conditions, v is arbitrary. Moreover, o should be a self-
equilibrating stress field (i.e. dive = 0 in 2 \ w, with w denoting the void volume) that obeys the

traction-free boundary condition, i.e. on = 0 on Jw. Alternatively, one can write

YS=(010-f)o)ow 4.4)

Besides being self-equilibrating, o is arbitrary under kinematic boundary conditions, whereas it
must admit (4.2) under static boundary conditions.
Other homogenization-based methods have been supplied along with those founded on classi-

cal homogenization. A brief overview in this regard will be given in Sec. 4.7.1.
4.1.2 Inhomogeneous yielding and homogenization

As earlier pointed out in Chapter 3, inhomogeneous yielding, upon definition, does not corre-
spond to strain localization at the micro scale on the condition of Rice [61]. Rather than infinite
concentration, it is represented by the concentration of plastic strains within a layer of a finite
thickness of the same order as the void size. It may, however, be rational to seek inhomogeneous
yielding in terms of a localization mechanism at a larger scale incorporating the effect of voids
via a homogenized model. Perrin [171] was amongst those who tried to employ this method to

the calculations carried out by Koplik and Needleman [46] upon a mere Gurson-like approach,
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where he figured out that the Gurson model was capable of predicting strain localization in layers
coincident with invervoid ligaments only for rather large porosity levels [97].

On the other hand, homogenization-based models tacitly rely on the fundamental assumption
of separation of scales [172]. That is, the average dimension of heterogeneities is way smaller than
the dimensions that can influence the macroscopic response. This is generally true for homoge-
neous yielding. Under inhomogeneous yielding circumstances, however, the void deforms within
the confines of a small zone within which the macroscopic response variation, in terms of stresses
and strain rates, can be much more considerable. This implies that the notion of a representative
volume element (RVE) is questionable in the context of coalescence modeling. Nevertheless, the
underlying principles of volumetric averaging correlating local and average material responses are
still valid at the unit cell level notwithstanding the presence of rigid-like zones emanating from
elastic unloading. Approaches of this kind thus represent the best way possible at present, in

absence of a clear-cut homogenization theory of coalescence [97].
4.2 Limit Analysis

As a branch of functional analysis, limit analysis is a powerful theory that allows for the attain-
ment of limit loads in structural mechanics problems [173, 174]. The method has been extensively
employed in soil mechanics [175, 176], structural mechanics [177-180], as well as in metal form-
ing [181]. One of the most interesting applications of the theory in recent decades has been in the
field of mechanics of materials, particularly for porous materials. Its efficacy in this regard makes
it applicable in the analytical derivation of micromechanics-based models as well as numerical
assessment of the accuracy of existing models.

Classical limit analysis originally applies to ideally plastic materials admitting infinitesimal
strains. Plastic deformation is assumed to be incompressible, with the dense matrix considered
rigid-ideal plastic admitting a flow theory —such as .J,— along with an associated flow rule [173,
182]. Sequential limit analysis, on the other hand, has more recently been proposed, mainly after
Yang [183], as a heuristic extension to hardening plastically deformable materials, that incorporates

large displacements and strains. Leblond er al. [184] demonstrated, in a recent revisiting of the
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concept, the conditions to the applicability of sequential limit analysis. Consequent to comparing
the general elasto-plastic evolution equations to their counterparts for classical and sequential limit
analysis, they deduced that, unlike in classical limit analysis, sequential limit analysis is strictly
prohibitive of elasticity.

The classical theory of limit analysis is invoked in both the derivation and assessment of effec-
tive yield criteria in the present work. Upon definition, it follows the underlying hypotheses and

conditions outlined below [184]:

)
qg#0 Stationary plastic deformation
dive =0 Equilibrium
d=d" Strain rate decomposition
4.5)
. 0P
d’ = A— Flow rule
oo
d(o)<0, A>0, ®(o)A=0 Kuhn-Tucker compatibility conditions
B.C. Boundary conditions
\

where g denotes the kinematic vector conjugate with the external load vector ). Condition (4.5)3
stems from the underlying premise that, after the attainment of the limit load, plastic deformation

becomes stationary, i.e. Q = 0. See [184] for proof.
4.3 Effective Dissipation and Yield Criterion

Within the kinematic framework in limit analysis, the effective yield criterion at the macro
scale (o) = 0 lies in the identification of a plastic dissipation 7(d), defined over the convexity
domain C, as [185]:

m(d) =supp{o:d|o €C, Vd} (4.6)

where the support function, denoted with supp{ f}, is defined as the smallest closed set outside
which the function f vanishes identically [186]. Note that d must be plastically admissible, admit-

ting Eq. (2.9). On account of the Hill-Mandel lemma in (4.3), I[I(D) can be defined as the effective
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plastic dissipation at the macro scale, given by

(D) = inf (m(d))s “.7)

where (2 refers to the spatial domain over which macroscopic quantities are defined, (-)q stands
for averaging over (2, and C is the microscopic reversibility domain (the boundary of which is the
yield surface). The veracity of the infimum involved in the definition of II lies in the fact that the
exact assessment of the velocity field that gives rise to a minimum II is literally impossible for
arbitrary stress states, even for relatively simple geometries. However, tentative velocity fields can
be adopted such that the evaluated II is close to minimum. Also, the set of kinematically admissible
velocity fields, K(D), is made of incompressible fields (vx; = 0) that are compatible with the
overall deformation imposed through D. With the dense matrix considered incompressible, the
microscopic rate of deformation d must be traceless. Otherwise, ® will be infinite. By way of
analogy, II can be expressed as the following support function over the macroscopic reversibility
domain C:

(D) =supp{X: D | X €€, VD} 4.8)

where

c={2|3oecC}

In a material obeying the .J; flow theory, for instance, the effective dissipation, with reference

to (2.3.1) and (2.24), can be expressed as follows [33]:
H(D) = <5dcq>ﬂ = (1 - f)<‘_7dcq>9\w 4.9)

Another case that lends itself to a simple expansion of II(D) is when the material obeys an
associated Hill-type anisotropy. In the latter case, one can utilize the same expansion as in (4.9),

but with the following d., [14,95]:

2 R
dgq:§d:[h:d (4.10)
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where (A) is representative of a formal inverse for a fourth-order tensor such that, for instance,
h:h=h:h=J, with J defined in Chapter 2. Here, h is the anisotropy tensor in the deviatoric
stress space. See [14,95] for more information.

Following a combination of limit analysis and homogenization theories, the effective yield cri-
terion of a material containing microvoids can be determined using the inequality of limit analysis
written as [33]

vD, ¥:D<I(D) 4.11)

where 3 and D denote the macroscopic stress and rate of deformation tensors, defined as the
volume averages of their microscopic counterparts o and d as defined in advance.

If the dissipation function is differentiable, then the effective yield surface is smooth, and (4.11)
is equivalent to:

>

(4.12)

where D is no longer arbitrary as in (4.11) but represents the rate of deformation correspond-
ing to X through the macroscopic flow rule. To sum up, if the effective yield surface is smooth,
then (4.12) constitutes its parametric equation. Otherwise, inequality (4.11) determines the effec-
tive reversibilty domain C (which is different from the microscopic one C). In order to solve the
inequality, one may recourse to graphical methods. See clear indications in Papers P1 —P3 .

Remark 1: There is often a trade-off between the accuracy of the velocity field and the ana-
lytical simplicity of the resulting yield criterion. In most cases, a closed-form yield function is not
attained except upon the least possible degree of continuity within the velocity field. With a robust
numerical implementation of the constitutive framework, however, a parametric representation of
the yield function devoid of a closed-form stress-based expression would suffice.

Remark 2: If the velocity field is discontinuous across an interface S then an additional term

must be added to (4.9), which writes

1
o [ suppomcc (¢ [ol} ds @®13)
S
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where [v] is the velocity jump across the interface and t* the traction acting thereon. Accordingly,
in the case of a discontinuous velocity field, the above expression can be resolved as the sum of
volumetric and surface terms:

I = o' + st (4.14)

where

Hvol — C<5deq>ﬂlig = C(]. — fb)<5'deq>91ig\w

1
Hsurf — _/
Qs

int

_ (4.15)
% | [ve] |dS

with [v;] denoting the discontinuity of tangential velocity, as identified in (4.13), and f;, is the
porosity within the ligament, here termed band porosity. For inhomogeneous yielding occurring
by internal necking or shearing, the above-mentioned discontinuity is triggered across the rigid-
plastic interfaces S;,; with a basic Gurson-like velocity field employed. More specific details will
be provided in Chapter 6.

Remark 3: In principle, D can be eliminated from the parametric equation (4.12) owing to
Ol /0D being positively homogeneous of zero degree. Equation (4.12) may thus be expressed
in the form ®(3; o) = 0, with ® denoting an effective yield function, expressed in terms of the
macroscopic stress tensor X and a set of other internal state variables denoted with « that, in the
realm of ductile fracture, may contain porosity f, & or its conjugate €, void aspect ratio w, efc..
Otherwise, the resulting model could be expressed in parametric form, i.e. in terms of the ratios
among macro-scale strain rate components. On account of the microscopic plastic flow obeying
Drucker’s stability postulate —equivalent to Hill’s principle of maximum plastic work—, it can be
shown (through the application of the Hill-Mandel lemma, see [33] for more details) that the same
principle holds at the macro scale. As a consequence, the macroscopic domain of elasticity C is
convex, the plastic rate of deformation DP belongs to the hypercone of normals to the effective

yield surface ®, and the macroscopic flow rule for a smooth ® obeys normality.
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4.4 Numerical Limit Analysis

The calculation of limit loads using the theory of limit analysis is subject to errors, e.g. con-
cerning the quality of the velocity fields adopted in the kinematic approach. Thus, various groups
have developed computational frameworks for computing exact limit loads. We shall commonly
refer to such frameworks as "numerical limit analysis". This method has proven efficacious in the
assessment and on-demand calibration of existing ductile fracture models as well as development
of enhanced models. It is rooted in mimicking the current microstructural state, pertaining to ho-
mogeneous yielding or a state of incipient inhomogeneous yielding, based on single-step plastic
analysis which corresponds to the problem of small-strain plasticity with no elastic domain. Until
quite recently, the most prevalent method in numerical limit analysis was by developing special
finite element-based solutions. Since the basic problem is specific to rigid-perfectly plastic ma-
terials, finite-element solutions are difficult to formulate properly and are susceptible to various
numerical issues [175, 187, 188]. An alternative, rather recent, method consists of using standard
finite element formulations for numerical limit analysis. This method was devised by Leblond
and coworkers [97, 140, 141, 189] and is briefly outlined herein. This method lies in the equiva-
lence between the classical and a modified limit analysis method. This equivalence relies on the
finite-element method using an implicit algorithm to the plastic correction of elastically predicted
stresses through a single large step with no geometry evolution. As a consequence, a one-to-one
correspondence can be drawn between ¢ and ¢(V), v and u(!), and between d and €V with gV,
uV and €V denoting the final kinematic vector, displacements and strains, respectively. Upon
a load increment being large enough so that elastic strains can be disregarded compared to their

plastic counterparts, the classical limit analysis conditions in (4.5) will become equivalent to the
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following [141, 189]:

(

gV =qV —q¢¥ #£0 Stationary plastic deformation
dive™ =0 Equilibrium
eV =V — e~ ep Strain decomposition
(4.16)
0P
€’ = AA— Flow rule
oo
®(o) <0, AA>0, P(o)AA=0 Kuhn-Tucker compatibility conditions
B.C. Boundary conditions

with o™ and AA denoting the ultimate stresses and plastic multiplier incremented through the
whole step, respectively.

A clear consequence of limit analysis with this attitude is that elastic strain rates vanish when
the limit load is reached. To this end, the elastic moduli should disappear from the equations and,
in turn, plasticity imposes an incompressible velocity field on the material. To this end, the base
material of the unit cell should be elastic-perfectly plastic in effect. Accordingly, a high value of
Poisson’s ratio, close to 0.5, can be enforced so that plastic incompressibility is respected. The
value considered in [96,97, 140] and used herein is v = 0.49, which maintains a nearly-isochoric
velocity field and would not lead to singular solutions. Further, a typical yield strength to Young’s
modulus ratio of 5/ E = 0.000225 has been considered, which correponds to a Young modulus of
E = 4444.56.

The commercial tool ABAQUS was used in the present work to carry out the numerical calcu-
lations. Inasmuch as numerical cell-model calculations in this study are primarily meant to validate
the analytical yield criteria, the FEM models were featured to include a unit cell with a geome-
try identical to that characterized in Chapter 6 admitting quasi-periodic boundary conditions (the
term quasi denoting the fact that the considered elementary cell is not space-filling). The analysis
procedure briefed above allows for any alternative space-filling model with no significant increase

in the computational demand. Yet, the least uncertainty lies within the numerical and analytical
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cells with identical geometries. Hence, a cylindrical cell containing a cylindrical void has been
considered in the present context for the numerical assessment of limit loads at the onset of inho-
mogeneous yielding. The limit stress value for a frozen microstructure is sought for at each FEM
analysis. To this end, the equilibrium equations are to be solved on the basis of initial geometric
specifications rather than the deformed state in order that the calculated stress values correspond
to a well-defined initial configuration. This can be achieved through switching off geometric non-

linearity in ABAQUS (NLGEOM=No; see [190] for more technical details).

(a) (b)

Figure 4.1: (a) One half of a cylindrical cell, (b) a numerically well-conditioned mesh for numerical
limit analysis over a cylindrical RVE [15] (reprinted with permission from Elsevier, Ltd).

Figure 4.1 depicts a schematic half-cell with symmetry conditions imposed on the meridian
plane as well as an example numerically well-conditioned mesh employed in the interest of the
assessment of models derived within the realm of this work. Anywhere in a periodic cell, the

displacement w at field point  would write:

u(x) = (E+ Q). + u(x) 4.17)

where FE is the macroscopic strain tensor, 2 the (skew-symmetric) macroscopic rotation tensor

and u a periodic field. For any two points in periodic correspondence, one would therefore write:

Au = (E+Q).Ax (4.18)
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where Aw is the difference in displacement between the points separated by the vector Azx. For a
cylindrical cell, (4.18) cannot be applied to pairs of points in periodic correspondence since such
pairs do not exist. Instead, one ought to impose similar conditions, thus its name quasi—periodic.

In this respect, the macroscopic strain enforced on the cell is represented by the tensor:

F = E11(61 Xe +e® 62) + E33€3 & €3 -+ E31(€1 & €3 -+ €3 (24 81) (419)

or in matrix form

Esi 0 Ess
where
Uy
Fii=Fyp=h|— ]~ —
H Us
Far=In| =] ~ = 4.20
33 1 (HU> Ho ( )
Ui
E3n = —
31 S H,

Here, U; denotes a prescribed displacement on the lateral surface (see Papers P2 and P3 for
details), whilst Us and Uy are, respectively, the normal and tangential displacements prescribed on
the top surface.

On the other hand, the macroscopic rotation tensor must be of the form:

Q=03 (e3®e —e ®ey) (4.21)

The simplest choice for €2 in (4.18) would be to take €2 = 0. However, this would entail a vertical
displacement on the lateral surface. To avoid this, one can choose {215 = —(23; = Ej3;. For the

cylindrical cell considered, this choice will considerably simplify the formulation of multi-point
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constraint conditions.

In matricial form, the strictly periodic boundary conditions (4.18) would read:

( )

Au1

AUQ

AUg

\ J

The above are further replaced by the following quasi-periodic conditions:

F; O
0 En
0 0

2FE3

0

E33

(

A[L’l

A[EQ

A.Tg

\

)

J

(4.22)

e On the top surface, Au = u(xy, 19, H) — u(zy, 19, —H) and Az’ = {0,0,2H} so that:

e On the plane Oxsx3,

e On the lateral surface (2] + 23

(

Uy (Oa X, 'I3) - 0

Aul = 4E31H
AUQ =0
A”LL3 = 2E33H

(4.23)

(4.24)

L?, —H < x3 < H) multi-point constraints are imposed

so that the nodes lying on a semi-circle remain on a semi-circle of radius consistent with

the prescribed value of E;. Let u*f be the displacement of some reference node on the

semi-circle at some height 3, say 7 = {L,0, 23} and Au = u(zy, 2, v3) — u', then:

(

Au1 = Ell(xl — L)

A'UQ = EHZEQ

AU3:0
\

(4.25)

In particular, to simulate coalescence states whereby rigid zones preclude lateral straining, one

should take 11 = 0, hence U; = 0. Under such circumstances, conditions (4.25) state that the
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circles move rigidly.
Since the ultimate load value is not known as such, each stress component for the overall unit

cell is calculated in obedience to a simple volume averaging, which can be written as
= v™ag® (4.26)

with summation implied on n, where v(™ = V(" /Q) is the volume fraction of the n’th element
with respect to the whole unit cell (with €2 being the total cell volume). See Papers P2 and P3 for

details.
4.5 Multi-Surface Modeling

Following the additivity premise declared in Chapter 2, the total rate of deformation tensor D
is decomposed in the following format, with the elastic and the plastic parts stemming from the

hyperelastic and hypoelastic laws stated in Eq’s (2.16) and (2.18):
D = D°+ DP (4.27)

with
B OP*

=25 (4.28)

DP =) A*N* | N*
k=1

where DP*’s belong to all effective yielding mechanisms, with m denoting the number of all poten-
tially active mechanisms. Within the realm of porous plasticity, active mechanisms can comprise
homogeneous yielding as well as inhomogeneous yielding with strains localized inside planes or
along columns. See Chapter 8 for concepts. Notably, voids during the inhomogeneous process
can interconnect inside various possible localization planes accommodating void interactions in

different directions. A clear elaboration on this concept will be provided in Chapter 6.
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4.6 Time Integration

To the purpose of simulating ductile fracture models, the yield function generally represented
by ®([V']) = 0 would not be beneficial unless supplemented with proper evolution equations for
the internal state variables denoted with [V], normally termed [V]. The constitutive framework
then comprises a set of independent state variables (denoted with [V']), to be evolved implicitly, and
(potentially) another set of dependent state variables that are post-processed and can be expressed
in terms of the independent ones. Further illustrations regarding the specific state variables during
the homogeneous and inhomogeneous processes will be provided in Section 6.4 as well as Paper

P7 . Associated with the vector of independent state variables [V'] is a residual vector, so defined

as the numerical difference between the direct and the differential time rates. That is
[R] = ————"—[V] (4.29)

with [V'] and [V'] denoting the state variables at the beginning and end of every time step, respec-
tively. Within the chosen microstructural simulation, not all of the involved internal state variables
are independent. Rather, some are proven to function in terms of one or more parameters within
the (f,w, n®, n) set. The least possible set of independent state variables should then consist of
the following elements:

V = [0',7 Om, f’ €7 S}T (430)

where o’ and 0, denote, respectively, the deviatoric and mean normal stresses, and s = In w is the
void aspect ratio in natural logarithmic form. More details in regards to the specific equations will
be provided in Chapter 6.

The Newton-Raphson procedure is then employed iteratively to solve the [R] = 0 equation

system at every time step:

(V] = [v]® — L‘?[V](i)} ) [R] 4.31)
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where the Jacobian matrix O[R]/0[V| can be evaluated at every iteration within the time step or
kept constantly equal to the value at the beginning of the time step, and superscript ¢ denotes the
iteration number. Equation (4.31) is repeated until the residual vector [R)] lies within a vector of
specified tolerances.

Finally, the consistent tangent matrix (mainly developed for global equilibrium, as in a finite

element-based analysis), denoted by 1.**" (e.g. DDSDDE in ABAQUYS) is written as

ptan _ L (a" L I® a"‘“) (4.32)

T At \9D oD

which involves the following constituents:

oV d[R]]'[OR
][22
oD o[V] oD
where use has been made of the same Jacobian as introduced in (4.31).
4.7 Further Notes on Techniques Not Used

4.7.1 Alternative homogenization methods

A distinctive line of work in the classical homogenization field is based on an alternative
method in regards to the nonlinear responses of heterogeneous materials. A considerable frac-
tion of work in this field has been built upon the pioneering Hashin-Shtrikman variational method
for linearly elastic composites [191] to extract the elastic and overall response of nonlinearly elas-
tic materials, including [192, 193]. Further, based on the use of a "linear comparison composite"
(LCC) analytical method, Ponte Castafieda [194, 195] developed more advanced variational prin-
ciples to improve the bounds to the Hashin-Shtrikman and Beran-Milton (3-point) models for
nonlinear composites. Additional research work includes, yet is not limited to, the methods pro-
posed by Suquet [196] concerning power-law or ideally plastic composite materials, the Lurie and
Cherkaev method [197], and that of Milton and Serkov [198]. A large cache of work also belongs

to Ponte Castafieda and coworkers, who extended the realm of nonlinear homogenization theories
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in various respects or for different materials [168, 199-201]. In essence, these models are based
on the development of an effective strain-energy density function. As earlier stated in Sec. 4.2,
there are serious limitations to the classical homogenization theory apropos of modeling void co-
alescence. Just as limit analysis based on volumetric averaging can be used to obtain solutions
for inhomogeneous yielding processes, so can the class of models developed by Ponte Castaiieda
and coworkers. Yet, models of this caliber for porous materials remain to be developed. By far,
experience with the modeling of homogeneous yielding with, for instance, ellipsoidal voids has
it that Ponte Castafieda-type methods are far from being precise except after significant heuristic
modifications or tedious analytical enhancements (such as those employing the so-called second
order homogenization). Therefore, both for the sake of simplicity and until a well-posed theory of
homogenization for void coalescence is achieved, we will adhere to limit analysis combined with
volumetric averaging.

