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ABSTRACT

Fracture causes enormous material and energy waste per annum, with large economical, in-

dustrial and environmental impact. In particular, ductile failure under shear-dominated loading

pervades in many areas of manufacturing, load-bearing structures and impact protection systems.

However, failure in shear remain elusive there being no complete theory of ductile fracture with-

out a physics-based model. A robust micromechanics-based constitutive framework, founded on

mechanism-based yield criteria for materials with evolution laws accounting for microstructural

evolution, is essential to this end. Experimental observations reveal cell-level plastic deformation

as homogeneous or inhomogeneous, the latter being idealized with plasticity confined within in-

tervoid ligaments or occasionally within intervoid plugs. The present thesis is partly targeted to

the development of analytical yield functions that predict yielding by either mechanism, attained

by limit analysis over a cylindrical cell containing a coaxial void. Nonetheless, existing outcomes

indicate the shear-dominated deformation process at early stages as an intermediate state between

a homogeneous and an ideally localized one. Correspondingly, a hybrid model is adopted consists-

ing of simple modifications to both an existing homogeneous yield criterion as well as a derived

localized yield function. Upon current limitations of a highly complex physical process, a sur-

rogate microstructure, tied to a possible localization plane, is invoked. The next missing link to

the constitutive framework calls for microstructural evolution equations during localized deforma-

tion, which sets the second objective of the present work. The body of existing and derived yield

criteria supplemented with available and derived evolution equations sets enough grounds for the

numerical simulation of ductile fracture, thus the third milestone. The hybrid model predictions

are firstly borne out by existing numerical outcomes under combined loading. The parametric

studies are then carried through a complete range of loading combinations from uniaxial to pure

shear loading. The effects of initial porosity, void shape, relative spacing, void misalignment with

the principal loading directions, and matrix plastic anisotropy are accounted for. Furthermore, the

strain to failure is evaluated vs. a complete scope of stress triaxialities. The thesis closes with

ii



proposed extensions to 3D voids, void coalescence along columns and other potential prospects

for more robust numerical implementation.

Key Words: Ductile fracture; Void coalescence; Combined tension and shear; Homogeneous/

Inhomogeneous Yielding; Strain localization; Simple/Pure shear.
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CHAPTER 1 INTRODUCTION

1.1 Overview and Significance

The amount of material and energy waste induced by fracture is among the most remarkable

ones per annum, baring large economical, industrial and environmental impacts. Hence, fracture

is mostly deemed deleterious, thus to be avoided, as far as the safety in infrastructure or structural

integrity is concerned. In fact, the genesis of the knowledge known today as fracture mechanics

dates back to the catastrophic damages that took place in the American Liberty ships due to the

ductile-to-brittle transition (DBT) of solids in freezing waters of North Atlantic. In the course of

seven years, between 1939 to 1946, 1038 from the 2708 constructed Liberty ships were reported

to have damaged, more than 200 of which sank or were damaged beyond repair (including the

"Schenectady") [22, 23]. Several other catastrophies have been observed since, including but not

limited to the de Havilland Comet [24] and Aloha Airlines Flight 243 [25] crashes in 1954 and

1988, respectively, due to fuselage failure triggered by fatigue and corrosion cracks. Apart from

the shipping and air industries, leakage of chemicals from reservoirs has been counted as the source

of dramatic fatalities. In the Ajka alumina sludge spill in 2010, for instance, the collapse of the

northwestern dam corner led to the realease of approximately one million cubic meters (35 million

cubic feet) of liquid waste [26].

Just as fracture can be harmful, so too it can be desirable. By virtue of proper engineering

of fracture paths, as in metal cutting and/or trimming, material imperfections at the macroscopic

level can be avoided or minimized. For instance, burring in machined workpieces is a serious

cause for fabrication deficiency. Burrs require additional finishing operations, known as deburring

techniques, and they further complicate the assembly. A careful choice of the machining tool path

can minimize burrs within metal pieces [27].

Fracture modes and failure mechanisms are primarily driven by the loading condition. Among

the three basic fracture modes (mode I, II, and III), mode I is mainly driven by normal load-
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ing whereas modes II and III are triggered by shear [23]. Ductile failure under shear-dominated

loading pervades in many areas of manufacturing, load-bearing structures and impact protection

systems. The effect of shearing has thus been a prime concern in fracture mechanics and failure

prediction from early days. In particular, ductile failure under combined tension and shear has

received extensive attention in the past decades for both gaining insight into undesirable failures

such as crack propagation under DBT (e.g. in welded structures; see [28, 29]), penetration, etc. as

well as desirable engineering manufacturing processes such as metal forming, cutting, trimming,

extrusion, etc.

(a) (b)

Figure 1.1: (a) Weld failure under combined tension and shear after the 2011 Tohoku Japan Earth-
quake (reprinted with permission from the Earthquake Engineering Research Institute (EERI),
Ltd) [1], (b) beam-to-column joint connection failure under combined bending and shear test-
ing [2] (reprinted with permission from Elsevier, Ltd).

Figure 1.1a shows failure of a beam-to-column steel connection due to weld tearing under

earthquake-induced tensile and shear loads [1]. For design purposes, the cross sections of connect-

ing constituents should be designed based on a predicted ductility behavior germane to earthquake-

like lateral loads. A combination of high tensile coupled with significant shear loads can be prop-

erly exerted by actuation of the beam from the location of a potential plastic hinge. Figure 1.1b

shows an example beam-to-column connection failing under a shear-induced yielding in the web

and flange yielding and buckling due to tension and compression, respectively [2].
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Figure 1.2: Ballistic penetration test carried out by Borvik et al. [3] (reprinted with permission
from Elsevier, Ltd).

(a) (b)

Figure 1.3: (a) Schematic outline of the localized damage zone in a penetration test, (b) tomo-
graphical images of localized damage [4] (reprinted with permission from Elsevier, Ltd).

Ballistic penetration, as shown in Fig. 1.2, is another practical example triggered by extreme

shearing with high shear strains advancing through a small or finite thickness [3, 4]. The overall

plug formation process consists of a combination of local bulging and global dishing. The former

dominates at early stages, and the latter becomes prominent towards the end of penetration, as

observed in Fig. 1.2a. Further details in this regard can be viewed in Fig. 1.3. The fracture

surfaces shown in Fig. 1.3b have been generated from spectral microscopy. They clearly convey

the existence of combined tensile and shear loading at the failure stage. The onset of the fracture

process corresponds to a plug movement equaling about half of the plate thickness [4].

The target undergoes permanent deformation as increasing function of the projectile velocity,

which reaches a maximum at the so-called "ballistic limit" of the velocity. After penetration is
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complete, the deformation decreases with velocity until it saturates at a velocity well beyond the

ballistic limit. Static and dynamic tests have demonstrated that the maximum deformation within

the target towards the onset of fracture is about twice the permanent deformation thereof, indicating

remarkable elastic recoil [3, 4].

In forming processes, the boundary conditions corresponding to the existence of rigid zones

(such as dies) lead to a build-up of initial shear stresses cutting [6]. The similar phenomenon

occurs by introduction of a small sharp notch at the cutting starting point in a cutting experiment

or simulation [30, 31].

(a) (b)

Figure 1.4: (a) Schematic blanking setup (reprinted from [5]), (b) example contours for the
void volume fraction f resulting from the simulation of the blanking process by Mediavilla [6]
(reprinted with permission from Elsevier, Ltd).

Figure 1.4a depicts a schematic setup pertaining to a forming process known as "blanking". A

common defect left in a formed specimen is burrs. As stated above, burrs can be minimized with

proper engineering of the die and the blanking path. Figure 1.4b presents an example simulation

of the blanking process by Mediavilla [6].

The basic failure modes observed in engineering metals at the microscopic level are cleav-

age, intergranular, and ductile fracture [32]. Ductile fracture occurring by the nucleation, growth,

and coalescence of voids is a prime failure mechanism in ductile materials. Fracture can happen
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in amorphous, single-crystalline or poly-crystalline materials. More specifically, poly-crystalline

metals that do not cleave can fail in a ductile, mostly transgranular manner [13]. In structural

materials, voids may nucleate by particle cracking or by decohesion between the particles and ma-

trix. Subsequently, void growth is driven by plastic deformation within the matrix surrounding the

voids, and is commonly accompanied by void expansion/contraction, elongation/shortening, and

distortion. Void coalescence, which is normally ensued by crack propagation and ultimate failure,

is associated with plastic deformation being localized in the intervoid ligaments [13, 33, 34]. The

present work is a step forward to the computational modeling of ductile fracture under combined

tension and shear, with particular focus on shear-dominated loadings.

1.2 Experimental Facts

Failure in a ductile material can occur by some mechanical instability of a test piece or by

damage propagation to cracking. The former can best be exemplified by the formation of a shear

band, and the latter stems from plastic flow localizing in microscopic intervoid ligaments, mostly

known as "void coalescence" [13, 35]. Experimental characterization of fracture can be reflected

partly through macroscopic and partly through microscopic observation of fracture surfaces.
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1.2.1 Macroscopic observations

(a) (b)

Figure 1.5: Effect of shear strain rate on the average shear strain to fracture for engineering metals:
(a) ductile metals [7], (b) less ductile metals [8].

Experimental observation of ductile fracture under shear-dominated loading at the macro scale

has been conveyed through bulk or sheet specimens. In the former, combined tensile and shear

loads are applied on thin-walled torsion tubes. By virtue of the Saint-Venant principle, the shear

strains can be regarded as constant over a large portion of the specimen length.

Among the most comprehensive studies using this method is the reported measurement of

ductility for varieties of engineering metal alloys by Johnson et al. [7, 8], who came to divide the

investigated metals into ductile and less ductile. Figure 1.5 shows the effect of torsion-induced

shear strain rate on the average shear strain to fracture according to [7, 8]. One can observe at

least 2 orders of magnitude of difference in γf from the lower to the upper limit, keeping mindful

that the tensile ductility variation is, by no means, found to be as wide. A compelling explanation

regarding these remarkable differences in the measured ductilities still remains elusive.
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(a) (b) (c)

Figure 1.6: Typical combined tensile-shear test specimens: (a) hollow tubes utilized by Barsoum
and Faleskog [9, 10], (b) butterfly specimens used by Bao and Wierzbicki [11], (c) hollow tubes
employed by Haltom et al. [12] (reprinted with permission from Elsevier, Ltd).

Later on, Barsoum and Faleskog [36] conducted similar experiments by the introduction of

notches to hollow tubes for illustrating the effect of triaxiality. They characterized the stress state

in terms of stress triaxiality T and the Lode parameter L by imposing a combined state of tensile

and torsion loading at fixed ratio. They employed extensometers and gauge clips (tied to the tube

gauge section) to measure tensile displacements and torsion angles, respectively. See Fig. 1.6a. In

order to realize straightly oriented fracture surfaces under pure torsion, the ratio between the gauge

section length and the notch height was taken as 120. Further, the gauge and notch thicknesses

were considered 1.6 and 0.6 (mm), respectively so an almost uniformly distributed shear stress

would be witnessed 1. They further evaluated the stress state inside the notched region from FEM

simulations using axisymmetric elements. Notably, their observations from spectral-microscopy

fractographs indicated clear distinction among fracture surfaces at low to high triaxialities. They

witnessed elliptical dimples at T < 0.5, parabolic dimples at T > 1, and a transition between the

two at T = 0.85.

Due to the existing difficulties in the exertion of pure torsion, Arcan sheet specimens were con-

currently designed for shearing experimentation on thin sheets [37,38], and have been both widely

employed and modified in the past decades for metals [39], composites [40, 41], polymers [42],
1At such small thicknesses, the intervoid distances can come down to be comparable to the void sizes. Therefore,

the notion of a representative volume element (RVE) would become questionable.
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magnesium [43], etc. The main limitation within the Arcan method, however, lies in stress concen-

tration at the vicinity of free surfaces at the sheared cross section, which prompts fracture from the

free surface zone, which is not essentially driven by shear. To this challenge, butterfly specimens

later attracted some researchers for the sake of more uniformity in shear stresses (Fig. 1.6b). Bao

and Wierzbicki [11] were among those who explored shear failure in butterfly specimens.

Figure 1.7: Equivalent strain to fracture vs stress triaxiality, resulting from experiments conducted
by Bao and Wierzbicki [11], Barsoum and Faleskog [9], and Haltom et al. [12].

Yet, butterfly specimens have not duly fulfilled the expected shear uniformity. Hence, Haltom

et al. [12] have recently conducted torsion experiments with the test specimen revisited (Fig. 1.6c),

which unravelled a new finding. See Fig. 1.7.

Fig. 1.7 presents equivalent plastic strain at the failure point, concisely termed "strain to fail-

ure" εf , in terms of stress triaxiality. Earlier torsion experiments on aluminum alloys and steels

indicated that the materials were less ductile in shear than under uniaxial tension [9, 11] whereas

Haltom et al.’s experiments showed the opposite trend [12]. A deep insight into the driving trend

can be acquired only with a robust constitutive development of the fracture model. Altogether,

experiments, though being revealing, are hard to conduct, especially in presence of shear, and may

lead to conflicting results. All the same, numerous studies have striven to incorporate the effect of

shear in ductile fracture. Keeping in mind specimen geometry and material variability, the extent

to which shear affects ductile fracture remains fairly unsettled.
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1.2.2 Microscopic observations

The microscopic texture of fracture surfaces is conventionally examined through spectral elec-

tron microscopy (SEM) [44]. Plastic flow at the micro scale can localize due to enlargement or

rotation and/or elongation of voids. Void growth emanates from plastic deformation of the mate-

rial surrounding the void. All the same, void coalescence is governed by plasticity that is localized

within a directed intervoid ligament. Therefore, plastic dilatancy, being diffuse or localized, is

intertwined with both growth and coalescence. To date, the failure mechanism subsequent to void

coalescence that is best understood is by internal necking (see [45] and references therein) moti-

vated by the pioneering computational work of Koplik and Needleman [46]. On the other hand,

microscale localization by so-called internal shearing has also been noticed on the basis of cell

model calculations [17, 36, 47, 48]. In a weakly rate-sensitive material, void coalescence by inter-

nal necking or shearing manifests by the onset of elastic unloading in layers above and below the

void [20,46,48,49]. Occasionally, strains can localize along intervoid plugs forming columns of lo-

calized deformation. The latter is termed coalescence in columns or necklace coalescence [33,50].

(a) (b)

Figure 1.8: Typical fracture surfaces of metals failing in (a) tension, and (b) shear [13] (reprinted
with permission from Elsevier, Ltd).

The de facto failure mechanism under any loading condition can be envisaged from tomog-

raphy. Fig. 1.8 compares two typical fracture surfaces exhibiting in the form of dimples. The

plastic enlargement of microvoids dominates at moderate to high ratios of tension-to-shear stress
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(tension-dominated loading), Fig. 1.8a. Voids are also observed to distort significantly at low

tension-to-shear ratios (shear-dominated loading), Fig. 1.8b [13].

Another prominent indication of failure in shear is shear failure, i.e. failure by shear banding as

an instability phenomenon. The latter pervasive in complex fluids [51], granular materials [52,53],

rocks [54], polycrystals [55, 56], polymers, [57] and amorphous metals (metallic glasses) [58, 59].

However, the mechanism of material separation under shear-dominated loadings as well as inside

shear bands has remained elusive by far. Understanding it will not only potentially retard failure

in shear bands, if desired, but also impact other applications where failure occurs under shear

dominated loadings. The stress state in shear bands is generally complex depending on the loading

path prior to the onset of strain localization [60]. Correspondingly, shear bands are generally

dilational. Hence, upon favorable conditions, void coalescence can also take place inside a shear

band. Yet, the arbitrarily small to large tension-to-shear ratios that may be encountered inside shear

bands warrants a deeper insight into a physics-based failure mechanism under combined tension

and shear.

1.3 Challenges and Objectives

Ductile fracture is a complex phenomenon in the mechanics of materials with both intrinsic

and extrinsic effects being involved. Intrinsic effects include induced anisotropies mediated by

large plastic deformations, microstructural evolution (void expansions, rotations and distortions),

and stress state. Extrinsic effects are relevant to boundary conditions and to the states of incipient

plastic instabilities, be it at the material (e.g., shear bands) or structural (e.g., necking) level [61–

63].

Void nucleation under predominant shearing involves complex void-particle interactions [64].

Micromechanical void nucleation analyses of the kind pioneered by Needleman [65] are still not

available for such loadings. Whether these nucleation conditions fundamentally differ from those

under tension with particle locking effects [66, 67] remains to be investigated. Void enlargement

at medium to high triaxialities, as well as void shrinking at the limit of low triaxialities are usually

accompanied with void shape changes and distortion. Yet, the latter is more prominent at low
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stress triaxialities characteristic of remarkable shear stresses. In this regime, void distortion is a

key origin to failure. Void distortion can be influenced by several factors, including the presence of

shear stresses and void-particle interactions [66, 68]. Void locking and formation of penny-shaped

cracks under limited void growth are among the clear examples [67, 69, 70].

A major drawback within the established caliber of work on the effects induced by shear is a

missing constitutive framework that takes into account the effective internal state variables that are

both measurable and observable. These variables pertain mainly to the rotation and distortion of

the microstructure under the effect of shear. Therefore, the major challenges to this task are pri-

marily related to the void-mediated microstructural evolutions mainly associated with void rotation

and distortion under the effect of combined tension and shear. Constitutive frameworks merely re-

lying on heurism fail to reveal the physics behind the plastic process, and thus their limitations

cannot be revealed unless upon high through-put calculations or heavy experiments [71,72]. More

importantly, the constitutive behavior of porous materials in a state of incipient void coalescence is

still at premature stage. Rather than merely on heuristics, plasticity models predicting void growth

and coalescence (see Sec. 1.5 for definitions) under combined tension and shear should be derived

with a deeper insight into the physics of this process. Apropos of void coalescence, in particular,

analytical physics-based models accounting for void coalescence under combined loading from

first principles have been lacking. Moreover, a set of equations accounting for the evolution of

effective parameters governing the post-coalescence microstructure is far from established. The

only way to explore this problem without the present controversies is by adopting a mechanism-

based approach, which is true to the spirit of the local approach [33, 34]. The present work is thus

a step forward to the extraction of a more comprehensive constitutive theory for modeling duc-

tile fracture under combined tension and shear, with particular focus on shear-dominated loadings.

Without this step forward, the link between the real failure mechanism and the simulated process

would still be missing. The virtues of a mechanism-based constitutive framework abound. In the

least, the fracture process can be simulated with measurable and observable state variables. The

clear physical demonstration of involved state variables leads to vivid elucidation of the model
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limitations at extreme cases. It also eases the calibration of the model by means of adjustable

parameters if need be.

In the interest of the foregoing challenges, the following main objectives can be outlined in the

following items:

1. Develop and validate a micromechanics-based void coalescence model under combined

loading accounting for the effects of stress state and microstructure.

2. Simulate complete fracture processes from micro-void growth to coalescence up to fail-

ure, and reconcile failure mechanisms under combined tension and shear with evolving mi-

crostructural parameters.

3. Investigate the effects of stress state, strain history, and microstructure on the failure maps

of engineering materials representative of structural alloys.

4. Extend the realm of the implemented constitutive framework with some of the more influen-

tial underlying assumptions relaxed.

A clearer illustration of the above objectives is demonstrated in Sec. 1.6.

1.4 Approach

In a global approach, essentially based on linear elastic (LEFM) and elastic-plastic (EPFM)

fracture mechanics, it is generally assumed that fracture can be described by a single, or utmost

two, loading parameter, such as KIc or JIc, or any equivalent thereof, such as the crack-tip opening

displacement (CTOD) [13, 34]. More recent methods based on the global approach have incor-

porated a second parameter, the T or Q stress [73]. The limitations associated with the global

approach, including but not limited to the loss of size effect predictions and inapplicability to

non-isothermal loading conditions, have driven the researchers towards adopting a second type of

approach, known as the local approach, also termed the top-down approach [33, 34, 74]. In the

latter, fracture parameters are modeled based on local fracture criteria that are established from
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tests on bulk specimens (especially notched specimens) or from computational analysis over an el-

ementary cell, usually referred to as a reference volume element (RVE). Within this realm, the key

concepts such as void growth and void coalescence, on the one hand, and matrix plasticity, on the

other hand, are inherently coupled. One established way to tackle fracture using a local approach

is to calibrate the internal state variables [72, 75]. However, provided that the model is quantita-

tively robust, the need to the calibration of parameters will be eliminated. Accordingly, the present

work aims at prediction of critical parameters rather than mere calibration. This sets a paradigm

for developing future predictive models and discovering the limitations of existing models.

In the reported literature, a tentative understanding on the effect of stress state on ductile frac-

ture is carried through macroscopic nondimensional descriptors expressed in terms of stress invari-

ants or some equivalent invariant of the stress deviator at the cell level. Among the most widely

used are stress triaxiality T = σm/σeq and the Lode parameter L = − cos 3θ. The former is

so defined as the ratio of the mean normal stress to the Mises equivalent stress, and the latter is

function of the Lode angle or, equivalently, the third invariant of the stress deviator, J3. Unless

quite lately, isotropic damage models have been expressed exclusively in terms of triaxiality, and

have thus failed to capture the essential behaviors in presence of remarkable Lode effects [75–80].

While this class of models have gained in maturity and accuracy, e.g. [14, 81–83], other groups

have investigated the tentative effect of J3 on the stress and microstructural state [36, 71, 84, 85].

However, neither parameter can reveal the essential behaviors in presence of low stress triaxialities.

In other terms, this type of work is formulated upon the basic properties of isotropic scalar-valued

tensor functions. Deformation-induced anisotropies, however, constitute the essence of the dam-

age mechanics of shear-dominated ductile fracture [32, 86]. This anisotropy is of two types: that

related to the voids themselves (large plastic strains, changes in void shape and orientation); and

that related to their spatial arrangement. Thus, analyses of ductile fracture under shear-dominated

loading and interpretation of currently available experiments rely, to a large extent, on accounting

for the induced, and eventually initial anisotropies. At this stage, the material response is strictly

sensitive towards the loading path, initial microstructure, and void distribution. The reader can
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consult [87, 88] for more details. The additional downside within isotropic models is the descrip-

tion of fracture in macroscopic terms, which leaves the fundamental mechanisms underlying such

effects elusive. Therefore, the constitutive framework demands a paradigm shift in approaching

ductile fracture in combined shear and tension, particularly at low stress triaxialities even if the

anisotropy of the material is disregarded.

Interestingly, the micromechanical basis for an understanding of low-triaxiality fracture has

been available since the early nineties [89–92] and has been used to model fracture in engineer-

ing materials, e.g. [93]. The constitutive model expanded in the present context will be in part

supplemented with some of the earlier work [91, 94] and, in part, with more sophisticated models

developed in more recent years [14, 95]. The lack of physics-based micromechanical models sup-

plemented with mechanism-based evolution equations of effective state variables, however, calls

for more extensive work in this regard. In essence, work on yield criteria and plastic flow potentials

accounting for the effects of void shape, volume fraction, and rotation is still scarce. Besides, evo-

lution of state variables affected by shear loading has not been formulated to the adequate extent.