Along with analytical models, numerical methods have also been proposed to compute the
effective mechanical response in multi-phase materials. FFT-based analysis, with FFT standing
for "fast Fourier transform", as an example extensively used method, was originally introduced
by Suquet and coworkers [202-205] for the effective and local response in heterogeneous me-
dia upon a composite image, where heterogeneity relates to some spatial distribution of different
phases. The same method was later adapted for the plastic analysis of polycrystals, where the
heterogeneity lies in the spatial distribution of crystals with mechanical properties changing with
orientation [206-209]. This method can lend itself as a counterpart to the finite-element method
for the global (spatial) analysis of boundary-value (BV) problems. In large-scale simulations, e.g.
with heterogeneities, the FFT method can significantly accelerate the analysis process thanks to
the use of stresses and strains in lieu of tractions and displacements, respectively. A recent study
has demonstrated a two-order of magnitude improvement in the computational cost in the analysis
of phase-transforming (e.g. shape-memory) materials [210]. For single-cell calculations, however,
FFT bares no perspicuous advantage over FEM. The present work, however, is centered around the

constitutive modeling of porous plasticity under combined tension and shear, with a brief portion
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to demonstrate the capability of the model in solving BV problems. Considering the extensive use
of commercial codes such as ABAQUS, we have opted to write a user-defined subroutine (UMAT)
that correlates the constitutive behavior of the porous material with the global equilibrium solved

by ABAQUS.
4.7.2 Evolution cell-model calculations

FEM-based calculations carried out at the cell level can serve as benchmark also for the
evolution-based phenomenology of void nucleation and growth up to coalescence and failure.
Apropos of evolution problems, the pioneering analyses carried out by Needleman [211] and
Tvergaard [212] for a periodic array of cylindrical voids, those by Tvergaard [213] and Koplik
and Needleman [46] for spherical voids, and that by Besson and Foerch [214], have been fol-
lowed by several FEM-based evolution studies. Examples in regards to the combination of tensile
and shear loadings include the Lode effect investigated via cell-model outcomes by Barsoum and
Faleskog [36]. Further studies explored the combined Lode and triaxiality effects with periodic

arrays of voids [84,85,88,121,215,216] or randomly distributed voids [165,217].

(a) (b)

(a)
|

i 7 ////////////////
/ / //////// 4

(i
IIIIIIIIIIIIIIEIIIIiIIIIIIIIIIiI
N

AT O
A

MR
|l|ﬂ|||||Hlillllmliilllllﬂl

IR
AN

Vi ////// T 707
V) // ) //////////////////////////f///

g ) |
g

Ty | 4

////////////////////////////////

\

\

\
\

Figure 4.2: (a) Deformation of a unit cell representative of a periodic array of circular voids under
simple shearing [16], (b) spherical void elongation under combined tension and shear in a 3D unit
cell [17] (reprinted with permission from Springer, Ltd).
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More recent studies have attempted to describe void growth to coalescence under general load-
ing conditions by combining the effects of various independent stress-based parameters in a unit
cell. Tekoglu [160] introduced an effective method to keep track of three independent parameters
including the Lode parameter, stress triaxiality, and shear ratio (defined as the ratio between shear
and normal stresses). Alternatively, Liu et al. [161] developed, based on energy principles in a
derivative format, a unified method to establish a consistent criterion accounting for tensile and
shear-dominated types of void coalescence. Such calculations can prove quite useful in the assess-
ment of a complete model that accounts for both homogeneous and inhomogeneous yielding. For
the case of combined tension and shear, in particular, the present thesis does not contain any new
FEM calculations due to their extreme computational cost. Instead, use has been made of available
results, essentially, by Tvergaard and co-workers [16,17,21,218]. Figure 4.2a, for instance, shows
a unit cell representing a periodic array of voids under simple shearing. Figure 4.2b, on the other

hand, shows void elongation under combined tension and shear in a 3D unit cell.
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CHAPTER S INHOMOGENEOUS YIELD CRITERIA

This chapter addresses an overview of the inhomogeneous yield functions that are derived from
first principles and borne out with numerical results in the course of the present thesis. The models
are primarily intended to model inhomogeneous yielding by internal necking, internal shearing or
a combination of both. They are obtained by limit analysis and homogenization over a cylindrical
elementary cell containing a coaxial cylindrical void of finite height. Plasticity in the deformable
matrix is modeled using rate-independent .J, flow theory admitting kinematically-admissible trial
velocity fields, and the effective dissipation function is calculated by exact as well as approximate
techniques, the latter generating a simpler function that lies close to the upper bound but loses
the upper-bound character. Further, with the constraining conditions for inhomogeneous yielding
relaxed, a unified model would follow that accounts for both homogeneous and inhomogeneous
yielding. Model predictions are consistently compared with finite-element based estimates of limit
loads on unit cells exploiting quasi-periodic boundary conditions. The numerical results are further
used to guide a heuristic modification of the models in order to capture the behavior for extremely
flat or extremely elongated voids. The approximate inhomogeneous model is finally utilized to
predict the effective yield surface as well as strain to failure at the limit of an isotropic material
endowed with random void distribution. As such, the effective yield surface will be presented
as intersected with principal deviatoric planes (viz. the 7 plane and parallel planes thereof) as
well as with principal meridian planes corresponding to purely hydrostatic and purely deviatoric
stress states. Detailed discussion on the steps to deriving, assessment, and calibration of models is

expounded in Papers P1 —P4 .
5.1 Inhomogeneous Yielding under Combined Tension and Shear

The microstructural geometry is identified in respect to a reference volume element (RVE) that
is represented with its corresponding volume ¢ for brevity. Herein, the latter is a cylindrical cell

embedding a coaxial cylindrical void w, Fig. 5.1. The inhomogeneous process is characterized

68



with plastic deformation being localized inside the intervoid ligament, and the rest of the cell
admits elastic unloading and can be assumed to be rigid to the first approximation [45]. As such,
the microstructure depends on the orientation of the localization band as uniquely defined by a unit

normal to the plane transverse to the ligament, as schematically shown in Fig. 5.1.

Figure 5.1: Geometry of the cylindrical RVE under combined shear and tension.

Although this RVE is not space filling, it stands as a reasonable approximation of more complex
geometries, such as hexagonal-prismatic or square-prismatic cells, which may be considered as
unit cells in periodic media. The microstructural geometry is then determined by the following

independent dimensionless parameters:

(5.1)

w =

h R
B XTI
defined as the void aspect ratio, the ligament parameter, and the cell aspect ratio, respectively.
The yield function assuming localized yielding of the inter-void ligament is obtained by ho-
mogenization of a hollow cylindrical RVE containing a coaxial cylindrical void, as shown in Fig.
5.1. The model derived in Paper P1 (referred to in the sequel as the T-B-L model) is the first

analytical criterion that accounts for combined internal necking and shearing in the inter-void lig-

aments, extending the earlier models of [140, 148, 150]. The effective yield function derived in

69



Paper P1 can be written in the form

(T, x, w) = (’Z“‘ ;;&()X’w)) H(S,| — tS) + (ﬁ&) 1 (5.2)

where ®! denotes the yield criterion representing inhomogeneous deformation. H (z) is the Heav-
iside step function, equaling 1 if z > 0 and 0 if x < 0. Also, ¥, = n.Xn , 3y = |Xn — X, n|
are, respectively, the normal and shear tractions on the plane of localization (the latter expressed in

magnitude form), and

14+ /1434
V(X):%(Q—\/l—ir?)x‘l—irlnu)

3x?

= .3
TX' —3x+2 5.3
S(XJU):gX—w (5.3)

T =1 =x)7

are scalar functions that depend on the microstructure variables y and w, and 7 = 7/ V/3 is the
shear yield strength. Note that ®' depends only on y and w, i.e. A would not affect the model at a
fixed (x, w) pair. It would, however, indirectly affect the onset of inhomogeneous yielding through
the void volume fraction f [46]. The effective stress o is the matrix yield strength, taken to depend
on its conjugate effective plastic strain €, e.g. via a power law. The adjustable parameters (¢, b, 1)
are all unit in the basic form of ®'. The basic model predicts a close upper bound to the limit load
for a wide range of x and w [45]. It, however, overpredicts the stresses associated with the onset
of inhomogeneous deformation mainly in the limit of penny-shaped cracks (w — 0) and minorly
for overly elongated cavities (w >> 1). The (¢,b, () triplet is adjusted based on exact numerical
values. Simple functions have been proposed for (¢, b, () in Paper P1 .

The limit analysis path to the derivation of (5.2) involves uncontrolled approximations which
would not preserve the upper-bound character of the approach (see [33] for conceptual aspects).
In addition, model predictions according to (5.2) were initially assessed modulo existing finite

element results of [140] while being mindful of the fact that they pertained to a tetragonal cell
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containing a spheroidal void. To overcome this notable discrepancy, the above model was extended
in Paper P2 without the simplified evaluation of the dissipation integral. By way of consequence,

the following was derived:

;

2 Y| — B2 — (S /1)’
%+2fbcosh |n|—tS—\/3 (an/1) — (14 f3) for|Sy >tS
T T

=2
(3 x, w) = 1 !
Y\
<l7£1) -1 for |X,| < tS
(5.4)
where
B 5 ., 2 Sen )
— == — S 4+ 1204 — .
= 3+x 3\/+ X 3([%) (5.5)

where f, = x? is the porosity within the plastically-deformable band.

(a) (b)

+1189¢-01
— +0.000e+00

Figure 5.2: (a) Example meshing of a half-cell characterized with (x,w) = (0.4,0.5) ; (b) equiv-
alent plastic strain distribution on initial configuration at the onset of combined internal necking-
shearing localization for the same cell [15] (reprinted with permission from Elsevier, Ltd).

Based on the principles invoked in Chapter 4, the models have been assessed against numerical
results from limit analysis on the same cell geometry. The numerical results were obtained from the
single-step small-deformation FEM-based limit analysis (upon the method introduced in Chapter

4) that admit quasi-periodic boundary conditions imposed over the cylindrical cell. See Sec. 4.4
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as well as Papers P2 and P3 for more details. Figure 5.2 depicts an example meshing and plastic

strain contour resulting from FEM-based limit analysis.

(a) (b)
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Figure 5.3: Effective yield loci in the >,—>y, plane: (a) comparison between the upper-bound
estimate (5.4) and its approximate counterpart (5.2) for w = 1 and several values of x; (b) compar-
ison between the upper-bound estimate and numerical results emanating from limit analysis on the
same cell geometry [15] (reprinted with permission from Elsevier, Ltd). See Paper P1 for more
details.

Representative yield loci corresponding to the upper-bound criterion (5.4) and its approximate
counterpart (5.2) are shown in Fig. 5.3 as solid lines for selective values of the (y, w) pair. Without
loss of generality, one can take, in a single cell, the z; and z3 axes as directed along the shear
and normal tractions. Therefore, >, and >, can be replaced, respectively, with X, and >g,. In
all plots, the vertical straight parts represent the singular portions of the yield loci. Such parts are
not physical inasmuch as they follow from considering discontinuous trial velocity fields. They
occupy an increasingly small portion as x increases so that the criterion resembles more and more
an elliptic one in the space of normal and shear stresses. The upper-bound yield loci are also shown
in Fig. 5.3b in comparison to their numerical counterparts emanating from limit analysis on the
same cell geometry.

Remark: It can be shown that, for y < 0.2, yield loci given by (5.2) or (5.4) are unlikely to be

physical, because strain concentration within the intervoid ligaments does not occur [150]. In such
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cases, Gurson-like potentials, that correspond to homogeneous yielding, are more likely to prevail.
5.2 Unified Model for Homogeneous and Inhomogeneous Yielding

Based on limit analysis on the same cylindrical elementary cell as shown in Fig. 5.1, the inho-
mogeneous criterion (5.4) was further expanded as to incorporate the effect of combined tension
and shear on both homogeneous and inhomogeneous processes in a unified fashion. This part was
primarily motivated by a simpler model developed by Morin et al. [97] with the unit cell subjected
to triaxial loading in absence of shear. With the choice of trial velocity fields considered in [97]
as basis, so extended as to include shear, the overall model was derived analytically from first
principles and is expressed in piece-wise closed form in both upper-bound and quadratic approx-
imate expressions. The model encompasses the stress limits to inhomogeneous yielding, and the
transition between subfunctions representing different regimes is cornerless. Following tedious

algebraic operations, the model can be expressed in the following form:

V3P — \/(ZT)2 — (55 +23)
=
if % +4/3(1- c) |:\/(1T)2 _;EZ}, +X%,) + Sgn(—\/g(l — ¢) + cPoal — ETE”):| < g
O(, i, W,c) =
(Eglglj__)?%Q) + %2 + 2f}, cosh (w _ T) (14 fg) if|p > peosd
(Eg?l:)EJ%Z) + (fPC;al)z + be cosh (w _ ﬂ)coal) _ (1 + fg) Otherwise
(5.6)
where
1 (%, -3 S
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C T 7
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Also, ¥y = (Zm + Xpp)/2 is the average lateral stress, and the rest, including the (¢,b,1) triad
are the same as those introduced for (5.2) and (5.4), taken as unity in the basic form. The reader is
referred to Paper P4 for the algebraic details and the approximate counterpart of (5.6).

The numerical assessment of the model was carried out on the same grounds as provided in Sec.
4.4 except for the fact that the zero lateral strain-rate condition (triggering localized plasticity) was
relaxed, and thus the inhomogeneous regime emerges as only a portion of the whole yield surface.

See Paper P3 on how to impose boundary conditions on the numerical model.
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Figure 5.4: (a) Comparison between upper-bound and numerical yield loci in the >;—, stress
space for various normalized shear stresses and microstructural parameters (y, w,c) = (0.4,1,0.4)
(corresponding to A = 1); (b) predicted yield loci comparing upper-bound and approximate models
for various normalized shear stresses and (x,w,c) = (0.5,1,0.5) (associated with A = 1) [18]
(reprinted with permission from Elsevier, Ltd).

Representative yield loci corresponding to the upper-bound criterion are shown in Fig. 5.4
in comparison to their numerical counterparts for the typical microstructural triple (x,w,\) =
(0.4,1,1), and predicted upper-bound and approximate loci are also compared for different nor-
malized shear stresses for (x,w,A) = (0.5,1,1). Yielding by the maximum normal stress clearly
pertains to the inhomogeneous regime, which proves independent of the lateral stress in this region.

Further details in regards to limitations in comparison between analytical and numerical results can
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be found in Paper P3 .
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Figure 5.5: (a) 3D yield surface exhibiting axial vs. lateral vs. shear normalized stresses for the
representative set of microstructural parameters (x,w,\) = (0.5,1,1). The sharp-colored sub-
surfaces pertain to inhomogeneous yielding [18] (reprinted with permission from Elsevier, Ltd).

To gain more insight into the correlation among all three stresses, the complete 3D yield surface
for the representative microstructural parameters (y,w, A) = (0.5,1,1) is shown in Fig. 5.5. The
inhomogeneous yield surface is illustrated in orange. For better clarity, the latter is also exclusively
shown in Fig. 5.5b. The projection of the cylindroidal inhomogeneous yield surface on the > = 0
plane is nothing but the yield locus exemplified by Fig. 5.3. The lack of uniformity in the lattice
lines in Fig. 5.5a pertains to the plotting subroutine developed based on a parametric, rather than
closed-form, representation of the yield function ®. Further improvement of the lattice lines would

way darken the surface, and has thus been avoided.
5.3 Isotropic Limit

At the limit of randomly distributed voids, inhomogeneous yielding can be predicted by find-
ing the maximum combination of normal and shear tractions correlating through Eq’s (5.2) or
(5.4) subjected to a unit normal to the one plane of localization, out of infinite possibilities, that
is obtained upon maximization of ®' as the target function. Under a general stress state, however,

effective yielding is governed by a competition of homogeneous and inhomogeneous yield crite-
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ria, whichever is met first. Accordingly, the prevailing yield criterion drives the effective yielding
mechanism. In extension to a recent effort by Keralavarma [88] investigating through the devel-
opment of a new tri-surface yield model (the intersection of a homogeneous yield surface and two
inhomogeneous surfaces representative of internal necking and combined internal necking with
shearing), the present work extends the realm of that investigation into distinctive consideration of
two independent microstructural parameters: the ligament parameter y and the void aspect ratio w
(the third parameter being the cell aspect ratio A can be approximated as unity by virtue of random

void distribution).

(b)

Figure 5.6: (a) Schematic distribution of non-spherical voids with random orientations and their
circumscribing cells at early plastic deformation stages, (b) schematic distribution of non-spherical
voids (idealized with cylinders) with random orientations.

The voids are taken to have equal shapes while being oriented randomly, as schematically
shown in Fig. 5.6, at a macroscopic neighborhood of an arbitrary void. Note, however, that the
random dispersion of voids remains feasible only to the extent that plastic deformation is still at
early stages, or else some voids would rearrange such that plastic damage continues in a directional
manner [89]. To this end, a criterion encompassing the Keralavarma and Benzerga [14] homoge-
neous model, itself simplified into the GLD model [89] at the limit of isotropic materials, and the

inhomogeneous model according to (5.2) was utilized. The homogeneous yield criterion ® is a
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counterpart of the GLD model revisited for isotropic porous materials following an ensemble aver-
aging of effective parameters, originally proposed in [89]. See Paper P4 for details. The effective
yield criterion is represented in the Haigh-Westergaard stress space, and the corresponding yield
surface is plotted in 3D as well as projected on deviatoric (e.g. the 7 plane) and meridian planes.
The voids are taken to have haphazard orientations but equal shapes. Hence, w generally differs
from unity but is common to all voids.

The tri-surface model is firstly authenticated with reference to FEM-based yield loci on devia-
toric and meridian planes. This was realized by numerical limit analysis under a normal and two
lateral tractions on a cubic unit cell embedding a spherical void admitting periodic boundary con-
ditions, whereby different yield points correspond to different ratios among the three stresses (see
Chapter 4 for clarification). The reader can refer to [88] for further details about the employment
of this strategy in the present context.

Figure 5.7 compares the tri-surface and numerical yield loci on the deviatoric plane associated
with 7" = 1 and 7" = 4 as well as on a meridian plane corresponding to axisymmetric and pure
shear with superposed hydrostatic loadings, corresponding to ¢ = 0 (L = 1 accordingly) and
0 = w/6 (L = 0 accordingly), respectively. One can clearly envisage that, unlike with periodic
voids, the nonphysical planar parts observed in Fig. 5.3 recede from the model. It is also clear
that, at low porosity levels, the FEM yield surface, as well as its effective (tri-surface) counterpart,
becomes closer to diffuse yielding whereas, at higher porosities, they tend closer to combined inter-
nal necking-shearing. Further details in this respect are explained in [88]. Moreover, the effective
analytical surface is not an upper bound. This is due, in part, to the approximation employed in
the formulation of the effective yield criterion at the limit of isotropic materials. In particular, the
closer-to-real effective yield surface is a combination of both ®* and ®'.

The reader should note, according to Fig. 5.7, that the use of (5.2), with or without calibration,
loses the upper-bound character at the limit of zero hydrostatic stresses (i.e. purely deviatoric
loading) under axisymmetric loading, i.e. # = nm/2,|L| = 1. This limitation can partly be

attributed to the use of different RVE shapes in the analytical and numerical models. This further
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Figure 5.7: Comparison between the tri-surface and numerical yield loci: (a,b) Octahedral plane
projections of the yield surface with constant-triaxiality stress states 7' = 1 and 7" = 4 for selective
void volume fractions f = (0.01, 0.05); (c,d) cross sections of the yield surface on meridian planes
representative of axisymmetric and pure shear with superposed hydrostatic loadings, correspond-
ingtod =0 (L =1)and = 7/6 (L = 0), respectively.
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corroborates the findings of Morin et al. [141], who have found the effect of void and cell shape on
the yield surface to be minimal for a given microstructural state. The same observation, however,
does not necessarily hold in an evolution-based problem, which consists of the entire deformation
process from void nucleation to ultimate failure. See [165] for details.

A consequential observation in Fig’s 5.7(c) and (d) that can be witnessed at the limit of pure
shearing, i.e. >, = 0 at L = 0, is the dominance of inhomogeneous yielding, reflected through
the effective (tri-surface) locus, over homogeneous yielding. Apart from being an observed fact
corroborated by numerical findings [16,17], it can be clearly deduced from the comparison between
the shear stresses from ®! and ®! at this limit, i.e. 7 = (1 — f)7 and 7 = (1 — f;,)7, respectively.
Nevertheless, the effective mechanism tends towards homogeneous yielding at sufficiently low
hydrostatic stresses with sufficiently low-level porosities, when the stress state is axysimmetric,
Fig. 5.7¢c.