1.5 Potential Impacts

An appropriate constitutive framework, including yield criteria and evolution equations that

can quantitatively and qualitatively mimic the physics, would be conducive to an effective way to

simulate fracture process up to failure with measurable and observable parameters. The numerical

work carried out by Tvergaard and coworkers [16, 17, 21] for combined tension and shear aiming

at the cell-level simulation of ductile fracture under combined loading has set a landmark in this

field. Nonetheless, it clearly demonstrates that numerical cell-model studies, let alone structural

calculations, of porous plasticity under combined loading is not only cumbersome, but also unfea-

sible at times, e.g. in the case of extreme shearing over 3D unit cells [17]. Micromechanics-based

modeling would, in effect, eliminate the need for lengthy cell-model calculations and significantly

contract voluminous structural calculation thanks to homogenized modeling. Moreover, a consti-

tutive framework developed based on physical parameters would reveal its realm and limitations

in conformity with physical processes.
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Apart from verifiable simulation of the fracture process under combined tension and shear,

another major contribution of the present study is to predict the evolution of strain to failure εf

in terms of stress triaxiality T in a plot known as fracture locus, particularly in the 0 ≤ T <

1/3 interval characteristic of shear prevalence. The reported literature lacks a clear dichotomy of

important factors such as loading history and microstructural effects at this interval.

The constitutive framework will further allow for a better rationale regarding the significant

differences in the ductility of materials subject to shear, as explored by Johnson et al. [7, 8], for

instance, from torsion experiments. A perspicuous explanation about this wide range of differences

lies in the initial microscopic intervoid relative distances. Results in Chapter 7 will further clarify

this effect.

Above all, the numerically implemented algorithm can be utilized as a tool for structural cal-

culations. To this end, the numerical framework can be translated into a user-defined subrou-

tine (UMAT) to solve structural boundary-value problems on porous materials. The user-defined

subroutine conspicuously eliminates the need to model the microstructure by accounting for the

evolution of corresponding microstructural parameters.

1.6 Research Objectives

In this section, the broad objectives stated in Sec. 1.3 are elaborated upon as follows:

1.6.1 Activities under Objective 1

Development of yield criteria encompassing essential microstructural parameters is the first ob-

jective. The models are developed from first principles, and are capable of describing the yielding

and subsequent flow of a material containing voids in configurations such that microscale localiza-

tion of plastic flow is possible under combined shear and triaxial tension. Such models would di-

rectly be relevant to modeling ductile failure by internal necking, internal shearing or both. Model

versions can vary mainly due to uncertainties in the assumptions made on the availability of bench-

mark solutions. Therefore, inhomogeneous models can be seamlessly juxtaposed to an originally

identified unified model accounting for both void growth and coalescence. Meanwhile, assessment
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of the models in accordance with finite element-based numerical values is indispensable. There-

fore, FEM cell-model limit-analysis calculations are carried out on the same cell geometry in that

interest. Chapter 5 collectively presents all the newly derived yield criteria within the present

context.

1.6.2 Activities under Objective 2

The numerical implementation of the constitutive framework at hand allows for the apportion-

ing of the inevitably coupled effects of stress state, loading path, and material microstructure on

the effective state variables describing ductile fracture of structural materials. To this end, selected

inhomogeneous yield criteria along with a judicious choice of the homogeneous yield criterion is

the second objective with the aim of simulating the entire process of ductile fracture under com-

bined tension and shear up to ultimate failure. In case the two yeild criteria are derived on the

basis of different elementary cell geometries, the resulting multi-surface model is termed hybrid.

Further clarification on this definition will be provided in Chapters 3 and 6. Alongside, existing

evolution equations for internal state variables will be supplemented to the homogeneous model.

Yet, since some counterparts for those equations are missing in the reported literature, they need

be originally derived for the inhomogeneous process under combined tension and shear. Existing

body of equations in this respect is far from established. In particular, the mechanism-based set

of post-localized evolution equations should account for the rotation and distortion of voids under

combined tension and shear. The model will be assessed with reference to the numerical analyses

at the material cell-level carried out by Pardoen and Hutchinson [20] for triaxial loading as well

as Tvergaard and coworkers [16, 17] for combined tension and shear. The parametric results will

then extend into the states of near-simple and near-pure shearing. Further, example finite-element

simulations will be presented to demonstrate the capability of the hybrid model to solve struc-

tural boundary-value problems. To this end, the constitutive framework for the porous material is

implemented in an ABAQUS user-defined subroutine (UMAT) for the homogenized analysis of

boundary-value problems.
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1.6.3 Activities under Objective 3

Typical plots known as "fracture loci" present the effective plastic strain to failure εf in terms

of stress triaxiality. Fracture loci are efficacious measures of intrinsic ductile behavior, and are

attractive to the industrial sector involved in forming processes. Inasmuch as the low-triaxiality

regime is strictly dependent on the loading path, several loading paths with piecewise-constant tri-

axialities will be adopted in the 0 ≤ T < 1/3 interval, and the constitutive framework is integrated

with respect to time along every loading path, whereby the cumulative strain to failure is calculated

in each case. Finally, the εf curve for 0 ≤ T < 1/3 is supplemented to that for T > 1/3. There is

a singularity at T = 1/3 except for a random distribution of voids [88].

1.6.4 Activities under Objective 4

The underlying assumptions employed in the models create limitations in their predictive ca-

pabilities. With some of the more influential assumptions relaxed, various extensions can emerge

from the same guiding principles. Among all, the following extensions are developed within the

confines of the present thesis:

• In conformity with the results of void distortion in a shear field [16], the sheared microstruc-

ture can be better represented by introducing a unit cell with non-circular bases. A counter-

part of the model accounting for void coalescence under combined tension and shear is thus

introduced based on 3D voids. The corresponding microstructure would be represented by

cylindrical voids embedded in cylindrical cells, both with elliptical cross sections. The ana-

lytical yield loci will be compared to their FEM counterparts emanating from quasi-periodic

cell-model calculations with the same cell geometry for selective geometric configurations.

The difference between analytical and numerical yield surfaces in some load or microstruc-

ture ranges will be suggestive of simple heuristic modifications to the parameters involved

in the models.

• The model can further be extended being incorporated with matrix anisotropy (mainly of

Hill’s identity). Following the model introduced by the present author [15], a micromechanics-
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based void coalescence yield function with this capability has been worked out in a recent

work by Keralavarma and Chockalingam [96]. Along with the former void growth model

presented by Keralavarma et al. [14], the present work implements the hybrid model com-

posed of the above two models to investigate the effect of shear in combination with matrix

anisotropy.

• In a continuum under arbitrary loading, voids may impinge their lateral or vertical adjacent

voids. The failure mechanism in the former is known as coalescence in layers and the latter

is named coalescence in columns or necklace coalescence [33]. An analytical criterion de-

scribing this mechanism will be developed in terms of the stress and microstructural states

based on tentative velocity fields mimicing the plastic deformation concentrated in the plugs

connecting voids on top of one another. With every specific microstructure, one of the two

coalescence mechanisms has more propensity to occur, depending on which yield criterion

is met first. Accordingly, the effective failure mechanism will be realized by the innermost

yield surface among those emanating from the models accounting for void growth, void

coalescence in columns, and void coalescence in layers. The model will be compared to

previously predicted values from Gologanu [50] as well as to more exhaustive FEM coun-

terparts from the present study. The present results will investigate the effects induced by all

the independent microstructural parameters on the bounds to the yield sufrace.

1.7 Structure of the Thesis

This document is organized in 9 review chapters appended with 11 paper chapters and an

additional appendix. The first four chapters introduce backgrounds and fundamental concepts, and

the rest provide selective results which are thematically connected to paper chapters (prefixed with

"P") elaborating on the summarized results. The additional appendix is provided illustrating a

modified cutting-plane algorithm for stress state control in the simulations.

Chapter 1 a general introduction motivating the research carried out, the main goal reflected

through objectives, the approach followed in the context of the state of the art, and the existing
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challenges in the course of modeling ductile fracture under combined loading.

Chapter 2 reviews the most fundamental plasticity models that function in terms of invariants

of the stress tensor and/or its deviator. Especially, the third invariant of the stress deviator J3

and its effect on failure in shear will be given closer attention. Moreover, the Hill-type plasticity

model accounting for matrix anisotropy will be introduced with its underlying assumptions and

limitations.

Chapter 3 presents an outline of physics-based models of ductile fracture, that can be coupled

with the hardening and microstructural effects or uncoupled from them. The majority of existing

models are, however, coupled. The main body of homogeneous and inhomogeneous models and

the essence of their different paradigms as well as applicability scopes will be presented therein.

In Chapter 4, the rudiments of the modeling methodology in the present work will be examined

in brief. The steps to analytical modeling based on limit analysis, and some numerical strategies

for FEM-based limit analysis at the cell level will be elucidated. With the lateral target velocities

vanishing, the limit load would pertain to inhomogeneous yielding. It further examines the basic

foundations of implementing a hybrid model with specific focus placed on the time integration

of constitutive equations. Notions of residuals, Jacobians, the Newton-Raphson method, and the

consistent tangent matrix will be overviewed.

Chapter 6 collectively reviews all the analytical models exploited for homogeneous yielding

and derived for inhomogeneous yielding within the realm of the present work. Selective yield

surfaces will be exhibited for various microstructural variables in comparison with their numerical

counterparts. A recent inhomogeneous model accounting for a Hill-type matrix anisotropy [96]

will further be introduced in the interest of being utilized as an alternative to that derived by the

present author. Moreover, a multi-surface model invoking the effective yield mechanism from a

combination of homogeneous and inhomogeneous yieldings will be presented at the limit of an

isotropic material characterized by a random distribution of voids with equal void shapes. To this

end, the effective yield surface will be showcased on principal and meridian planes. Moreover,

fracture loci exhibiting strain to failure in terms of triaxiality will be shown at this limit. The chap-
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ter finally introduces a unified model, in extension to that derived by Morin et al. [97], derived to

incorporate both homogeneous and inhomogeneous processes under combined tension and shear.

Example yield surfaces will be shown in the combined stress space with clear indication of smooth

transition between homogeneous and inhomogeneous regimes.

Chapter 7 presents the results of micromechanical simulation of ductile fracture under triaxial

and combined loadings emanating from the method outlined in Chapter 4 specified into the present

constitutive framework. The whole deformation history will be analyzed under several loading

and microstructural conditions. Selective state variables comprising equivalent plastic strain, void

volume fraction, void aspect ratio and orientation, and relative void spacing will be presented. The

effects induced by load combination, initial porosity, elementary cell size, void shape and aspect

ratio will be assessed. Furthermore, the strain to failure will be evaluated in terms of stress triaxi-

ality for a wide range of stress triaxialities ranging from zero to 1/3 and from 1/3 to 3. Finally, an

example finite-element simulation will be presented to demonstrate the capability of the model for

structural boundary-value problems. Alternatively, similar effects coupled with matrix anisotropy

with reference to a hybrid model consisting of the models proposed in Ref’s [14] and [96] will be

investigated.

Chapter 8 extends the realm of the models introduced in Chapter 5 in certain respects. It partly

proposes a counterpart of the void coalescence criterion introduced in Chapter 5 for 3D voids,

that is founded on limit analysis over a cylindrical cell with an elliptical base containing a void

with similar geometry. It further introduces an analytical criterion describing void coalescence

in columns based on tentative velocity fields mimicing plastic deformation concentrated in the

plugs connecting voids along the vertical direction. For fixed microstructural states, the effective

failure mechanism will be predicted with reference to the innermost yield surface among those

representing void growth, void coalescence in columns, and void coalescence in layers for the

same microstructure.

Finally, in Chapter 9, some concluding remarks will be encapsulated, and potential extensions

will be projected for consideration in future work.
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CHAPTER 2 PLASTIC FLOW THEORIES

The present chapter lists some fundamental concepts constituting the plasticity theory plus

some of the most featured yield criteria that can reasonably be employed in deriving effective

plasticity models at larger scales. Chapter 3 introduces other yield criteria accounting for plasticity

in ductile porous materials.

A typical constitutive framework of plastic deformation consists of four classes of equations:

(i) a yield criterion by which yielding is evaluated based on the current stress state; (ii) a flow

rule that describes the increment of plastic strain when yielding occurs or proceeds; (iii) a strain-

hardening rule to express the material strength in terms of its conjugate plastic strain; (iv) evolution

equations of additional state variables upon which the yield criterion may depend. The latter can

be scalars, vectors or tensors (as in the case of some kinematic hardening models; see [98] for

instance).

2.1 Small Deformation Theory

Plastic flow theories in the small-strain framework are developed on the basis of the following

underlying principles:

1. Elasticity: The stress and elastic strain tensors in the elastic regime are linearly related by

σ = L : ε (2.1)

where L is the elasticity tensor that, assuming the material is isotropic, can be expressed as

L = 2µJ +KI ⊗ I (2.2)

where ⊗ denotes the dyadic product which, within a Cartesian coordinate representation,

[I ⊗ I]ijkl = δijδkl. Moreover, K = E/3(1− 2ν) is the bulk modulus and µ = E/2(1 + ν)

is the shear modulus, I is the second-order identity tensor, and J is the fourth-order tensor
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transforming a stress tensor into its deviator through a double contraction, i.e. J : σ = σ′,

that can be written equivalently as

J ≡ I− 1

3
I ⊗ I (2.3)

where I is the fourth-order identity tensor transforming any second-order tensor into itself

through a double contraction, i.e. I : S = S, with S representing any second-order tensor.

2. Plasticity: Beyond the elastic limit, the stress components are related through a yield func-

tion:

Φ(σ;α) = 0 (2.4)

with α representing a collection of state variables affecting Φ which, for a hardening ma-

terial, normally includes but is not limited to the equivalent plastic strain ε̄. For an elastic-

perfectly plastic isotropic material, (2.4) would simplify into Φ(σ) = 0.

3. Stability: The stability postulate, addressed first by Drucker [99], entails, for every incre-

ment in σ and ε:

dσ : dε ≥ 0 (2.5)

which is equivalent to Hill’s principle of maximum plastic work [100]. In a general ther-

momechanical framework, both statements follow from the second law of thermodynam-

ics [101].

4. Loading/Unloading: The loading and unloading condition is known as the Kuhn-Tucker

condition [102]. It asserts that, for any admissible stress state σ, the plastic strain increment

(or the plastic rate of deformation accordingly) can be uniquely described as

dεp = γsgn(σ) (2.6)

provided γ and σ are constrained by the following unilateral constraints:
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(a) Admissibility of σ:

γ ≥ 0 , Φ(σ; ε̄) ≤ 0 (2.7)

(b) γ = 0 if Φ < 0, and γ > 0 only if Φ = 0.

Altogether:

γ ≥ 0 , Φ(σ; ε̄) ≤ 0 , γΦ(σ; ε̄) = 0 (2.8)

5. Normality: Subsequent to Drucker’s postulate or Hill’s principle of maximum plastic work

[100], the plastic part of the strain increment and the normal to the yield surface are co-

directional when the effective yield surface Φ = 0 is smooth. That is

dεp = dΛ
∂Φ

∂σ
(2.9)

where dΛ denotes a plastic multiplier. Equation (2.9) is also known as the associated flow

rule 1. In case the surface is not smooth, the normal belongs to a hypercone of normals to

the yield surface. Koiter [103] proposed the following generalized flow rule:

dεp = dΛi
∂φi
∂σ

(2.10)

with a summation implied on i, where dΛi are nonnegative and φi are linearly independent

flow potentials.

6. Additivity: The total strain increment can be decomposed into elastic and plastic parts:

dε = dεe + dεp (2.11)

where the elastic part stems from elasticity (2.1) such that

dεe = L−1 : dσ (2.12)
1In the case of a non-associated flow rule, a flow potential φ enters into (2.9), which is non-identical to the yield

function, i.e. φ 6= Φ.
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with L−1 denotes the formal inverse of the elasticity tensor, which obeys

L−1 =
1

2µ
J +

1

9K
I ⊗ I (2.13)

and the plastic part is determined from the flow rule (2.9). Equation (2.13) follows the trace

of both sides within σ = L : ε, with L obeying (2.2), and J has been defined in advance.

7. Consistency: The Prager consistency condition [104], is required to close the set of con-

stitutive equations, especially to eliminate the unknown parameter dΛ from the system of

equations. This condition reads

dφ =
∂Φ

∂σ
: dσ +

∂Φ

∂α
: dα = 0 (2.14)

withα defined below (2.4). The consistency condition implies that any strain increment dur-

ing plastic loading occurs tangential to the yield surface, i.e. the subsequent stress state must

remain on the subsequent yield surface. Namely, plastic loading over a plastic deformation

should result in another plastic deformation.

2.2 Finite Deformation Theory

Within the finite deformation theory, it is typically assumed that the rate of deformation tensor

D can be additively decomposed into an elastic and a plastic part. That is

D = De +Dp (2.15)

where the elastic part is given by:

De = L−1 :
∇
σ (2.16)

Further, the loading response of a continuum must be frame-indifferent (objective), viz. inde-

pendent of the observer. Depending on the class of problem, several objective stress rates have

been identified [105]. Within the context of ductile fracture models, the Jaumann objective stress
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rate
∇
σ is frequently used. Upon definition:

∇
σ= σ̇ + σΩ−Ωσ (2.17)

where Ω is the skew symmetric part of the velocity gradient.

All the same, it is typically assumed that the plastic strain increment and the normal to the

yield surface are co-directional. Accordingly, the plastic part of D originates from the normality

condition via the following rule:

Dp = Λ̇
∂Φ

∂σ
(2.18)

where Λ̇ is a rate-form plastic multiplier associated with the plastic strain tensor, and Φ is termed

flow potential, taken equal to the yield function at the prevailing case of an associated flow rule.

The hybrid model presented in Chapter 6 will be formulated in a corotational framework. That

is, the constitutive relations are expressed in a local coordinate tied to the current material configu-

ration, which is rotated from the initial configuration by the rotation tensorR that results from the

polar decomposition of the deformation gradient F as

F = RU (2.19)

where U is a positive-definite symmetric tensor. Correspondingly, constitutive laws need be writ-

ten in the rotated configuration. The so-derived equations relate merely with the stretch part of

deformations, and the rotation part is admitted by rotating quantities to the intermediate configura-

tion. The objective rate of stress
∇
σ in (2.17) will be then replaced with its time derivative σ̇ so that

the constitutive relation in rate form appears similar to their small-deformation counterparts in the

corotational frame.

2.3 Isotropic Models

Every isotropic yield function can be expressed in terms of at least one of the three principal

invariants of the stress tensor or, eventually, its deviator. Among all, the invariants typically utilized
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in the plasticity theory are the first principal invariant (I1) of σ, and the second and third principal

invariants of σ′ (J2, J3), defined as [101]:

I1 = trσ = σ1 + σ2 + σ3

J2 =
1

2
σ′ : σ′ =

1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]

J3 = detσ′ = σ′1σ
′
2σ
′
3

(2.20)

with σi and σ′i denoting the principal values of σ and σ′, respectively. Another relevant set

of widely used invariants is (ξ, ρ, θ) which represent a cylindrical coordinate system termed the

Haigh-Westergaard coordinates. Upon definition:

ξ =
1√
3
I1 ≡

√
3p

ρ =
√

2J2 ≡
√

2

3
q

cos 3θ =

(
r

q

)3

≡ 3
√

3

2

J3

J
3/2
2

(2.21)

where r = 3(1
2
J3)1/3. The ξ–ρ plane is called the Rendulic plane, and θ is called the Lode angle

[101]. The above-defined coordinates will be used in Chapter 5 and its corresponding paper, Paper

P4 .

2.3.1 Pressure-independent models

An isotropic yield flow theory is generally dependent upon all the three principal stress invari-

ants. For a wide variety of ductile materials, however, the effect of I1 can be neglected. Amongst

the most widely-used models in this category is the J2 flow theory [101], which expresses the yield

condition to be met on the condition of J2 equaling the material yield stress in pure shear. That is

J2 = τ̄ 2 (2.22)

where τ̄ = σ̄/
√

3 is the material shear strength, and σ̄ is the uniaxial yield strength.
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In porous plasticity at the cell-level, the plastic deformation for the whole reference volume

element (RVE), here denoted with Ω, is generally pressure-dependent due to the presence of voids.

The ductile matrix, however, with the void excluded (Ω \ ω, with ω representing the void and its

volume), is mostly assumed to obey the von Mises theory with an associative flow rule. Hence,

yielding occurs upon with the following condition being met:

(2.23)with the associative flow rule reflected by

d =
3

2

deq

σ̄
σ′

deq ≡
√

2

3
d : d

(2.24)

where σeq and deq denote the von Mises equivalent stress and equivalent strain rate, respectively.

Criterion (2.3.1) is characteristic of the boundary to the microscopic reversibility domain C, the

macroscopic counterpart of which (C) constitutes the effective yield criterion for a porous ductile

material [45].

2.3.2 Pressure-dependent models

Pressure independence, though proving efficacious in a wide range of conditions, cannot cap-

ture the salient features of plastic deformation in so many materials including porous and granular

materials (rocks, soil, etc.). Depending on the sensitivity and correlation of the plastic deforma-

tion with I1, several models have been advanced in the literature. From a broad perspective, the

dependence of a yield criterion upon pressure can be of two types:

• Some models are parametrized based on pressure. That is, the parameters subject to change

from material to material are functions of I1. Examples include, but not limited to, Mohr-

Coulomb [106] (see Sec. 2.3.3 for the expression) and Drucker-Prager [107] models mainly

for granular materials, the Burzyński-Yagn [108, 109] model for materials with tension-
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compression and/or tension-torsion asymmetry, Bresler-Pister [110] and Willam-Warnke

[111] models for quasi-brittle and frictional materials as well as concrete, Bigoni-Piccolroaz

[112, 113] and Altenbach-Bolchoun-Kolupaev [114] models for quasi-brittle, frictional, and

ductile materials, respectively.

The Mohr-Coulomb model, for instance, predicts yielding not based merely on maximum

normal or shear stress, rather through a maximized linear combination of normal and shear

tractions on the plane that generates this maximum [106]. In another sense, The Mohr-

Coulomb criterion represents the linear envelope of the material shear strength vs. the ap-

plied normal stress, that reads

τn − σn tanφ = c (2.25)

where σn and τn represent the normal and shear tractions on the plane of maximization, re-

spectively, and c and φ are material-specific parameters termed cohesion and internal friction

angle, respectively.

As another instance, the Drucker-Prager model can be expressed, in its basic form, as [107]:

√
J2 = A+BI1 (2.26)

where constants A and B are determined from experiment.

• Some other models are directly derived in correlation with pressure. Likewise, several mod-

els exist in this subcategory. Yet two most popular ones are the Gurson [115] and Rousse-

lier [116] models. The algebraic statement of the former can be found in Chapter 3.

2.3.3 J3 Dependent Models

Apart from being partly representative of macroscopic shearing effects at low-triaxiality stress

regimes [36,71,84,85], J3 is known to influence the hardening effect [117,118]. Yet, a conspicuous

explanation on the microscopic effect of J3 on ductile fracture is still lacking. The effect induced

by J3 is extensively referred to as the Lode effect by virtue of the correlation of the Lode parameter.
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It was originally introduced by Lode [119], to differentiate between the Tresca and von-Mises yield

criteria. Accordingly, the Lode parameter and the corresponding Lode angle can be written as

L = − cos 3θ ≡ −27

2
det

(
σ′

σeq

)
(2.27)

with σeq denoting the Mises equivalent stress. In an axisymmetric stress state superposed by an

axial stress, L = −1 in case the major load is the axial, and L = −1 if the converse is the case.

Indubitably, L = 0 at simple shear or pure shear, the latter being equivalent to a biaxial stress state

with equal and opposite stresses.