The effects induced by Yy, as well as the same parametric studies reflected in plots on meridian
planes, can be found in Paper P4 . Figure 5.8 depicts the influence induced by the ligament param-
eter y and void aspect ratio w on the yield surface projected onto deviatoric planes with constant
triaxiality. Figure 5.8 reveals that, with increasing portion of the hydrostatic load (denoted by in-
creasing >, or 1), the yield surface projection loses its six-fold symmetry, and the surface lies
slightly towards the axisymmetric state, i.e. L = 1 pertaining to = n7/3,n = 0,1,2, ... (this
inclination is more significant when x varies and w is fixed). Considering the effect of porosity,
reflected through the ligament parameter Y, the homogeneous yield surface shrinks whereas the
combined necking-shearing surface shrinks faster along with increasing y. Namely, the effective
yielding mechanism tends from diffuse plasticity at y — O towards a combined necking-shearing
localized nature with increasing x. The two surfaces, however, become closer at larger portions
of hydrostatic stress, i.e. with increasing triaxiality, exemplified with 7' = 3. At this limit, the
effective yield mechanism is combined internal necking-shearing at the limit of L = 0 admitting
6 = (2n + 1)7/6, which signifies pure shearing with superposed hydrostatic stress. However, the

hydrostatic effect prevails over that of shear, and thus the equivalent stresses would be minimally
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Figure 5.8: (a,b) Effect of the ligament parameter y (at fixed void aspect ratio w = 1), (c,d) effect

of the void aspect ratio w (at fixed ligament parameter y = 0.25), on the effective yield surface
projection onto the deviatoric planes with constant triaxialities 7' = 1/3 and 7" = 3.
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apart.

Fig’s 5.8(c,d) demonstrate combined necking-shearing as the effective yield surface, with a
shrinking effective surface for larger values of w, especially for w > 1. This has been adduced
by former results, as particularly reported in Paper P1 , that the coalescence limit load decreases,
even more notably so for w > 1, with increasing w. It is also observed that, except at high stress
triaxialities (represented by 7' = 3 here) representing large portions of hydrostatic stress, the pure
shear limit (¢ = (2n + 1)m/6) is subdued by the combined internal necking-shearing mechanism.
On the other hand, for small to medium triaxialities (see Paper P4 for more illustrations), the
effective yielding mechanism for materials with flat voids (w < 1) proves to be of a homogeneous
type at stress states close to the axisymmetric limit (¢ = n/3). For large triaxialities, however, the
effective mechanism generally moves towards homogeneous while it still varies from case to case.
For flat voids (w = 0.1), the effective mechanism is homogeneous under all stress states, just as in
the case of axisymmetric loading with smaller triaxialities, whereas it is inhomogeneous for w > 1
even at this range of large triaxialities. Within periodic void arrays, however, a different trend has
been explored wherein the coalescence of flat voids (w < 1) could occur at early stages, even so
under uniaxial loading (7" = 1/3) [20]. With randomly distributed voids, both the dilute material
limit (y — 0) and materials containing flat (penny-shaped) cavities yield homogeneously under
axisymmetric stress states. See Paper P4 for more information.

Figure 5.9 showcases complete 3D surfaces for a fixed microstructure. For the sake of clarity,
the surface corresponding to effective yielding is juxtaposed to the homogeneous yield surface.
It is worthy of note that all surfaces are endowed with axis-symmetry and point symmetry at the
origin of the stress space. Upon implication, one can deduce that shifting the sign of the Lode
parameter, that is realized with a 7/3 rotation on the 6 deviatoric plane, equal equivalent stresses
will be predicted in accordance with the T-B-L inhomogeneous model.

Finally, the matrix effective plastic strain €; at a state of incipient inhomogeneous yielding can
be regarded as a crude measure of the strain to failure €; at an isotropic limit of the material. In

general, there may exist significant plastic deformation after the onset of inhomogeneous yielding.
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Yet, the de facto damage mechanism thereafter depends on different extrinsic factors such as the
specimen geometry and matrix texture. It is hereby plotted as function of the stress triaxiality.

More plots of this type, as well as analogous plots vs. Lode angle ¢ can be found in Paper P4 .
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Figure 5.9: Example complete 3D homogeneous and effective surfaces for a frozen microstructure
denoted by the (x,w, \) = (0.4,1,1).

(b)

Figure 5.10: (a) Effect of variation in w on the evolution of €; as function of stress triaxiality 7" at
the example Lode angle of & = 0; (b) representative 3D surface of € evolution as function of Lode

angle and stress triaxiality for (y,w) = (0.25,1).
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Figure 5.10a illustrates the effects of w alteration on the evolution of €; as function of stress
triaxiality 7" at the example Lode angle of 6 = 0 (corresponding to L = —1). The value of &; is
predicted close to zero under stress states close to pure shear (¢ = (2n + 1)7/6) emanating from
the inhomogeneous yield criterion ®' = 0 happening at early stages of plastic deformation. There
are, however, exceptions to this observation. See Paper P4 . The evolution of €; vs. the Lode angle
in simultaneity with stress triaxiality is provided in Fig. 5.10b for (y,w) = (0.25,1). Except at
large values of initial w (i.e. wy > 1), the strain to the onset of localization becomes vanishingly
small for 7" > 3. Also, as earlier revealed by Fig. 5.8 (with more illustrations provided in Paper P4
), the effective yielding mechanism is homogeneous for small x’s and w’s under small to medium
triaxialities, and is inhomogeneous otherwise. This shift in the effective mechanism, indeed, gives
rise to slope change in €; for the case of wy = 0.1 in Fig. 5.10c.

Remark: The singular limit within €, at the limit of triaxiality approaching zero (which can be
best exemplified by a state of shear-dominated loading) is non-physical inasmuch as failure under
shear in a material with finite porosity is substantive regardless of void distribution. This calls
for more considerate accounting for induced anisotropies emanating from void rotation and/or
elongation. By way of consequence, the strain to failure at the 7" = 0 limit would potentially be a
large but finite value. This trend has been observed in some recent simple torsion experiments [12].
All the same, a periodic microstructure under proportional loading can exhibit varieties of different
ductilities under various load combinations. As schematized as in Fig. 5.11, €; for a state of
combined axial and shear loading is shown to be unbounded at the limit of 7" = 1/3, and the shear-
dominated low-triaxiality region (7" < 1/3) is driven by the loading path. A recent investigation
by the authors demonstrates the existence of a minimum in the case of a unit cell loaded under
combined axial and shear loading. Chapter 7 and Paper P9 elucidate a more thorough discussion

on this effect.
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Figure 5.11: Schematic representation of €; evolution as function of stress triaxiality for a unit cell
under arbitrary loading with a periodic void distribution and various loading paths.
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CHAPTER 6 HYBRID POROUS PLASTICITY MODEL

The present chapter elucidates the constitutive framework utilized in the present thesis to sim-
ulate ductile fracture under combined loading upon numerical implementation. The framework
is founded on a multi-surface formulation of porous material plasticity. As such, there are two
sorts of multi—surface formulation in the context of micromechanics—based porous material plas-
ticity: hybrid and unified. In the former, the homogeneous and inhomogeneous models are derived
based on different cell geometries, and the cell geometries are united in the latter type. A hy-
brid micromechanics—based model is developed in this chapter, and numerically implemented to
simulate ductile failure under combined tension and shear. The model accounts for the compe-
tition of homogeneous and inhomogeneous yield conditions at the fine scale. The constitutive
framework comprises existing evolution equations of void elongation and distortion during homo-
geneous yielding accompanied by original physics—based counterparts for post—localized defor-

mation.

6.1 Hybrid Modeling of Ductile Fracture

(b)

Figure 6.1: (a) Schematic outline of a void aggregate accompanied by a Voronoi tessellation, (b)
idealized void cluster admitting an arbitrarily chosen localization plane with normal n, together
with an excised representative cell.

85



The voids in a real microscopic domain are distributed neither periodically nor randomly, but
through clusters. A statistically robust method for the characterization of clustered void distribu-
tion is via Voronoi tessellation [32,219]. Accordingly, voids during the inhomogeneous process
can interconnect along various but a discrete number of possible localization systems accommo-
dating void interactions in different localization planes. Figure 6.1a showcases a schematic void
aggregate, and 6.1b shows an idealized equivalent microstructure that can capture the salient fea-
tures of the circumscribed aggregate. One cannot emphasize enough that, as indicated by Fig.
6.1b, a judiciously chosen localization plane with normal m, the underlying microstructure, the
average void orientation n®), and the principal loading directions denoted with (e;, e, e3) are all

independent.
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Figure 6.2: Example possible localization systems with their corresponding localization planes and
their associated normals.

Figure 6.2 exemplifies two possible localization systems accommodating in-plane void coales-
cence, i.e. coalescence in layers. Nevertheless, normal n can be arbitrarily chosen out of a discrete
set of most favorable ones that, in passing, should be evolved according to (6.27) unless otherwise
specified. A more complete elaboration on more possible planes, together with their mathematical

representations, is provided in Appendix A.
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Figure 6.3: (a) Meso—scale positioning of voids in a periodic distribution, accompanied by its
equivalent orthorhombic unit cell (RVE) associated with normal n with geometric properties av-
eraged over the tributary volume around the central void; (b) unit cell deformed into monoclinic
under the effect of combined tension and shear.

(a) (b)

Figure 6.4: Elementary cell identifying the microstructure: (a) during homogeneous plastic defor-
mation, (b) during inhomogeneous plastic deformation.

A more geometrically sound outline of the underlying microstructure is shown in Fig. 6.3a. An
effective way to describe the microstructural geometry can then be with the aid of a representative
volume element (RVE) constituted from the tributary volume surrounding the central void, as

schematized exclusively in Fig. 6.3b having undergone combined tension and shear. Therefore, the
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example monoclinic unit cell as shown in Fig. 6.3b can equivalently represent the microstructural
domain.

In the simplest case, the cell can be regarded initially orthorhombic which, after shearing,
transforms (approximately) into monoclinic. Even upon appreciation of this simplification, the
macroscopic response of this cell is not solvable, be the yielding mechanism homogeneous or in-
homogeneous. Rather, it is attainable through idealized elementary cells, exemplified by those
depicted in Fig’s 6.4a and 6.4b, respectively, during homogeneous and inhomogeneous deforma-
tion processes. To highlight the distinction between the various RVE’s pertaining to different
mechanisms, the term "hybrid" is adopted for the proposed model.

In presence of various potentially active mechanisms, a multi-surface formulation is normally
employed, commonly with an associated flow rule. Accordingly, the total rate of deformation

tensor D is decomposed into the elastic and plastic parts as follows:
D = D°+ DP (6.1)

where
B Lok

DP =) A*N* Nk_a—
o

k=1

(6.2)

with the DP*’s belong to the m potentially active yielding mechanisms. In the present context,
i = 1 clearly corresponds to homogeneous yielding, i.e. N' = 9®" /0o, with "H’ denoting ho-
mogeneous yielding. The remaining IN*’s are, herein, germane to the various possible localization
systems accommodating inhomogeneous yielding, i.e. N* = 9®* /9o, with T’ standing for in-
homogeneous yielding. Each localization system is then uniquely identified by a unit normal to its
associated plane, here denoted with n.

Remark 1: At the limit of random void distribution, the number of possible localization modes
approaches infinity. Yielding at this limit can be predicted from a maximization problem subjected
to a unit normal constraint. See Section 5.3 and Paper P4 for more details.

Remark 2: Upon favorable circumstances, voids can coalesce along plastic plugs formed along
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certain directions, thus its name coalescence in columns [220] or necklace coalescence [221].
The present work presents a model accounting for coalescence in columns (see Chapter 8), but
focus will be placed on coalescence in layers. The model will, however, be further predictive by
incorporating necklace coalescence, particularly in respect to microstructures with significantly
elongated voids or under stress states with a dominant lateral load [33].

Remark 3: Rather than incorporating all yielding mechanisms in a concurrent mood — as
stated in (6.2) — the model at the present stage accounts for a successive advancement of mecha-
nisms. That is, the most favorable mechanism deemed possible is triggered at every time step by
accounting for the & = 0 that is met first. Yet, one should be mindful that more than one mecha-
nism, especially during inhomogeneous yielding, may be active at a time. No possible mechanism
should thus be excluded.

The building blocks of the present hybrid model are a homogeneous yield function in the
stress space expressed basically as ®(o; f,w,n®) = 0 and a discrete set of inhomogeneous
yield functions ®*'(o; f,w, \*, n®) n¥) = 0, where k = 1,2, ..., m represents all the localization
modes activated by the user. In the present context, ®' follows the model derived by Keralavarma
and Benzerga [14], and ®' is derived from first principles as earlier pointed out in Chapter 5. The

two will be repeated herein for ease of reference.

(a) (b) (c)

Q@

A\

<

Figure 6.5: Predicted deformation mechanisms under near-simple shearing: (a) totally homoge-
neous extreme, (b) totally localized extreme (a) de facto inhomogeneous mechanism.

Remark: As schematized in Fig. 6.5 and suggested by direct FEM modeling [16, 21], the
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de facto mechanism at the RVE level under combined tension and shear as well as under shear
dominance (Fig. 6.5¢) is an intermediate mechanism between the fully homogeneous (Fig. 6.5a)
and fully localized (Fig. 6.5b) extremes. As such, it is closer to the former at early stages and
it approaches the latter end with further advancement of shearing. Therefore, both ! and ®! are
subject to some modification in order for the hybrid model be accountable for a thoroughly reliable
simulation.

The following sections thus introduce ®!! and ®! with their proposed modifications.
6.2 Homogeneous Yielding

The underlying microstructure, and thus the lattice transcription in Fig. 6.3, is ineffective
during homogeneous yielding in that the corresponding constitutive framework is expressed in
terms of porosity f, void aspect ratio w, and void orientation (>}, which are common among
all tributary cells. Yet, it would affect the inhomogeneous process at the incipient and continued

stages.
6.2.1 Yield criterion

The yield criterion accounting for homogeneous deformation is the model developed by Ker-
alavarma and Benzerga [14]. This model incorporates the combined effects of void shape and

interaction as well as matrix anisotropy of Hill type. It can be written in the following form:

2 .
Vo fon,n) = €20 4 20+ 1l +af)eosh (P25 ) < (g4 02 g an? 63

where f = w/Q and w = a/b denote void volume fraction (porosity) and aspect ratio, re-
spectively. Within this framework, the voids are taken as spheroidal, with two equal lateral radii
(denoted with b) and a third mismatching radius (known as a), that identifies the void orientation
n® as schematized in Fig. 6.4a. w > 1, w < 1 and w = 1 would then signify, respectively, a pro-
late, and oblate, and a spherical void. The porosity f within ®! is multiplied by a ¢ factor which

enables ®! to capture stress states near simple shearing, which should be above 4/3 [194,222]. In
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the present context, the value introduced by Perrin and Leblond [153], ¢ = 4/e ~ 1.47 is proposed.
w > 1, w < 1 and w = 1 would then signify, respectively, a prolate, an oblate, and a spherical
void.
Also, 0.4 1s the von—Mises equivalent stress as function of a Hill-type anisotropy tensor [14,
223] stated as
5 3

Ooq = §a ‘H:o (6.4)

where H is related to Hill’s anisotropy tensor p through

H=p+n(XoQ+Q®X), p=J:h:J (6.5)

Q@ and X are functions of void shape and orientation, defined in (6.10), and J has been defined in
Eq. (2.3). The expressions of C, g, K, 17, and o, are provided in Paper P7 . J denotes the deviatoric
projection operator, as earlier defined in Chapter 2. The matrix effective stress & is taken to depend
on its conjugate, briefly termed "plastic strain" €, through a hardening law of any arbitrary form .

The presently considered hardening rule is the popular power law (see Chapter 7 for details).
6.2.2 Evolution of state

Apart from the all-embracing differential equations describing the evolution of void volume
fraction and equivalent plastic strain [33], the evolution of void aspect ratio and orientation associ-
ated with ® is deduced from [92] and [91, 94], respectively. It is highlighted once again that the
successive approach entails only one effective yield function at a time. The following equations

are thus developed in terms of one effective ®.
6.2.2.1 Evolution of porosity

Throughout the plastic deformation process, f is governed by the plastic incompressibility law
such that:

f=0=NDy=0-AI:N (6.6)
with A being the plastic multiplier in rate form, and N = 0® /0o with & = O,
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6.2.2.2  Evolution of equivalent plastic strain

Likewise, the evolution of equivalent plastic strain € is obtained through the formation of plastic

work equivalence between the macroscopic homogeneous material and the matrix, which reads

o:DP=(1- f)oe (6.7)

where & is the conjugate to € through Eq. (7.1). Note that Eq. (6.7 can be exploited for the explicit

evaluation of the plastic multiplier A by rearranging in the following equivalent form:

(6.8)

The equations evaluating the evolution of void aspect ratio and orientation conform to different
mechanisms. During the homogeneous process, voids can elongate and distort in accordance with
plasticity advancing throughout the matrix. In the inhomogeneous process, however, each void
is intercepted near its poles by the elastically unloaded rigid-like zones. The existing equations
for void shape and orientation evolution should, therefore, be revisited apropos of inhomogeneous
yielding. Paper P7 presents the algebraic details to the derivation of these equations. A synopsis

of the equations are also enlisted herein.
6.2.2.3 Evolution of void aspect ratio

The evolution of the void aspect ratio during homogeneous deformation follows Gologanu et

al. [92], also employed in [224]:

S=Q:D"
L) o) @) o0 (3) o 2 (3) ©9
Q=—§(n n +nP on?)+nP en
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where

1
D”:MP+3(?X”—X)D§
X’ =y (nY @nV +n®@n?)+(1-20)n® @n® | o =da(w)

(6.10)

X =ay(nYonV +n®en®) +(1-20)n® @n® | ay=da(f)

k=14 kykskr

with the provision of the heuristic factor k£ (following [92]), calibrated in terms of the void aspect
ratio w, porosity f, and stress triaxiality 7. See Paper P7 for k,,, k¢, and kr expressions.

6.2.2.4 Evolution of void orientation

The rate of rotation of the (immaterial) principal axes of the void may be directly obtained from
the (material) rotation and strain rates of the void [83,225], denoted by €2V and D", respectively.

Thus, one can write the total rate of void axis as
n® =wn®, w=Q" +Q (6.11)

where the rotation tensor w is the total spin tensor that consists of the void spin, {2*, superposed
by the void rotation with respect to the material, Q. Here, we exploit €2V as derived in [83,225]
during the homogeneous deformation, and confine it to the plastic ligament at the post—localized

inhomogeneous deformation. During the homogeneous process:
"=Q-C:DP (6.12)
where C is the fourth order spin concentration tensor given by

C=—(1—f)P:p, A=[1—(1- £ (6.13)
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with A the strain concentration tensor and P and S the Eshelby tensors [226] for a spheroidal

inclusion of zero stiffness in an incompressible linear viscous matrix. Further,

1 w? + w?
Q-2 Y o mentnen) A D nen 6149

o w; — W;
i, wiFw; J

where the convention w; = ws = w and w3z = 1 should be adopted. The case of a spherical void

w = 1, however, requires a careful treatment; see [14].
6.3 Inhomogeneous Yielding
6.3.1 Yield criterion

The assumptions underlying the mathematical modeling of homogeneous yielding allow for
arbitrary orientation of voids whereas inhomogeneous yielding is only warranted in planes. Ad-
mittedly, the presently derived inhomogeneous yield conditions have been developed with the void
being codirectional with the normal to the localization plane . This lies in the equality of shear-
induced responses, based on a Gurson-like velocity field, for an upright and a slanted cylindrical
void inside a cylindrical cell. This would inhibit failure under shear—dominated loading (see Paper
P6 ). To bypass this constraint, the real microstructure is mapped into a surrogate one, identified
with a surrogate void aligned with m, as shown in Fig. 6.4b. Accordingly, ®*! for every local-
ization system is parametrized in terms of effective microstructural parameters, here denoted with
X(n) and w(n), that correspond to a surrogate cylindrical void aligned with n. See Section 6.3.2

for details. With reference to the surrogate RVE shown in Fig. 6.4b, the surrogate parameters read

(n _ k(n)
x(n) I(n)
S(m) = 1)
w(n) = 5 o) (6.15)
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where the third parameter does not enter into ®' though being indirectly influential (see Section

6.3.4).

)2
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Figure 6.6: 2D idealization of the microstructure with two example localization modes and their
associated surrogate microstructures. The figure schematizes the plastically-deformable band as
separated from the rigid zones using solid lines and colored regions. Periodicity is denoted with
the dashed details.

With reference to Fig. 6.4b, the surrogate microstructures corresponding to two example lo-
calization systems are schematized in Fig. 6.6. It is worthy of note that, upon the simple use of
x and w in the basic form of ®!, failure could never be predicted under shear—dominated loading
conditions in that y would decrease (for a spheroidal void) or, at least, would stay constant (for a
cylindrical void), and the void elongation could never trigger internal shearing within the intervoid
ligament.