Mohr-Coulomb [106] and Drucker-Prager [107] models, as clear instances, take into account

the effect of J3 in addition to I1. In a non-associative yielding, the yield function and flow potential

in the Mohr-Coulomb model are expressed in terms of the above quantities as [120]:

Φ = I1 sinϕ+
1

2

[
3(1− sinϕ) sin θ +

√
3(3 + sinϕ) cos θ

]√
J2 − 3c cosϕ

φ = I1 sinψ +
1

2

[
3(1− sinψ) sin θ +

√
3(3 + sinψ) cos θ

]√
J2 − 3c cosψ

(2.28)

where ϕ is the internal friction angle, ψ is the dilation angle, c is the material cohesion, and θ is the

Lode angle. In a recent endeavor, Bai and Wierzbicki [121] revisited the Mohr-Coulomb fracture

criterion with an objective of ductile fracture description in isotropic solids under proportional

loading paths.

Alternative to the Drucker-Prager model, Drucker [122] proposed a yield function, suitable to

ductile materials, that is directly expressed in terms of J2 and J3, by virtue of which the yield

surface lies between the von Mises and Tresca yield surfaces:

J3
2 − αJ2

3 = k2 (2.29)

where α is a constant lying between -27/8 and 9/4 for the fulfillment of yield surface convexity,

and k is a material constant. Brunig et al. [117] proposed the following more general based on
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numerical analyses:
√
J2 − c

(
1− αI1 − βJ1/3

3

)
= 0 (2.30)

where α and β are material constants and coefficient c is obtained from the strain state. All the

same, Hu and Wang [123] proposed a stress state-based yield criterion for isotropic ductile mate-

rials:

αI1 +
√
J2 + β

J3

J
3/2
2

= c (2.31)

where α, β, and c are material constants determined from experiment.

Several extended models have been developed to better predict the correlations among the

three stress invariants. For isotropic ductile materials, models such as that of Altenbach-Bolchoun-

Kolupaev [114], extended Drucker-Prager model expanded by Subramanya et al. [124], the model

introduced by Kuroda [125], and Yang et al.’s Mises-like yield criterion [126] have been reported

in the literature to account for Lode dependence.

2.4 Anisotropic Models

There are several limitations attributive of isotropic plasticity that warrant the advancement of

anisotropic models. Due to microstructural effects induced by atomic arrangements, grain mor-

phology and/or texture, wrought engineering materials are often plastically anisotropic even when

elastically isotropic. Moreover, large plastic strains, as opposed to infinitesimal deformation, lead

to texture development, which itself is a matter of anisotropy. Besides, the formation of intragran-

ular cavities may generate an anisotropic crystalline matrix. The simplest anisotropic plasticity

model was developed by Hill [101] in the form of a phenomenological quadratic form expressed

as follows:

F (σ11 − σ22)2 +G(σ22 − σ33)2 +H(σ11 − σ33)2 + 2(Lσ2
12 +Mσ2

23 +Nσ2
13) = 1 (2.32)

where Here F , ..., N are constants to be determined experimentally. Hill’s criterion follows sim-

plistic underlying premises. It assumes orthotropy (planar isotropy), tension-compression symme-
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try, and pressure independence.

After three decades from this model, Hill proposed the following more general criterion for

textured aggregates [127]:

H1|σ1 − σ2|m +H2|σ2 − σ3|m +H3|σ1 − σ3|m +K1|2σ1 − (σ2 + σ3)|m +K2|2σ2 − (σ1 + σ3)|m +K3|2σ3 − (σ1 + σ2)|m = σ̄2

(2.33)

where Here Hi and Ki are constants to be determined experimentally, and σ̄ is the material yield

strength along one benchmark direction. For plane problems, the value of m is suggested to be

taken 6 or 8 for anisotropic metals. Other more general criteria analogous to (2.33) have been pro-

posed in the literature. One widely used counterpart is the Logan-Hosford model [128] expressed

as

F1|σ1 − σ2|n + F2|σ2 − σ3|n + F3|σ1 − σ2|n = 1 (2.34)

where Fi are experimentally-determined values, and the exponent n depends on the crystallo-

graphic structure. It is mostly considered to be 6 for BCC and 8 for FCC materials. For isotropic

materials, this criterion simplifies into the following form, after Hosford [129]:

|σ1 − σ2|n + |σ2 − σ3|n + |σ1 − σ2|n = 2σ̄2 (2.35)

Barlat et al. [130] and Karafillis and Boyce [131] proposed a procedure to incorporate anisotropy

in pressure-independent models by the application of a fourth order linear transformation operator

on the stress or its deviator, e.g. σ̃ = Q : σ or σ̃′ = Q : σ′. The corresponding yield function

is then obtained from an isotropic function by substituting the principal stress (or stress deviator)

values by the principal value for σ̃ (or σ̃′). Other anisotropic models have also been developed

in extension to established models with isotropic basic forms. Among the featured ones are the

Caddell-Raghava-Atkins (CRA) model [132] accounting for pressure dependence, the Deshpande-

Fleck-Ashby (DFA) model [42] mainly developed for honeycomb structures, and Soare et al.’s

model [133], mainly employed for sheet metal forming simulations, etc.
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CHAPTER 3 DUCTILE FRACTURE MODELS

Ductile fracture models are developed to mimic the physical phenomena that trigger fracture,

and hence, should be able to capture the salient features of failure mechanisms. The major ob-

served failure mechanisms, subsequent to nucleation of voids by decohesion of the particle-matrix

interface or by particle cracking, are void growth and void coalescence, which is ensued by ulti-

mate failure. The credibility of the simulated mechanisms lies in typical fracture surfaces, as those

shown in Fig. 1.8.

The present chapter presents an overview of the most prevailing ductile fracture models based

on dilatant plasticity reported in the literature to date. It is, however, important to note that these

models are mainly developed as means of constitutive modeling rather than fracture modeling per

se. Meanwhile, studies such as [134–138] have considered developing or utilizing methods in the

simulation of crack growth in solids.

3.1 Homogeneous vs. Inhomogeneous Yielding

Figure 3.1: Schematic outline of a reference volume element (RVE) with arbitrary geometry un-
dergoing inhomogeneous yielding.

The distinction between homogeneous and inhomogeneous yielding pertains to plastic defor-

mation in the unit cell. If a unit cell of arbitrary geometry, as shown in Fig. 3.1, deforms uniformly

over its boundary, the plastic deformation is named "homogeneous", otherwise termed "inhomo-

geneous". In the exemplified RVE of Fig. 3.1, yielding is considered homogeneous in the case of

ε̇(1) = ε̇(2) = ε̇(3), and is inhomogeneous if ε̇(2) 6= ε̇(1) and ε̇(3) 6= ε̇(3).
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In particular, ε̇(1) 6= 0 and ε̇(2) = ε̇(3) = 0 is a special case of inhomogeneous yielding that

arises from elastic unloading in regions (2) and (3).

In a solid material, strain rates can localize inside a band with vanishing thickness, the ori-

entation of which can be evaluated from Rice’s theory of plastic localization [61]. This must,

however, be clearly dissociated from the presently identified concept, with the distinction being of

utmost importance in porous materials particularly because voids, when explicitly represented, can

act as initial inhomogeneity. In the latter, the plastic strain after elastic unloading becomes local-

ized inside an inner-void ligament with finite rather than zero thickness, with the band thickness

determined by the void size.

(a) (b) (c) (d)

Figure 3.2: Schematic space distribution of plastic deformation at the cell level, with the cross-
hatched regions representing elastic unloading: (a) homogeneous yielding, (b) idealized homoge-
neous yielding, (c) inhomogeneous yielding, (d) idealized inhomogeneous yielding.

Homogeneous yielding is often known to be associated with void growth. Also, among the

featured inhomogeneous yielding processes is void coalescence. Nevertheless, the present-invoked

terminology is more inclusive than the given examples. Consequent to tension superposed with

shear, for instance, voids may grow or shrink down to void closure while plastic deformation is

homogeneous at the cell level (depending on the ratio between normal and shear stresses). By

the same token, yielding is inhomogeneous (almost) from the outset under intense shearing in that

plasticity is majorly confined to a close vicinity of the void. Yet, void coalescence and failure might

never be realized when the void volume fraction approaches zero. The terms "homogeneous" and
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"inhomogeneous" will be thus used throughout the thesis.

A parametric representation of homogeneous or inhomogeneous yielding at the macro scale

entails the notion of a reference volume element (RVE), with the equivalent plastic deformation

rate homogenized over its whole volume or a subvolume consisting of the intervoid ligament. Both

are schematized in Fig. 3.2 (the hatched zones represent elastic unloading). Elastic unloading can

be triggered both at early stages, as indicated by Fig. 3.2a, and after significant plastic deforma-

tion, as shown in Fig. 3.2c. Nevertheless, mathematical representation of yielding at the macro

scale often calls for simplifying assumptions. Therefore, stages such as Fig. 3.2a may be ide-

alized with homogeneous yielding exhibited in Fig. 3.2b so long as considerable lateral plastic

deformation is developed above and below the void. Subsequent to further deformation, when

elastic unloading spreads further around the void, continued lateral deformation is precluded from

part of the zones above and below the void (Fig. 3.2c). Within the realm of the present work,

the latter inhomogeneity is taken to be ideally confined to a planar ligament that is intercepted by

the void poles, as shown in Fig. 3.2d. The same approach was adopted in numerous previous

references [45, 97, 139, 140]. In a recent endeavor, Morin et al. [141] investigated the effects on

the limit load induced by more general velocity fields, e.g. admitting non-planar interfaces (as

shown in Fig. 3.2c) or satisfy higher degrees of continuity between the plastically deformable and

elastically unloaded (rigid-like) zones.

Mathematically, in case the velocity inside the RVE admits uniform strain-rate boundary condi-

tions, the deformation process can be regarded as homogeneous. In this case, the remotely-applied

macroscopic rate of deformation D correlates with the internal velocity field through the position

vector:

∀ x ∈ ∂Ω v = Dx (3.1)

where Ω and ∂Ω represent the cell domain and boundary, respectively, and x denotes the current

position. Equivalently, on account of a constant deformation gradient tensor F , one can express

(3.1) as

∀ x ∈ ∂Ω x = FX (3.2)
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whereX denotes the initial position.

For inhomogeneous yielding, however, such boundary conditions don’t exist (except eventually

at the plastically-deformable sub-cell level). The reader is referred to Chapter 4 for more details

regarding how to derive plasticity models from tentative velocity fields.

3.2 Void Growth Models

Homogeneous yielding has been described via void growth models in the literature. Earlier

micromechanical treatment of homogeneous yielding was founded on mere consideration of iso-

lated voids. Of the notable models of this caliber are those proposed by McClintock [76], and Rice

and Tracey [77]. Later models were developed based on homogenization over a reference volume

element (RVE) in a periodic medium of voids. Gurson’s model for spherical and cylindrical voids

is among the most extensively known. This model sets a yield criterion for a porous material at

the macro scale, and correlates with an evolution law for a single microstructural variable, the void

volume fraction f . It assumes a plastically isotropic matrix.

Within the deformation process, however, anisotropies associated with matrix deformation and

void shape would emerge. Several extensions of the Gurson model have been developed over

the past decades to account for these anisotropies. For homogeneous yielding, Gurson’s model

and its extensions have set the caliber for decades. The Gurson–Tvergaard–Needleman (GTN)

model, for instance, follows Tvergaard’s and Needleman’s modifications to Gurson’s model to

encompass the effects due to void interaction and void nucleation [75, 142, 143]. In passing, the

Gologanu–Leblond–Devaux (GLD) model [89] extended Gurson for non-spherical voids. This

line of models was further extended into incorporation of plastic anisotropy in [14,95]. Alongside,

other micromechanics–based models, mostly in parametric rather than closed form, have been

developed for homogeneous yielding driven by shear. This mechanism was investigated in the

pioneering work of Fleck and Hutchinson [68] while failure under the same effect was missing in

work of the like.

A considerable fraction of work on shear-dominated ductile failure prediction in porous mate-

rials addresses supplementing existing Gurson-type yield criteria with damage models. Nahshon
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and Hutchinson [71], for instance, proposed a modified damage parameter (denoting porosity in

absence of shear) through the addition of a heuristic function of J3. This damage parameter, while

remaining of a heuristic nature, could not preserve the identity of a physical parameter such as

porosity. Morgeneyer and Besson [144] introduced a modified strain rate as function of the Lode

parameter based on a Gurson-type yield criterion in order to simulate the transition from flat to

shear-induced crack propagation. Other efforts in the same respect have been made in [145, 146].

Another class of work, including [16, 17, 147], examine failure mechanisms via cell-model evolu-

tion analysis. This class of analyses can be considered as benchmark, but are not well suited for

parametric studies due to high computational cost. Micromechanics–based models are thus more

extensively sought. Some researchers have striven to introduce such models founded on cell-model

calculations. Amongst the featured examples, proposed mainly for triaxial loading, is the model

introduced by Thomason [148, 149], later advanced by Benzerga [150] and Tekoglu et al. [140],

and that of Pardoen and Hutchinson [20], accounting for void growth and coalescence in a wider

range of porosities and void shapes.

The following subsections briefly introduce the essence of foregoing models and their limita-

tions.

3.2.1 Rice and Tracey

Rice and Tracey [77] characterized the flow field in an infinite medium made of an rigid–

perfectly plastic incompressible non-hardening material containing an isolated spherical void, and

subjected the material to remotely uniform tensile with superposed hydrostatic stresses. They

adopted a Rayleigh–Ritz procedure to evaluate the enlargement rate of the void. To this end, they

assumed a tentative velocity field composed of a remote strain rate, an expansion and a deviatoric

isochoric (volume-preserving) field. For the specific case of a triaxial field, the assumed velocity

field is of the following form, which consists of an incompressible expansion field superposed by

a linear field associated with a uniform deformation rate:

v = Dx+DDeq

(
R0

R

)3

x (3.3)
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with Deq =
√

2/3D : D denoting the remote equivalent strain rate, and D being the remote rate

of deformation tensor. R0 and R are the initial and current void radii, respectively, and x is the

position vector. In both low and high triaxiality ranges, D is found to obey an exponential form.

For sufficiently high triaxiality fields, for instance, D is written as

D = C exp

(
3

2

Σm

σ̄

)
(3.4)

where Σm and σ̄ are, respectively, the remote hydrostatic stress and material yield strength, and

C =
1

4
exp





∫ 1

0

[
A ln

A+
√
A2 −B2

2
+ A−

√
A2 −B2

]
dζ





where

A = 1− υ

2

1− 3ζ2

√
3 + υ2

, B =
3

2

√
1− ζ2

3 + υ2

υ = − 3DII

DI −DIII

where DI ≥ DII ≥ DIII are the principal components of the remote strain rate field. Under

axisymmetric tensile loading (υ = +1), C = 0.283. Based on more accurate dilatation rates,

Huang [151] suggested C = 0.427 for axisymmetric loading. For more general loading conditions,

Rice and Tracey proposed the following heuristic extension:

D = 2

[
α′ sinh

(
3

2

Σm

σ̄

)
+ βυ cosh

(
3

2

Σm

σ̄

)]
(3.5)

only for spherical voids and using Huang’s α′ = 0.427.

Rice and Tracey’s model ignores hardening and the interactions between voids. It also overesti-

mates void growth rates in moderate-triaxiality regions. Aside from that, the model is differential,

i.e. expressed based on remote strain rates rather than merely on stresses. Moreover, this model is

not coupled with microstrucrural parameters.
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3.2.2 McClintock and coworkers

Among the landmark differential criteria for predicting void growth rate are the models after

McClintock et al. [152] for the growth and coalescence of voids under combined tension and

shear for linearly viscous materials, and McClintock [76] regarding fracture by void growth under

generalized plane-strain conditions for linearly viscous and plastically hardening materials with

moderate hardening. In the former, the rate of variation in the mean void radius R = (a + b)/2

for an elliptical void with major and minor semi-axes a and b for a linearly viscous material was

obtained as
∂R

∂γ
=

R

2(1−N)
sinh (1−N)κ (3.6)

with γ denoting the shear strain, N being the hardening exponent, and κ = σ/τ the ratio between

the macroscopic normal and shear stresses. In the latter, the current normalized mean radius in a

linearly viscous and a plastic material were derived, respectively, as

ln
R

R0

= (σaa + σbb)
t

4µ
(3.7)

and

ln
R

R0

=
ε̄
√

3

2(1−N)
sinh

[√
3

2
(1−N)

σaa + σbb

σ̄
+
εaa + εbb

2

]
(3.8)

where (σaa, εaa) and (σbb, εbb) are the normal stresses and their conjugate strains along the major

and minor semi-axes, respectively, and (σ̄, ε̄) are the material yield strength and its conjugate plastic

strain. Moreover, µ denotes the viscosity coefficient, and t represents time (scaled in respect to the

total time).

3.2.3 Gurson and Extensions

The Gurson model considers three underlying assumptions in the homogenization problem

[33]:

(i) The RVE consists of a hollow sphere containing a concentric spherical void, and porosity f is

the only effective microstructural variable.
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(ii) Plastic flow within the matrix admits the J2 flow theory with an associated flow rule.

(iii) The trial velocity field consists of an isochoric, isotropic expansion field superposed by a

linear field that generates a uniform deformation rate. Having satisfied the boundary conditions,

the velocity field can be expressed as

v =
b3Dm

r2
er +D′x (3.9)

where b is the outer cell radius, Dm = 1
3
tr(D), and er is the unit vector along the radius and

directed outward. Accordingly, the microscopic yield criterion and flow rule read

σeq ≡
√

3

2
σ′ : σ′ ≤ σ̄ , d =

3

2

deq

σ̄
σ′ , deq =

√
2

3
d : d (3.10)

where deq is the microscopic equivalent rate of deformation, and the rest of the notions have been

defined in Paper 2. Details aside, the microscopic dissipation function π(d) = σ̄deq (only nonzero

inside the matrix volume, and zero in the void) homogenized over the RVE, and subsequent elimi-

nation of Dm and Deq leads to the following yield function:

Φ =

(
Σeq

σ̄

)2

+ 2q1f cosh

(
3

2
q2

Σm

σ̄

)
− [1 + (q1f)2] (3.11)

with q1 = q2 = 1. The porosity evolution equation corresponding to (3.11) may be written as

ḟ

1− f = Dkk =
Φ,Σm

Φ,Σeq

Deq (3.12)

which emanates basically from incompressibility within the matrix, where , is short-hand notation

with a derivative with respect to the underscored variable.

Several heuristic modifications, mainly based on micromechanical cell model calculations,

have been exerted onto Gurson’s basic model in order that the model be capable of represent-

ing limited strain hardening and void interaction effects as well as predicting void nucleation and
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coalescence. Tvergaard [143] introduced q1 and q2 factors in (3.11) to account for weak interac-

tions among voids. From an analytical solution to a hollow sphere under hydrostatic loadeding,

Perrin and Leblond [153] proposed q1 = 4/e ≈ 1.47 assuming q2 = 1, close to the value of 1.5

proposed by Tvergaard [143]. Subsequent cell model studies have demonstrated that q1 and q2

factors are not all-embracing. In particular, they have been shown to depend heavily on geometry

and stress state [46, 154].

As earlier stated in Chapter 1, a tentative understanding of the shear effect has been developed

in the literature in terms of the effect of the third invariant of the stress deviator, J3. Within the

existing body of models, this effect is basically of a heuristic nature. A subset of models, as

those in [71, 85], in particular, rely on a modification to the Gurson-Tvergaard-Needleman void

growth model [75, 78] to account for the effects of shear by virtue of J3. At the shear-dominated

limit, the rate of deformation D is associated with a vanishingly small trace, so that the main

damage parameter being the porosity does not evolve. Nahshon and Hutchinson [71], therefore,

added a heuristic term, as function of J3, to the damage evolution equation such that the effect

of shear could be incorporated via J3. Yet, the real physical process behind this heurism remains

elusive. Apart from being heuristic, these models tacitly assume that the Lode effect is rooted in the

homogeneous deformation process. However, cell model calculations at the micro scale [155–157]

have demonstrated that the effect of the Lode parameter on homogeneous yielding is not strong

enough to explain the experimental observations. In fact, a complete illustration of void growth

in shear cannot be feasible without a clear explanation of the anisotropies induced by intense void

elongation and rotation under the effect of shear as well as by the localized plastic deformation

realized during inhomogeneous yielding.

3.3 Void Coalescence Models

All models reported as void coalescence models describe inhomogeneous yielding processes

even though the majority of existing models in this regard are not based on real inhomogeneous

mechanisms. On the one hand, since homogeneous yielding is mainly driven by diffuse plastic

flow in the matrix, the ductility and/or strain to failure predicted by homogeneous plasticity models
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overestimates values measured from experiments. On the other hand, heuristic corrections with the

aim of quantitative improvement in this respect would be phenomenological, added to the fact that

the physical mechanism of flow localization that gives rise to failure remains elusive. Mechanism–

based analytical models derived from first principles would be, therefore, desirable so that the

material behavior is simulated with mere integration of a system of constitutive equations based

on a robust establishment of the physical process.

Modeling of inhomogeneous yielding in the existing literature is still in early stages. This can

be recognized from the majority of existing models pertaining to the growth regime, and consider-

ing the complexities and limitations arising when interpreting coalescence as a strain localization

phenomenon [141]. Established homogenization methods relying on clear separation of scales will

be rather idealistic [150]. Yet, the use of an elementary cell under periodic boundary conditions

proves efficacious, and volumetric averaging would remain valid in all deformation processes [33].

A first class of porous plasticity models account for the inhomogeneous process via a critical

microstructural parameter. Examples include a critical normalized lateral void size [13] and a

critical void volume fraction (porosity) [75]. In the latter approach, the post-localized deformation

process is simulated with a heuristic introduction of a porosity acceleration factor, without the

physics underlying the process being known [75, 97]. In a second class of models, homogeneous

and inhomogeneous yieldings are founded on intrinsic yield criteria. Mathematical models for both

processes are carried out through limit analysis. In doing so, homogeneous and inhomogeneous

plasticity models, distinguished as being diffuse and localized, respectively, are derived either

separately and combined into the so-called hybrid approach or in unification. Each category is

briefly introduced in the sequel.

3.3.1 Criticality models

Due to the complexities arising at the modeling of inhomogeneous yielding, earlier models pre-

dicted the onset of void impingement in terms of a critical internal state parameter. Depending on

the parameter of interest, the corresponding model can be uncoupled or coupled. The former can be

illustrated by void coalescence represented by the normalized lateral void radius
(
R/R0

)
c
, named
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void growth ratio. The critical void growth ratio is a constant at the limit of random void distri-

bution, and proves a function of stress triaxiality when the microstructure is periodic or clustered.

For an initial void relative spacing of 0.04, for instance, it varies between 4 and 25 as function of

triaxiality [13]. In the latter, however, the yield criterion is coupled with the state variable passing

through a critical value. In this respect, a critical void volume fraction fc has been pervasively

considered as a criterion for the onset of inhomogeneous yielding [75]. A recent study by Morin

et al. [72] has introduced a critical combination as (f + g)c, with g denoting a secondary porosity.

3.3.2 Failure in shear

One of the earliest models developed to predict failure under shear-dominated loading was that

introduced by McClintock [152] for the void impingement instant in linearly viscous materials.

Rather than being a yield function, this model is a micromechanical one that was expanded based

on the ability of a distorted void to touch the distorted cell boundaries at the vicinity of the major or

minor diagonals. In effect, this model is suggestive of a criticality perspective through an analytical

acquisition of the critical state. Following Eq. (3.6) for a constant κ ratio, the condition for voids

impinging along the longitudinal direction of the intervoid ligament reads

ln
L

R0

= ln

(√
1 + γ2

R

R0

)
(3.13)

where 2L is the intervoid distance along the shearing direction. All the same, the condition for

voids impinging along the vertical direction of the intervoid ligament reads

ln
H

R0

= ln

(
R

R0

)
(3.14)

with 2H being the intervoid distance along the direction normal to the plane of shearing. The main

downside within the above relations is considering plastic deformation as diffuse while the de facto

mechanism is localized around the ligament. Xue [158] introduced a modified heuristic damage

parameter D for shear-dominated loadings rooted in the criterion proposed by McClintock et al.
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in (3.13) as

D = KD(q1f +Dsh) (3.15)

where

KD =





1 forD ≤ Dc

1/q1 − fc

ff − fc

forD > Dc

(3.16)

and

Dsh =
ln
√

1 + γ2

L
2R

(3.17)

which is further approximated in terms of porosity and ε̄ in [158]. In (3.15) and (3.16), q1 is

the Tvergaard parameter, ff and fc are, respectively, the porosity at the onset of inhomogeneous

yielding and the critical porosity, and Dc = q1fc. The modified damage parameter D thus replaces

f in the G–T–N model.

3.3.3 Limit analysis–based models

Another subset of models, heuristic or analytical, relies on the attainment of some plastic limit

load over an inter-void ligament within an elementary cell. Thomason [159] was the first to employ

this principle to predict the onset of void impingement by internal necking. His first model was

two-dimensional, and was later extended by consideration of a square-prismatic cell containing a

coaxial square-prismatic void [149]. The sub-volumes above and below the void were considered

as rigid, and the axial stress that would create plastic flow in the intervoid ligament was calculated

numerically. Thomason used discontinuous but kinematically admissible velocity fields to obtain

upper-bound estimates of the limit load. He did not provide an analytical solution to the problem.

Instead, he obtained numerical solutions and proposed a heuristic formula estimating the limit load

at localization as a function of geometric parameters. Subsequent improvements of his model have

focused on deriving evolution equations of the microstructural variables [20, 150] with heuristic

modifications to Thomason’s formula. Nevertheless, none of the above models takes into account

combined tension and shear loadings.
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Following the work of Thomason, Benzerga [150] extended the applicability of Thomason’s

model into penny-shaped cracks characterized by void aspect ratios significantly below unity. After

a decade-long juncture, work in this field received another headway with the featured microme-

chanical models proposed by Pardoen and Hutchinson [20] and Nahshon and Hutchinson [71])

for triaxial and shear-dominated loading conditions, respectively. The latter introduced a modi-

fied damage parameter (denoting porosity in absence of shear) through the addition of a heuristic

function of J3. This damage parameter, while remaining of a heuristic nature, could not preserve

the identity of a physical parameter such as porosity. Meanwhile, Morgeneyer and Besson [144]

introduced a modified strain rate as function of the Lode parameter based on a Gurson-type yield

criterion in order to simulate the transition from flat to shear-induced crack propagation. In retro-

spect to the work of Thomason [149] and Benzerga [150], Tekoglu et al. [140] extended the realm

of those models into combined tension and shear.

More recent studies tend to describe homogeneous and inhomogeneous yieldings under gen-

eral loading conditions by combining the effects of various independent stress–based parameters

in a unit cell. Tekog̃lu [160] introduced an effective method to keep track of three independent

parameters including the Lode parameter, stress triaxiality, and the normal-to-shear stress ratio.

Alternatively, Liu et al. [161] developed, based on energy principles in a derivative format, a uni-

fied method to establish a consistent criterion accounting for tensile and shear-dominated types of

void coalescence.

It remained for Benzerga and Leblond [45], the present author with coworkers, and Morin

and coworkers [97,141] to develop inhomogeneous plasticity models under combined tension and

shear from first principles, with the cell-level plastic deformation considered localized within the

intervoid ligament. Benzerga and Leblond [45] derived a fully analytical expression for the co-

alescence of voids under triaxial loading from limit analysis over a cylindrical cell embedding a

coaxial cylindrical void. Incidentally, their solution revealed some inaccuracy in the fitting proce-

dure proposed by Thomason [148]. More recently, Morin et al. [141] developed improved models

by considering continuous and generalized discontinuous velocity fields. Their models provide,
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in general, tighter upper bounds to the exact yield surface, albeit for different ranges of structural

paramaters. The models in [45, 141] are valid under axisymmetric loadings.

Within the present work, the criterion in [45] will be revisited and extended into a state of

combined triaxial and shear loading by adding a linear shear-induced velocity field. Thanks to the

discontinuous velocity field invoked in [45], a piecewise quadratic yield function will be obtained.

See further details in Chapter 5.

The main body of mathematical models of ductile fracture developed from first principles is

representative of a periodic or quasi-periodic medium. The effect of void distribution can be dom-

inant when scaling becomes a matter of prominence. A well-motivated discussion on the effect of

void distribution can be found in [47, 48, 160, 162–166].

3.4 Evolution Equations of State Variables

The state of the art in ductile fracture modeling relies on a set of yield functions or flow po-

tentials for porous materials. Without supplementing these functions with evolution equations for

the state variables, they can be essentially used merely for predicting the onset of inhomogeneous

yielding, which is occasionally considered sufficient to estimate strains to failure as a function

of loading parameters [88, 167]. For ductile fracture simulations, however, yield functions must

be supplemented with evolution laws for effective microstructural parameters. These evolution

laws can be presented either as explicit functions of the current state or in time rate form. Evolu-

tion equations corresponding to homogeneous deformation have been developed to a remarkable

extent in the past decades. In particular, the evolution of void aspect ratio and orientation associ-

ated with homogeneous deformation has been represented in mathematical rate form by Gologanu,

Ponte Castañeda, and coworkers [91, 92, 94]. In a recent numerics–based study, Madou et al. [83]

revisited the basic form of evolution equation for void shape and orientation in [91,92,94] utilizing

elastic Eshelby tensors, and proposed modified equations that are calibrated in terms of porosity

and stress triaxiality.

The current state of the art with regards to post-localized evolution equations is, however, not

sophisticated to the expected level. The first endeavors on this task was undertaken by Benzerga
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[86, 150] as well as Pardoen and Hutchinson [20]. The former derived evolution equations for the

post-localized effective damage state variables reflected through the void relative spacing χ and

void aspect ratio w on the basis of boundary conditions and matrix incompressibility. The latter,

however, derived phenomenological equations for the post-localized evolution of porosity f and

void aspect ratio w based on cell model calculations. Meanwhile, an evolving shape factor γ was

introduced by Benzerga [150] along with w in the spirit of void shape changes in the post-localized

regime. With a void shape taken to evolve from spheroidal at the onset of inhomogeneous yielding

by internal necking to conical at complete failure, the shape factor would evolve from γ = 1/2 to

γ = 1.

Under a combined effect of tensile and shear loadings, however, homogeneous yielding is

coupled with the effects of void elongation and rotation. Hence, the existing equations are not

consistent with the post-localized state evolution under the effect of shear. To the best of the

author’s knowledge, evolution equations of this capacity are still lacking in the literature. Chapter

6 in the present work introduces this set of equations.

3.5 Unified vs. Hybrid Models

Based on analytical limit analysis, homogeneous and inhomogeneous plasticity models can be

derived either independently and combined in a hybrid approach or based on the same velocity

fields in a unified fashion. There are pros and cons associated with the hybrid perspective, consid-

ering different cell-level geometries before and after the onset of inhomogeneous yielding. Among

its notable virtues is better coincidence with numerical results in comparison to that in the unified

model, esp. at low porosities and/or higher shear stresses. Nevertheless, the hybrid model ex-

hibits corners in its corresponding yield surface, which constitutes some undesirable features from

a computational viewpoint.
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(a) (b)

Figure 3.3: (a) Schematic comparison between a unified and a hybrid yield locus (e.g. consti-
tuted by the Keralavarma–Benzerga homogeneous yield model [14] and the here–derived inho-
mogeneous criterion. See Chapter 5); (b) schematic stress–strain curves in an arbitrary evolution
problem corresponding to a hybrid and a unified model (reprinted with permission from Elsevier,
Ltd).

Figure 3.3 depicts an example hybrid model invoking the Keralavarma-Benzerga [14] and uni-

fied models before and after inhomogeneous yielding occurs. Upon the use of a more general

velocity field resembling that utilized by Gurson, Morin et al. [97] introduced a unified model

accounting for both homogeneous and inhomogeneous yieldings. Within the confines of this re-

search, the same shear velocity field employed in the derivation of the inhomogeneous yield cri-

terion is further superposed to a more universal counterpart of the unified model in [97] under

combined axial, lateral, and shear loading (see Paper P3 for derivations). See Chapter 5 for a

clearer image on the unified yield criterion derived in the present work.

The plastic framework within the present context is developed based on a hybrid model. A

hybrid model may trigger numerical issues resulting from an ill-defined normal to the surface at

the point of transition between the two yield surfaces, except when a multi-surface formulation is

employed. The latter operates in such a way that the plastic rate of deformation is expressed as a

linear combination of all the active surfaces, with the multipliers equaling the plastic multipliers

associated with every yield criterion. For the sake of simplicity, however, one can refer to only
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one surface at a specific step, and disregard other less effective surfaces. On the other hand,

voids at the post-localized process can interconnect only along a discrete set of directions, each

possible direction uniquely identified by a unit vector normal to is associated plane of localization

n. Accordingly, there are k ≥ 1 post-localized yield functions affecting the constitutive framework

(a detailed elaboration on the value of k will be given in Chapter 6). The hybrid and/or multi-

surface model should then consist of k + 1 yield surfaces, with k denoting the selected number of

possible localization systems and 1 pertaining to homogeneous yielding.
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CHAPTER 4 MODELING METHODOLOGY

Considering the discussed epistemology of ductile fracture modeling in Chapter 1, the present

thesis partly aims at developing a micromechanics-based model from first principles that is equipped

with measurable and/or observable internal parameters. Not only can such a model predict the crit-

ical parameters at failure instants but it can also mimic the active physical fracture processes. The

present chapter addresses the principles underlying the analytical modeling and numerical imple-

mentation of models in the course of this work. It thus begins with a brief introduction on homoge-

nization and limit analysis, as the cornerstones of modeling in the present work. The model should

further be well predictive. The following sections would then comprise a briefing over a recently

developed finite element-based numerical method for the assessment and potential calibration of

the derived models. On the other hand, due to the very nature of inhomogeneous deformation,

plastic strains can, in general, localize within various possible planes while one plane proves the

most effective at every current state. This chapter will, therefore, conceptualize the notion of mul-

tiple localization systems that can realize the inhomogeneous yielding mechanism that is true to

the spirit of the derived models. For complete simulation purposes, however, the model should

eventually be supplemented with mechanism-based evolution equations for the internal state vari-

ables. This chapter will further present an overview of the numerical path towards the integration

of the constitutive framework that encompasses the evolution equations.

4.1 Homogenization Theory

Homogenization is among the most pivotal theories, generally, in all studies related to porous

materials, and in pertaining ductile fracture processes in particular. The interest towards homog-

enization methods stems from the inherent anisotropies in ductile materials at sufficiently small

scales. These anisotropies can be attributed to the intrinsic nonlinearities within the constitutive

behavior or to the geometric nonlinearities arising in presence of finite strains and rotations. The

former is partly rooted in the micro-scale or atomic-scale morphology. Examples in this respect
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abound in engineering metals. Homogenization proves efficacious in a range as wide as to include,

for instance, steel and aluminum alloys to fiber-reinforced elastomers. The former is representa-

tive of poly-crystalline aggregates of randomly oriented single crystals and the latter is a two-phase

material system consisting of a second (inclusion) phase distributed randomly or periodically in a

surrounding matrix [168].

4.1.1 Characterization of classical homogenization

The basics of classical micromechanics-based homogenization are founded on the Hill-Mandel

theorems [169, 170]. Depending on the type of boundary conditions at the cell level, there are

basically two approaches possible: the kinematic and the static approach.

Kinematic boundary conditions are conceived of when the reference volume element (RVE) is

subjected to uniform boundary strain rates, as stated in Eq. (3.1) and repeated herein for ease of

reference. On this account, there exists a constant tensorD such that

∀ x ∈ ∂Ω v = Dx (4.1)

where Ω and ∂Ω represent the cell domain and boundary, respectively, and x is the position vector.

All the same, static boundary conditions are considered such that the local tractions at the boundary

are equal to those induced by an applied macroscopic stress tensor Σ through

∀x ∈ ∂Ω σn = Σn (4.2)

with n being the outward boundary unit normal.

Under both circumstances, the Hill-Mandel Lemma states that, letting v be a kinematically

admissible velocity field and σ a statically admissible stress field, it can be deduced that

〈σ : d〉Ω = Σ : D (4.3)

where Σ = 〈σ〉Ω and D = 〈d〉Ω denote volume averages of micro-scale stress and deformation-

50



rate tensors, and Ω represents both the RVE domain and its volume. The reader can consult [33]

for more details.

Remark 1: The Σ = 〈σ〉Ω identity is a definition in the kinematic approach whereas it is a

theorem in the static approach. The latter can follow from a uniform admissible microscopic rate

of deformation d in the Hill-Mandel lemma in (4.3) under static boundary conditions. See [33] for

more details.

Remark 2: In the Hill-Mandel lemma, σ and d need not relate through a constitutive conjunc-

tion.

Remark 3: Under kinematic boundary conditions, v should admit the kinematic relation in

(4.1) whereas, with static boundary conditions, v is arbitrary. Moreover, σ should be a self-

equilibrating stress field (i.e. divσ = 0 in Ω \ ω, with ω denoting the void volume) that obeys the

traction-free boundary condition, i.e. σn = 0 on ∂ω. Alternatively, one can write

Σ = (1− f)〈σ〉Ω\ω (4.4)

Besides being self-equilibrating, σ is arbitrary under kinematic boundary conditions, whereas it

must admit (4.2) under static boundary conditions.

Other homogenization-based methods have been supplied along with those founded on classi-

cal homogenization. A brief overview in this regard will be given in Sec. 4.7.1.

4.1.2 Inhomogeneous yielding and homogenization

As earlier pointed out in Chapter 3, inhomogeneous yielding, upon definition, does not corre-

spond to strain localization at the micro scale on the condition of Rice [61]. Rather than infinite

concentration, it is represented by the concentration of plastic strains within a layer of a finite

thickness of the same order as the void size. It may, however, be rational to seek inhomogeneous

yielding in terms of a localization mechanism at a larger scale incorporating the effect of voids

via a homogenized model. Perrin [171] was amongst those who tried to employ this method to

the calculations carried out by Koplik and Needleman [46] upon a mere Gurson-like approach,
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where he figured out that the Gurson model was capable of predicting strain localization in layers

coincident with invervoid ligaments only for rather large porosity levels [97].

On the other hand, homogenization-based models tacitly rely on the fundamental assumption

of separation of scales [172]. That is, the average dimension of heterogeneities is way smaller than

the dimensions that can influence the macroscopic response. This is generally true for homoge-

neous yielding. Under inhomogeneous yielding circumstances, however, the void deforms within

the confines of a small zone within which the macroscopic response variation, in terms of stresses

and strain rates, can be much more considerable. This implies that the notion of a representative

volume element (RVE) is questionable in the context of coalescence modeling. Nevertheless, the

underlying principles of volumetric averaging correlating local and average material responses are

still valid at the unit cell level notwithstanding the presence of rigid-like zones emanating from

elastic unloading. Approaches of this kind thus represent the best way possible at present, in

absence of a clear-cut homogenization theory of coalescence [97].

4.2 Limit Analysis

As a branch of functional analysis, limit analysis is a powerful theory that allows for the attain-

ment of limit loads in structural mechanics problems [173,174]. The method has been extensively

employed in soil mechanics [175, 176], structural mechanics [177–180], as well as in metal form-

ing [181]. One of the most interesting applications of the theory in recent decades has been in the

field of mechanics of materials, particularly for porous materials. Its efficacy in this regard makes

it applicable in the analytical derivation of micromechanics-based models as well as numerical

assessment of the accuracy of existing models.

Classical limit analysis originally applies to ideally plastic materials admitting infinitesimal

strains. Plastic deformation is assumed to be incompressible, with the dense matrix considered

rigid-ideal plastic admitting a flow theory –such as J2– along with an associated flow rule [173,

182]. Sequential limit analysis, on the other hand, has more recently been proposed, mainly after

Yang [183], as a heuristic extension to hardening plastically deformable materials, that incorporates

large displacements and strains. Leblond et al. [184] demonstrated, in a recent revisiting of the
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concept, the conditions to the applicability of sequential limit analysis. Consequent to comparing

the general elasto-plastic evolution equations to their counterparts for classical and sequential limit

analysis, they deduced that, unlike in classical limit analysis, sequential limit analysis is strictly

prohibitive of elasticity.

The classical theory of limit analysis is invoked in both the derivation and assessment of effec-

tive yield criteria in the present work. Upon definition, it follows the underlying hypotheses and

conditions outlined below [184]:





q̇ 6= 0 Stationary plastic deformation

divσ = 0 Equilibrium

d = dp Strain rate decomposition

dp = Λ̇
∂Φ

∂σ
Flow rule

Φ(σ) ≤ 0 , Λ̇ ≥ 0 , Φ(σ)Λ̇ = 0 Kuhn-Tucker compatibility conditions

B.C. Boundary conditions

(4.5)

where q denotes the kinematic vector conjugate with the external load vector Q. Condition (4.5)3

stems from the underlying premise that, after the attainment of the limit load, plastic deformation

becomes stationary, i.e. Q̇ = 0. See [184] for proof.

4.3 Effective Dissipation and Yield Criterion

Within the kinematic framework in limit analysis, the effective yield criterion at the macro

scale Φ(σ) = 0 lies in the identification of a plastic dissipation π(d), defined over the convexity

domain C, as [185]:

π(d) = supp{σ : d | σ ∈ C , ∀d} (4.6)

where the support function, denoted with supp{f}, is defined as the smallest closed set outside

which the function f vanishes identically [186]. Note that dmust be plastically admissible, admit-

ting Eq. (2.9). On account of the Hill-Mandel lemma in (4.3), Π(D) can be defined as the effective
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plastic dissipation at the macro scale, given by

Π(D) = inf
v∈K(D)

〈π(d)〉Ω (4.7)

where Ω refers to the spatial domain over which macroscopic quantities are defined, 〈·〉Ω stands

for averaging over Ω, and C is the microscopic reversibility domain (the boundary of which is the

yield surface). The veracity of the infimum involved in the definition of Π lies in the fact that the

exact assessment of the velocity field that gives rise to a minimum Π is literally impossible for

arbitrary stress states, even for relatively simple geometries. However, tentative velocity fields can

be adopted such that the evaluated Π is close to minimum. Also, the set of kinematically admissible

velocity fields, K(D), is made of incompressible fields (vk,k = 0) that are compatible with the

overall deformation imposed through D. With the dense matrix considered incompressible, the

microscopic rate of deformation d must be traceless. Otherwise, Φ will be infinite. By way of

analogy, Π can be expressed as the following support function over the macroscopic reversibility

domain C:

Π(D) = supp{Σ : D | Σ ∈ C , ∀D} (4.8)

where

C = {Σ | ∃ σ ∈ C}

In a material obeying the J2 flow theory, for instance, the effective dissipation, with reference

to (2.3.1) and (2.24), can be expressed as follows [33]:

Π(D) = 〈σ̄deq〉Ω = (1− f)〈σ̄deq〉Ω\ω (4.9)

Another case that lends itself to a simple expansion of Π(D) is when the material obeys an

associated Hill-type anisotropy. In the latter case, one can utilize the same expansion as in (4.9),

but with the following deq [14, 95]:

d2
eq =

2

3
d : ĥ : d (4.10)
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where (̂.) is representative of a formal inverse for a fourth-order tensor such that, for instance,

ĥ : h = ĥ : h = J, with J defined in Chapter 2. Here, h is the anisotropy tensor in the deviatoric

stress space. See [14, 95] for more information.

Following a combination of limit analysis and homogenization theories, the effective yield cri-

terion of a material containing microvoids can be determined using the inequality of limit analysis

written as [33]

∀D, Σ : D ≤ Π(D) (4.11)

where Σ and D denote the macroscopic stress and rate of deformation tensors, defined as the

volume averages of their microscopic counterparts σ and d as defined in advance.

If the dissipation function is differentiable, then the effective yield surface is smooth, and (4.11)

is equivalent to:

Σ =
∂Π(D)

∂(D)
(4.12)

where D is no longer arbitrary as in (4.11) but represents the rate of deformation correspond-

ing to Σ through the macroscopic flow rule. To sum up, if the effective yield surface is smooth,

then (4.12) constitutes its parametric equation. Otherwise, inequality (4.11) determines the effec-

tive reversibilty domain C (which is different from the microscopic one C). In order to solve the

inequality, one may recourse to graphical methods. See clear indications in Papers P1 –P3 .

Remark 1: There is often a trade-off between the accuracy of the velocity field and the ana-

lytical simplicity of the resulting yield criterion. In most cases, a closed-form yield function is not

attained except upon the least possible degree of continuity within the velocity field. With a robust

numerical implementation of the constitutive framework, however, a parametric representation of

the yield function devoid of a closed-form stress-based expression would suffice.

Remark 2: If the velocity field is discontinuous across an interface S then an additional term

must be added to (4.9), which writes

1

Ω

∫

S

suppσ∗∈C
{
t∗ · JvK

}
dS (4.13)
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where JvK is the velocity jump across the interface and t∗ the traction acting thereon. Accordingly,

in the case of a discontinuous velocity field, the above expression can be resolved as the sum of

volumetric and surface terms:

Π = Πvol + Πsurf (4.14)

where





Πvol = c〈σ̄deq〉Ωlig
= c(1− fb)〈σ̄deq〉Ωlig\ω

Πsurf =
1

Ω

∫

Sint

σ̄√
3

∣∣JvtK
∣∣dS

(4.15)

with JvtK denoting the discontinuity of tangential velocity, as identified in (4.13), and fb is the

porosity within the ligament, here termed band porosity. For inhomogeneous yielding occurring

by internal necking or shearing, the above-mentioned discontinuity is triggered across the rigid-

plastic interfaces Sint with a basic Gurson-like velocity field employed. More specific details will

be provided in Chapter 6.

Remark 3: In principle, D can be eliminated from the parametric equation (4.12) owing to

∂Π/∂D being positively homogeneous of zero degree. Equation (4.12) may thus be expressed

in the form Φ(Σ;α) = 0, with Φ denoting an effective yield function, expressed in terms of the

macroscopic stress tensor Σ and a set of other internal state variables denoted with α that, in the

realm of ductile fracture, may contain porosity f , σ̄ or its conjugate ε̄, void aspect ratio w, etc..