The inhomongeneous yield criterion basically follows Eq. (5.2), but is recast in modified form

herein for every localization system according to:

o] — S (e t) O\
q)m(a,xk’wk):< ka(;z’ﬂv ) H(|o‘k|_tk3)+<7_(xk)> ~1=0 (6.16)
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where ®*! denotes the yield function representing inhomogeneous deformation by combined inter-
nal necking and shearing in the k’th localization system, and H (z) is the Heaviside step function.
Also, 0% = nf.on* % = |on* — o*n*| are, respectively, the normal and shear tractions on the

k’th plane of localization (the latter expressed in magnitude form), and

V(% (2—~/1+3x +ln 1+V1+3X>

— _3 _ —

St = L2 1)
Xw
T = (1= a7

are scalar functions that depend on the microstructural variables y and w, and 7 = 7/ V3 is the
shear yield strength (the &k superscripts have been removed for brevity).

Also, g, = 1 in the basic form of the equation but is hereby introduced since the shear stress re-
sponse based on the present ®! is overconstrained despite being physically descriptive (see Section
7.1). This overconstraint is partly due to plasticity ideally confined to the inter-void ligament and
partly to the notion of Y via the surrogate cell. The latter is revealed by recent cell-level calcula-
tions [16] where, at a state of shear domination, plastic deformation is inhomogeneous throughout,
yet initially more diffuse than being confined inside the ligament, though it being more significant
at the vicinity of the ligament (see Section 7.1 for more details). This overconstraint is strongly
suggestive of a calibration to ®' whereby the effect of y in the shear term 7 or the corresponding
evolution of void orientation is retarded based on physics. The following simple form is proposed

for g, in the present context:

_ oo — 40
I = (qO + w1 1) (1+) (6.18)

with ¢, = 1 (pertaining to the absence of shear) and ¢y being function of the void geometry.
To the best of the authors’ knowledge, g0 = 1/3 and ¢y = 1/4 can deliver the most reasonable

conformity with numerics for spheroidal and cylindrical voids, respectively. Also, k = o /7 is the
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ratio between the normal and shear tractions on the plane of localization, and ¢ = tan™! v, is the

shear angle in the m—n plane.

6.3.2 Surrogate parameters

(a) (b)

2hL

2hL

© (d)

Figure 6.7: Surrogate configuration of a cylindrical cell under combined tension and shear, accom-
panied by the magnified view of the plastic ligament: (a,c) with a cylindrical void, (b,d) with a
spheroidal void.

The notion of surrogate cells implies introducing an effective void aspect ratio w and an effec-
tive ligament parameter y. Note that the barred notation stands for the average within the plane
of localization. Note also that, in addition to m, there is an implicit dependence of the above
parameters on the void orientation (> through R and h.

For formulation purposes, the connection between the void poles and the rigid—like matrix
is the underlying principle under combined loading. For cylindrical voids, the void poles are

connected to the matrix over the entire upper and lower circular cross sections, as depicted in
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Fig. 6.7a. Therefore, the distortion of voids under the effect of shearing will be all alike. The
inhomogeneous microstructural evolution would then admit simple geometric relations. See Paper

P6 for details.
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Figure 6.8: (a) Schematized post-localized deformation mechanism, and (b,c) the angles driving
the evolved geometry for a spheroidal void under a shear field: (b) a prolate void (w > 1), (¢) an
oblate void (w < 1).

All the same, a spheroidal void intercepts with the matrix at two single points of tangency,
denoted with A and A’ in Fig. 6.8. Correspondingly, prolate (w > 1) and oblate (w < 1) voids
would deform in different manners. That is, prolate voids rotate along with shearing while oblate
voids rotate backwards. Both voids, however, deform such that their larger axes incline towards
the direction of principal stretch, which proves close to 45° under near—simple shearing. Both
deformation modes are schematized in Fig. 6.8a. Altogether, the inhomogeneous microstructural
evolution in presence of spheroidal voids can be described by means of the normal and tangential
motions of the generatrix AA’, as separately schematized for prolate and oblate voids in Fig’s
6.8 (a,c), with a magnified void view shown in Fig’s 6.8 (b,d). The directional angles identified
according to Fig. 6.8b follow the derivations provided in Paper P7 . It should be noted, however,
that not all of the angles are independent.

The surrogate cell is obtained by mapping the rotated void with an upright cylinder of axis n
with the same volume and porosity, as shown in Fig. 6.7. It implies introducing an effective void
aspect ratio, w = ﬁ/ R, and an effective ligament parameter, Y = R/ L, related to the internal

parameters of the actual microstructure through the following relations:
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— Cylinrical voids:

. . 1\’
w(n,n®) =w (wS—I— 5)
Ay = 2
(1 +’Ymn)3 (6.19)

X(n,n¥) = <%)

3) 3) .

where C' and S are short-hand notation for C' = n®® - n = cosf and S = n® - m = sin 4,
with 6 denoted by the (clockwise positive) angle between the current normal n» and void axis
n®), as shown in Fig’s 6.7(c,d). Also, Ymn = 2m - En is the shear strain in the m—n plane,

and E = [ Ddt is the total strain tensor at the current state. See Paper P6 for more details.

— Spheroidal voids:

B, n®) = 2 (ﬂ)

3y \ 1+ T2w?
< A(n)
A = —-———-----
(n) R (6.20)

X(n,n®) = (%)

where 0.9 < 7 < 1 1is a heuristic factor introduced so Y can reach unity when the void poles
approach the cell corners, and the remaining parameters have been defined in advance. See

Paper P7 for more details.

In both (6.19); and (6.20),, A(n) is identified at its corresponding localization system, and can

be expressed in terms of the basic initial lattice aspect ratios defined as

_
-2

_ 4

A =
1 s

Ao 6.21)

where d; have been indicated in Fig. 6.3. In general, the void lattice, and its directors d; accord-

ingly, need not be aligned with the principal loading directions. Upon convention, however, d3 can
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be taken as that with the smallest absolute angle with the major normal load.

In order to derive \o(n) —with the O superscript denoting initial state— in terms of A\; and A,
as well as an arbitrarily-oriented normal 7, one should evaluate the average inter-void distance
inside the plane with normal 7, here termed L as well as the inter-void distance [, defined as the
distance between the inter-plane distance parallel to 72, as shown in Fig. 6.1b. Having skipped the

algebraic details provided in Appendix B, one can write

Ao
A = [ =2 6.22
o(no) |n0-d30| ( )

which retrieves A\ = /A1 Ay when ny = d3p, and A\, and A, refer to (6.21). The above-mentioned

Ao(m) can evolve through the following relation:

)\0 (’I’LQ) g

A(n) = n.(FF").n)’ (6.23)
V3

with n convected through (6.27). Here, F' is the total deformation gradient, with its associated

determinant J := det F'. See Appendix B for proof.
6.3.3 Model inputs

In contrast to random dispersion of voids, a periodic domain of voids can accommodate a
discrete number of possible localization systems. The possible systems can emanate from the
underlying microstructure or arbitrated by the user. Regardless of the origin, a known plane of
localization corresponds to a specific inhomogeneous yield criterion, here denoted with ®*, with &
representative of the £’th localization mode invoked in the model. Correspondingly, the following

inputs should be provided at the initial state:
Wo, vanE)S)Jnlgaleyd?Oa d30, A1, A2 (6.24)

with the O subscript and k superscript denoting the initial state and the k’th active localization

system, respectively. Among all, the first two are evolved implicitly (see Sections 6.2.2 and 6.3.4),
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and the rest are evolved explicitly in terms of their initial values.
6.3.4 Evolution of state

The equations accounting for the evolution of porosity f and equivalent plastic strain €, stated
in (6.6) and (6.8), are inclusive of the whole process. So is the general rate stated in (6.11).
However, the counterparts to the evolution of void aspect ratio as well as the spin tensors {2* and
Q! in (6.9) and (6.12) corresponding to inhomogeneous yielding have not been developed except
for s under triaxial loading in [20, 150]. In the present study, these equations have been proposed
for both cylindrical and spheroidal voids. Papers P6 and P7 , respectively, report the journey to

these equations. The equations are restated herein for ease of reference.
6.3.4.1 Orthotropy and localization planes

During the plastic deformation, the principal orthotropy (e, er, es) as well as the void lattice

directors (d1, ds, d3) rotate along with the material. Therefore

en = RelY  d, = RdV
(6.25)

F =RU

where R and U emanate from the polar decomposition of the deformation gradient tensor F' at
every step of the process, with R being the rotation part. m = (L,T,S) stands for the principal or-
thotropy axes, and n = 1, 2, 3 constitutes the void lattice directors. F' can be the directly—imposed
or post-processed deformation gradient. Due to the incremental nature of numerical implementa-

tion, one can write

FO — H FU) (6.26)
=0

where F'U) is the deformation gradient between the j — 1’st and j’th time steps constituted by the
incremental displacements at the j’th step, where j = 1,2, ..., 1.
Note that the present constitutive framework is expanded based on a corotational formulation,

i.e. the equations are expanded within the rotated material configuration. Therefore, Eq. (6.25) is
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implicit in the formulation.
The normal vector n, however, should be evolved through an area vector transformation law

[227]. That is
FﬁT’I’LQ

= 7 6.27
|F‘T'n0] ( )

n

with |.| denoting a vector magnitude.
Having updated the normal n, the direction of the resolved shear traction onto the plane with

normal n would become
7l (6.28)

where the shear traction 7 has been defined below Eq. (5.2), and p is the third base vector com-
pleting the orthonormal basis tied to the localization plane corresponding to normal 7. In case,
however, the shear traction vanishes, as in the case of triaxial loading, Eq. (6.28) would be ill-
defined. In this case, m and p would stay constant, equal to their previous values (or to their initial
values in case the loading is shearless throughout).

One cannot emphasize enough that the foregoing equations of microstructural evolution, as
well as the current surrogate state, are valid throughout the process notwithstanding they are mainly
invoked in the constitutive framework from the onset of inhomogeneous deformation onwards.

Prior to that, they should be updated for use in the evaluation of ®.
6.3.4.2 Evolution of void aspect ratio

Upon definition, the void aspect ratio for both cylindrical and spheroidal voids is expressed as
w = a/b, with the difference lying in a and b, as better clarified in Fig’s 6.7(a) and (b). Details

aside, one can write, having defined s = In w:

— Cylindrical voids:
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2
5= E <£ — l) n - DPn + SCSm - DPn (6.29)
2 c f c

where the ligament volume fraction, c, is given by

A =03 1— (6.30)

Spheroidal voids:

To obtain the post—localized differential equation for the spheroidal void aspect ratio w, the
time rate of ¢ (shown in Fig. 6.8) should be developed on the account that the top and
bottom void boundaries are attached to the rigid zones. The details provided in Paper P7 are

set aside here. In essence:

. (w2+72)2 [(3 (w4+72)(1+T2)) 6 (w2—1)‘3'
§ = S — i ) D + 257 Dom
(w+72)(1499) |23 DRz try | [ \e TR ¢
(6.31)
for a prolate void with w > 1, and
- (w?472)2 [( 3 (w4+‘.72)(1+‘f2)) 6 (w2—1)T
s = =+ e Dy — 2 272Dnm
(wh-+T2)(14+T2) 1_%} ¢ fw?+72) c wit
(6.32)

for an oblate void with w < 1. In the above equations, T = S/C' = tan6, where C' and S

3)

are short—hand notation for O = n®® . n = cosfand S = n® - m. Also

D,, =n-Dn

D, = m-DPn

with elastic strain rates neglected. The ligament volume fraction can be expressed in corre-

3vf Vs [g2 a2
:(ﬁ) Tl (33
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where v = 1/2 is the shape factor for a spheroidal void.

Note that Eq. (6.31) retrieves Eq. (12) of [150] at the limit of an upright void under a triaxial

stress space. See Paper P7 for details.

6.3.4.3  Evolution of void orientation

During inhomogeneous deformation, one can write, due to plasticity concentrated in the liga-
ment:

Q'=Q - 1([Z : DP (6.34)
c

with 1/c appearing to represent the plastic rate of deformation inside the ligament.

The post-localized 2!, however, should be rederived from first principles. Madou and Leblond
[83] have shown that the general form initiated in [91, 225] requires significant amendments due
to strong nonlinear effects. They did so by introducing heuristic coefficients calibrated using a
large number of finite—element based limit analyses. Here we obtain simpler, parameter—free and
probably more accurate equations by considering the constrained kinematics pertaining to post—
localization. This involves plastic incompressibility of the intervoid ligament and the fact that the
top and bottom boundaries of the void move rigidly with the above and bottom material layers.

Details aside, €' can be written as

S C T
1P v _ 2 (2 Q2
Q —Sm®m+0n®n g,(C’m@m Sn®n) (6.35)
where
(TP 4+TY) e L(f A 1 w? ,
7= T(1 —w?) c 3\f 2/\ * 3 T2ru?)” (6.36)

The rates of internal parameters entering the right-hand side of this equation are all established
relations. ¢/c can be determined by neglecting the volume change of the elastically-unloaded

zones. Thus,

n - DPn (6.37)
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Also,
; 1
7= (5-1) 2%
| ) (6.38)
A

and

Dyw=n-Dn |, Dynw=m-Dm , D,,=p-D'p

6.3.5 Plastically anisotropic matrix materials

The inhomogeneous yield functions derived in the present work are, though well-sophisticated,
limited in certain respects. Among the limitations is disregarding matrix anisotropy whereas the
use of ® after Keralavarma ane Benzerga [14] is strongly suggestive of its consideration. This
was, in turn, embodied by other researchers after the presently developed models were published.
The present thesis is, hence, partly aimed at making use of the ensuing models for numerical
implementation purposes. This will furnish the constitutive framework to account for the effect of
matrix anisotropy throughout the deformation process thanks to both ®! and ®! incorporating that
effect.

In the case of an orthotropic matrix material, plastic anisotropy idealized as Hill-like was
incorporated by Keralavarma and Chockalingam [96]. Following a similar procedure and from
the same principles as in Papers P1 and P2, the following inhomogeneous model was developed

therein:

_la'sh:[p:a'sh

@I
2

1
+ 2¢, f, cosh (z In
Oc dxJb

) — [1+ (g 6)?] (6.39)
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where o, = 7(n ® m + m ® n) is the auxiliary shear stress tensor, and

1/ fo
o /2 1 R
—= =3bt/=h, |Inbu |1 1 —4/1
- 3 she |Inbu g1+ (bu)? T (bu)?
- (6.40)
hy  5a h 1
2l a - N - 2 ’
W= oy, 0 T T e S+ @]

with ¢, = 1 in the basic form. The parameters izq, hy, and h, are scalar anisotropy factors as
functions of ilij, with h denoting a formal inverse for h, admitting h:h=h:h=J. Note
also that, unlike those associated with ® (where Bij components are expressed in the void-tied
basis), fzij’s corresponding to ®! are expressed in the basis tied to the surrogate void. See [14,96]
for equations. It is, also, noteworthy that p is to be calculated within the principal loading frame,
that is initially taken coincident with the global coordinate system herein. See Paper P9 for more
details. The concept of introducing ¢, into (6.40) follows the same rationale as put forward for
(6.16), and g, can be taken identical to (6.18) for combined tension and shear, and 1 in absence of
shear.

Finally, WV is a function of f, = ¥? and w that is calibrated modulo numerical results, that

reads
ngfEQDQ _
—_— + )449 for +/ q j%?i) < 2]/»k
w=1{ W * 6.41)
Xw for V (ngquzj > )/\4)

where W is an adjustable parameter (see [96] for the value).
Upon convention, & for an orthotropic matrix material is adopted as the yield strength in one

principal direction of orthotropy, and the components of the anisotropy tensor p are scaled accord-
ingly.
6.4 Time Integration of Constitutive Equations

Based on the foregoing discussion in Chapter 4, the constitutive framework of the present

hybrid model, following the governing equations stipulated in Sec. 4.6, is formulated within a
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corotational framework. Constitutive laws, therefore, need be written in the rotated configuration,
with quantities indicated by the tilde (~) symbol. The objective rate of stress o in (2.17) will
be then replaced with o, and the spin tensor €2 will vanish from the void orientation evolution in
(6.11). Further details can be observed in [224] in this regard.

Due to the existence of high geometric nonlinearity within the problems of porous plasticity,
the implicit method of plasticity has been adopted to solve for state variables. Accordingly, the
following state variables are updated via the implicit method during the homogeneous and post—

localized deformation processes:

— During homogeneous deformation:

V = [0,0m, f,&dA, S]" (6.42)

— During inhomogeneous deformation:

o
[0/, 0m, [.E, S]T for|o| > S

V = (6.43)

[0 €, S}T for|o| < S

with S defined after Eq. (5.2).

dA is the increment in plastic multiplier, and the rest of variables have been defined in the context.
In the singular portion of the yield surface associated with |o| < ¢S, D? and N = 09 /0o will be
traceless, and thus (o,,, f) would stay constant.

The main portion within the flow rule in Eq. (4.12) to derive the evolution equations of porosity
f, void aspect ratio w, and equivalent plastic strain €, is the first derivative of the flow potential ®

with respect to stress. To this end

o H:é X
0 =3C U+2(g+1)(g+qf)|<sinh(|< = )

R

NH

(6.44)
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and, for ®' obeying (6.16), for instance:

~ P! 2 n
N'= 86_& = 3% (00 — tsgn(o,)S) @ i H(on| — S) + 27-"7? n (6.45)
with #H(x) has been formerly defined. Accordingly:
o6 0P od 109 od
~; A~ . ~ =37 - A~
051 08 7w B0om 09 (6.46)
pr— i . pp —spr 22
oo o ek s m 8akk

Note that, within the confines of the present work, the constitutive derivations are only given
for the post—localization regime in Paper P7 . The reader will be well-advised to follow [224] for

steps to implementation of the K-B model in (6.3).
6.4.1 Newton—Raphson method

Via a similar procedure as that described in [224], a semi—implicit integration algorithm is
employed herein to integrate the post—localized constitutive equations, with the state variables as
assembled in (6.43). To this end, one should define a residual with respect to every state variable.

At the post—localized process, for instance:
T
[R] = {R&u Rs,, Ry, Re, Rs} (6.47)

with their expressions written, in expanded form, as follows:

1 (6 —6&,\ 0
R5'_ﬂ( At >+Aa~'

1 1 09 ~
R&m:—(am_am(0)+A___Dkk

KAt 300y,

(6.48)

szf_fo—(l—f)/\a(b

At aO'kk
o A (o 09
At (1-f)\a a6

108



where K and y are the shear and bulk moduli, respectively. The derivatives of the post—localization
flow potential ®! refer to (6.45). V;, and V/, respectively, denote the state variables at the beginning
and the end of the time increment. The residual associated with s = In w is explicated distinctively

in that it demands original derivation at the post—localized process.

— During homogeneous deformation:

Following [92], the time rate of the logarithmic void aspect ratio reads:

B _ H
hNH+<lX“—X)Qg—

S — 8o

At

R, = —AQ: (6.49)

f 00,

with the parameters identified in (6.10).

— During inhomogeneous deformation:
We can firstly define intermediate parameters ¢; and ¢-, following Eq. (6.29) or, alternatively,

Eq’s (6.31) and (6.32), with the normal and shear parts of s secluded. Namely:

(6.50)

for cylindrical voids, and

(6 T(w?—1)(T?+w?)
C

(Pt @)
T2(2w2—w*+72)
2 = 3@ ron @ u?)

forw > 1

q (6.51)

6 T(w2—1)(T24w?)

¢ (T2+uwh)(T2+1)

1 T2(—2w2+w*—T2)
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forw < 1

\
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and

( (72+w2)2 [§ _ (‘J'2+w4)(‘3‘2+1)}
(T2+w?)(T241) | ¢ F(T24w?)?
- (T24+wh) (T24+w?2)
G2 = (6.52)
(T%+w?)? 3 (T +wh)(T2+1)
@D | e T o |
[ Pt =) orw < 1
\ (T2 4wh) (T2 +w?)
for spheroidal voids.
One can further define
q=qm-+qgmn
(6.53)
M=n®q
which can supply the residual associated with s as follows:
S — 80 M 1
R, = —AM: N 6.54
A7 (6.54)

The Newton—Raphson procedure is then employed iteratively to solve the [R]7 = 0 equation

system at every time step:

. ]_I[R] (6.55)

where the Jacobian matrix 0[R]/J[V| can be evaluated at every iteration within the time step or
kept constantly equal to the value at the beginning of the time step, and subscript ¢ denotes the
iteration number. Since, however, the number of iterations to convergence is more or less the same
whether the initial or updated Jacobian is utilized. Therefore, O[R|/0[V|(y), i.e. the Jacobian at
the beginning of every time step, has been used throughout the iteration process due to the fact that
convergence is better guaranteed with the initial Jacobian.

Finally, the consistent tangent matrix (mainly developed for global equilibrium, as in a finite
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element-based analysis), denoted by L**" (e.g. DDSDDE in ABAQUS) is written as

1 /06 oo
e _ 1 (00 1o _m> 6.56
At (aD oD (6.56)

which involves the following constituents:

)= (53] w5

where use has been made of the same Jacobian as introduced in (6.55), and

ov] [o6' 06, Of 0O 0s]"
{a_i)} - {ai)’ oD’ 0D’ oD’ af)]
OR)] [0Rs ORs, OR; OR. OR,|"
[a_[)] a [a[)’ oD 9D oD’ ab}

(6.58)

To the reader’s insight, the Jacobian components corresponding to the post—localized deformation
process have been provided in Paper P7 . For the homogeneous deformation regime, the reader

can consult [224].
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CHAPTER 7 APPLICATIONS

The present chapter addresses a selective collection of results that simulate the Fracture process
under combined tensile and shear loading with the internal state variables that represent the stress,
strain, and microstructural state. The results are generated by integration of constitutive equations
for one spatial point representing a unit cell based on the hybrid plasticity model propounded in
Chapter 6. Contrary to the heavy numerical simulations carried out in [16, 17,21], the void need
not be modeled explicitly, but through the notion of an elementary cell.