Otherwise, the resulting model could be expressed in parametric form, i.e. in terms of the ratios

among macro-scale strain rate components. On account of the microscopic plastic flow obeying

Drucker’s stability postulate –equivalent to Hill’s principle of maximum plastic work–, it can be

shown (through the application of the Hill-Mandel lemma, see [33] for more details) that the same

principle holds at the macro scale. As a consequence, the macroscopic domain of elasticity C is

convex, the plastic rate of deformation Dp belongs to the hypercone of normals to the effective

yield surface Φ, and the macroscopic flow rule for a smooth Φ obeys normality.
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4.4 Numerical Limit Analysis

The calculation of limit loads using the theory of limit analysis is subject to errors, e.g. con-

cerning the quality of the velocity fields adopted in the kinematic approach. Thus, various groups

have developed computational frameworks for computing exact limit loads. We shall commonly

refer to such frameworks as "numerical limit analysis". This method has proven efficacious in the

assessment and on-demand calibration of existing ductile fracture models as well as development

of enhanced models. It is rooted in mimicking the current microstructural state, pertaining to ho-

mogeneous yielding or a state of incipient inhomogeneous yielding, based on single-step plastic

analysis which corresponds to the problem of small-strain plasticity with no elastic domain. Until

quite recently, the most prevalent method in numerical limit analysis was by developing special

finite element-based solutions. Since the basic problem is specific to rigid-perfectly plastic ma-

terials, finite-element solutions are difficult to formulate properly and are susceptible to various

numerical issues [175, 187, 188]. An alternative, rather recent, method consists of using standard

finite element formulations for numerical limit analysis. This method was devised by Leblond

and coworkers [97, 140, 141, 189] and is briefly outlined herein. This method lies in the equiva-

lence between the classical and a modified limit analysis method. This equivalence relies on the

finite-element method using an implicit algorithm to the plastic correction of elastically predicted

stresses through a single large step with no geometry evolution. As a consequence, a one-to-one

correspondence can be drawn between q̇ and q(1), v and u(1), and between d and ε(1) with q(1),

u(1) and ε(1) denoting the final kinematic vector, displacements and strains, respectively. Upon

a load increment being large enough so that elastic strains can be disregarded compared to their

plastic counterparts, the classical limit analysis conditions in (4.5) will become equivalent to the
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following [141, 189]:





q(1) = q(1) − q(0) 6= 0 Stationary plastic deformation

divσ(1) = 0 Equilibrium

ε(1) = ε(1) − ε(0) ≈ εp Strain decomposition

εp = ∆Λ
∂Φ

∂σ
Flow rule

Φ(σ) ≤ 0 , ∆Λ ≥ 0 , Φ(σ)∆Λ = 0 Kuhn-Tucker compatibility conditions

B.C. Boundary conditions

(4.16)

with σ(1) and ∆Λ denoting the ultimate stresses and plastic multiplier incremented through the

whole step, respectively.

A clear consequence of limit analysis with this attitude is that elastic strain rates vanish when

the limit load is reached. To this end, the elastic moduli should disappear from the equations and,

in turn, plasticity imposes an incompressible velocity field on the material. To this end, the base

material of the unit cell should be elastic-perfectly plastic in effect. Accordingly, a high value of

Poisson’s ratio, close to 0.5, can be enforced so that plastic incompressibility is respected. The

value considered in [96, 97, 140] and used herein is ν = 0.49, which maintains a nearly-isochoric

velocity field and would not lead to singular solutions. Further, a typical yield strength to Young’s

modulus ratio of σ̄/E = 0.000225 has been considered, which correponds to a Young modulus of

E = 4444.5σ̄.

The commercial tool ABAQUS was used in the present work to carry out the numerical calcu-

lations. Inasmuch as numerical cell-model calculations in this study are primarily meant to validate

the analytical yield criteria, the FEM models were featured to include a unit cell with a geome-

try identical to that characterized in Chapter 6 admitting quasi-periodic boundary conditions (the

term quasi denoting the fact that the considered elementary cell is not space-filling). The analysis

procedure briefed above allows for any alternative space-filling model with no significant increase

in the computational demand. Yet, the least uncertainty lies within the numerical and analytical
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cells with identical geometries. Hence, a cylindrical cell containing a cylindrical void has been

considered in the present context for the numerical assessment of limit loads at the onset of inho-

mogeneous yielding. The limit stress value for a frozen microstructure is sought for at each FEM

analysis. To this end, the equilibrium equations are to be solved on the basis of initial geometric

specifications rather than the deformed state in order that the calculated stress values correspond

to a well-defined initial configuration. This can be achieved through switching off geometric non-

linearity in ABAQUS (NLGEOM=No; see [190] for more technical details).

(a) (b)

x1 x2

x3

bc bc bc
bc
bc

Figure 4.1: (a) One half of a cylindrical cell, (b) a numerically well-conditioned mesh for numerical
limit analysis over a cylindrical RVE [15] (reprinted with permission from Elsevier, Ltd).

Figure 4.1 depicts a schematic half-cell with symmetry conditions imposed on the meridian

plane as well as an example numerically well-conditioned mesh employed in the interest of the

assessment of models derived within the realm of this work. Anywhere in a periodic cell, the

displacement u at field point x would write:

u(x) = (E + Ω).x+ ũ(x) (4.17)

where E is the macroscopic strain tensor, Ω the (skew-symmetric) macroscopic rotation tensor

and ũ a periodic field. For any two points in periodic correspondence, one would therefore write:

∆u = (E + Ω).∆x (4.18)
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where ∆u is the difference in displacement between the points separated by the vector ∆x. For a

cylindrical cell, (4.18) cannot be applied to pairs of points in periodic correspondence since such

pairs do not exist. Instead, one ought to impose similar conditions, thus its name quasi–periodic.

In this respect, the macroscopic strain enforced on the cell is represented by the tensor:

E = E11(e1 ⊗ e1 + e2 ⊗ e2) + E33e3 ⊗ e3 + E31(e1 ⊗ e3 + e3 ⊗ e1) (4.19)

or in matrix form

E =




E11 0 E31

0 E11 0

E31 0 E33




where

E11 = E22 ≡ ln

(
L

L0

)
≈ U1

L0

E33 ≡ ln

(
H

H0

)
≈ U3

H0

E31 ≡
Ut

2H0

(4.20)

Here, U1 denotes a prescribed displacement on the lateral surface (see Papers P2 and P3 for

details), whilst U3 and Ut are, respectively, the normal and tangential displacements prescribed on

the top surface.

On the other hand, the macroscopic rotation tensor must be of the form:

Ω = Ω31(e3 ⊗ e1 − e1 ⊗ e3) (4.21)

The simplest choice for Ω in (4.18) would be to take Ω = 0. However, this would entail a vertical

displacement on the lateral surface. To avoid this, one can choose Ω13 = −Ω31 = E31. For the

cylindrical cell considered, this choice will considerably simplify the formulation of multi-point
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constraint conditions.

In matricial form, the strictly periodic boundary conditions (4.18) would read:





∆u1

∆u2

∆u3





=




E11 0 2E31

0 E11 0

0 0 E33








∆x1

∆x2

∆x3





(4.22)

The above are further replaced by the following quasi-periodic conditions:

• On the top surface, ∆u = u(x1, x2, H)− u(x1, x2,−H) and ∆xT = {0, 0, 2H} so that:





∆u1 = 4E31H

∆u2 = 0

∆u3 = 2E33H

(4.23)

• On the plane Ox2x3,

u1(0, x2, x3) = 0 (4.24)

• On the lateral surface (x2
1 + x2

2 = L2, −H ≤ x3 ≤ H) multi-point constraints are imposed

so that the nodes lying on a semi-circle remain on a semi-circle of radius consistent with

the prescribed value of E11. Let uref be the displacement of some reference node on the

semi-circle at some height x3, say xT = {L, 0, x3} and ∆u = u(x1, x2, x3)− uref , then:





∆u1 = E11(x1 − L)

∆u2 = E11x2

∆u3 = 0

(4.25)

In particular, to simulate coalescence states whereby rigid zones preclude lateral straining, one

should take E11 = 0, hence U1 = 0. Under such circumstances, conditions (4.25) state that the
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circles move rigidly.

Since the ultimate load value is not known as such, each stress component for the overall unit

cell is calculated in obedience to a simple volume averaging, which can be written as

Σ = v(n)σ(n) (4.26)

with summation implied on n, where v(n) = V (n)/Ω is the volume fraction of the n’th element

with respect to the whole unit cell (with Ω being the total cell volume). See Papers P2 and P3 for

details.

4.5 Multi-Surface Modeling

Following the additivity premise declared in Chapter 2, the total rate of deformation tensor D

is decomposed in the following format, with the elastic and the plastic parts stemming from the

hyperelastic and hypoelastic laws stated in Eq’s (2.16) and (2.18):

D = De +Dp (4.27)

with

Dp =
m∑

k=1

Λ̇kN k , N k =
∂Φk

∂σ
(4.28)

whereDpk’s belong to all effective yielding mechanisms, withm denoting the number of all poten-

tially active mechanisms. Within the realm of porous plasticity, active mechanisms can comprise

homogeneous yielding as well as inhomogeneous yielding with strains localized inside planes or

along columns. See Chapter 8 for concepts. Notably, voids during the inhomogeneous process

can interconnect inside various possible localization planes accommodating void interactions in

different directions. A clear elaboration on this concept will be provided in Chapter 6.
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4.6 Time Integration

To the purpose of simulating ductile fracture models, the yield function generally represented

by Φ([V ]) = 0 would not be beneficial unless supplemented with proper evolution equations for

the internal state variables denoted with [V ], normally termed ˙[V ]. The constitutive framework

then comprises a set of independent state variables (denoted with [V ]), to be evolved implicitly, and

(potentially) another set of dependent state variables that are post-processed and can be expressed

in terms of the independent ones. Further illustrations regarding the specific state variables during

the homogeneous and inhomogeneous processes will be provided in Section 6.4 as well as Paper

P7 . Associated with the vector of independent state variables [V ] is a residual vector, so defined

as the numerical difference between the direct and the differential time rates. That is

[R] =
[V ]− [V ]0

∆t
− ˙[V ] (4.29)

with [V ]0 and [V ] denoting the state variables at the beginning and end of every time step, respec-

tively. Within the chosen microstructural simulation, not all of the involved internal state variables

are independent. Rather, some are proven to function in terms of one or more parameters within

the (f, w,n(3),n) set. The least possible set of independent state variables should then consist of

the following elements:

V =
[
σ′, σm, f, ε̄, s

]T (4.30)

where σ′ and σm denote, respectively, the deviatoric and mean normal stresses, and s = lnw is the

void aspect ratio in natural logarithmic form. More details in regards to the specific equations will

be provided in Chapter 6.

The Newton-Raphson procedure is then employed iteratively to solve the [R] = 0 equation

system at every time step:

[V ](i+1) = [V ](i) −
[
∂[R]

∂[V ](i)

]−1

[R] (4.31)
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where the Jacobian matrix ∂[R]/∂[V ] can be evaluated at every iteration within the time step or

kept constantly equal to the value at the beginning of the time step, and superscript i denotes the

iteration number. Equation (4.31) is repeated until the residual vector [R] lies within a vector of

specified tolerances.

Finally, the consistent tangent matrix (mainly developed for global equilibrium, as in a finite

element-based analysis), denoted by Ltan (e.g. DDSDDE in ABAQUS) is written as

Ltan =
1

∆t

(
∂σ̃′

∂D̃
+ I ⊗ ∂σ̃m

∂D̃

)
(4.32)

which involves the following constituents:

[
∂V

∂D̃

]
= −

[
∂[R]

∂[V ]

]−1[
∂R

∂D̃

]
(4.33)

where use has been made of the same Jacobian as introduced in (4.31).

4.7 Further Notes on Techniques Not Used

4.7.1 Alternative homogenization methods

A distinctive line of work in the classical homogenization field is based on an alternative

method in regards to the nonlinear responses of heterogeneous materials. A considerable frac-

tion of work in this field has been built upon the pioneering Hashin-Shtrikman variational method

for linearly elastic composites [191] to extract the elastic and overall response of nonlinearly elas-

tic materials, including [192, 193]. Further, based on the use of a "linear comparison composite"

(LCC) analytical method, Ponte Castañeda [194, 195] developed more advanced variational prin-

ciples to improve the bounds to the Hashin-Shtrikman and Beran-Milton (3-point) models for

nonlinear composites. Additional research work includes, yet is not limited to, the methods pro-

posed by Suquet [196] concerning power-law or ideally plastic composite materials, the Lurie and

Cherkaev method [197], and that of Milton and Serkov [198]. A large cache of work also belongs

to Ponte Castañeda and coworkers, who extended the realm of nonlinear homogenization theories

64



in various respects or for different materials [168, 199–201]. In essence, these models are based

on the development of an effective strain-energy density function. As earlier stated in Sec. 4.2,

there are serious limitations to the classical homogenization theory apropos of modeling void co-

alescence. Just as limit analysis based on volumetric averaging can be used to obtain solutions

for inhomogeneous yielding processes, so can the class of models developed by Ponte Castañeda

and coworkers. Yet, models of this caliber for porous materials remain to be developed. By far,

experience with the modeling of homogeneous yielding with, for instance, ellipsoidal voids has

it that Ponte Castañeda-type methods are far from being precise except after significant heuristic

modifications or tedious analytical enhancements (such as those employing the so-called second

order homogenization). Therefore, both for the sake of simplicity and until a well-posed theory of

homogenization for void coalescence is achieved, we will adhere to limit analysis combined with

volumetric averaging.

Along with analytical models, numerical methods have also been proposed to compute the

effective mechanical response in multi-phase materials. FFT-based analysis, with FFT standing

for "fast Fourier transform", as an example extensively used method, was originally introduced

by Suquet and coworkers [202–205] for the effective and local response in heterogeneous me-

dia upon a composite image, where heterogeneity relates to some spatial distribution of different

phases. The same method was later adapted for the plastic analysis of polycrystals, where the

heterogeneity lies in the spatial distribution of crystals with mechanical properties changing with

orientation [206–209]. This method can lend itself as a counterpart to the finite-element method

for the global (spatial) analysis of boundary-value (BV) problems. In large-scale simulations, e.g.

with heterogeneities, the FFT method can significantly accelerate the analysis process thanks to

the use of stresses and strains in lieu of tractions and displacements, respectively. A recent study

has demonstrated a two-order of magnitude improvement in the computational cost in the analysis

of phase-transforming (e.g. shape-memory) materials [210]. For single-cell calculations, however,

FFT bares no perspicuous advantage over FEM. The present work, however, is centered around the

constitutive modeling of porous plasticity under combined tension and shear, with a brief portion
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to demonstrate the capability of the model in solving BV problems. Considering the extensive use

of commercial codes such as ABAQUS, we have opted to write a user-defined subroutine (UMAT)

that correlates the constitutive behavior of the porous material with the global equilibrium solved

by ABAQUS.

4.7.2 Evolution cell-model calculations

FEM-based calculations carried out at the cell level can serve as benchmark also for the

evolution-based phenomenology of void nucleation and growth up to coalescence and failure.

Apropos of evolution problems, the pioneering analyses carried out by Needleman [211] and

Tvergaard [212] for a periodic array of cylindrical voids, those by Tvergaard [213] and Koplik

and Needleman [46] for spherical voids, and that by Besson and Foerch [214], have been fol-

lowed by several FEM-based evolution studies. Examples in regards to the combination of tensile

and shear loadings include the Lode effect investigated via cell-model outcomes by Barsoum and

Faleskog [36]. Further studies explored the combined Lode and triaxiality effects with periodic

arrays of voids [84, 85, 88, 121, 215, 216] or randomly distributed voids [165, 217].

(a) (b)

Figure 4.2: (a) Deformation of a unit cell representative of a periodic array of circular voids under
simple shearing [16], (b) spherical void elongation under combined tension and shear in a 3D unit
cell [17] (reprinted with permission from Springer, Ltd).
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More recent studies have attempted to describe void growth to coalescence under general load-

ing conditions by combining the effects of various independent stress-based parameters in a unit

cell. Tekog̃lu [160] introduced an effective method to keep track of three independent parameters

including the Lode parameter, stress triaxiality, and shear ratio (defined as the ratio between shear

and normal stresses). Alternatively, Liu et al. [161] developed, based on energy principles in a

derivative format, a unified method to establish a consistent criterion accounting for tensile and

shear-dominated types of void coalescence. Such calculations can prove quite useful in the assess-

ment of a complete model that accounts for both homogeneous and inhomogeneous yielding. For

the case of combined tension and shear, in particular, the present thesis does not contain any new

FEM calculations due to their extreme computational cost. Instead, use has been made of available

results, essentially, by Tvergaard and co-workers [16,17,21,218]. Figure 4.2a, for instance, shows

a unit cell representing a periodic array of voids under simple shearing. Figure 4.2b, on the other

hand, shows void elongation under combined tension and shear in a 3D unit cell.
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CHAPTER 5 INHOMOGENEOUS YIELD CRITERIA

This chapter addresses an overview of the inhomogeneous yield functions that are derived from

first principles and borne out with numerical results in the course of the present thesis. The models

are primarily intended to model inhomogeneous yielding by internal necking, internal shearing or

a combination of both. They are obtained by limit analysis and homogenization over a cylindrical

elementary cell containing a coaxial cylindrical void of finite height. Plasticity in the deformable

matrix is modeled using rate-independent J2 flow theory admitting kinematically-admissible trial

velocity fields, and the effective dissipation function is calculated by exact as well as approximate

techniques, the latter generating a simpler function that lies close to the upper bound but loses

the upper-bound character. Further, with the constraining conditions for inhomogeneous yielding

relaxed, a unified model would follow that accounts for both homogeneous and inhomogeneous

yielding. Model predictions are consistently compared with finite-element based estimates of limit

loads on unit cells exploiting quasi-periodic boundary conditions. The numerical results are further

used to guide a heuristic modification of the models in order to capture the behavior for extremely

flat or extremely elongated voids. The approximate inhomogeneous model is finally utilized to

predict the effective yield surface as well as strain to failure at the limit of an isotropic material

endowed with random void distribution. As such, the effective yield surface will be presented

as intersected with principal deviatoric planes (viz. the π plane and parallel planes thereof) as

well as with principal meridian planes corresponding to purely hydrostatic and purely deviatoric

stress states. Detailed discussion on the steps to deriving, assessment, and calibration of models is

expounded in Papers P1 –P4 .

5.1 Inhomogeneous Yielding under Combined Tension and Shear

The microstructural geometry is identified in respect to a reference volume element (RVE) that

is represented with its corresponding volume Ω for brevity. Herein, the latter is a cylindrical cell

embedding a coaxial cylindrical void ω, Fig. 5.1. The inhomogeneous process is characterized
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with plastic deformation being localized inside the intervoid ligament, and the rest of the cell

admits elastic unloading and can be assumed to be rigid to the first approximation [45]. As such,

the microstructure depends on the orientation of the localization band as uniquely defined by a unit

normal to the plane transverse to the ligament, as schematically shown in Fig. 5.1.

Figure 5.1: Geometry of the cylindrical RVE under combined shear and tension.

Although this RVE is not space filling, it stands as a reasonable approximation of more complex

geometries, such as hexagonal-prismatic or square-prismatic cells, which may be considered as

unit cells in periodic media. The microstructural geometry is then determined by the following

independent dimensionless parameters:

w =
h

R
, χ =

R

L
, λ =

H

L
(5.1)

defined as the void aspect ratio, the ligament parameter, and the cell aspect ratio, respectively.

The yield function assuming localized yielding of the inter-void ligament is obtained by ho-

mogenization of a hollow cylindrical RVE containing a coaxial cylindrical void, as shown in Fig.

5.1. The model derived in Paper P1 (referred to in the sequel as the T-B-L model) is the first

analytical criterion that accounts for combined internal necking and shearing in the inter-void lig-

aments, extending the earlier models of [140, 148, 150]. The effective yield function derived in
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Paper P1 can be written in the form

ΦI(Σ, χ, w) =

( |Σn| − tS(χ,w)

bV(χ)

)2

H(|Σn| − tS) +

(
Σsh

lT (χ)

)2

− 1 (5.2)

where ΦI denotes the yield criterion representing inhomogeneous deformation. H(x) is the Heav-

iside step function, equaling 1 if x > 0 and 0 if x < 0. Also, Σn = n.Σn ,Σsh = |Σn − Σnn|

are, respectively, the normal and shear tractions on the plane of localization (the latter expressed in

magnitude form), and

V(χ) = τ̄

(
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

)

S(χ,w) =
τ̄

3

χ3 − 3χ+ 2

χw

T (χ) = (1− χ2)τ̄

(5.3)

are scalar functions that depend on the microstructure variables χ and w, and τ̄ = σ̄/
√

3 is the

shear yield strength. Note that ΦI depends only on χ and w, i.e. λ would not affect the model at a

fixed (χ,w) pair. It would, however, indirectly affect the onset of inhomogeneous yielding through

the void volume fraction f [46]. The effective stress σ̄ is the matrix yield strength, taken to depend

on its conjugate effective plastic strain ε̄, e.g. via a power law. The adjustable parameters (t, b, l)

are all unit in the basic form of ΦI. The basic model predicts a close upper bound to the limit load

for a wide range of χ and w [45]. It, however, overpredicts the stresses associated with the onset

of inhomogeneous deformation mainly in the limit of penny-shaped cracks (w −→ 0) and minorly

for overly elongated cavities (w >> 1). The (t, b, l) triplet is adjusted based on exact numerical

values. Simple functions have been proposed for (t, b, l) in Paper P1 .

The limit analysis path to the derivation of (5.2) involves uncontrolled approximations which

would not preserve the upper-bound character of the approach (see [33] for conceptual aspects).

In addition, model predictions according to (5.2) were initially assessed modulo existing finite

element results of [140] while being mindful of the fact that they pertained to a tetragonal cell
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containing a spheroidal void. To overcome this notable discrepancy, the above model was extended

in Paper P2 without the simplified evaluation of the dissipation integral. By way of consequence,

the following was derived:

Φ(Σ;χ,w) =





B2

τ̄ 2
+ 2fb cosh


 |Σn| − tS

τ̄
−

√

3
B2 −

(
Σsh/l

)2

τ̄ 2


− (1 + f 2

b) for |Σn| ≥ tS

(
Σsh

lT

)2

− 1 for |Σn| ≤ tS
(5.4)

where
B2

τ̄ 2
=

5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

(
Σsh

lτ̄

)2

(5.5)

where fb = χ2 is the porosity within the plastically-deformable band.

(a) (b)

Figure 5.2: (a) Example meshing of a half-cell characterized with (χ,w) = (0.4, 0.5) ; (b) equiv-
alent plastic strain distribution on initial configuration at the onset of combined internal necking-
shearing localization for the same cell [15] (reprinted with permission from Elsevier, Ltd).

Based on the principles invoked in Chapter 4, the models have been assessed against numerical

results from limit analysis on the same cell geometry. The numerical results were obtained from the

single-step small-deformation FEM-based limit analysis (upon the method introduced in Chapter

4) that admit quasi-periodic boundary conditions imposed over the cylindrical cell. See Sec. 4.4
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as well as Papers P2 and P3 for more details. Figure 5.2 depicts an example meshing and plastic

strain contour resulting from FEM-based limit analysis.

(a) (b)

Figure 5.3: Effective yield loci in the Σn–Σsh plane: (a) comparison between the upper-bound
estimate (5.4) and its approximate counterpart (5.2) for w = 1 and several values of χ; (b) compar-
ison between the upper-bound estimate and numerical results emanating from limit analysis on the
same cell geometry [15] (reprinted with permission from Elsevier, Ltd). See Paper P1 for more
details.

Representative yield loci corresponding to the upper-bound criterion (5.4) and its approximate

counterpart (5.2) are shown in Fig. 5.3 as solid lines for selective values of the (χ,w) pair. Without

loss of generality, one can take, in a single cell, the x1 and x3 axes as directed along the shear

and normal tractions. Therefore, Σn and Σsh can be replaced, respectively, with Σn and Σsh. In

all plots, the vertical straight parts represent the singular portions of the yield loci. Such parts are

not physical inasmuch as they follow from considering discontinuous trial velocity fields. They

occupy an increasingly small portion as χ increases so that the criterion resembles more and more

an elliptic one in the space of normal and shear stresses. The upper-bound yield loci are also shown

in Fig. 5.3b in comparison to their numerical counterparts emanating from limit analysis on the

same cell geometry.

Remark: It can be shown that, for χ < 0.2, yield loci given by (5.2) or (5.4) are unlikely to be

physical, because strain concentration within the intervoid ligaments does not occur [150]. In such
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cases, Gurson-like potentials, that correspond to homogeneous yielding, are more likely to prevail.

5.2 Unified Model for Homogeneous and Inhomogeneous Yielding

Based on limit analysis on the same cylindrical elementary cell as shown in Fig. 5.1, the inho-

mogeneous criterion (5.4) was further expanded as to incorporate the effect of combined tension

and shear on both homogeneous and inhomogeneous processes in a unified fashion. This part was

primarily motivated by a simpler model developed by Morin et al. [97] with the unit cell subjected

to triaxial loading in absence of shear. With the choice of trial velocity fields considered in [97]

as basis, so extended as to include shear, the overall model was derived analytically from first

principles and is expressed in piece-wise closed form in both upper-bound and quadratic approx-

imate expressions. The model encompasses the stress limits to inhomogeneous yielding, and the

transition between subfunctions representing different regimes is cornerless. Following tedious

algebraic operations, the model can be expressed in the following form:

Φ(Σ, fb,W, c) =





√
3P−

√
(lT )2 − (Σ2

sh + Σ2
32)

τ̄

if

∣∣∣∣∣∣
Σll

τ̄
+
√

3(1− c)
[√

(lT )2 − (Σ2
sh + Σ2

32)

τ̄
+ sgn(−

√
3(1− c) + cPcoal − Σn−Σll

τ̄
)

]∣∣∣∣∣∣
≤ tS

τ̄

(
Σ2

sh + Σ2
32

(lτ̄)2

)
+

P2

3
+ 2fb cosh

(
Σn − sgn(Σn)tS

τ̄
− P

)
− (1 + f 2

b) if |P| ≥ Pcoal

(
Σ2

sh + Σ2
32

(lτ̄)2

)
+

(Pcoal)2

3
+ 2fb cosh

(
Σn − sgn(Σn)tS

τ̄
− Pcoal

)
− (1 + f 2

b) Otherwise

(5.6)

where

P =
1

c

(
Σn − Σll

τ̄
+
√

3(1− c)sgn(−
√

3(1− c) + cPcoal − Σn − Σll

τ̄
)

)

(Pcoal)2 =
5

3
+ f 2

b −
(

Σsh

τ̄

)2

− 2

3

√
4(1 + 3f 2

b)− 3

(
Σsh

τ̄

)2
(5.7)
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Also, Σll = (Σmm + Σpp)/2 is the average lateral stress, and the rest, including the (t, b, l) triad

are the same as those introduced for (5.2) and (5.4), taken as unity in the basic form. The reader is

referred to Paper P4 for the algebraic details and the approximate counterpart of (5.6).

The numerical assessment of the model was carried out on the same grounds as provided in Sec.

4.4 except for the fact that the zero lateral strain-rate condition (triggering localized plasticity) was

relaxed, and thus the inhomogeneous regime emerges as only a portion of the whole yield surface.

See Paper P3 on how to impose boundary conditions on the numerical model.

(a) (b)

Figure 5.4: (a) Comparison between upper-bound and numerical yield loci in the Σll–Σn stress
space for various normalized shear stresses and microstructural parameters (χ,w, c) = (0.4, 1, 0.4)
(corresponding to λ = 1); (b) predicted yield loci comparing upper-bound and approximate models
for various normalized shear stresses and (χ,w, c) = (0.5, 1, 0.5) (associated with λ = 1) [18]
(reprinted with permission from Elsevier, Ltd).

Representative yield loci corresponding to the upper-bound criterion are shown in Fig. 5.4

in comparison to their numerical counterparts for the typical microstructural triple (χ,w, λ) =

(0.4, 1, 1), and predicted upper-bound and approximate loci are also compared for different nor-

malized shear stresses for (χ,w, λ) = (0.5, 1, 1). Yielding by the maximum normal stress clearly

pertains to the inhomogeneous regime, which proves independent of the lateral stress in this region.

Further details in regards to limitations in comparison between analytical and numerical results can
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be found in Paper P3 .

(a) (b)

Figure 5.5: (a) 3D yield surface exhibiting axial vs. lateral vs. shear normalized stresses for the
representative set of microstructural parameters (χ,w, λ) = (0.5, 1, 1). The sharp-colored sub-
surfaces pertain to inhomogeneous yielding [18] (reprinted with permission from Elsevier, Ltd).

To gain more insight into the correlation among all three stresses, the complete 3D yield surface

for the representative microstructural parameters (χ,w, λ) = (0.5, 1, 1) is shown in Fig. 5.5. The

inhomogeneous yield surface is illustrated in orange. For better clarity, the latter is also exclusively

shown in Fig. 5.5b. The projection of the cylindroidal inhomogeneous yield surface on the Σll = 0

plane is nothing but the yield locus exemplified by Fig. 5.3. The lack of uniformity in the lattice

lines in Fig. 5.5a pertains to the plotting subroutine developed based on a parametric, rather than

closed-form, representation of the yield function Φ. Further improvement of the lattice lines would

way darken the surface, and has thus been avoided.

5.3 Isotropic Limit

At the limit of randomly distributed voids, inhomogeneous yielding can be predicted by find-

ing the maximum combination of normal and shear tractions correlating through Eq’s (5.2) or

(5.4) subjected to a unit normal to the one plane of localization, out of infinite possibilities, that

is obtained upon maximization of ΦI as the target function. Under a general stress state, however,

effective yielding is governed by a competition of homogeneous and inhomogeneous yield crite-
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ria, whichever is met first. Accordingly, the prevailing yield criterion drives the effective yielding

mechanism. In extension to a recent effort by Keralavarma [88] investigating through the devel-

opment of a new tri-surface yield model (the intersection of a homogeneous yield surface and two

inhomogeneous surfaces representative of internal necking and combined internal necking with

shearing), the present work extends the realm of that investigation into distinctive consideration of

two independent microstructural parameters: the ligament parameter χ and the void aspect ratio w

(the third parameter being the cell aspect ratio λ can be approximated as unity by virtue of random

void distribution).

(a) (b)

Figure 5.6: (a) Schematic distribution of non-spherical voids with random orientations and their
circumscribing cells at early plastic deformation stages, (b) schematic distribution of non-spherical
voids (idealized with cylinders) with random orientations.

The voids are taken to have equal shapes while being oriented randomly, as schematically

shown in Fig. 5.6, at a macroscopic neighborhood of an arbitrary void. Note, however, that the

random dispersion of voids remains feasible only to the extent that plastic deformation is still at

early stages, or else some voids would rearrange such that plastic damage continues in a directional

manner [89]. To this end, a criterion encompassing the Keralavarma and Benzerga [14] homoge-

neous model, itself simplified into the GLD model [89] at the limit of isotropic materials, and the

inhomogeneous model according to (5.2) was utilized. The homogeneous yield criterion ΦH is a
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counterpart of the GLD model revisited for isotropic porous materials following an ensemble aver-

aging of effective parameters, originally proposed in [89]. See Paper P4 for details. The effective

yield criterion is represented in the Haigh-Westergaard stress space, and the corresponding yield

surface is plotted in 3D as well as projected on deviatoric (e.g. the π plane) and meridian planes.

The voids are taken to have haphazard orientations but equal shapes. Hence, w generally differs

from unity but is common to all voids.

The tri-surface model is firstly authenticated with reference to FEM-based yield loci on devia-

toric and meridian planes. This was realized by numerical limit analysis under a normal and two

lateral tractions on a cubic unit cell embedding a spherical void admitting periodic boundary con-

ditions, whereby different yield points correspond to different ratios among the three stresses (see

Chapter 4 for clarification). The reader can refer to [88] for further details about the employment

of this strategy in the present context.

Figure 5.7 compares the tri-surface and numerical yield loci on the deviatoric plane associated

with T = 1 and T = 4 as well as on a meridian plane corresponding to axisymmetric and pure

shear with superposed hydrostatic loadings, corresponding to θ = 0 (L = 1 accordingly) and

θ = π/6 (L = 0 accordingly), respectively. One can clearly envisage that, unlike with periodic

voids, the nonphysical planar parts observed in Fig. 5.3 recede from the model. It is also clear

that, at low porosity levels, the FEM yield surface, as well as its effective (tri-surface) counterpart,

becomes closer to diffuse yielding whereas, at higher porosities, they tend closer to combined inter-

nal necking-shearing. Further details in this respect are explained in [88]. Moreover, the effective

analytical surface is not an upper bound. This is due, in part, to the approximation employed in

the formulation of the effective yield criterion at the limit of isotropic materials. In particular, the

closer-to-real effective yield surface is a combination of both ΦH and ΦI.

The reader should note, according to Fig. 5.7, that the use of (5.2), with or without calibration,

loses the upper-bound character at the limit of zero hydrostatic stresses (i.e. purely deviatoric

loading) under axisymmetric loading, i.e. θ = nπ/2,|L| = 1. This limitation can partly be

attributed to the use of different RVE shapes in the analytical and numerical models. This further
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(a) (b)

(c) (d)

Figure 5.7: Comparison between the tri-surface and numerical yield loci: (a,b) Octahedral plane
projections of the yield surface with constant-triaxiality stress states T = 1 and T = 4 for selective
void volume fractions f = (0.01, 0.05); (c,d) cross sections of the yield surface on meridian planes
representative of axisymmetric and pure shear with superposed hydrostatic loadings, correspond-
ing to θ = 0 (L = 1) and θ = π/6 (L = 0), respectively.
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corroborates the findings of Morin et al. [141], who have found the effect of void and cell shape on

the yield surface to be minimal for a given microstructural state. The same observation, however,

does not necessarily hold in an evolution-based problem, which consists of the entire deformation

process from void nucleation to ultimate failure. See [165] for details.

A consequential observation in Fig’s 5.7(c) and (d) that can be witnessed at the limit of pure

shearing, i.e. Σm = 0 at L = 0, is the dominance of inhomogeneous yielding, reflected through

the effective (tri-surface) locus, over homogeneous yielding. Apart from being an observed fact

corroborated by numerical findings [16,17], it can be clearly deduced from the comparison between

the shear stresses from ΦH and ΦI at this limit, i.e. τ = (1− f)τ̄ and τ = (1− fb)τ̄ , respectively.

Nevertheless, the effective mechanism tends towards homogeneous yielding at sufficiently low

hydrostatic stresses with sufficiently low-level porosities, when the stress state is axysimmetric,

Fig. 5.7c.

The effects induced by χ, as well as the same parametric studies reflected in plots on meridian

planes, can be found in Paper P4 . Figure 5.8 depicts the influence induced by the ligament param-

eter χ and void aspect ratio w on the yield surface projected onto deviatoric planes with constant

triaxiality. Figure 5.8 reveals that, with increasing portion of the hydrostatic load (denoted by in-

creasing Σm or T ), the yield surface projection loses its six-fold symmetry, and the surface lies

slightly towards the axisymmetric state, i.e. L = 1 pertaining to θ = nπ/3, n = 0, 1, 2, ... (this

inclination is more significant when χ varies and w is fixed). Considering the effect of porosity,

reflected through the ligament parameter χ, the homogeneous yield surface shrinks whereas the

combined necking-shearing surface shrinks faster along with increasing χ. Namely, the effective

yielding mechanism tends from diffuse plasticity at χ −→ 0 towards a combined necking-shearing

localized nature with increasing χ. The two surfaces, however, become closer at larger portions

of hydrostatic stress, i.e. with increasing triaxiality, exemplified with T = 3. At this limit, the

effective yield mechanism is combined internal necking-shearing at the limit of L = 0 admitting

θ = (2n + 1)π/6, which signifies pure shearing with superposed hydrostatic stress. However, the

hydrostatic effect prevails over that of shear, and thus the equivalent stresses would be minimally
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(a) (b)

(c) (d)

Figure 5.8: (a,b) Effect of the ligament parameter χ (at fixed void aspect ratio w = 1), (c,d) effect
of the void aspect ratio w (at fixed ligament parameter χ = 0.25), on the effective yield surface
projection onto the deviatoric planes with constant triaxialities T = 1/3 and T = 3.

80



apart.

Fig’s 5.8(c,d) demonstrate combined necking-shearing as the effective yield surface, with a

shrinking effective surface for larger values of w, especially for w > 1. This has been adduced

by former results, as particularly reported in Paper P1 , that the coalescence limit load decreases,

even more notably so for w > 1, with increasing w. It is also observed that, except at high stress

triaxialities (represented by T = 3 here) representing large portions of hydrostatic stress, the pure

shear limit (θ = (2n + 1)π/6) is subdued by the combined internal necking-shearing mechanism.

On the other hand, for small to medium triaxialities (see Paper P4 for more illustrations), the

effective yielding mechanism for materials with flat voids (w < 1) proves to be of a homogeneous

type at stress states close to the axisymmetric limit (θ = nπ/3). For large triaxialities, however, the

effective mechanism generally moves towards homogeneous while it still varies from case to case.

For flat voids (w = 0.1), the effective mechanism is homogeneous under all stress states, just as in

the case of axisymmetric loading with smaller triaxialities, whereas it is inhomogeneous for w ≥ 1

even at this range of large triaxialities. Within periodic void arrays, however, a different trend has

been explored wherein the coalescence of flat voids (w < 1) could occur at early stages, even so

under uniaxial loading (T = 1/3) [20]. With randomly distributed voids, both the dilute material

limit (χ −→ 0) and materials containing flat (penny-shaped) cavities yield homogeneously under

axisymmetric stress states. See Paper P4 for more information.

Figure 5.9 showcases complete 3D surfaces for a fixed microstructure. For the sake of clarity,

the surface corresponding to effective yielding is juxtaposed to the homogeneous yield surface.

It is worthy of note that all surfaces are endowed with axis-symmetry and point symmetry at the

origin of the stress space. Upon implication, one can deduce that shifting the sign of the Lode

parameter, that is realized with a π/3 rotation on the θ deviatoric plane, equal equivalent stresses

will be predicted in accordance with the T-B-L inhomogeneous model.

Finally, the matrix effective plastic strain ε̄f at a state of incipient inhomogeneous yielding can

be regarded as a crude measure of the strain to failure ε̄f at an isotropic limit of the material. In

general, there may exist significant plastic deformation after the onset of inhomogeneous yielding.
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Yet, the de facto damage mechanism thereafter depends on different extrinsic factors such as the

specimen geometry and matrix texture. It is hereby plotted as function of the stress triaxiality.

More plots of this type, as well as analogous plots vs. Lode angle θ can be found in Paper P4 .

(a) (b)

Figure 5.9: Example complete 3D homogeneous and effective surfaces for a frozen microstructure
denoted by the (χ,w, λ) = (0.4, 1, 1).

(a) (b)

Figure 5.10: (a) Effect of variation in w on the evolution of ε̄f as function of stress triaxiality T at
the example Lode angle of θ = 0; (b) representative 3D surface of ε̄f evolution as function of Lode
angle and stress triaxiality for (χ,w) = (0.25, 1).
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Figure 5.10a illustrates the effects of w alteration on the evolution of ε̄f as function of stress

triaxiality T at the example Lode angle of θ = 0 (corresponding to L = −1). The value of ε̄f is

predicted close to zero under stress states close to pure shear (θ = (2n + 1)π/6) emanating from

the inhomogeneous yield criterion ΦI = 0 happening at early stages of plastic deformation. There

are, however, exceptions to this observation. See Paper P4 . The evolution of ε̄f vs. the Lode angle

in simultaneity with stress triaxiality is provided in Fig. 5.10b for (χ,w) = (0.25, 1). Except at

large values of initial w (i.e. w0 > 1), the strain to the onset of localization becomes vanishingly

small for T ≥ 3. Also, as earlier revealed by Fig. 5.8 (with more illustrations provided in Paper P4

), the effective yielding mechanism is homogeneous for small χ’s and w’s under small to medium

triaxialities, and is inhomogeneous otherwise. This shift in the effective mechanism, indeed, gives

rise to slope change in ε̄f for the case of w0 = 0.1 in Fig. 5.10c.

Remark: The singular limit within ε̄f at the limit of triaxiality approaching zero (which can be

best exemplified by a state of shear-dominated loading) is non-physical inasmuch as failure under

shear in a material with finite porosity is substantive regardless of void distribution. This calls

for more considerate accounting for induced anisotropies emanating from void rotation and/or

elongation. By way of consequence, the strain to failure at the T = 0 limit would potentially be a

large but finite value. This trend has been observed in some recent simple torsion experiments [12].

All the same, a periodic microstructure under proportional loading can exhibit varieties of different

ductilities under various load combinations. As schematized as in Fig. 5.11, ε̄f for a state of

combined axial and shear loading is shown to be unbounded at the limit of T = 1/3, and the shear-

dominated low-triaxiality region (T < 1/3) is driven by the loading path. A recent investigation

by the authors demonstrates the existence of a minimum in the case of a unit cell loaded under

combined axial and shear loading. Chapter 7 and Paper P9 elucidate a more thorough discussion

on this effect.
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Figure 5.11: Schematic representation of ε̄f evolution as function of stress triaxiality for a unit cell
under arbitrary loading with a periodic void distribution and various loading paths.
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CHAPTER 6 HYBRID POROUS PLASTICITY MODEL

The present chapter elucidates the constitutive framework utilized in the present thesis to sim-

ulate ductile fracture under combined loading upon numerical implementation. The framework

is founded on a multi-surface formulation of porous material plasticity. As such, there are two

sorts of multi–surface formulation in the context of micromechanics–based porous material plas-

ticity: hybrid and unified. In the former, the homogeneous and inhomogeneous models are derived

based on different cell geometries, and the cell geometries are united in the latter type. A hy-

brid micromechanics–based model is developed in this chapter, and numerically implemented to

simulate ductile failure under combined tension and shear. The model accounts for the compe-

tition of homogeneous and inhomogeneous yield conditions at the fine scale. The constitutive

framework comprises existing evolution equations of void elongation and distortion during homo-

geneous yielding accompanied by original physics–based counterparts for post–localized defor-

mation.

6.1 Hybrid Modeling of Ductile Fracture

(a) (b)

Figure 6.1: (a) Schematic outline of a void aggregate accompanied by a Voronoi tessellation, (b)
idealized void cluster admitting an arbitrarily chosen localization plane with normal n, together
with an excised representative cell.

85



The voids in a real microscopic domain are distributed neither periodically nor randomly, but

through clusters. A statistically robust method for the characterization of clustered void distribu-

tion is via Voronoi tessellation [32, 219]. Accordingly, voids during the inhomogeneous process

can interconnect along various but a discrete number of possible localization systems accommo-

dating void interactions in different localization planes. Figure 6.1a showcases a schematic void

aggregate, and 6.1b shows an idealized equivalent microstructure that can capture the salient fea-

tures of the circumscribed aggregate. One cannot emphasize enough that, as indicated by Fig.

6.1b, a judiciously chosen localization plane with normal n, the underlying microstructure, the

average void orientation n(3), and the principal loading directions denoted with (e1, e2, e3) are all

independent.

(a) (b)

Figure 6.2: Example possible localization systems with their corresponding localization planes and
their associated normals.

Figure 6.2 exemplifies two possible localization systems accommodating in-plane void coales-

cence, i.e. coalescence in layers. Nevertheless, normal n can be arbitrarily chosen out of a discrete

set of most favorable ones that, in passing, should be evolved according to (6.27) unless otherwise

specified. A more complete elaboration on more possible planes, together with their mathematical

representations, is provided in Appendix A.
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(a) (b)

Figure 6.3: (a) Meso–scale positioning of voids in a periodic distribution, accompanied by its
equivalent orthorhombic unit cell (RVE) associated with normal n with geometric properties av-
eraged over the tributary volume around the central void; (b) unit cell deformed into monoclinic
under the effect of combined tension and shear.

(a) (b)

Figure 6.4: Elementary cell identifying the microstructure: (a) during homogeneous plastic defor-
mation, (b) during inhomogeneous plastic deformation.

A more geometrically sound outline of the underlying microstructure is shown in Fig. 6.3a. An

effective way to describe the microstructural geometry can then be with the aid of a representative

volume element (RVE) constituted from the tributary volume surrounding the central void, as

schematized exclusively in Fig. 6.3b having undergone combined tension and shear. Therefore, the
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example monoclinic unit cell as shown in Fig. 6.3b can equivalently represent the microstructural

domain.

In the simplest case, the cell can be regarded initially orthorhombic which, after shearing,

transforms (approximately) into monoclinic. Even upon appreciation of this simplification, the

macroscopic response of this cell is not solvable, be the yielding mechanism homogeneous or in-

homogeneous. Rather, it is attainable through idealized elementary cells, exemplified by those

depicted in Fig’s 6.4a and 6.4b, respectively, during homogeneous and inhomogeneous deforma-

tion processes. To highlight the distinction between the various RVE’s pertaining to different

mechanisms, the term "hybrid" is adopted for the proposed model.

In presence of various potentially active mechanisms, a multi-surface formulation is normally

employed, commonly with an associated flow rule. Accordingly, the total rate of deformation

tensorD is decomposed into the elastic and plastic parts as follows:

D = De +Dp (6.1)

where

Dp =
m∑

k=1

Λ̇kN k , N k =
∂Φk

∂σ
(6.2)

with the Dpk’s belong to the m potentially active yielding mechanisms. In the present context,

i = 1 clearly corresponds to homogeneous yielding, i.e. N 1 = ∂ΦH/∂σ, with ’H’ denoting ho-

mogeneous yielding. The remainingN k’s are, herein, germane to the various possible localization

systems accommodating inhomogeneous yielding, i.e. N k = ∂ΦkI/∂σ, with ’I’ standing for in-

homogeneous yielding. Each localization system is then uniquely identified by a unit normal to its

associated plane, here denoted with n.

Remark 1: At the limit of random void distribution, the number of possible localization modes

approaches infinity. Yielding at this limit can be predicted from a maximization problem subjected

to a unit normal constraint. See Section 5.3 and Paper P4 for more details.

Remark 2: Upon favorable circumstances, voids can coalesce along plastic plugs formed along
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certain directions, thus its name coalescence in columns [220] or necklace coalescence [221].

The present work presents a model accounting for coalescence in columns (see Chapter 8), but

focus will be placed on coalescence in layers. The model will, however, be further predictive by

incorporating necklace coalescence, particularly in respect to microstructures with significantly

elongated voids or under stress states with a dominant lateral load [33].

Remark 3: Rather than incorporating all yielding mechanisms in a concurrent mood – as

stated in (6.2) – the model at the present stage accounts for a successive advancement of mecha-

nisms. That is, the most favorable mechanism deemed possible is triggered at every time step by

accounting for the Φ = 0 that is met first. Yet, one should be mindful that more than one mecha-

nism, especially during inhomogeneous yielding, may be active at a time. No possible mechanism

should thus be excluded.