The matrix effective stress o is taken to depend on its conjugate € through a power law of the
form:

G = ao(1+ —)¥ (7.1)

with o the initial yield strength and N the hardening exponent.
Furthermore, the imposed deformation gradient is derived on the basis of its value at every time
step, that is

FO [ F (7.2)
=0

where FU) is the deformation gradient between the j — 1’st and j’th time steps constituted by
the incremental displacements at the j’th step, where j = 1,2, ..., 4. Note that many commercial
codes, such as ABAQUS, calculate F' internally, and it thus need not be programmed when the
constitutive model is coded in conjunction with those commercial software. For the single cell
undergoing normal and lateral as well as shear displacement, F'U) reads:

‘ 5 %’) sul?) 5 glj) su
F<J>:<1+ 72 )m®m+<1+ u[i’ pRp+ |1+ ?;I nen+ 1;; memn (7.3)

where the constituents <5u$ﬂ;), 5u§,j ), sul ), 5u§j )> are the incremental displacements at the j’th step,
where 7 = 1,2,...,i. Here, 5u,(%), 5u1(gj ), and 5u,(lj ) are the tensile displacement increments along

directions m, p, and n, respectively, and (Su,gj ) is the tangential displacement increment over the
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top chord of the cell. Note that all these displacement increments are modified so as to preserve

the ratios among the stresses. Moreover,

emm + Epp

L:Loexp( 5

> , H=Hyexpe,, (7.4)

with €,,,,, €pp, and €, are the normal strains resolved along the m, p and n directions, respec-
tively. Upon consideration of the single cell, » (denoting normal to the invoked localization plane)
initially directed along es would stay constant thanks to the imposed deformation gradient F'.
Upon consideration of a single cell in the present context, m, p and n coincide with the global
base vectors ey, e; and e, respectively.

The model will be first borne out by existing numerical data through some benchmark response
curves under triaxial as well as combined loading. The parametric results are presented in two main
sets accordingly, under triaxial and combined loading conditions. Each set of results is extended
into further subsets to demonstrate the evolution of various microstructural variables throughout
the process. The ratios among the remote normal, lateral, and shear stresses remain constant
throughout. Accordingly, stress triaxiality 7" and the Lode parameter L are constant. A complete
guide through the employed algorithm for preservation of stress ratios is illustrated in Appendix
C.

The outcomes examined include the effect of initial porosity reflected through the initial effec-
tive ligament parameter y,. Further, the effect of elementary cell size was expressed in terms of
the cell aspect ratio A. The effect of void shape was also assessed from distinct effects observed for
elongated and flat voids. Furthermore, the strain to failure was evaluated in terms of stress triaxial-
ity for a complete scope of stress triaxialities. Finally, an example axisymmetric notched bar FEM
simulation was carried out to demonstrate the capability of the model for structural boundary—
value problems. To that end, the constitutive framework was implemented in an a user—defined
subroutine, and the microstructural effects were evaluated based on homogenized incorporation of

the effective microstructural parameters.

113



7.1 Failure Mechanism in Shear

(a) (b) (c)

Figure 7.1: Essential features of ductile fracture under combined loading captured by the unit cell
model: (a) intial state, (b) inhomogeneous deformation, (c) localized deformation.

The preparatory step to quantitative simulation of ductile fracture processes is a qualitatively
proper emulation of the failure mechanism. To investigate failure under combined tension and
shear, the continuum micromechanics—based framework must be capable of capturing the salient
features of sub—cell deformation sketched in Fig. 7.1.

The present section is thus aimed at illustration of the mechanism by which failure occurs un-
der shear—dominated loading which is realized by sufficiently low values of k = o, /7,. In this
region, the basic form of the inhomogeneous yield criterion computationally dominates from the
outset, and all the subsequent deformation mechanism can be described by ®' along with the sup-
plemented evolution equations. Nevertheless, as seen in the sequel, this deformation mechanism is
quantitatively erroneous. This error can be attributed to the underlying premises within ®' which
ideally confines plastic deformation within the ligament intercepting void poles [228]. Recent cell—
level calculations, however, have it that, even at a state of shear domination, plastic deformation is
more diffuse than ideally within the ligament, at least at early stages of deformation [16,21]. The
following section, therefore, proposes a modification to both ®! and ®! so as for the hybrid model
to be quantitatively robust.

The results are hereby presented for spheroidal voids, in comparison with their counterparts for

cylindrical voids for a unit cell under x = 0.02 with the initial simulation parameters given in the
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caption. The constitutive formulation exclusive to cylindrical voids is skipped herein, but the reader
can find sufficient algebraic details and a more self—contained discussion on the corresponding
simulation results in Papers PS5 and P6 . It should be remarked, however, that, since a cylindrical
void is tied to the upper and lower matrix materials over a whole surface rather than a single point,
the whole range of void aspect ratios (below or above 1) behave similarly as far as void rotation is
concerned. Nevertheless, a spheroidal void under the effect of shear rotates antithetically when it
is prolate (w > 1) and oblate (w < 1).

(a) (b)
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Figure 7.2: Comparison of the predicted failure mechanisms based on the TBL criterion according
to Eq. (5.2), for a cell under x = (.02, between a spheroidal and a cylindrical void of the same
porosity level with the simulation parameters identified as fo = 0.0005, wy = 1.1, \¢ = 2, N =
0.2, V37 /E = 0.002: (a) normalized shear stress, (b) void angle with the horizontal direction,
(c) effective ligament parameter, (d) logarithmic void aspect ratio s = Inw [19] (reprinted with
permission from Elsevier, Ltd).

Figure 7.2 shows the comparison between microstructural parameters for spheroidal and cylin-

drical voids embedded in the same cell. All parameters are presented against the shear strain vs;.
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Note that the current framework exhibits a singular behavior rooted in the ill-defined void axis for
the case of a spherical void. The latter is, therefore, represented with a void aspect ratio slightly
above unity, i.e. wy = 1.1. The largest distinction between the results pertaining to spheroidal and
cylindrical voids can be envisaged for wy < 1 due to an opposite orientation evolution as plotted in
Fig. 7.2b, and the difference diminishes with increasing w, > 1 owing to the synergistic behavior
of elongated cylindrical and spheroidal voids. The orientation evolution schematized in Fig. 6.8
can be realized for both prolate and oblate voids by examining Fig. 7.2 b. It can be clearly seen
that, soon after the beginning of the deformation process, the oblate void would stop rotating op-
posite to the shearing direction and begins to rotate along with shearing. Altogether, the overall
rotation of an oblate void under shear is small in comparison to its prolate counterpart of the same
porosity level.

The void aspect ratio w, as plotted in logarithmic form in Fig. 7.2d, would decrease in an
oblate void under shear and it increases for its prolate counterpart. In effect, an elongated upright
void elongates more, and an upright flattened void flattens further under shear such that, in both
cases, the larger of the two void dimensions tends to align with the direction of the largest principal
stretch. For a cylindrical void, however, w increases regardless of it being below or above 1.

(a) (b)
66— : —

Figure 7.3: (a) Shear response and (b) evolution of ligament parameter for various values of the
initial ligament parameter Y, using wy = 1.1, Ay = 2, N = 0.2, and \/gTQ/E = 0.002.
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In all cases, failure is triggered by y reaching its maximum, which is 1 in its basic form. Yet,
X exhibits different trends with different void shapes. With a cylindrical void, the trend for y
is convex, and thus, the material may not experience failure if the initial void volume fraction is
smaller than a certain value (see Fig. 7.3). This situation physically corresponds to asymptotic void
closure. Indeed, with extremely elongated void shapes, the surrogate void aspect ratio vanishes
(w — 0) as shown in Paper P6 . The closed void, which is in the limit a microcrack, deforms as a

material line.

(a) (b)

Figure 7.4: Predicted failure mechanism in shear and its connection to the fracture surface of
Fig. 1.8b: (a) few neighboring cells near the ultimate state Y = 1, (b) side and top views of the
cut—out from (a) after material separation.

The above—predicted mechanism can be correlated with the salient features of sheared fracture
surfaces as depicted in Fig. 1.8 through the schematic neighborhood as shown in Fig. 7.4. An
intermediate and the ultimate states (Y = 1) are shown in Fig. 7.4a with dashed and solid lines,
respectively. A top view of the so—simulated fracture surface, Fig. 7.4b, provides a rationale for
three key experimental observations: (i) parabolic dimples; (i1) low surface roughness; and (iii)

low local porosity, relative to tensile fracture surfaces, Fig. 1.8a.
7.2 Model Assessment

This section provides selective outcomes for cell-level predicted internal state variables under
triaxial loading as well as combined normal and shear loading in comparison to the existing FEM

cell-model calculations.
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7.2.1 Triaxial loading

The micromechanics—based and FEM-based results of Pardoen and Hutchinson [20] are used
to assess the authenticity of the hybrid model with respect to triaxial loading. The following
parameters are common among all analyses:

fo=10"2 | XN=1 , N=01 |, %:0.002 . E=210GPa , ¢ =0.002
(7.5)
where oy is the initial matrix yield strength and ¢ is its conjugate strain. F is the Young modulus,
N 1is the hardening exponent, and f, denotes the initial porosity. The values of initial void aspect

ratio wy, however, is varied.

(@) (b)
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Figure 7.5: Comparison of the present model predictions in absence of shear (solid curves), with
the results extracted from Pardoen and Hutchinson’s extended model (dashed curves), as well with
those obtained from cell-model calculations (dotted curves) in [20] for several values of initial
void aspect ratios and a stress triaxiality of 7' = 1.

Figure 7.5 shows a schematic unit cell as well as the comparison among the stress—strain results
corresponding to 7" = 1. The stress—bearing capacity in absence of shear is taken to drop to zero

when y exceeds v/2/2 ~ 0.707 [150].
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Figure 7.6: Present model predictions under triaxial loading with a 7" = 1 stress triaxiality: (a,b)
normalized porosity and logarithmic void aspect ratio, compared to FEM results in [20], (c,d)
effective ligament parameter and lateral strains, respectively.

The difference between present predictions and numerical and/or micromechanical results is
seen to be more pronounced for larger void aspect ratios. This can be attributed to the rather
exaggerated porosity growth predicted from the K-B model (as shown in Fig. 7.6b) as well as
the decreasing trend within s = In w, which would increase the stress level but reduce the strain
to coalescence. Other selective microstructural variables are shown in Fig. 7.6. The predicted
logarithmic void aspect ratio s is closely tied to its FEM counterpart during void growth except for
large wy’s, where both analytical and numerical curves tend towards level but the former predicts a
decreasing w. Next, Fig. 7.6c shows that the slope of increasing Y ranges from convex to concave
from an initially oblate (wy < 1) to an initially prolate (wy > 1) void. Accordingly, an initially flat

void at a very low porosity level would be likely to never experience coalescence inasmuch as Y
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could reach a maximum before coalescence could occur. Further, the zero lateral strain rate at the

post—coalescence process is corroborated by Fig. 7.6d.

7.2.2  Combined loading

The coincidence between the analytical and numerical results will not be fulfilled unless by
invoking the simple calibration to both ®! and ®' identified via (6.18). Accordingly, the analyses
carried out by Tvergaard and coworkers for plane—strain and 3D cells under combined and near—
simple shear loadings [16, 17] are regarded as comparator. The initial microstructure in both [16,
17] is introduced based on the (xo = Ry/ Lo, wo = ho/Ro, \o = Ho/Lo) triad (see Fig. 7.7), with

Xo varying between 0.2 and 0.5, and (wg, Ag) = (1, 4) remaining fixed.

(a) (b) (©)
% °
f E | i ///// // /////
g 9 C 1
| i il /////
2| AR (i & /
1 A 1

Figure 7.7: Schematic outline of periodic cells under combined tension and shear considered by
Tvergaard and coworkers: (a) plane—strain [16,21], (b) 3D [17], (c) staged deformed configurations
of the plane-strain cell in [16] under simple shear, i.e. x = 0 (reprinted with permission from
Springer, Ltd).

Figure 7.7 shows the schematic outline of the plane-strain [16,21] and 3D [17] periodic cells
as well as the deformed configuration of the plane—strain cell according to the numerical analyses
carried out in [16]. In the plane—strain cell, the out—of—plane dimension in both the void and the

cell is considered unit and, hence, xq, wy, A\g are all defined within the x;—x3 plane. In the 3D cell,
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however, the lateral dimensions are considered equal. Correspondingly, the initial porosity reads

2
Plane strain: f, = %w;)\Xo
°, (7.6)
T WoXo
3D: = —
fo=7 N

For the sake of better coincidence between analytical and numerical results, the calibrated
model predictions are firstly compared to their FEM counterparts for the same initial porosity [72],
with the initial microstructure and hardening identified by (o, wo, Ao) = (0.25,1,4), N = 0.1 for
the plane-strain cell and (o, wo, Ag) = (0.3,1,4), N = 0.2 for the 3D cell, both shown in Fig. 7.7.

In all FEM-based studies, the analyses have been carried out by considering a maximum void
aspect ratio, beyond which the loading is applied onto the void faces rather than onto the cell upper
and lower boundaries. Herein, the results pertaining to a maximum void aspect ratio of wy,,x = 10

are considered as comparator.

(a) (b)
1.4 T T T T T T
Hybrid {  [-—————- Hybrid (x = 1.25) —
12F e FEM Hybrid (k = 0.25) %0=0.3
] FEM (k = 1.25) .

4 FEM (k = 0_2/5)?_3_,,

Figure 7.8: Comparison between the present model predicted shear responses vs. cell overall shear
angle ¢ with FEM cell-model outcomes of Tvergaard and coworkers: (a) for an initially circular
void inside a plane-strain unit cell under k = 0.6 as well as simple shearing (v = 0) [16, 21];
(b) comparison with FEM outcomes of Nielsen et al. [17] for an initially spherical void inside a
square-prismatic cell under combined axial and shear loading (with the ratio denoted with ) and
Xo = 0.3.

Figure 7.8 shows the comparison between the hybrid model predicted response and numerical

outcomes for the plane-strain and 3D cells (see Paper P7 for more comparisons).
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Figure 7.9: Comparison between the present model predicted variables with FEM outcomes of
Nielsen et al. [17] for an initially spherical void inside a square-prismatic cell under combined
axial and shear loading (with the ratio denoted with x) and xo = {0.3,0.5}: (a) void angle with
respect to the horizontal direction, (b) normalized porosity, (¢,d) normalized major and minor void
semi-axes.

Further comparisons, pertaining to the 3D cell with initial ligament parameters xo = {0.3,0.5}
and N = 0.2, are showcased in Fig. 7.9 for selective state variables including the void angle with
respect to the m—p plane, equaling 90 — 6 (with 6 identified in Fig. 6.8), porosity f, and the void
major and minor semi-axes. The latter is shown only for the in-plane semi-axis b;.

Fig. 7.9d demonstrates that the overall trend of porosity evolution, inclining or declining, is
common between analytical and numerical results with the difference lying in the dilatancy level
in FEM values reflected by the more remarkable slope of evolution, especially at larger normal
stress portions, i.e. larger x’s. Yet, the observed clear distinction between the FEM and analytical

porosity values does not bare significant changes in the stress response (as shown in Fig. 7.9a)
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inasmuch as the failure mechanism is mainly influenced by Y rather than porosity.

Note that the analytical evolution of 90 — @ is founded on the initial void orientation directed
towards e since wy = 1.1 has been taken slightly above unity to forestall the singular behavior
of void orientation laws at the limit of a spherical void, and therefore, the initial orientation is
well-defined. Within the numerical model, however, the orientation of a strictly spherical void is
ill-defined. Upon convention, the void orientation in this case is considered along the principal
stretch, which is close to that considered in [16, 17]. Accordingly, the jumps in the numerical

evolution of orientation is an artifact employed to extract the major void axis [17].
7.3 Parametric Studies

A more extensive investigation on the various state variables under combined axial and shear
stresses, upon the calibrated hybrid model, is addressed next for spheroidal voids. The results are

briefly reflected by the following subsections. Further details in this regard are provided in Paper

P7.
7.3.1 Effect of loading

The effect of loading is quantified via the x = o, /7, ratio. This section addresses this effect
through Fig. 7.10 on the microstructural state variables with the same cell as considered in Sec.
7.2.2 and o = 0.3. A complete scope of x ranging from infinity (uniaxial loading) down to
(near) zero (simple shearing) can best be exhibited in terms of € since the axial or shear strain each
becomes vanishingly small at either of the two extremes. It can be seen, through Fig’s 7.10(a,b),
that the strain to the onset of localization ., as well as strain to failure e, from infinity at k — o0
(corresponding to 7' = 1/3), decreases and then increases again with decreasing « (increasing
shear). As farther observed in Fig. 7.11, the minimum strain to failure occurs approximately at
x = S/T, which is nothing but the point of transition between the curved and planar parts of ®!
according to (5.2). Furthermore, the difference between €. and €; becomes smaller with larger
k’s noting that a larger portion of the normal stress superposed by shear accelerates rotation, as

revealed by Fig. 7.10d, and thus hastens the increase of Y, as demonstrated by Fig. 7.10b. The

123



4 T T T T T T
,,,,,,,,,,,,, K =00 L K =00 4
,,,,,,,,,,,,, K=4 1.4 k=4
___________ k=125 - k=125
,,,,,,, k=025 1.2 k=025 b

3+ k= 0.02 Kk =0.02

8

8

AARAAAA
{1 [

OO—+h
ST
DG

ARAAAA
I

oo—+
SR
RGO

0 0.4 0.8 1.2

8

AAAAA
10111

OOo—h
SN
N1V

Figure 7.10: Predicted microstructural parameters upon the calibrated hybrid model, plotted
against equivalent plastic strain € for the same initial microstructure as considered in Sec. 7.2.2
and xo = 0.3, under a full range of x: (a) shear response, (b) effective ligament parameter, (c)
normalized porosity, (d) void angle with the horizontal direction, (e) logarithmic void aspect ratio,
(f) void semi-axes.
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latter also shows that, for sufficiently large x’s (i.e. kK >> S/T), Y increases during both nearly-
homogeneous and localized processes whereas, for smaller «’s, it decreases during the nearly-
homogeneous process. This alludes to the fact that, with larger normal stress portions, the void
can rotate faster than the cell during the nearly-homogeneous process whilst, at shear-dominated
processes, the cell moves faster during this process. During the localized process, however, the void
always rotates faster since plastic deformation is (ideally) confined to the ligament intercepted by
void poles.

Moreover, one can assert, from Fig. 7.10c, that porosity increases, with its increase accelerated
after the onset of localization, for k > S/7T, i.e. normally-dominated fields. All the same, for
k < S/T, i.e. shear-dominated fields, porosity decreases during the nearly-homogeneous process
and stays constant after localized deformation begins. This lies in the traceless nature of DP
according to ®' for this range of .

The s; and s, void aspect ratios shown in Fig. 7.10e denote, respectively, a/b; and a/bs. Under
all combinations of (tensile) axial and shear stresses, in absence of sufficient lateral loads, s as
well as s; and s, increase, with their increase accelerated after localization begins. Throughout the
process, s; > S, and the difference between the two increases with deformation advancement. At
the end of the localized process, the void aspect ratio increases with its slope approaching infinity.
This stage signifies the vertical movement of void poles after extreme shearing, as shown in Fig.
7.7c. Correspondingly, as depicted in Fig. 7.10f, the major and minor void semi-axes increase and
decrease, respectively, with shearing, and the trend slope accelerates after the onset of localization.
The out-of-plane axis also decreases slightly but stays almost constant throughout the process due
to the loading being devoid of lateral stresses.

As earlier remarked, 7.10a was suggestive of a local minimum within €. and €, with varying
. Figure 7.11 gives more insight into this effect by presenting €. and €; as function of stress

triaxiality 7', and provides the physical reason for this local minimum.
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Figure 7.11: (a) Predicted strain to onset of localization €. as well as strain to failure ¢, as function
of stress triaxiality 7" for the same cell as shown in Fig. 7.7a, with (wg, A\g) = (1.1, 4), hardening
exponent N = 0.2 and various initial ligament parameters x,; (b) evolution of €. as function of
stress triaxiality at the example Lode angle of § = 7/12 at the isotropic material limit for several
values of .

In some references, including [88], €. is normally regarded as equal to € for the material since
the plastic deformation prior to this point is considerably larger than that after this onset. Figure
7.11, however, reports both strains as function of triaxiality. The underlying microstructure for
this evolution is reflected by the same unit cell as shown in Fig. 7.7a, with (wg, A\g) = (1.1,4),
hardening exponent N = 0.2 and various initial ligament parameters Y, under combined normal
and shear stresses. The two parameters of interest are consequences of the Runge—Kautta integration
of equations stating the time rate of (f,w,n(®) as function of €. See Paper P7 for more details.