The building blocks of the present hybrid model are a homogeneous yield function in the

stress space expressed basically as ΦH(σ; f, w,n(3)) = 0 and a discrete set of inhomogeneous

yield functions ΦkI(σ; f, w, λk,n(3),nk) = 0, where k = 1, 2, ...,m represents all the localization

modes activated by the user. In the present context, ΦH follows the model derived by Keralavarma

and Benzerga [14], and ΦI is derived from first principles as earlier pointed out in Chapter 5. The

two will be repeated herein for ease of reference.

(a) (b) (c)

Figure 6.5: Predicted deformation mechanisms under near-simple shearing: (a) totally homoge-
neous extreme, (b) totally localized extreme (a) de facto inhomogeneous mechanism.

Remark: As schematized in Fig. 6.5 and suggested by direct FEM modeling [16, 21], the
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de facto mechanism at the RVE level under combined tension and shear as well as under shear

dominance (Fig. 6.5c) is an intermediate mechanism between the fully homogeneous (Fig. 6.5a)

and fully localized (Fig. 6.5b) extremes. As such, it is closer to the former at early stages and

it approaches the latter end with further advancement of shearing. Therefore, both ΦH and ΦI are

subject to some modification in order for the hybrid model be accountable for a thoroughly reliable

simulation.

The following sections thus introduce ΦH and ΦI with their proposed modifications.

6.2 Homogeneous Yielding

The underlying microstructure, and thus the lattice transcription in Fig. 6.3, is ineffective

during homogeneous yielding in that the corresponding constitutive framework is expressed in

terms of porosity f , void aspect ratio w, and void orientation n(3), which are common among

all tributary cells. Yet, it would affect the inhomogeneous process at the incipient and continued

stages.

6.2.1 Yield criterion

The yield criterion accounting for homogeneous deformation is the model developed by Ker-

alavarma and Benzerga [14]. This model incorporates the combined effects of void shape and

interaction as well as matrix anisotropy of Hill type. It can be written in the following form:

ΦH(σ; f, w,n(3)) = C
σ2

eq

σ̄2
+ 2(g + 1)(g + qf) cosh

(
κ
σ : X

σ̄

)
− (g + 1)2 − (g + qf)2 (6.3)

where f = ω/Ω and w = a/b denote void volume fraction (porosity) and aspect ratio, re-

spectively. Within this framework, the voids are taken as spheroidal, with two equal lateral radii

(denoted with b) and a third mismatching radius (known as a), that identifies the void orientation

n(3) as schematized in Fig. 6.4a. w > 1, w < 1 and w = 1 would then signify, respectively, a pro-

late, and oblate, and a spherical void. The porosity f within ΦH is multiplied by a q factor which

enables ΦH to capture stress states near simple shearing, which should be above 4/3 [194, 222]. In
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the present context, the value introduced by Perrin and Leblond [153], q = 4/e ≈ 1.47 is proposed.

w > 1, w < 1 and w = 1 would then signify, respectively, a prolate, an oblate, and a spherical

void.

Also, σeq is the von–Mises equivalent stress as function of a Hill–type anisotropy tensor [14,

223] stated as

σ2
eq =

3

2
σ : H : σ (6.4)

where H is related to Hill’s anisotropy tensor p through

H ≡ p + η(X ⊗Q+Q⊗X), p ≡ J : h : J (6.5)

Q and X are functions of void shape and orientation, defined in (6.10), and J has been defined in

Eq. (2.3). The expressions of C, g, κ, η, and α2 are provided in Paper P7 . J denotes the deviatoric

projection operator, as earlier defined in Chapter 2. The matrix effective stress σ̄ is taken to depend

on its conjugate, briefly termed "plastic strain" ε̄, through a hardening law of any arbitrary form .

The presently considered hardening rule is the popular power law (see Chapter 7 for details).

6.2.2 Evolution of state

Apart from the all–embracing differential equations describing the evolution of void volume

fraction and equivalent plastic strain [33], the evolution of void aspect ratio and orientation associ-

ated with ΦH is deduced from [92] and [91, 94], respectively. It is highlighted once again that the

successive approach entails only one effective yield function at a time. The following equations

are thus developed in terms of one effective Φ.

6.2.2.1 Evolution of porosity

Throughout the plastic deformation process, f is governed by the plastic incompressibility law

such that:

ḟ = (1− f)Dp
kk = (1− f) Λ̇I : N (6.6)

with Λ̇ being the plastic multiplier in rate form, andN = ∂Φ/∂σ with Φ = ΦH.
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6.2.2.2 Evolution of equivalent plastic strain

Likewise, the evolution of equivalent plastic strain ε̄ is obtained through the formation of plastic

work equivalence between the macroscopic homogeneous material and the matrix, which reads

σ : Dp = (1− f)σ̄ ˙̄ε (6.7)

where σ̄ is the conjugate to ε̄ through Eq. (7.1). Note that Eq. (6.7 can be exploited for the explicit

evaluation of the plastic multiplier Λ̇ by rearranging in the following equivalent form:

Λ̇ = (1− f)
σ̄ ˙̄ε

σ : N
(6.8)

The equations evaluating the evolution of void aspect ratio and orientation conform to different

mechanisms. During the homogeneous process, voids can elongate and distort in accordance with

plasticity advancing throughout the matrix. In the inhomogeneous process, however, each void

is intercepted near its poles by the elastically unloaded rigid–like zones. The existing equations

for void shape and orientation evolution should, therefore, be revisited apropos of inhomogeneous

yielding. Paper P7 presents the algebraic details to the derivation of these equations. A synopsis

of the equations are also enlisted herein.

6.2.2.3 Evolution of void aspect ratio

The evolution of the void aspect ratio during homogeneous deformation follows Gologanu et

al. [92], also employed in [224]:

Ṡ = Q : Dv

Q = −1

2
(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + n(3) ⊗ n(3)

(6.9)
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where

Dv =kDp + 3

(
1

f
Xv −X

)
Dp

m

Xv =α1(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α1)n(3) ⊗ n(3) , α1 = α̂1(w)

X =α2(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α2)n(3) ⊗ n(3) , α2 = α̂2(f)

k =1 + kwkfkT

(6.10)

with the provision of the heuristic factor k (following [92]), calibrated in terms of the void aspect

ratio w, porosity f , and stress triaxiality T . See Paper P7 for kw, kf , and kT expressions.

6.2.2.4 Evolution of void orientation

The rate of rotation of the (immaterial) principal axes of the void may be directly obtained from

the (material) rotation and strain rates of the void [83, 225], denoted by Ωv and Dv, respectively.

Thus, one can write the total rate of void axis as

ṅ(3) = ωn(3), ω = Ωv + Ωl (6.11)

where the rotation tensor ω is the total spin tensor that consists of the void spin, Ωv, superposed

by the void rotation with respect to the material, Ωl. Here, we exploit Ωv as derived in [83, 225]

during the homogeneous deformation, and confine it to the plastic ligament at the post–localized

inhomogeneous deformation. During the homogeneous process:

Ωv = Ω− C : Dp (6.12)

where C is the fourth order spin concentration tensor given by

C = −(1− f)P : A, A = [I− (1− f)S]−1 (6.13)
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with A the strain concentration tensor and P and S the Eshelby tensors [226] for a spheroidal

inclusion of zero stiffness in an incompressible linear viscous matrix. Further,

Ωl =
1

2

∑

i 6=j, wi 6=wj

w2
i + w2

j

w2
i − w2

j

[
(ni ⊗ nj + nj ⊗ ni) : A : Dp

]
ni ⊗ nj (6.14)

where the convention w1 = w2 = w and w3 = 1 should be adopted. The case of a spherical void

w = 1, however, requires a careful treatment; see [14].

6.3 Inhomogeneous Yielding

6.3.1 Yield criterion

The assumptions underlying the mathematical modeling of homogeneous yielding allow for

arbitrary orientation of voids whereas inhomogeneous yielding is only warranted in planes. Ad-

mittedly, the presently derived inhomogeneous yield conditions have been developed with the void

being codirectional with the normal to the localization plane n. This lies in the equality of shear-

induced responses, based on a Gurson-like velocity field, for an upright and a slanted cylindrical

void inside a cylindrical cell. This would inhibit failure under shear–dominated loading (see Paper

P6 ). To bypass this constraint, the real microstructure is mapped into a surrogate one, identified

with a surrogate void aligned with n, as shown in Fig. 6.4b. Accordingly, ΦkI for every local-

ization system is parametrized in terms of effective microstructural parameters, here denoted with

χ̄(n) and w̄(n), that correspond to a surrogate cylindrical void aligned with n. See Section 6.3.2

for details. With reference to the surrogate RVE shown in Fig. 6.4b, the surrogate parameters read

χ̄(n) =
R̄(n)

L̄(n)

w̄(n) =
h(n)

R̄(n)

λ̄(n) =
H(n)

L̄(n)

(6.15)
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where the third parameter does not enter into ΦI though being indirectly influential (see Section

6.3.4).

Figure 6.6: 2D idealization of the microstructure with two example localization modes and their
associated surrogate microstructures. The figure schematizes the plastically-deformable band as
separated from the rigid zones using solid lines and colored regions. Periodicity is denoted with
the dashed details.

With reference to Fig. 6.4b, the surrogate microstructures corresponding to two example lo-

calization systems are schematized in Fig. 6.6. It is worthy of note that, upon the simple use of

χ and w in the basic form of ΦI, failure could never be predicted under shear–dominated loading

conditions in that χ would decrease (for a spheroidal void) or, at least, would stay constant (for a

cylindrical void), and the void elongation could never trigger internal shearing within the intervoid

ligament.

The inhomongeneous yield criterion basically follows Eq. (5.2), but is recast in modified form

herein for every localization system according to:

ΦkI(σ, χ̄k, w̄k) =

(
|σk| − tkS(χ̄k, w̄k)

bkV(χ̄k)

)2

H(|σk| − tkS) +

(
τ k

T (χ̄k)

)2

− 1 = 0 (6.16)
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where ΦkI denotes the yield function representing inhomogeneous deformation by combined inter-

nal necking and shearing in the k’th localization system, and H(x) is the Heaviside step function.

Also, σk = nk.σnk , τ k = |σnk − σknk| are, respectively, the normal and shear tractions on the

k’th plane of localization (the latter expressed in magnitude form), and

V(χ̄) = τ̄

(
2−

√
1 + 3χ̄4 + ln

1 +
√

1 + 3χ̄4

3χ̄2

)

S(χ̄, w̄) =
τ̄

3

χ̄3 − 3χ̄+ 2

χ̄w̄

T (χ̄) = (1− qχχ̄2)τ̄

(6.17)

are scalar functions that depend on the microstructural variables χ̄ and w̄, and τ̄ = σ̄/
√

3 is the

shear yield strength (the k superscripts have been removed for brevity).

Also, qχ = 1 in the basic form of the equation but is hereby introduced since the shear stress re-

sponse based on the present ΦI is overconstrained despite being physically descriptive (see Section

7.1). This overconstraint is partly due to plasticity ideally confined to the inter-void ligament and

partly to the notion of χ̄ via the surrogate cell. The latter is revealed by recent cell-level calcula-

tions [16] where, at a state of shear domination, plastic deformation is inhomogeneous throughout,

yet initially more diffuse than being confined inside the ligament, though it being more significant

at the vicinity of the ligament (see Section 7.1 for more details). This overconstraint is strongly

suggestive of a calibration to ΦI whereby the effect of χ̄ in the shear term T or the corresponding

evolution of void orientation is retarded based on physics. The following simple form is proposed

for qχ in the present context:

qχ =

(
q0 +

q∞ − q0

q0/κ2 + 1

)
(1 + ψ) (6.18)

with q∞ = 1 (pertaining to the absence of shear) and q0 being function of the void geometry.

To the best of the authors’ knowledge, q0 = 1/3 and q0 = 1/4 can deliver the most reasonable

conformity with numerics for spheroidal and cylindrical voids, respectively. Also, κ ≡ σ/τ is the
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ratio between the normal and shear tractions on the plane of localization, and ψ = tan−1 γmn is the

shear angle in them–n plane.

6.3.2 Surrogate parameters

(a) (b)

(c) (d)

Figure 6.7: Surrogate configuration of a cylindrical cell under combined tension and shear, accom-
panied by the magnified view of the plastic ligament: (a,c) with a cylindrical void, (b,d) with a
spheroidal void.

The notion of surrogate cells implies introducing an effective void aspect ratio w̄ and an effec-

tive ligament parameter χ̄. Note that the barred notation stands for the average within the plane

of localization. Note also that, in addition to n, there is an implicit dependence of the above

parameters on the void orientation n(3) through R̄ and h̄.

For formulation purposes, the connection between the void poles and the rigid–like matrix

is the underlying principle under combined loading. For cylindrical voids, the void poles are

connected to the matrix over the entire upper and lower circular cross sections, as depicted in
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Fig. 6.7a. Therefore, the distortion of voids under the effect of shearing will be all alike. The

inhomogeneous microstructural evolution would then admit simple geometric relations. See Paper

P6 for details.

(a) (b) (c)

Figure 6.8: (a) Schematized post–localized deformation mechanism, and (b,c) the angles driving
the evolved geometry for a spheroidal void under a shear field: (b) a prolate void (w > 1), (c) an
oblate void (w < 1).

All the same, a spheroidal void intercepts with the matrix at two single points of tangency,

denoted with A and A′ in Fig. 6.8. Correspondingly, prolate (w > 1) and oblate (w < 1) voids

would deform in different manners. That is, prolate voids rotate along with shearing while oblate

voids rotate backwards. Both voids, however, deform such that their larger axes incline towards

the direction of principal stretch, which proves close to 45◦ under near–simple shearing. Both

deformation modes are schematized in Fig. 6.8a. Altogether, the inhomogeneous microstructural

evolution in presence of spheroidal voids can be described by means of the normal and tangential

motions of the generatrix AA′, as separately schematized for prolate and oblate voids in Fig’s

6.8 (a,c), with a magnified void view shown in Fig’s 6.8 (b,d). The directional angles identified

according to Fig. 6.8b follow the derivations provided in Paper P7 . It should be noted, however,

that not all of the angles are independent.

The surrogate cell is obtained by mapping the rotated void with an upright cylinder of axis n

with the same volume and porosity, as shown in Fig. 6.7. It implies introducing an effective void

aspect ratio, w̄ ≡ h̄/R̄, and an effective ligament parameter, χ̄ ≡ R̄/L̄, related to the internal

parameters of the actual microstructure through the following relations:
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– Cylinrical voids:

w̄(n,n(3)) = w

(
wS +

1

C

)−3

λ̄(n) =
λ(n)

(1 + γmn)3

χ̄(n,n(3)) =

(
fλ̄

w̄

) 1
3

(6.19)

where C and S are short-hand notation for C = n(3) · n ≡ cos θ and S = n(3) ·m ≡ sin θ,

with θ denoted by the (clockwise positive) angle between the current normal n and void axis

n(3), as shown in Fig’s 6.7(c,d). Also, γmn = 2m ·En is the shear strain in the m–n plane,

and E =
∫
Ddt is the total strain tensor at the current state. See Paper P6 for more details.

– Spheroidal voids:

w̄(n,n(3)) =
w

3γ

(
1 + T2

1 + T2w2

) 3
2

λ̄(n) =
λ(n)

(1 + ηγmn)3

χ̄(n,n(3)) =

(
fλ̄

w̄

) 1
3

(6.20)

where 0.9 ≤ η < 1 is a heuristic factor introduced so χ̄ can reach unity when the void poles

approach the cell corners, and the remaining parameters have been defined in advance. See

Paper P7 for more details.

In both (6.19)2 and (6.20)2, λ(n) is identified at its corresponding localization system, and can

be expressed in terms of the basic initial lattice aspect ratios defined as

λ1 =
d3

d1

, λ2 =
d3

d2

(6.21)

where di have been indicated in Fig. 6.3. In general, the void lattice, and its directors di accord-

ingly, need not be aligned with the principal loading directions. Upon convention, however, d3 can
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be taken as that with the smallest absolute angle with the major normal load.

In order to derive λ0(n) –with the 0 superscript denoting initial state– in terms of λ1 and λ2

as well as an arbitrarily-oriented normal n, one should evaluate the average inter-void distance

inside the plane with normal n, here termed L as well as the inter-void distance H , defined as the

distance between the inter-plane distance parallel to n, as shown in Fig. 6.1b. Having skipped the

algebraic details provided in Appendix B, one can write

λ0(n0) =

√
λ1λ2

|n0 · d30|
(6.22)

which retrieves λ0 =
√
λ1λ2 when n0 = d30, and λ1 and λ2 refer to (6.21). The above-mentioned

λ0(n) can evolve through the following relation:

λ(n) =
λ0(n0)√

J

(
n.(FF T).n

) 3
4

(6.23)

with n convected through (6.27). Here, F is the total deformation gradient, with its associated

determinant J := detF . See Appendix B for proof.

6.3.3 Model inputs

In contrast to random dispersion of voids, a periodic domain of voids can accommodate a

discrete number of possible localization systems. The possible systems can emanate from the

underlying microstructure or arbitrated by the user. Regardless of the origin, a known plane of

localization corresponds to a specific inhomogeneous yield criterion, here denoted with ΦkI, with k

representative of the k’th localization mode invoked in the model. Correspondingly, the following

inputs should be provided at the initial state:

w0, f0,n
(3)
0 ,nk0,d10,d20,d30, λ1, λ2 (6.24)

with the 0 subscript and k superscript denoting the initial state and the k’th active localization

system, respectively. Among all, the first two are evolved implicitly (see Sections 6.2.2 and 6.3.4),
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and the rest are evolved explicitly in terms of their initial values.

6.3.4 Evolution of state

The equations accounting for the evolution of porosity f and equivalent plastic strain ε̄, stated

in (6.6) and (6.8), are inclusive of the whole process. So is the general rate stated in (6.11).

However, the counterparts to the evolution of void aspect ratio as well as the spin tensors Ωv and

Ωl in (6.9) and (6.12) corresponding to inhomogeneous yielding have not been developed except

for ṡ under triaxial loading in [20, 150]. In the present study, these equations have been proposed

for both cylindrical and spheroidal voids. Papers P6 and P7 , respectively, report the journey to

these equations. The equations are restated herein for ease of reference.

6.3.4.1 Orthotropy and localization planes

During the plastic deformation, the principal orthotropy (eL, eT , eS) as well as the void lattice

directors (d1,d2,d3) rotate along with the material. Therefore

em = Re(0)
m , dn = Rd(0)

n

F = RU

(6.25)

where R and U emanate from the polar decomposition of the deformation gradient tensor F at

every step of the process, with R being the rotation part. m = (L,T,S) stands for the principal or-

thotropy axes, and n = 1, 2, 3 constitutes the void lattice directors. F can be the directly–imposed

or post-processed deformation gradient. Due to the incremental nature of numerical implementa-

tion, one can write

F (i) =
i∏

j=0

F (j) (6.26)

where F (j) is the deformation gradient between the j − 1’st and j’th time steps constituted by the

incremental displacements at the j’th step, where j = 1, 2, ..., i.

Note that the present constitutive framework is expanded based on a corotational formulation,

i.e. the equations are expanded within the rotated material configuration. Therefore, Eq. (6.25) is
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implicit in the formulation.

The normal vector n, however, should be evolved through an area vector transformation law

[227]. That is

n =
F−Tn0

|F−Tn0|
(6.27)

with |.| denoting a vector magnitude.

Having updated the normal n, the direction of the resolved shear traction onto the plane with

normal n would become

m =
τ

|τ |

p = n×m
(6.28)

where the shear traction τ has been defined below Eq. (5.2), and p is the third base vector com-

pleting the orthonormal basis tied to the localization plane corresponding to normal n. In case,

however, the shear traction vanishes, as in the case of triaxial loading, Eq. (6.28) would be ill–

defined. In this case,m and p would stay constant, equal to their previous values (or to their initial

values in case the loading is shearless throughout).

One cannot emphasize enough that the foregoing equations of microstructural evolution, as

well as the current surrogate state, are valid throughout the process notwithstanding they are mainly

invoked in the constitutive framework from the onset of inhomogeneous deformation onwards.

Prior to that, they should be updated for use in the evaluation of ΦI.

6.3.4.2 Evolution of void aspect ratio

Upon definition, the void aspect ratio for both cylindrical and spheroidal voids is expressed as

w = a/b, with the difference lying in a and b, as better clarified in Fig’s 6.7(a) and (b). Details

aside, one can write, having defined s = lnw:

– Cylindrical voids:
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ṡ =
1

2

(
3C2

c
− 1

f

)
n ·Dpn+

3CS

c
m ·Dpn (6.29)

where the ligament volume fraction, c, is given by

c3 = C3fw
2

λ2
(6.30)

– Spheroidal voids:

To obtain the post–localized differential equation for the spheroidal void aspect ratio w, the

time rate of ` (shown in Fig. 6.8) should be developed on the account that the top and

bottom void boundaries are attached to the rigid zones. The details provided in Paper P7 are

set aside here. In essence:

ṡ = (w2+T2)2

(w4+T2)(1+T2)

[
2−3

T2(2w2−w4+T2)

(w4+T2)(w2+T2)

]
[(

3
c
− (w4+T2)(1+T2)

f(w2+T2)2

)
Dnn + 6

c
(w2−1)T
w2+T2 Dnm

]

(6.31)

for a prolate void with w > 1, and

ṡ = (w2+T2)2

(w4+T2)(1+T2)

[
1−T2(−2w2+w4−T2)

(w4+T2)(w2+T2)

]
[(
−3
c

+ (w4+T2)(1+T2)
f(w2+T2)2

)
Dnn − 6

c
(w2−1)T
w2+T2 Dnm

]

(6.32)

for an oblate void with w < 1. In the above equations, T = S/C = tan θ, where C and S

are short–hand notation for C = n(3) · n ≡ cos θ and S = n(3) ·m. Also

Dnn = n ·Dpn

Dmn = m ·Dpn

with elastic strain rates neglected. The ligament volume fraction can be expressed in corre-

lation with (f, w, λ, θ) as

c =

(
3γf

wλ2

)1/3
√

T2 + w2

T2 + 1
(6.33)
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where γ = 1/2 is the shape factor for a spheroidal void.

Note that Eq. (6.31) retrieves Eq. (12) of [150] at the limit of an upright void under a triaxial

stress space. See Paper P7 for details.

6.3.4.3 Evolution of void orientation

During inhomogeneous deformation, one can write, due to plasticity concentrated in the liga-

ment:

Ωv = Ω− 1

c
C : Dp (6.34)

with 1/c appearing to represent the plastic rate of deformation inside the ligament.

The post–localized Ωl, however, should be rederived from first principles. Madou and Leblond

[83] have shown that the general form initiated in [91, 225] requires significant amendments due

to strong nonlinear effects. They did so by introducing heuristic coefficients calibrated using a

large number of finite–element based limit analyses. Here we obtain simpler, parameter–free and

probably more accurate equations by considering the constrained kinematics pertaining to post–

localization. This involves plastic incompressibility of the intervoid ligament and the fact that the

top and bottom boundaries of the void move rigidly with the above and bottom material layers.