One can notice, through Fig. 7.11a, that €. is close to €; at the shear-dominant range of
triaxialities. Yet, the difference therein cannot be neglected in a significant range of triaxial loads,
esp. in an interval of 0.5 < T < 2 where void coalescence is accelerated due to the existence of
lateral loads but significant stress—bearing capacity still remains after the onset of void coalescence.
More importantly, in the shear—-dominated region (0 < 7' < 1/3), both €, and €; admit their
minimum values not at the simple—shear limit but somewhere between the two limits. Within a

reasonable accuracy, it can be deduced that the minimum to €, and €; occurs almost at k = S/ T,
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which corresponds to

1 S
3/5% 1 372

for a combined normal-shear loading, with S and 7 defined in (5.3).

T(Efmin) = (77)

It is, however, noteworthy that, at the limit of isotropic yielding shown in Fig. 7.11b, which
stems from random distribution of voids, the e vs. 7' curve is absolutely declining even for the
T < 1/3 range. Yet, as earlier pointed out in Chapter 5, the value at the 7' = 0 limit should be
finite though being admittedly large. The reader is referred to Paper P4 for more explanation.

In the forthcoming subsections, the results are limited to near—simple shearing, here character-

ized by k = 0.02.

7.3.2  Effect of void spacing
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Figure 7.12: Predicted microstructural parameters for the same cell subjected to k = 0.02 for
various values of .
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The effect of void spacing can be reflected through the notion of initial ligament parameter Y.
Figure 7.12 presents selective state variables under near-simple shearing (x = 0.02) with various
values of x, ranging from zero (pertaining to the limit of a dilute matrix) up to rather large val-
ues, e.g. 0.5. Figure 7.12a reveals that the stress curve (and the tangential stiffness accordingly)
up to the point of transition (e.) is almost insensitive to void spacing provided the other (initial)
microstructural parameters stay constant. However, €. and €; are closely related to xo. In par-
ticular, for very small values of x, towards the limit of a dilute material, the onset of localized
deformation, as well as failure, gets significantly delayed.

During nearly-homogeneous yielding, as shown in Fig. 7.12b, y decreases at the early stages of
deformation, but it admits a minimum which sets the precursor for the onset of localized deforma-
tion. The void aspect ratio, according to Fig. 7.12d, increases with a decreasing inclination slope.
The largest slope of increasing s corresponds to the onset of localization, and void elongation slows

down further towards failure.
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7.3.3  Effect of cell aspect ratio
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Figure 7.13: Predicted microstructural parameters for the same cell with (fo,wy) = (0.01,1.1)
subjected to k = 0.02 for various values of \y: (a) normalized shear response, (b) effective liga-
ment parameter, (¢) void angle with the horizontal direction, (d) logarithmic void aspect ratio.

The effect of initial cell aspect ratio is considered for investigation next. Other parameters,
including initial porosity f, and void aspect ratio wy, as well as the hardening exponent N = 0.2,
are kept fixed upon selective values of (fy, wo) = (0.01,1.1). Figure 7.13 illustrates this effect.
Due to the load representing simple shear (x = 0.02), A remains almost constant throughout, and
thus is not shown.

At a fixed porosity level, the void spacing x is smaller in a shorter cell, and thus the void, even
after deformation turns localized, has to elongate and rotate more to reach the cell boundaries.

The strains to localization and failure are hence larger with shorter cells, as seen in Fig. 7.13a.
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Correspondingly, the projection of a rotating-elongating void on a shorter intervoid distance (at a
larger \) evolves faster than that on a longer distance (at a smaller \). The slope of Y evolution,
therefore, is smaller for a shorter cell, and vice versa (see Fig. 7.13b). The void would, accordingly,
rotate (Fig. 7.13c) and elongate (Fig. 7.13d) more slowly at the post-localized deformation process,

in a shorter cell and vice versa.

7.3.4  Effect of void shape
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Figure 7.14: Predicted microstructural parameters for the same cell geometry with (fy, \g) =
(0.01,4) subjected to near-simple shearing (x = 0.02) for various initially upright voids (6, = 0)
with aspect ratios wy ranging from 1/4 to 4: (a) normalized shear response, (b) logarithmic void
aspect ratio, (c) normalized porosity, (d) void angle with the horizontal direction.

The effect of void shape is studied via the variation of the initial void aspect ratio wy. The
latter effect, with w, ranging from 1/4 to 4, on the microstructural behavior under simple shearing

is shown in Fig. 7.14 at fixed porosity level f, = 0.01 and cell aspect ratio Ay = 4, with the
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same hardening exponent N = 0.2. Figure 7.14f substantiates the mechanism shown in Fig. 7.2
and schematized in Fig. 6.8a. Prolate and oblate voids rotate in opposite directions so that the
larger axis moves towards aligning with the principal stretch direction, here initially lying close to
45° from the vertical direction and lying further down during the deformation process. Therefore,
a prolate void rotates along with shearing and an oblate rotates opposite thereto. There exists,
however, a maximum point within the angle curve pertaining to the oblate void which corresponds
to a back-turn in rotation. The latter was also observed earlier with the difference being that,
within the modified hybrid model, this instant takes place at the onset of localized deformation.
This point further corresponds to the instant when the void closes, i.e. a« — 0, w — 0 and
f — 0 as indicated by Fig. 7.14c. At this point, deformation abruptly turns localized where and
failure occurs soon afterwards. This observation signifies crack propagation for flat voids under
limited void growth. Further, Fig. 7.14a shows the highest ductility as well as limit load for an
initially spherical void. Meanwhile, an oblate void with w = 1/x is more ductile than its prolate
counterpart with w = z (x > 1 implied) under a shear field.

The reader can gain a deeper insight into the behavior of oblate voids in shear fields by con-
sidering the behavior of an oblate void under various load combinations (denoted with different
k’s). Moreover, a non-spherical void can exhibit widely different conducts under shearing when
its initial orientation departs negatively or positively from the upright position. The reader is well-
advised to refer to Sections 5.5 and 5.6 of Paper P7 to illustrate these effects. They are skipped

herein in the interest of brevity.
7.4 Example Finite Element Simulation

An example FEM-based simulation is presented to demonstrate the capability of the proposed
hybrid model to solve boundary—value problems. To this end, the local analysis is realized by the
time integration of the material constitutive framework implemented in a user—defined subroutine
(UMAT), and the global analysis is carried through discretization of the domain in ABAQUS stan-
dard. The example comprises an axisymmetric notched bar under an axial target displacement,

which admits triaxial loading towards the center and combined triaxial and intermediate shearing
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Figure 7.15: (a) Geometry of an axisymmetric bar under axial remote loading, (b) geometry of an
equivalent tensile specimen with axisymmetric elements.

To reduce the computational cost, only a quarter of the assemblage is modeled with relative di-
mensions (Lo, L1) = (1.95,3.5), (Ho, H,) = (2.9734,28.75), and Uy, is a prescribed displacement
rate exerted at the top chord, as shown in Fig. 7.15. The prescribed relative value at the current
study is 10. A uniform grid is used in the gauge section, Fig. 7.15a and, altogether, 756 eight—
noded axisymmetric (CAX8R) elements with reduced integration are used. The global boundary
conditions are stated in more detail in Paper P7 . The matrix material is endowed with the same
constants as listed in Eq. (7.5). A stabilizing factor of 0.1 was considered in the global analy-
sis. Further, a line—search algorithm (with the parameters declared in Paper P7 ) was acquired to

capture the substantial change in the stress slope at the onset of inhomogeneous yielding.

"Models with more intense shearing encounter more serious global convergence problems. So for the model to
be capable of simulating those models, a multi—surface model should be implemented in terms of a linear combina-
tion of ®H and ®!. Alternatively, an artificial damping can be incorporated within the constitutive framework and,
accordingly, into the exported consistent tangent matrix
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Figure 7.16: Normalized vertical stress emanating from the vertical reaction force divided by the
initial cross sectional area at the notched section.
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Figure 7.17: Spacial contours of selective internal state variables for the notched bar shown in Fig.
7.15, including: (a,b) axial and shear stresses, respectively, (c) porosity, (d) ligament parameter Y,
(e) logarithmic void aspect ratio s = In w, (f) stress triaxiality 7.

Figure 7.16 shows the global response given in terms of the bottom face vertical reacting trac-
tion vs. relative radius reduction. The analysis has stopped prior to utter failure due to global

convergence issues. One can envisage significant softening prior to inhomogeneous deformation
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due to damage accumulation, which results in a more than six—fold increase in porosity, as further
observed in Fig. 7.17.

To gain better insight into the space distribution of the internal state variables, some selective
state variables are shown in Fig. 7.17. Plastic strains are mainly confined within the notched
zone, and the gauge zone remains (approximately) elastic. This is totally commensurate with
experimental observations in notched bar uniaxial testing. Figure 7.17 demonstrate that the normal
stress o9, along with porosity f, effective void spacing x, and stress triaxiality 7" are maximum at
the specimen center and decrease to their initial values moving towards the gauge section. A closer
probe into Fig. 7.17a reveals a dropping stress approaching the bar center, which is characteristic
of void coalescence, as further observed in Fig. 7.18b. Among all, y reduces precipitously with
increasing distance from the center towards the notch surfaces. This will be further observed in
Fig. 7.18c. All the same, shear stresses are maximum at the notch surface vicinity away from
the base. Accordingly, the shear—-dominant part of Eq. (5.2) would take over very soon without
plasticity being localized at this region. Therefore, the transition to inhomogeneous yielding should
be realized merely upon the normal portion of Eq. (5.2) at the vicinity of the notch surface.

The void aspect ratio, however, as shown in Fig. 7.17e, enlarges towards the notch surface near
the bottom end. The reason for the void aspect ratio being maximum at this region is the existence
of a dominant normal stress superposed by an intermediate shear stress, which corresponds to
a maximal void elongation, also stipulated in Ref. [17]. The parts above this zone are either
moderately sheared or uniaxially loaded, both triggering less elongation.

The internal state behavior is significantly versatile upon moving away from the reduced cross
section. To perceive that, selective state variables are plotted for three different zones starting from
the center of the specimen and moving towards the curved surface (shown in Fig. 7.18a), where

the shear stress ranges from zero to a finite value.

134



(a) (b) ()

3 T T T T T T T 2 T T T T T T T
,,,,, A [ e A
_____ B r B
25k C T . I c
- ' 15t e
. I t
oF e ' ]
7 " |
k\jo S i S
alsh o i E S 1f E
¢ ¥ n
vl
1
1k i .
1
i 05k E
0sk i ] ~
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
€ €
(d) (e) ®
16 T T T T T T T 1 T T T T T T T 15 T T T T T T T
———A L 7S [ - — A
1af————- B 4 0 2 B
I
¢ i 08| cJ ¢
12 i b
/
10 ,l b 0.6k / 4
- i ) / e
K<lrys i B /
=8 / 12 Y
oF g ] 04} e ]
s - 4 r—;{;——*‘
e 02F .
Sk P J
o 1 . L L L L L o L L 1 1 . . L N L L 1
01 02 03 04 05 06 07 08 0 01 02 03 03 05 06 07 08 0 01 02 03 04 05 06 07 08
€ € €

Figure 7.18: Selective microstrucrural parameters for zones A—C, as shown in part (a), with shear
stresses ranging from zero to finite values: (b,c) normalized axial and shear stresses, respectively,
(d) normalized porosity, (e) effective ligament parameter, and (f) logarithmic void aspect ratio.

Note that inhomogeneous deformation and/or void coalescence occurs in zones (A) and (B),
with the transition points shown in red dots. The inhomogeneous yielding, however, is not reminis-
cent of void coalescence at zone (B) due to the progressive increase in the stress bearing capacity,
according to Fig. 7.18b. The average stress response, however (as represented by Fig. 7.16), is
declined after the inhomogeneous yielding onset. The shear stress, as depicted in Fig. 7.18c, in-
creases in a more retarded manner at zone (B) due to inhomogeneous deformation being confined
to intervoid ligaments, whereas it continues to grow faster at the notch surface (C). More impor-
tantly, the effective ligament parameter Y increases at the center, with accelerated increase after
coalescence, whereas it decreases at zones (B) and (C). This occurs due to the lateral stresses liter-
ally annihilated at these two zones. The inhomogeneous yielding mechanism, however, diminishes

the decrease rate of y, as shown after the dotted spot in Fig. 7.18e while it continues decreasing
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with an even larger slope at zone (C). Moreover, Fig. 7.18f reaffirms the observation in Fig. 7.17¢
that the rate of increase in the void aspect ratio enlarges when some shear stress is superimposed to
a normal dominant stress. Moreover, the post—localized trend of s = In w ranges from declining at
the center (with maximum lateral stresses) to increasing at zones (B) and (C) with lateral stresses

vanishing and shear stresses coming into play.
7.5 Effect of Matrix Anisotropy

This subsection adumbrates on the fracture process to failure under combined tension and shear
with anisotropic matrix materials with the matrix anisotropy idealized as Hill-type orthotropy.
The results under triaxial loading, as well as the constitutive model assessment against numerical

outcomes, are skipped herein, yet can be found in Paper PS§ .

n=e;3
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Figure 7.19: Schematic outline of a microstructure consisting of an aggregate of aligned spheroidal
voids surrounded by an anisotropic matrix.

To this end, the constitutive framework is governed by the intersection of nearly-homogeneous
and localized yield criteria obeying Eq’s (6.3) and (6.39) as ® and ®!, respectively, which are
both endowed with the effect of matrix anisotropy of a Hill type. The predictive capability of the
latter two-surface hybrid model was successfully assessed from comparison to the same benchmark
calculations from Pardoen and Hutchinson [20] and Nielsen ef al. [17] in absence and in presence
of shear loads, respectively. See Paper P8 1n this regard.

The principal axes of orthotropy are initially oriented along the base vectors ey,, er and eg, as

indicated by Fig. 7.19, and are taken to rotate with the material, in accordance with Eq. (6.25).
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Note that the matrix orthotropy basis (er, er, eg), that tied to the voids (n"), n(® n®), and the
principal loading directions (e, e, e3) do not necessarily coincide, even when they do initially.

Here considered are situations where the principal loading axes are misaligned with the princi-
pal directions of matrix orthotropy. The latter was investigated by Kweon et al. [224] under triaxial
loading, with the whole fracture process considered homogeneous with ® obeying Eq (6.3). Yet,
the effect induced by shearing, in conjugation with matrix anisotropy, remains to be evaluated. For
the sake of brevity, only the results under near-simple shearing are chosen for the present chapter.
Similar parametric studies under triaxial loading can be found in Paper P§ .

The rationale underlying the strong effect of matrix anisotropy on void growth has been expli-
cated by Benzerga and Besson [95] and further expanded in [229]. Note that the idealization of a
spheroidal void shape is an approximation. Within an anisotropic matrix, the void can develop into

a 3D void even under axisymmetric loading.
7.5.1 Effect of shear Hill coefficients

The effect of matrix plastic anisotropy is firstly studied with a spherical void embedded therein.
Focus is placed on near—simple shearing with x = 0.02, and the cell is considered the same as that
shown in Fig. 7.7a, with (wo, x0, Ao) = (1.1,0.5,4) with a hardening exponent of N = 0.2.
Among the principal directions of orthotropy, the axis of transverse isotropy eg is taken parallel to

the main loading plane normal n = es.

Table 7.1: Matrix anisotropy coefficients, h; expressed in the basis of material orthotropy
(eLa €r, BS).

Matrix hy, hrt hg hts hsr, hir

Isotropic  1.000 1.000 1.000 1.000 1.000 1.000

MAT1 1.000 1.000 1.000 2.333 2.333 1.000

MAT?2 1.000 1.000 1.000 0.500 0.500 1.000

The anisotropy coefficients in the local coordinate system tied to the orthotropy directors are
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tabulated in Table 7.1, with the material notation taken from [14]. All the three matrices have
the same Hill coefficients along the three principal directions, i.e. hy,, hr and hg. Note that a
large Hill coefficient in a given direction signifies the weakness/softness of the material in that
direction. MAT1 and MAT?2 are, therefore, softer and stiffer under shear in comparison to the
isotropic material, respectively.

As earlier demonstrated in [224], and further corroborated by the present work, materials with
different orthotropy coefficients exhibit different responses even in absence of shear. The latter
occurs due to the presence of voids, which develops microscopically nonzero shear stresses at the
cell level. This line of results can be found in Paper P§ .
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Figure 7.20: Selective microstrucrural parameters with the selected materials of Table 7.1 under
near—simple shearing characterized with x = 0.02 for the same cell considered in Sec. 7.3 with
(wo, X0, Ao) = (1.1,0.5,4): (a) normalized shear stress, (b) void angle with respect to the horizon-
tal axis, (c) normalized porosity, (d) natural logarithmic void aspect ratio.

During the nearly-homogeneous deformation, the correlation between plastic anisotropy and
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porosity is taken into account by the k parameter, with its full expression provided in Paper P7
. The analogous correlation during localized yielding, described by ®' obeying (6.39), can be
envisaged through the notion of o, in Eq. (6.40).

Figure 7.20 illustrates this effect on various internal state variables for the selected materials
of Table 7.1 under near—simple shearing characterized with x = 0.02. Figure 7.20a reaffirms
the stronger and weaker nature of MAT2 and MAT1 in comparison to the isotropic material, re-
spectively. More appealingly, MAT2 is more ductile against shearing albeit stiffer. Accordingly,
ductility and strength can coincide upon regular orthotropy against shear while the same feature
cannot be acquired under triaxial loading. See Paper P8 for more details. It can also be observed,
through Fig. 7.20(b,d), that the rate of void elongation (and rotation) is only slightly affected by
matrix anisotropy when the material orthotropy directors are aligned with the main loading direc-
tions. Nevertheless, the values of these parameters become more distinctively apart with matrix
shear anisotropy during localized deformation.

Note that, porosity evolution in general, be the void growing or shrinking, is faster for the
material stronger in shear [224]. The latter may itself be attributed to the faster void elongation
depicted in Fig. 7.20d, which takes place on account of faster squeezing of the rotating void by
the stronger matrix owing to its stronger shear strength (hrs and hgr,), that withstands material
slippage along the shearing direction. The increased stress level for MAT2 (Fig. 7.20a) can then
be ascribed to the sharper decrease in porosity f during nearly-homogeneous yielding. A similar
comparison has earlier been observed under triaxial loading [224].

On the other hand, transformation of the (er,, eT, eg) basis with respect to (ej, es, e3) can
induce minimal to significant changes in the rotation rate. The following subsection adduces this

effect.
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7.5.2  Effect of orthotropy axis change
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Figure 7.21: Flipped and rotated planes of transverse isotropy at the cell level, with the shear and
normal tractions applied along m and n, respectively: (a) e, = m, i.e. L =1, (b) e, = p, i.e
L=2,(c)e,=mn,ie L=23,(d) ey = cosfm + sin n.

This subsection addresses the internal state variation with a flip or rotation over the material
orthotropy directors with respect to the principal loading plane. To this end, the plane of transverse
isotropy is subjected to flip or rotation, as sketched schematically in Fig. 7.21, with the planes
of transverse isotropy denoted with grated lattices. Note that the right permutation rule holds for
all transformation scenarios. For the case of . = 2, for instance, ey = m and es = m, i.e.
(T,S) = (3,1). The corresponding transformation tensor between the Cartesian and orthotropy

frames, R*, obeys the following forms, as tabulated in Table 7.2, for the above—mentioned cases:

Table 7.2: R* transformation tensors for the transverse isotropy planes schematized in Fig. 7.21.

Case e,=m e, =p e, =n ey = cosfm+sinfn
1 00 0 01 010 cosf 0 —sing
R 010 100 0 01 0 1 0
0 0 1 010 1 00 sinf 0 cospf
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R is exploited in the calculation of h and p in the global coordinate system. See Paper P8 for

more details on the transformation.

Figure 7.22: Normalized shear stress evolution for MAT1 and MAT2 under near—simple shear-
ing characterized with k = 0.02 for the same cell considered in Sec. 7.3 with (wp, X0, \o) =
(1.1,0.5,4), with L = 1, 2, 3, denoting ey, directed along ey, e,, and es, respectively.

(a) (b)
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Figure 7.23: Additional selective state variables provided for MAT?2 with the stress response shown
in Fig. 7.22b: (a) effective ligament parameter, (b) void angle with respect to the horizontal axis,
and (c) natural logarithmic void aspect ratio.
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Figure 7.22 shows the shear stress evolution for MAT1 and MAT?2 with ey, directed along e;,
e,, and eg3, briefly noted with the "L" index taking on values of 1, 2, and 3, respectively. See Fig.
7.19. In order to gain more insight into this effect, other influential state variables are collected
in Fig. 7.23 for MAT2. Figure 7.22a implies negligible difference in the softer material response
under shear with flipping the weak macro—scale slip planes horizontally or vertically, with the
ductility slightly higher for e;, = e;. This happens due to the perspicuous coupling between
shearing in the 1 — z3 and x5 — x3 by which one weak/strong plane enfeebles/stiffens the other
response vs. shear, and vice versa, whereby e;, = e; and e}, = e3 exhibit close behaviors.

Note that, for both materials with varying shear Hill coefficients, the responses for L = 1
and L = 3 lie close to one other. This can be vindicated by the negligible Poisson effect under
near-simple shearing such that both material configurations would constitute smaller parallel cross
sections with the effective subcell heights remaining equal. In both scenarios, reflected by Fig’s
7.21 (a) and (c), parallel planes operate almost independently under shearing for the weak ma-
terial MAT1, and they would both act parallel plus an additional constraint caused by the strong
orthotropy planes in MAT2. This observation is antithetical to that under triaxial loading, where
there is clear distinction between the outcomes upon variation of ey, (see [224] for details).

Nevertheless, within the L = 2 case, reflected by Fig. 7.21b, subcells function almost consec-
utively, i.e. in series, as being subjected to the shown shear traction 7. On this further occasion,
the weak material MAT1 responds close to the other two cases due to being almost devoid of ad-
ditional inter-planar shear constraints whereby the shear stress is distributed over smaller subcell
cross sections. For the stronger material MAT2, however, L = 1 and L = 3 exhibit clear differ-
ence from L = 2. A closer examination of Fig. 7.21 can be indicative of this difference. That is,
in the (a) and (c) subfigures, the inter-planar shear constraint is induced by the entire orthotropy
planes being sheared whereas, in subfigure (b), this constraint is caused by mere rotation of these
planes against shear deformation. The former would clearly bare higher stress-bearing capacity
and ductility, as demonstrated by Fig. 7.22b.

In view of Fig. 7.23 for MAT?2, the shear constraint within the rotating orthotropy planes,
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characterized by the L = 2 case and as schematized in Fig. 7.22b, fairly impedes void elongation,
thereby the corresponding void aspect ratio being smaller at the same shear strain level (Fig. 7.23c).
Higher stresses are, however, demanded for the same strain level at the L = 1 and L = 3 cases
considering the foregoing discussion.

The effect of rotating the plane of orthotropy on the state evolution under simple shearing
comes next. The results will be presented for the weaker material in shear, MAT1 due to the

targeted effect being more significant therefor.
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Figure 7.24: Selective internal state variables subjected to a rotated plane of transverse isotropy
around the et axis for MAT1 (upon properties given in Table 7.1) under near—simple shearing char-
acterized with x = 0.02 for the same cell considered in Sec. 7.3 with (wo, x0, Ao) = (1.1,0.5,4):
(a) normalized shear stress, (b) void angle with respect to the horizontal axis, (c¢) normalized poros-
ity, (d) natural logarithmic void aspect ratio.

Further, Fig. 7.24 illustrates the effect of rotating the plane of transverse isotropy around the
e axis on the internal state evolution for MAT1 upon properties provided in Table 7.1. The cor-

responding initial rotation angle [, (as shown in Fig. 7.21d) assumes negative, zero, and positive
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values. A remarkable difference happens to the material conduct with 3, changing sign. This large
difference can be accredited to the equivalent stress state in the orthotropy frame. That is, 5y < 0
imparts a pressure on the void, and thus delays failure in shear whereas 3, > 0 increases tension
which, in conjunction with shear, accelerates rotation and elongation, as demonstrated in Fig’s 7.24
(b) and (d), respectively. As such, the porosity increase, indicated by Fig. 7.24c, would further
expedite failure. There being, as seen in Fig. 7.24a, failure triggered soon after the elastic limit, a
weak plane of transverse isotropy (with respect to shear), rotated positively relative to the plane of
loading, is reminiscent of a crack. Note that the predicted stress response is based on the heuristic
modification employed in accordance with Eq. (6.18), and is thus amenable to further modification
in prospect. More precise results may exhibit larger ductility for the 5y > 0 case. See Paper P8

for more explanation.
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CHAPTER 8 EXTENSIONS

This chapter presents some extended versions of inhomogeneous yield criteria in respect to
those presented in Chapter 5. The demand behind these extensions lies in the physical characteris-
tics of ductile fracture under combined tension and shear that are not well captured by the simpler
models. The limitations accompanying the models derived within the confines of this work are
due, in part, to the circular cross section considered at the surrogate cell base. In fact, initially
3D voids under shear may have to undergo significant deformation before the voids can transform
into spheroids that could be more realistically considered equivalent to cylindrical surrogate voids.
In the existing literature, the model introduced by Madou and Leblond [230] accounts for inho-
mogeneous yielding in microstructures with 3D voids represented with ellipsoids. A well—suited
counterpart thereof concerning inhomogeneous yielding is an extension to Eq. (5.2) that is devel-
oped over an RVE with elliptical cross sections. The other limitation within the present models is
germane to the specific failure mechanism, i.e. combined internal necking and shearing, which may
not invariably hold in all loading conditions, esp. with the prevalence of lateral to normal stresses
or upon variations in the microstructural geometry. Void coalescence in columns (necklace coales-
cence), counter to coalescence in layers, is a newly uncovered ductile fracture mechanism [221]
that has not been exhaustively investigated in the literature. A partly-revealing macroscopic stress
parameter indicative of the distinction between void coalescence in layers and columns is the Lode
parameter L, earlier introduced in Chapter 1. Under triaxial loading, void coalescence in columns
is known to prevail for a Lode parameter L = +1 (which represents predominant lateral stress)
as well as for L, = —1 (which implies the converse) and elongated voids. The latter was explored
by Benzerga [221] in the peculiar distribution of voids in laminated plates, where the extremely
prolate (elongated) voids were generated through decohesion of the metallic matrix circumscrib-
ing inclusions elongated by the rolling process. Nevertheless, the potentially significant effect of
microstructure on this mechanism has remained elusive by far. Gologanu et al. were the first and

only ones who strove to develop a micromechanics—based model that could describe coalescence
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in columns [50, 220]. Their model was derived on the basis of re-homogenization on the ho-
mogenized plastic plugs surrounded by a solid torus. The only microstructural parameter deemed
effective in their model was porosity. Moreover, they could not derive a closed—form yield crite-
rion. What we opt to do in the present context is to derive a closed-form yield criterion accounting
for necklace localization that incorporates the effects of all the three independent microstructural
parameters. Meanwhile, more sophisticated models will be introduced, in parametric rather than
closed form, based on higher-order tentative velocity fields at the cell level. Since strain localiza-
tion along columns prevails under the domination of normal loads, the latter is modeled with the
effect of shear stresses disregarded.

The extensions of interest are, therefore, derivation of a model accounting for plane-localized
yielding with 3D voids, and a series of models predicting column-localized yielding. Farther in
the sequel, the effective failure mechanism will be drawn from the innermost yield surface between

those corresponding to plasticity localized in layers and columns.
8.1 Coalescence of 3D Voids
8.1.1 Microstructural geometry

The outline of a general porous microstructure under remotely applied loading is schematized
in Fig. 8.1a. The exact treatment of such a problem is complex if not impossible. The least level
of complexity can be ascribed to the localization limit load not being worked out analytically for
an orthorhombic cell containing an ellipsoidal void. Therefore, a surrogate cell is considered, as

shown in Fig. 8.1b, which may not be space filling but is amenable to mathematical treatment.
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(a) (b)

Figure 8.1: (a) Schematic outline of a porous microstructure under remotely applied loading; (b)
geometry of a representative cylindrical cell with elliptical base and void under combined tension
and shear.

The imposed displacement boundary conditions, as shown in Fig. 8.1b, give rise to a macro-
scopic stress state with a dominant axial stress, >33 > 17, Y33 > Y99, as well as shear stresses,
Y31 and X35. The local cylindrical basis (e, eg, e,) and its global Cartesian counterpart (e;, €5, €3)
are utilized in the derivations. Upon the same method advised in Chapter 5 and expounded in Ap-
pendices P1 and P2 , the cell is subdivided into a central porous layer identifying a ligament
domain, (2., attached to two dense matrices above and below.

The microstructural geometry can be uniquely identified by means of the following dimension-

less parameters, only five of which are independent.

R o Ly
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R R
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where «, and «. are, respectively, the void and cell in—plane aspect ratios. x; is the ligament
parameters along the cell axis x; (with ¢ = 1,2), and w; and w,, are, respectively, the out—of—plane
void aspect ratios in the x1 — x3 and x5 — x3 planes. Finally, A\; and A\, are the cell aspect ratios
in the corresponding planes. Note that, in principle, «, and o can take any positive value below
or above 1. Without loss of generality, however, one can consider the cell major axis along 1, i.e.
. > 1 while 0 < «, < oo. For the sake of convenience, the parameters adopted for presenting
results are &, x1, X2, W1, A\1. A1 and )\, are ineffective in the yield condition for localization while

they can influence the onset of localization through the notion of porosity f [97].

8.1.2  Tentative velocity field

(a) (b)

Figure 8.2: (a) Reference circular cross section and its homothetic elliptical counterpart, (b)
schematic cross sections of a cylindrical cell with arbitrary inner (void) ellipses coaxial with the
same outer (boundary) ellipse.

In order that the extended velocity field can deliver a closed—form solution, the cell cross sec-
tion should be homothetic with the void, i.e. x; = X2, as shown in Fig. 8.2a. This renders the
values of « constant throughout the cell domain. To this end, the reference cell, characterized with
a circular cross section, can be mapped into the cell with a homothetic cross section through a con-
travariant coordinate transformation [231]. Following rather cuambersome algebraic manipulations,

the volume—preserving velocity field employed for the reference cell is transformed, in absence of
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shear, into the following mapped field:

v(x) = % i (LTQ — 7“) [(A+ Bcos20)e, — Bsin20ey] + ze. (8.2)
where A = /o + 1/y/x and B = /o« — 1/+/c¢ on account of & > 1. Moreover, « follows
the coordinate transformation from (r, 0, z) into (1, x2, x3), with 3 = 2z, which remains constant
x = &, = «, for a homothetic cross section. Under the same simplistic approach adopted in
Chapter 5, the velocity field under combined tension and shear follows the same superposition as
exploited in Appendices P1 and P2 .

The steps to derive the localization criterion for coaxial cylindrical cells having elliptical bases
with arbitrary x; and x» are similar to those for homothetic cells, except for « varying with r
which renders the volumetric integral not analytically calculable. Out of the infinite number of
ellipses passing through every point lying in the cell domain, one can pick that emanating from a
known A and B profile. As later demonstrated in the results, an upper bound to the dissipation for
this case can be evaluated by neglecting the r—derivative of « and considering a simplified linear
profile for the variation of .4 and B with r. To this end, let the subscripts 'v’ and ’c’ pertain to the
inner ellipse (void boundary) and the outer ellipse (cell boundary), respectively. Correspondingly,
the outer ellipse can be identified with «., which can be prescribed by the user and is generally
different from that of the void ellipse o, the latter uniquely determined from known values of
and x». It can be easily verified that

o, = Mo, (8.3)

X2

Therefore, the corresponding values of .4 and B obey the following relations:

Xy Xy
A, = \/ X1 \/ X2 . B, = \/ X1
Xy X1 Xy X1

BC:\/EC

(8.4)

(08
C \/KC ) \/ac

where o > 1 is implied in the definition of ..
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Remark: The yield load corresponding to the localization limit is majorly affected by the
minimum void spacing and minorly affected by its maximum value. Hence, as henceforth seen in
Fig. 8.3, the yield load in a non—-homothetic cell proves smaller in comparison to its homothetic
counterpart. Correspondingly, an upper bound to the yield load will be obtained from Y,.x taken
as the effective ligament parameter, and a lower bound thereof will be a function of y,,;, involved
in the equations. However, a more rigorous upper bound to the yield load can be estimated via the
following relation

X .
Ocv — min OCC

Xmax

which gives rise to the following modified counterpart of (8.4):

&y Xmin max &y Xmin max
R = et
Xmax Xy Xmin Xmax O(VXmin

Ac:\/ac"i_ Bc:\/yc_

(8.5)

where «. > 1 is implied. The simplest profile that can be conceived is a linear function of dimen-

sionless variable r/ L, which preserves the upper—bound character. Let

Ar) = A, + (A — A)E—X
I—x
) (8.6)
X
— X

B(r) = B, + (B. - B,) £

which, even upon this simplification, the effective dissipation II cannot be determined analytically.
However, the A and B can be replaced with their volumetric averages, here denoted with A and B,

so that IT is analytically calculable. Details aside, A and B can be expressed as

A Av;:u);AC
_ B.+ B (8.7)
B ==y A%¥c

1+x

which clearly simplifies into A = A and B = B in the case of a homothetic cell, identified by
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A, = A. = Aand B, = B, = B. Here, x = /x1X2 is the geometric average of the major and

minor ligament parameters.
8.1.3  Effective yield criterion

The effective yield criterion accounting for localized deformation under combined tension and

shear would then read

|X33] — S

»2, + 32
31 T 239
V

-1 88)

2
O(S, y1, Xor 11, 19, o, o) — ( ) H(|Sas| — S)

with H(z) being the Heaviside step function (with H(x) = 1 for x > 1, H(z) = 0 for z < 0, and
H(0) = 1/2), and

R _h
Xi = E ;Wi E 59)
X, = —Rl X, = —L1 '
v RQ ) C LQ

with ¢ taking in the values of 1 and 2. Among the geometric arguments, only four of them are
independent and need be prescribed. They are adopted to be (1, X2, w1, &) in the present context.

The rest follow from these independent parameters as

Wy = — X W1
Xz (8.10)
av — Xmln .
Xrnax
and
w? = My w?
X2 (8.11)
X = X1X2
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are the geometric average values that are inserted into the following microstructural functions:

1/x*
2 / Cl) [
5—2\/3 \/C_lln 4U\/C_1 \/C_1+ Cl+u2 C1+u2

1
S 1
—~ = 3(1 4 x — 22X (Ae — Av) + 40 = 3x + 2)(Av — A
- 24\/§x(1—x)w[( X = 2x%)( ) +4(x* = 3x + 2)( X))
T_1-X
RVE

where

A:Av‘f‘X-Ac | B:BV+XBc
14+ x 14+ x
B? _
61:A2+7 ., Co=A*+B%+8

and, upon convention, Y i, = min(x1, x2) and Xmax = max(x1, x2). The &, > 1 is implied in the
definition of B.. See Paper P9 for more details and algebraic proofs.

Selective results are hereby presented under stress states in absence of shear as well as under
combined tension and shear. Figure 8.3 depicts the variation of the axial limit load for a unit
cell with both homothetic and arbitrary elliptical bases vs. the o, ratio as formerly defined. In the
former case, o, = &, = « constitutes the abscissa, whereby y; = y2 = x can be varied. Subfigure
(b) shows the same variation upon arbitrary values of y; and Y2 and, correspondingly, arbitrary o,
and «.. For convenience, x; and y» are chosen such that the effective spacing , according to

(8.11), stays constant, equaling 0.4 at present.
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Figure 8.3: Evolution of axial yield load vs. the «, ratio in comparison to its numerical counter-
parts: (a) for a homothetic cell, with . = «, = «, considering several x; = Y2 = X’s with
wy = 1; (b) effect of different y; values, ranging from 0.4 to 0.8 with x = /x1x2 = 0.4 fixed,
and w; = 1. The solid lines stand for analytical values, and the dots show numerical ones from
cell-model calculations.

The predicted analytical limit loads are seen to be in sensible agreement with their FEM-based

counterparts, being mindful of the fact that the model does not incorporate any adjustable parame-

ter nor does it preserve the upper-bound character.

(a)

Figure 8.4: Correlation between normal and shear stresses for a homothetic cell with x = 0.4
and w; = 1 with several values of o (a) under shearing applied along x; (major axis); (b) under
shearing applied along x, (major axis). The solid lines stand for analytical values, and the dots

(b)
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show numerical ones from cell-model calculations.
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Remark: In accordance with both analytical and numerical results, the minimum limit load,
in almost all geometric configurations, corresponds to &, = 2 rather than the circular cross section
denoted by . = 1. Beyond this point, for &, > 2, the axial limit load increases with increasing
. which increases the overall stiffness of the cross section and makes void impingement harder.
See Paper P9 for observations.

For the state of combined tension and shear, the results are presented for homothetic cells (for
arbitrary cells, they will be similar). The shear stress is once applied along z; and once along x»,
one being the semi-major and the other being the semi-minor axis. Figure 8.4 shows the correlation

of normal and shear stresses for the aforesaid conditions and several values of the « ratio.

(a) (b)
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Figure 8.5: Correlation among >33, >J31, and X35 for a homothetic cell with y = 0.4 and w; = 1:
(a) reference cell with a circular cross section; (b) effect of the « ratio selected below, equal, and
above 1. The latter surfaces are shown partially for better clarity of the effect.

In order to acquire a deeper insight into the yield surface, the yield surface can be presented in
the Y33—I31—132 stress space, as shown in Fig. 8.5 for the homothetic cell with frozen microstruc-
ture denoted with x¥ = 0.4 and w; = 1 and several values of . Symmetry with respect to the >3,
and X35 1s envisaged.

Fig. 8.4 demonstrates that, for a shear stress applied along the major axis, the de facto maxi-
mum shear stress 7T, i.e. the shear limit load at zero axial stress, stays almost constant with varying

ellipticity. This lies in the rather even distribution of shear strains/velocities. For shearing along
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the minor axis, however, some normal strain (and stress) is developed in the form of local vortices
around the void (see Paper P9 for observations). As a consequence, 7, especially for larger values
of «., decreases with increasing «.. Nevertheless, 7 in the analytical model is agnostic to the
shearing direction. This reveals the limitation of the simplistic Gurson-like shear field developed
based on a linear shear velocity profile along the vertical direction in both directions. This con-
straint warrants a more realistic shear velocity profile that can take into account the effects induced

by the cell shape as well as the void shape.
8.2 Void Coalescence in Columns
8.2.1 Microstructural geometry
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Figure 8.6: (a) Geometry of a cylindrical RVE representing column-like localization under a triax-
ial loading scheme; (b) lateral projection of the RVE with the induced geometry and macroscopic
rate-of-deformation components belonging to each subpart.

Consider the RVE subdivision as shown in Fig. 8.6a. The overall volume can be then decom-

posed into the following constituents:

Q=v(Q)=0® + V) + o™ (8.12)

where the subparts (1), (P), and (M) stand for the void, the porous part (excluding the void),
and the matrix tori, respectively. The overall geometry of the RVE is then determined by the same

independent dimensionless parameters targeted throughout this thesis: x, w, and \.
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8.2.2 Kinematic relations

The continuity from the macroscopic perspective, along with the isochoric nature of the solid,
i.e. the (P) and (M) zones, entails that the following relationships hold among the macroscopic

rates of deformation (see Paper P10 for details):

DY = DY = Dy
®erv)y D 1 /1

Dy, = g t3 (F - 1) D33 (8.13)
M M D33

Dy’ =0 .. DiY=-=2

8.2.3 Tentative velocity field

The isochoric nature of plasticity entails that Q) and Q™D stay constant. Therefore
d" = divo® =0 | 40 = divo™ =0 (8.14)

The tori obey a Gurson-like velocity field, which reads:

A B
oM = = _ 57 o™ = B2

" ) (8.15)

() () Dl
v, (H) = BD33 B = D33 s U, (L) = DllL A= 5
The plugs, in the simplest-case scenario, admit the following form of v,:
1
ol = Dy r = o= (D = X*Daa) 7 (8.16)

2?2

Therefore, satisfying v'"’ (R) = o™ (R) reassures a C%-order continuity along the r direction. The

z-wise velocity function should then be derived from a zero-divergence condition, which yields

1
U(P) = ?[Dkk(H — Z) + X2D332] (817)

z
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(see Paper P10 for details).

One can easily observe that the derived v{") is discontinuous with respect to z. While this dis-
tribution is contrary to reality, it proves feasible in the macroscopic scale provided the macroscopic
dissipation induced by this discontinuity is affixed to the total dissipation function. This will be

further clarified in Sec. 8.2.4.

A more realistic velocity field is created upon higher continuity induced by a higher-order

choice of v, To this end, one can arbitrate the following field for o).

Dkk T 2
which, upon satisfaction of divv = 0, delivers the following » component:
T kk r 2
® _ =" D | 5 (I $.19
Uy 5 33+ — [ + ( R) (8.19)

8.2.4  Effective dissipation

Following the same discussion as addressed in Section 4.3, the layer-wise effective dissipations

will turn out as
— Minimum continuity:

1

P — -
= Q(P)

dP)d0 = 2‘17 (P+V) ‘ (8.20)
P

(P) (M)

Besides, the discontinuity between vy ’ and v; ’ promotes an additional term as stated para-

metrically in (4.15), rewritten herein as follows:

wl—c
2

(8.21)

T — / #lo]ds =
where T = G/ /3 is the matrix shear strength in terms of the uniaxial yield strength, and i,
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is the area of the interface connecting (P) and (M) at » = R (see Paper P10 for details).

— Higher continuity:

D — 1 1
) :‘%"’ / Idv , I= / R (u)du
—C Jy=c u=0

with u = (r/L)?, and

Uy = (& — 1)

Uy =6 +&60-1)
13

U = ng

Dy, §
= — e 2 S

=)

(8.22)

(8.23)

Note that 7 is fortunately calculable analytically. Since Us > 0, the following integral will

be admitted provided the following discriminant is positive [232]:
A = Uy — U? > 0
Then, the integral is expressible as follows:

7= [(u+ B)VR) + Pln|£|]i0

DN | —

where

U 12 /1
B=S1_2( 2151
U 13(51+ )

Uy 121 12 :
P = 7 1—3|5—1’{(€1—1)2—1—3(1+51(5—1))

L: = \/UQR(U) +U2u +Z/{1
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Note that the discriminant in (8.24) is absolutely positive on account of « > 0.

The overall integral in (8.22), however, is not solvable analytically. With the existing mathe-
matical tools, one can numerically estimate the integral. Alternatively, one can approximate
the integral by expressing Z in terms of its volumetric average value. See Paper P10 for
details.

Note also that continuity between o) and o™ is satisfied, thereby eliminating the additional

surface dissipation.
Moreover,

1 G !
M — / d™dQ / / od* (u,v)dudv = / d*™ g,
Q(M QM) ced 1 — v=0 Ju=x2 ) 1-— X2 x2 ed
(8.27)

The integral in II®) can be evaluated in exact or approximate form. The exact form is expressible

as
1
/ 2
™ = U’DB?" + 1 du = |&)] 1+ (Eﬂ) — sinh™! <’%’)
2 i

1/x?

B TR R b

V3(1 — x?) ’ (VE2)?

y=1
(8.28)

where & = £/+/3, with ¢ defined in (8.23). The counterpart to (8.28) is reported in Paper P10 .
Altogether, the total dissipation is the volumetric average of 1I functions over the whole vol-
ume. With cp and ¢ denoting the volume fractions of the (P) and (M) subvolumes, the following

can be written:
= cp <H<P> + Hsmf) Forll™ | cp=y2(1—¢), er=1— 2 (8.29)

where IT15"! obeys (8.21) in the minimum continuity and II*""! = 0 in the higher continuity fields.
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8.2.5 Effective yield criterion

The dissipation function expanded based on the minimum-continuity velocity field is not dif-
ferentiable, and thus the primitive form of the principal inequality of limit analysis underlies the
following piecewise-continuous effective yield criterion. The latter, here termed ®°°! = 0, can be

written as (see Paper P10 for algebraic details):

a3 — X1 2 Xn w (1 - 0)2
3 T2 (1 L ey 2)san(Dg)for | Lsen(Sas) + (1 — ¢)| <~
5 (1 = ex”)sgn(Xs3)for > sgn(E3) + (1 —¢)| < 3 ¢
1/x?
233 — (1 — X2)211 X2 (1 — 6)2 . 1 X2 1
— = — Zsgn(Xs3) —— + |sinh Vo | = |14+ ——
col 7 \/g ’ (y%z)
O = y=1
s (e« s ()] <1
or| —=sgn(Xa) — 5 | w sin < < c
y=1
Vg — % ’ ‘ N wl—c
{M +(1- (;)XZSgH(En):| + 2x” cosh (\/§ [H —(1-¢) (1 + % C) sgn(Eu)} —(1+x%  Otherwise
o o c

(8.30)

Inasmuch as IT upon the higher-continuity field is everywhere differentiable, the corresponding

yield surface is everywhere smooth, thereby expressible in derivative form. Yet, the latter is not

attainable in closed form, but in parametric form, i.e. in terms of the £ ratio, upon its definition in
(8.23), or any other related ratio.

To this end, the following fundamental derivative must be determined first:

/11

c
BVR+ (u+B)R* + P In|L| +P= (8.31)

',Z’.7§1 = L
u=0

N | —
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where, with reference to the definitions in (8.23), we have:

, 0B —12
S og 13g
, 0P V12 1
P 1§M%MQ>L-Q 3o
. 1 0R  B&LGU+[1+20-1)&Ju+ (&4 —1) (8.32)

2\/_ 9 B2+ 241+ (6 — D& Ju+ (& —1)?
oL 13 13

Then, according to (8.29), the total stress subspace pertaining to localization along void columns

can be expressed as

Su_ oS
o o o
(8.33)
Ygz o | o
—_— =+ —
o o o2
where
2(1) 1
“oson(Ys3) = 2/ Zdv
o v=c
Z(l) 1 1
ﬁsgn(Zgg) =—-2(¢£ — 1)/ Le dv+ XQ/ Zdv
g v=c v=c (8.34)
57
7sgn(211) = 0 — Ko
n(2)
%Sgﬂ(zn) =31 — B2
where
V3, = sinh*1|§2\ , V30, = sinh™! |£—22’
X (8.35)

V3B =\/1+8 , V3By=/&+x*

and &, = £/+/3 as mentioned in advance.
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There exist simpler approximate counterparts to both (8.30) or (8.33). The reader can refer to

Paper P10 in this regard.
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Figure 8.7: Comparison between yield surfaces based on minimum and higher-continuity fields:
(a) for fixed (w, \) and various ligament parameters ¥, (b) for fixed (y, \) and various void aspect
ratios w, (c) for fixed (x, w) and various cell aspect ratios \.

Figure 8.7 exhibits the difference between the yield surfaces based on minimum and higher-
continuity fields for various void aspect ratios, ligament parameters, and cell aspect ratios. At low
hydrostatic stresses, characteristic of mainly deviatoric loads, the predicted limit load is the least

sensitive to the velocity profile. This limit corresponds to minimal relative axial velocity between
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the plugs and the torus, with the whole cell admitting minimal, albeit nonzero, expansion. All
the same, higher continuity within the axial velocity would trigger a higher limit load at larger
hydrostatic stresses representative of higher lateral stresses superposed by axial loading. This
entails a larger Poisson effect when the torus and plugs are clamped than when they act in parallel
modulo minimum continuity. By the same token, the difference between the two surfaces proves
inconsequential at large x’s and w’s as well as small \’s due to the Poisson effect being limited.
Accordingly, the higher-continuity yield surface is a tight lower bound to its minimum-continuity
counterpart at large x’s and w’s as well as small \’s, and is an upper bound thereof at smaller y’s
and w’s as well as higher \’s. This upper bound becomes rather spuriously large with increasingly
large hydrostatic stresses in that the higher-continuity field exerts overconstraint on the point-wise
velocity gradients. As explored in the sequel, the minimum-continuity model stands closer to
numerical values, and will be thus favored over the other for assessment purposes.

Note also that the spuriously large hydrostatic stresses pertaining to y = 0.2, w = 0.25, and

= 3 is indicative of localization in columns as an erroneous yielding mechanism. The effective
mechanism corresponding to these parameters is localization in layers.

The yield surface devised by Eq’s (8.30) and (8.33) has a large portion in proximity with the
surface accounting for homogeneous yielding which are, more specifically, the planar subsurfaces
of (8.30) and the zones with nearly horizontal slopes in (8.33). However, the highly-curved subsur-
face is the main matter of difference. In the minimum-continuity model, (8.30)3 is counterpart to
the planar part signifying localization in layers, i.e. with internal necking. The localization mech-
anism involves a zero increase in the lateral strain, i.e. a zero lateral rate of deformation D;; = 0,
which prompts a rigid behavior in the matrix (M) subparts. In order to predict the effective yield
surface at every microstructural state, (8.30) or (8.33) should be compared to the whole surface
containing homogeneous yielding ensued by localization in layers. Thereupon, the unified crite-
rion in absence of shear, according to (5.6) can be compared to its counterparts derived herein,
(8.30) or (8.33). An upper bound to the net yield surface for a specified microstructure will be then

close to the interior surface between the two surfaces. It would be more convenient to compare the
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two surfaces at the same ¢ value. The parametric form of (5.6) is thus proposed for comparison in

Paper P10 .

o I ‘Co‘lun‘"m 1

W= (LD
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Figure 8.8: Effects of microstructural parameters on the yield loci representing the unified model
as well as plasticity localized in columns: (a) effect of ligament parameter y; (b) effect of void
aspect ratio w; (c) effect of cell aspect ratio \.

The effective yield surfaces are further compared to their FEM counterparts obtained from
single-step limit analysis over the same-cell geometry. Follwing the technique introduced in Sec-
tion 4.4, the theoretical grounds for the FEM-based calculation of the limit load at the onset of
localization in columns are extensively provided in Paper P10 . In brief, the numerical limit load

can be obtained via the imposition of normal and lateral target velocities, represented by target
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displacements Uz and Uj, respectively. Every U; /Us ratio then corresponds to a specific set of
lateral and normal limit loads (see Paper P10 on how to access the limit loads).

It suffices to emphasize herein that, in the present context, no restriction will be enacted on the
microstructural parameters nor on the U; /Us ratio. Therefore, the localization mechanism will be
driven by both the microstructural state and the U, /Us ratio. The only constraint exerted on the
geometry is then to assure that, with the adopted (, w, ) set, the void fully fits into the unit cell.
That is, the condition ¢ < 1 should be satisfied.

Figure 8.8 demonstrates the effects induced by every microstructural parameter on the effective
yield surface. While the figures entail attentive examination, it can be conveniently observed that
changing the  or w variable from small to large values (while the rest are kept fixed) would transfer
the driving yielding mechanism from layered into column coalescence. Incidentally, for large
values of y and w, the two yielding mechanisms occur almost synonymously while coalescence in
layers is triggered slightly sooner, and vice versa. For cell aspect ratios well below unity (A < 1),
however, coalescence in columns is clearly preferred with significant distance between the two
predicted mechanisms. Moreover, the present model accounting for column coalescence violates
the upper-bound character [33] at very large values of y and w as well as for small values of .
In particular, with y approaching unity, both (8.30) and (5.6) violate this character. This is rooted
in the idealized choice of velocity fields that predict yielding at lower stress states. However, the
predicted driving mechanism is both qualitatively and quantitatively (except for y — 1) well
commensurate with the FEM outcomes. Above all, A induces an opposite effect on the driving
yielding mechanism compared to y and w being varied. That is, changing A from small to large
values (while the rest are constant) would transfer the driving yielding mechanism from column
into layered coalescence. Further, the effect of the cell aspect ratio A is more remarkable when
plasticity is localized in columns whereas it bares almost no effect on void coalescence occurring
in layers. Thereupon, the points exhibiting FEM results for A = 5 have been identified with solid
circles in order to be more easily distinguishable from those pertaining to A = 1 since they stand

on the same slanted line denoting coalescence in layers.
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CHAPTER 9 SUMMARY AND OUTLOOK

9.1 Concluding Remarks

The grounds to a robust micromechanics-based constitutive framework to simulate ductile frac-
ture under combined tension and shear phenomenon in porous materials were addressed. The
building blocks to the expected framework are mechanism-based yield criteria and evolution laws
accounting for microstructural evolution in rated form, especially apropos of void rotation and
elongation under shearing. A key feature to the development of such frameworks is to adopt mea-
surable and/or observable parameters as descriptors, that could best be achieved through the notion
of a reference volume element (RVE), alias unit cell. Experimental observations reveal plastic de-
formation at the unit cell level as homogeneous or inhomogeneous. The latter can be idealized
with plasticity ideally confined within intervoid ligaments (under combined loading), exemplified
by void coalescence in layers, and occasionally with coalescence in columns (under the dominance
of normal loads) with plasticity more concentrated within intervoid plugs. The first objective was
thus to develop a set of analytical yield functions that could mimic localized yielding by either
mechanism. The latter was attained by limit analysis over a cylindrical cell containing a coaxial
void of finite height. The effective yield surface is bounded by the innermost surface signifying
the two mechanisms. Existing numerical analyses [16,21] indicate that the shear-dominated de-
formation process is closer to being homogeneous at early stages and would approach the ideal
localized state towards the end. Admittedly, a hybrid bi-surface model was adopted that consisted
of simple modifications to both an existing criterion representing homogeneous yielding [14] as
well as a derived criterion denoting fully localized yielding. By its very nature, the latter acts
upon a surrogate microstructure aligned with a possible localization plane, that can emanate from
voronoi tessellation upon an underlying microstructure. The constitutive framework was closed
by a system of evolution equations pertaining to microstructural state variables during the nearly-

localized deformation state derived from first principles. The body of existing and derived yield
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criteria supplemented to existing and derived evolution equations were exploited in an implicit
numerical integration based on the Newton-Raphson iterative scheme. The latter sets the third ob-
jective of the present work. The hybrid model predictions were firstly subjected to assessment in
conformity with existing numerical outcomes under triaxial [20] as well as combined normal and
shear loading [16, 17,21]. The parametric studies were then carried out under a complete range
of loading combinations from uniaxial to near-simple as well as near-pure shear loading, with the
loading combination characterized by « denoting the ratio between a normal and a shear traction
on a possible localization plane. The effects of initial porosity, void and cell aspect ratios, void
misalignment with the principal loading directions, and matrix plastic anisotropy are accounted
for. The latter effect was investigated with reference to a counterpart of the here-derived inhomo-
geneous yield criterion recently introduced in [96]. The strain to failure was further evaluated in
terms of stress triaxiality for a complete scope of stress triaxialities upon the loading path consti-
tuted by combined normal and shear stresses. An axisymmetric notched bar was finally presented
as an example finite-element simulation demonstrating the capability of the hybrid model to solve
structural boundary-value problems. To this end, the constitutive framework for the porous ma-
terial was implemented in an ABAQUS user-defined subroutine (UMAT), and the material was
modeled using dilute material elements without need for modeling the microstructure.

Some of the featured findings are enumerated in the following items:

e The effective ligament parameter Y, representative of the relative void spacing in the surro-
gate cell, is the main factor of influence that accounts for failure under combined tension
and shear. It is itself a function in direct proportion to the current porosity as well as the
cell aspect ratio, and scales inversely with the surrogate void aspect ratio. The latter, under a
shear-dominated stress state, starts with a finite value and evolves towards zero until failure.
More specifically, the onset of localized deformation as well as ultimate failure were delayed
with a smaller xo. The limit of a dilute material (x, — 0) would exhibit no failure under

shear.

e A shorter cell, characterized by a smaller cell aspect ratio A\, would have a larger strain to
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the onset of localization €., as well as a larger strain to failure € under near-simple shearing.
The latter is rooted in the fact that unlike a larger-than-cubic cell (with A > 1), a shorter-
than-cubic cell (A < 1) initially rotates faster than the void does. Besides, at a fixed porosity,
a void within a shorter cell is more distant from the cell boundaries than its counterpart in a

taller cell.

Under near-simple shearing (x ~ 0), an oblate void (w < 1), contrary to a prolate void
(w > 1), rotates transiently opposite to the shearing direction. Yet, there is a turning point in
the middle of the process, which normally occurs at the point of transition into the localized
deformation mode, where the void starts moving back towards the shearing direction. Failure
for an oblate void occurs in the form of penny-shaped crack propagation that is realized after
void closure (characterized by the porosity f approaching zero). Altogether, for both prolate

and oblate voids, the larger void axis tends to align with the direction of the principal stretch.

The strain to the onset of localization €., as well as strain to failure e, was plotted in terms
of stress triaxiality for the whole scope of stress triaxialities ranging from zero to 1/3 (shear-
dominated interval) and from 1/3 to 3 (normal-dominated interval) by numerical integration
of the differential equations expressing porosity, void aspect ratio, and void orientation in
terms of the equivalent plastic strain €. Within the shear-dominant interval, ¢, admits a
minimum that can be roughly expressed in terms of the microstructural parameters within

the inhomogeneous yield criterion.

A void was found to be distorted, i.e. squeeze (via f decrease), elongate (via w increase),
and rotate faster inside a stronger matrix against shear (with hg;, < 1 and hrg < 1). Such
a matrix would withstand material slippage along the shearing direction. Hence, the void

ought to distort more and close sooner at the same shear strain level.

Higher ductility could not be achieved in simultaneity with larger strength in absence of
shear (here denoted with triaxial loading). Yet, the two could coexist under shear-dominated

loading. To this end, the plane of transverse isotropy can be placed either parallel or perpen-
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dicular to the plane of possible strain localization or normal, the latter such that the shear
traction is parallel to the plane. The plane of transverse isotropy can alternatively be rotated

clockwise with respect to shearing.

e Below a certain limit of shear-related Hill coefficients hgy, or Atg (with S denoting the di-
rection of the normal to the principal loading plane as well as the direction of transverse
isotropy), or beyond a certain rotation angle within the plane of transverse isotropy, failure
was never predicted under near-simple shearing. Thereupon, shear Hill coefficients, or the
placement of orthotropy planes, can be engineered such that, at a specific initial porosity

level, failure under shear never occurs.
9.2 Prospective Extensions

The simplifying assumptions as well as the predictive limitations within the introduced models
warrant future amendments or extensions to the present work. The suggested prospective work can

fall into two main categories that prompt two major lines of future work in extension to this thesis:
9.2.1 Analytical extension

e A major drawback by which the authors were driven to the use of a surrogate microstruc-
ture was the crude Gurson-like shear velocity field that would predict no failure within a
rotating cylindrical void under simple shearing. A more sophisticated shear field is thus rec-
ommended that is commensurate with real void distortion under shear fields. To this end,
evolution-based direct cell-model FEM calculations would definitely prove efficacious in the
sense of being suggestive of tentative higher-order shear velocity fields. The effect of void

orientation should definitely be taken into account.

e The body of analytical models derived in the present context invoked an elastic-perfectly
plastic matrix admitting the .J, flow theory. The effect of hardening would thus be under-
rated in the corresponding predictions, particularly at the post-localized regime. A proper
extension to the series of analytically-derived models is then to incorporate the effect of

strain hardening, preferably of a power type.
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9.2.2

Void coalescence in columns is mainly known to prevail under normal load dominance,
and thus the effect of shear stresses has been neglected in its corresponding model. Yet,
shear can bare a potentially remarkable effect at least in regards to the ranges of shear loads
under which necklace coalescence can still be effective. Extensions to the present models

accompanied by shear stresses are thus worthwhile attempts.

The effect due to plastic anisotropy into the unified homogeneous-to-localized model, stated
in Eq. (5.6), was uncalled for. Introduction of this effect would be a significant contribution
for the numerous numerical virtues associated with this model, mainly thanks to the slope

continuity within the resulting yield surface.

Numerical extension

The effective flow rule was expressed in terms of a consecutive satisfaction of the yield
surfaces describing nearly-homogeneous (') and fully localized (') deformation modes.
That is, only one flow potential was deemed effective at a time. A concurrent use of the
yield surfaces would be favored from numerous perspectives. Not only will the resulting
solution on this basis be less sensitive to the time step, but also it would generate a smoother
transition from ®' to ®!. This would allow for easier global convergence, i.e. convergence
within the equilibrium equations in the discretized space. The latter has been observed as a

major downside within the user-defined subroutine (UMAT).

The above-mentioned lack of global analysis convergence within the UMAT was seen to be
more pronounced under significant shear loads, even when superposed by normal loading.
Aside from invoking a concurrent multi-surface model, one may need to introduce an artifi-
cial damping into the framework, that can make the transition from ®!! to ®! even smoother
and let the solution progress further until failure, viz. total loss of stress-bearing capacity.

The latter method has been formerly employed by Benzerga [221].

The example FEM simulation was a minuscule case study presented mainly to demonstrate

the potential capability of the proposed model in structural boundary-value analysis. The
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UMAT written by the author is still at an elementary stage and is yet to be subjected to
remarkable advancement until becoming full-fledged and ready for a vast variety of case
studies. The strategies proposed in the above two bullets seem indispensable steps towards
global convergence. Among the suggested case studies is the simulation of Arcan tests under
combined remote normal and shear loading, pure torsion tests on hollow tubes, and notched
bar simulation with plastic anisotropy that triggers the formation of shear bands inside the
notch zone. In particular, Arcan tests can be simulated to assess the model in accordance
with the experimental outcomes acquired by Basu [43] on magnesium alloys. Moreover, the
micromechanical process taking place inside the shear band would be a major consequence
of our model. The latter was recently studied [233] merely based on homogeneous yielding
according to ®! equaling the KB model [14]. In a general continuum with arbitrary geome-
try, more than one possible localization system should be accounted for. A judicious choice
of possible systems, however, is dependent upon the underlying microstructure as well as

the geometry and boundary conditions.

The propensity of localization by necklace coalescence was overlooked throughout. Just as
strains can localize inside possible planes (here via the notion of a surrogate microstructure),
so too could they localize along the direction normal to the plane or along other directions
neither in line with the plane normal nor inside the plane. Counting the corresponding yield
surfaces in the multi-surface model would deliver a closer-to-real response within the ma-
terial at hand. A particular example in this regard is porous media with initially elongated
voids or that with voids closely spaced apart along the principal loading plane, i.e. wy > 1

or \og < 1, respectively.

The use of elliptical-base cells in the post-localized deformation process, along with the
counterpart to the KB model introduced by Madou and Leblond [230] for ellipsoidal rather
than spheroidal voids, would better portray the multi-axial distortion of voids under shear

fields. The model according to Eq. (8.8) is ready for numerical implementation.
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e There is significant numerical advantage in the unified model with seamless transition from
homogeneous to localized yielding. Thanks to it being endowed with slope (C'') continuity,
no abrupt change in stress responses is anticipated. This will potentially eliminate the need
for the introduction of artificial damping or any other fictitious stratagem. The model was
derived, according to Eq. (5.6), in the present work, and is ready for numerical implementa-

tion.
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