Details aside, Ωl can be written as

Ωl =
Ṡ

S
m⊗m+

Ċ

C
n⊗ n =

Ṫ

T

(
C2m⊗m− S2n⊗ n

)
(6.35)

where

Ṫ =
(T2 + w2)(1 + T2)

T(1− w2)


 ċ
c
− 1

3

(
ḟ

f
− 2

λ̇

λ

)
+

(
1

3
− w2

T2 + w2

)
ṡ


 (6.36)

The rates of internal parameters entering the right–hand side of this equation are all established

relations. ċ/c can be determined by neglecting the volume change of the elastically–unloaded

zones. Thus,
ċ

c
=
ḣ

h
− Ḣ

H
=
D33

c
−D33 =

1− c
c
n ·Dpn (6.37)
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Also,

ḟ

f
=

(
1

f
− 1

)
Dp
kk

λ̇

λ
=
Ḣ

H
− L̇

L
= Dnn −

1

2

(
Dmm +Dpp

)
(6.38)

and

Dnn = n ·Dpn , Dmm = m ·Dpm , Dpp = p ·Dpp

6.3.5 Plastically anisotropic matrix materials

The inhomogeneous yield functions derived in the present work are, though well–sophisticated,

limited in certain respects. Among the limitations is disregarding matrix anisotropy whereas the

use of ΦH after Keralavarma ane Benzerga [14] is strongly suggestive of its consideration. This

was, in turn, embodied by other researchers after the presently developed models were published.

The present thesis is, hence, partly aimed at making use of the ensuing models for numerical

implementation purposes. This will furnish the constitutive framework to account for the effect of

matrix anisotropy throughout the deformation process thanks to both ΦH and ΦI incorporating that

effect.

In the case of an orthotropic matrix material, plastic anisotropy idealized as Hill–like was

incorporated by Keralavarma and Chockalingam [96]. Following a similar procedure and from

the same principles as in Papers P1 and P2 , the following inhomogeneous model was developed

therein:

ΦI =
1

2

σsh : p : σsh

τ̄ 2
+ 2qχfb cosh

(
σ

σc

ln
1

qχfb

)
−
[
1 + (qχfb)2

]
(6.39)
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where σsh = τ(n⊗m+m⊗ n) is the auxiliary shear stress tensor, and

σc

τ̄
= 3b

√
2

5
ĥq


ln bu


1 +

√
1 +

1

(bu)2


−

√
1 +

1

(bu)2




1/fb

u=1

3b2 =
ĥt

ĥq
+

5α

8W2

ĥa

3ĥq
, α =

1

12

[
1 + qχfb − 5(qχfb)2 + 3(qχfb)3

]
(6.40)

with qχ = 1 in the basic form. The parameters ĥq, ĥt, and ĥa are scalar anisotropy factors as

functions of ĥij , with ĥ denoting a formal inverse for h, admitting ĥ : h = h : ĥ = J. Note

also that, unlike those associated with ΦH (where ĥij components are expressed in the void-tied

basis), ĥij’s corresponding to ΦI are expressed in the basis tied to the surrogate void. See [14, 96]

for equations. It is, also, noteworthy that p is to be calculated within the principal loading frame,

that is initially taken coincident with the global coordinate system herein. See Paper P9 for more

details. The concept of introducing qχ into (6.40) follows the same rationale as put forward for

(6.16), and qχ can be taken identical to (6.18) for combined tension and shear, and 1 in absence of

shear.

Finally, W is a function of fb = χ̄2 and w̄ that is calibrated modulo numerical results, that

reads

W =





qχfbw̄
2

4W0

+W0 for
√
qχfbw̄ < 2W0

χ̄w̄ for
√
qχfbw̄ ≥ W0

(6.41)

whereW0 is an adjustable parameter (see [96] for the value).

Upon convention, σ̄ for an orthotropic matrix material is adopted as the yield strength in one

principal direction of orthotropy, and the components of the anisotropy tensor p are scaled accord-

ingly.

6.4 Time Integration of Constitutive Equations

Based on the foregoing discussion in Chapter 4, the constitutive framework of the present

hybrid model, following the governing equations stipulated in Sec. 4.6, is formulated within a
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corotational framework. Constitutive laws, therefore, need be written in the rotated configuration,

with quantities indicated by the tilde (∼) symbol. The objective rate of stress
∇
σ in (2.17) will

be then replaced with σ̇, and the spin tensor Ω will vanish from the void orientation evolution in

(6.11). Further details can be observed in [224] in this regard.

Due to the existence of high geometric nonlinearity within the problems of porous plasticity,

the implicit method of plasticity has been adopted to solve for state variables. Accordingly, the

following state variables are updated via the implicit method during the homogeneous and post–

localized deformation processes:

– During homogeneous deformation:

V =
[
σ′, σm, f, ε̄, dΛ, S

]T (6.42)

– During inhomogeneous deformation:

V =





[
σ′, σm, f, ε̄, s

]T for |σ| ≥ S

[
σ′, ε̄, s

]T for |σ| ≤ S

(6.43)

with S defined after Eq. (5.2).

dΛ is the increment in plastic multiplier, and the rest of variables have been defined in the context.

In the singular portion of the yield surface associated with |σ| ≤ tS,Dp andN ≡ ∂Φ/∂σ will be

traceless, and thus (σm, f ) would stay constant.

The main portion within the flow rule in Eq. (4.12) to derive the evolution equations of porosity

f , void aspect ratio w, and equivalent plastic strain ε̄, is the first derivative of the flow potential Φ

with respect to stress. To this end

ÑH ≡ ∂ΦH

∂σ̃
= 3C

H̃ : σ̃

σ̄2
+ 2(g + 1)(g + qf)κ sinh

(
κ
σ̃ : X̃

σ̄

)
X̃

σ̄
(6.44)
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and, for ΦI obeying (6.16), for instance:

Ñ I ≡ ∂ΦI

∂σ̃
=

2

V2

(
σn − tsgn(σn)S

)
ñ⊗ ñH(|σn| − S) + 2

τ̃n ⊗ ñ
T 2

(6.45)

withH(x) has been formerly defined. Accordingly:

∂Φ

∂σ̃′ = J :
∂Φ

∂σ̃
∴ ∂Φ

∂σkk
≡ 1

3

∂Φ

∂σm

= I :
∂Φ

∂σ̃

D̃p = Λ̇
∂Φ

∂σ̃
∴ Dp

kk ≡ 3Dp
m = Λ̇

∂Φ

∂σkk

(6.46)

Note that, within the confines of the present work, the constitutive derivations are only given

for the post–localization regime in Paper P7 . The reader will be well–advised to follow [224] for

steps to implementation of the K–B model in (6.3).

6.4.1 Newton–Raphson method

Via a similar procedure as that described in [224], a semi–implicit integration algorithm is

employed herein to integrate the post–localized constitutive equations, with the state variables as

assembled in (6.43). To this end, one should define a residual with respect to every state variable.

At the post–localized process, for instance:

[R] =

[
Rσ̃′ , Rσ̃m , Rf , Rε̄, Rs

]T
(6.47)

with their expressions written, in expanded form, as follows:

Rσ̃′ =
1

2µ

(
σ̃′ − σ̃′0

∆t

)
+ Λ̇

∂Φ

∂σ̃′ − D̃
′

Rσ̃m =
1

K∆t

(
σm − σm (0)

)
+ Λ̇

1

3

∂Φ

∂σm

− D̃kk

Rf =
f − f0

∆t
− (1− f)Λ̇

∂Φ

∂σkk

Rε̄ =
ε̄− ε̄0

∆t
− Λ̇

(1− f)

(
σ

σ̄
:
∂Φ

∂σ̃

)

(6.48)

108



whereK and µ are the shear and bulk moduli, respectively. The derivatives of the post–localization

flow potential ΦI refer to (6.45). V0 and V , respectively, denote the state variables at the beginning

and the end of the time increment. The residual associated with s ≡ lnw is explicated distinctively

in that it demands original derivation at the post–localized process.

– During homogeneous deformation:

Following [92], the time rate of the logarithmic void aspect ratio reads:

Rs =
s− s0

∆t
− Λ̇Q̃ :

[
kNH +

(
1

f
X̃v − X̃

)
∂ΦH

∂σm

]
(6.49)

with the parameters identified in (6.10).

– During inhomogeneous deformation:

We can firstly define intermediate parameters q1 and q2, following Eq. (6.29) or, alternatively,

Eq’s (6.31) and (6.32), with the normal and shear parts of ṡ secluded. Namely:





q1 =
3S

2c

q2 =
1

2

(
3C2

2c
− 1

f

) (6.50)

for cylindrical voids, and

q1 =





6
c
T(w2−1)(T2+w2)
(T2+w4)(T2+1)

2− 3 T2(2w2−w4+T2)
(T2+w4)(T2+w2)

forw ≥ 1

−6
c
T(w2−1)(T2+w2)
(T2+w4)(T2+1)

1− T2(−2w2+w4−T2)
(T2+w4)(T2+w2)

forw < 1

(6.51)
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and

q2 =





(T2+w2)2

(T2+w4)(T2+1)

[
3
c
− (T2+w4)(T2+1)

f(T2+w2)2

]

2− 3 T2(2w2−w4+T2)
(T2+w4)(T2+w2)

forw ≥ 1

(T2+w2)2

(T2+w4)(T2+1)

[
−3
c

+ (T2+w4)(T2+1)
f(T2+w2)2

]

1− T2(−2w2+w4−T2)
(T2+w4)(T2+w2)

forw < 1

(6.52)

for spheroidal voids.

One can further define

q = q1m+ q2n

M = n⊗ q
(6.53)

which can supply the residual associated with s as follows:

Rs =
s− s0

∆t
− Λ̇M : N I (6.54)

The Newton–Raphson procedure is then employed iteratively to solve the [R]T = 0 equation

system at every time step:

[V ](i+1) = [V ](i) −
[
∂[R]

∂[V ](i)

]−1

[R] (6.55)

where the Jacobian matrix ∂[R]/∂[V ] can be evaluated at every iteration within the time step or

kept constantly equal to the value at the beginning of the time step, and subscript i denotes the

iteration number. Since, however, the number of iterations to convergence is more or less the same

whether the initial or updated Jacobian is utilized. Therefore, ∂[R]/∂[V ](0), i.e. the Jacobian at

the beginning of every time step, has been used throughout the iteration process due to the fact that

convergence is better guaranteed with the initial Jacobian.

Finally, the consistent tangent matrix (mainly developed for global equilibrium, as in a finite
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element–based analysis), denoted by Ltan (e.g. DDSDDE in ABAQUS) is written as

Ltan =
1

∆t

(
∂σ̃′

∂D̃
+ I ⊗ ∂σ̃m

∂D̃

)
(6.56)

which involves the following constituents:

[
∂V

∂D̃

]
= −

[
∂[R]

∂[V ]

]−1[
∂R

∂D̃

]
(6.57)

where use has been made of the same Jacobian as introduced in (6.55), and

[
∂V

∂D̃

]
=

[
∂σ̃′

∂D̃
,
∂σ̃m

∂D̃
,
∂f

∂D̃
,
∂ε̄

∂D̃
,
∂s

∂D̃

]T

[
∂R

∂D̃

]
=

[
∂Rσ̃′

∂D̃
,
∂Rσ̃m

∂D̃
,
∂Rf

∂D̃
,
∂Rε̄

∂D̃
,
∂Rs

∂D̃

]T (6.58)

To the reader’s insight, the Jacobian components corresponding to the post–localized deformation

process have been provided in Paper P7 . For the homogeneous deformation regime, the reader

can consult [224].
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CHAPTER 7 APPLICATIONS

The present chapter addresses a selective collection of results that simulate the Fracture process

under combined tensile and shear loading with the internal state variables that represent the stress,

strain, and microstructural state. The results are generated by integration of constitutive equations

for one spatial point representing a unit cell based on the hybrid plasticity model propounded in

Chapter 6. Contrary to the heavy numerical simulations carried out in [16, 17, 21], the void need

not be modeled explicitly, but through the notion of an elementary cell.

The matrix effective stress σ̄ is taken to depend on its conjugate ε̄ through a power law of the

form:

σ̄ = σ0(1 +
ε̄

ε0
)N (7.1)

with σ0 the initial yield strength and N the hardening exponent.

Furthermore, the imposed deformation gradient is derived on the basis of its value at every time

step, that is

F (i) =
i∏

j=0

F (j) (7.2)

where F (j) is the deformation gradient between the j − 1’st and j’th time steps constituted by

the incremental displacements at the j’th step, where j = 1, 2, ..., i. Note that many commercial

codes, such as ABAQUS, calculate F internally, and it thus need not be programmed when the

constitutive model is coded in conjunction with those commercial software. For the single cell

undergoing normal and lateral as well as shear displacement, F (j) reads:

F (j) =

(
1 +

δu
(j)
m

L

)
m⊗m+

(
1 +

δu
(j)
p

L

)
p⊗p+

(
1 +

δu
(j)
n

H

)
n⊗n+

δu
(j)
t

H
m⊗n (7.3)

where the constituents
(
δu

(j)
m , δu

(j)
p , δu

(j)
n , δu

(j)
t

)
are the incremental displacements at the j’th step,

where j = 1, 2, ..., i. Here, δu(j)
m , δu(j)

p , and δu(j)
n are the tensile displacement increments along

directions m, p, and n, respectively, and δu(j)
t is the tangential displacement increment over the
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top chord of the cell. Note that all these displacement increments are modified so as to preserve

the ratios among the stresses. Moreover,

L = L0 exp

(
εmm + εpp

2

)
, H = H0 exp εnn (7.4)

with εmm, εpp, and εnn are the normal strains resolved along the m, p and n directions, respec-

tively. Upon consideration of the single cell, n (denoting normal to the invoked localization plane)

initially directed along e3 would stay constant thanks to the imposed deformation gradient F .

Upon consideration of a single cell in the present context, m, p and n coincide with the global

base vectors e1, e2 and e3, respectively.

The model will be first borne out by existing numerical data through some benchmark response

curves under triaxial as well as combined loading. The parametric results are presented in two main

sets accordingly, under triaxial and combined loading conditions. Each set of results is extended

into further subsets to demonstrate the evolution of various microstructural variables throughout

the process. The ratios among the remote normal, lateral, and shear stresses remain constant

throughout. Accordingly, stress triaxiality T and the Lode parameter L are constant. A complete

guide through the employed algorithm for preservation of stress ratios is illustrated in Appendix

C.

The outcomes examined include the effect of initial porosity reflected through the initial effec-

tive ligament parameter χ0. Further, the effect of elementary cell size was expressed in terms of

the cell aspect ratio λ. The effect of void shape was also assessed from distinct effects observed for

elongated and flat voids. Furthermore, the strain to failure was evaluated in terms of stress triaxial-

ity for a complete scope of stress triaxialities. Finally, an example axisymmetric notched bar FEM

simulation was carried out to demonstrate the capability of the model for structural boundary–

value problems. To that end, the constitutive framework was implemented in an a user–defined

subroutine, and the microstructural effects were evaluated based on homogenized incorporation of

the effective microstructural parameters.
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7.1 Failure Mechanism in Shear

(a) (b) (c)

Figure 7.1: Essential features of ductile fracture under combined loading captured by the unit cell
model: (a) intial state, (b) inhomogeneous deformation, (c) localized deformation.

The preparatory step to quantitative simulation of ductile fracture processes is a qualitatively

proper emulation of the failure mechanism. To investigate failure under combined tension and

shear, the continuum micromechanics–based framework must be capable of capturing the salient

features of sub–cell deformation sketched in Fig. 7.1.

The present section is thus aimed at illustration of the mechanism by which failure occurs un-

der shear–dominated loading which is realized by sufficiently low values of κ = σn/τn. In this

region, the basic form of the inhomogeneous yield criterion computationally dominates from the

outset, and all the subsequent deformation mechanism can be described by ΦI along with the sup-

plemented evolution equations. Nevertheless, as seen in the sequel, this deformation mechanism is

quantitatively erroneous. This error can be attributed to the underlying premises within ΦI which

ideally confines plastic deformation within the ligament intercepting void poles [228]. Recent cell–

level calculations, however, have it that, even at a state of shear domination, plastic deformation is

more diffuse than ideally within the ligament, at least at early stages of deformation [16, 21]. The

following section, therefore, proposes a modification to both ΦH and ΦI so as for the hybrid model

to be quantitatively robust.

The results are hereby presented for spheroidal voids, in comparison with their counterparts for

cylindrical voids for a unit cell under κ = 0.02 with the initial simulation parameters given in the
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caption. The constitutive formulation exclusive to cylindrical voids is skipped herein, but the reader

can find sufficient algebraic details and a more self–contained discussion on the corresponding

simulation results in Papers P5 and P6 . It should be remarked, however, that, since a cylindrical

void is tied to the upper and lower matrix materials over a whole surface rather than a single point,

the whole range of void aspect ratios (below or above 1) behave similarly as far as void rotation is

concerned. Nevertheless, a spheroidal void under the effect of shear rotates antithetically when it

is prolate (w ≥ 1) and oblate (w < 1).

(a) (b)

(c) (d)

Figure 7.2: Comparison of the predicted failure mechanisms based on the TBL criterion according
to Eq. (5.2), for a cell under κ = 0.02, between a spheroidal and a cylindrical void of the same
porosity level with the simulation parameters identified as f0 = 0.0005, w0 = 1.1, λ0 = 2, N =
0.2,
√

3τ0/E = 0.002: (a) normalized shear stress, (b) void angle with the horizontal direction,
(c) effective ligament parameter, (d) logarithmic void aspect ratio s = lnw [19] (reprinted with
permission from Elsevier, Ltd).

Figure 7.2 shows the comparison between microstructural parameters for spheroidal and cylin-

drical voids embedded in the same cell. All parameters are presented against the shear strain γ31.
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Note that the current framework exhibits a singular behavior rooted in the ill–defined void axis for

the case of a spherical void. The latter is, therefore, represented with a void aspect ratio slightly

above unity, i.e. w0 = 1.1. The largest distinction between the results pertaining to spheroidal and

cylindrical voids can be envisaged for w0 < 1 due to an opposite orientation evolution as plotted in

Fig. 7.2b, and the difference diminishes with increasing w0 > 1 owing to the synergistic behavior

of elongated cylindrical and spheroidal voids. The orientation evolution schematized in Fig. 6.8

can be realized for both prolate and oblate voids by examining Fig. 7.2 b. It can be clearly seen

that, soon after the beginning of the deformation process, the oblate void would stop rotating op-

posite to the shearing direction and begins to rotate along with shearing. Altogether, the overall

rotation of an oblate void under shear is small in comparison to its prolate counterpart of the same

porosity level.

The void aspect ratio w, as plotted in logarithmic form in Fig. 7.2d, would decrease in an

oblate void under shear and it increases for its prolate counterpart. In effect, an elongated upright

void elongates more, and an upright flattened void flattens further under shear such that, in both

cases, the larger of the two void dimensions tends to align with the direction of the largest principal

stretch. For a cylindrical void, however, w increases regardless of it being below or above 1.

(a) (b)

Figure 7.3: (a) Shear response and (b) evolution of ligament parameter for various values of the
initial ligament parameter χ̄0 using w0 = 1.1, λ0 = 2, N = 0.2, and

√
3τ0/E = 0.002.
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In all cases, failure is triggered by χ̄ reaching its maximum, which is 1 in its basic form. Yet,

χ̄ exhibits different trends with different void shapes. With a cylindrical void, the trend for χ̄

is convex, and thus, the material may not experience failure if the initial void volume fraction is

smaller than a certain value (see Fig. 7.3). This situation physically corresponds to asymptotic void

closure. Indeed, with extremely elongated void shapes, the surrogate void aspect ratio vanishes

(w̄ → 0) as shown in Paper P6 . The closed void, which is in the limit a microcrack, deforms as a

material line.

(a) (b)

Figure 7.4: Predicted failure mechanism in shear and its connection to the fracture surface of
Fig. 1.8b: (a) few neighboring cells near the ultimate state χ̄ = 1, (b) side and top views of the
cut–out from (a) after material separation.

The above–predicted mechanism can be correlated with the salient features of sheared fracture

surfaces as depicted in Fig. 1.8 through the schematic neighborhood as shown in Fig. 7.4. An

intermediate and the ultimate states (χ̄ = 1) are shown in Fig. 7.4a with dashed and solid lines,

respectively. A top view of the so–simulated fracture surface, Fig. 7.4b, provides a rationale for

three key experimental observations: (i) parabolic dimples; (ii) low surface roughness; and (iii)

low local porosity, relative to tensile fracture surfaces, Fig. 1.8a.

7.2 Model Assessment

This section provides selective outcomes for cell–level predicted internal state variables under

triaxial loading as well as combined normal and shear loading in comparison to the existing FEM

cell-model calculations.
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7.2.1 Triaxial loading

The micromechanics–based and FEM–based results of Pardoen and Hutchinson [20] are used

to assess the authenticity of the hybrid model with respect to triaxial loading. The following

parameters are common among all analyses:

f0 = 10−2 , λ0 = 1 , N = 0.1 ,
σ0

E
= 0.002 , E = 210 GPa , ε0 = 0.002

(7.5)

where σ0 is the initial matrix yield strength and ε0 is its conjugate strain. E is the Young modulus,

N is the hardening exponent, and f0 denotes the initial porosity. The values of initial void aspect

ratio w0, however, is varied.

(a) (b)

Figure 7.5: Comparison of the present model predictions in absence of shear (solid curves), with
the results extracted from Pardoen and Hutchinson’s extended model (dashed curves), as well with
those obtained from cell–model calculations (dotted curves) in [20] for several values of initial
void aspect ratios and a stress triaxiality of T = 1.

Figure 7.5 shows a schematic unit cell as well as the comparison among the stress–strain results

corresponding to T = 1. The stress–bearing capacity in absence of shear is taken to drop to zero

when χ̄ exceeds
√

2/2 ≈ 0.707 [150].
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(a) (b)

(c) (d)

Figure 7.6: Present model predictions under triaxial loading with a T = 1 stress triaxiality: (a,b)
normalized porosity and logarithmic void aspect ratio, compared to FEM results in [20], (c,d)
effective ligament parameter and lateral strains, respectively.

The difference between present predictions and numerical and/or micromechanical results is

seen to be more pronounced for larger void aspect ratios. This can be attributed to the rather

exaggerated porosity growth predicted from the K–B model (as shown in Fig. 7.6b) as well as

the decreasing trend within s = lnw, which would increase the stress level but reduce the strain

to coalescence. Other selective microstructural variables are shown in Fig. 7.6. The predicted

logarithmic void aspect ratio s is closely tied to its FEM counterpart during void growth except for

large w0’s, where both analytical and numerical curves tend towards level but the former predicts a

decreasing w. Next, Fig. 7.6c shows that the slope of increasing χ̄ ranges from convex to concave

from an initially oblate (w0 < 1) to an initially prolate (w0 > 1) void. Accordingly, an initially flat

void at a very low porosity level would be likely to never experience coalescence inasmuch as χ̄
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could reach a maximum before coalescence could occur. Further, the zero lateral strain rate at the

post–coalescence process is corroborated by Fig. 7.6d.

7.2.2 Combined loading

The coincidence between the analytical and numerical results will not be fulfilled unless by

invoking the simple calibration to both ΦH and ΦI identified via (6.18). Accordingly, the analyses

carried out by Tvergaard and coworkers for plane–strain and 3D cells under combined and near–

simple shear loadings [16, 17] are regarded as comparator. The initial microstructure in both [16,

17] is introduced based on the (χ0 = R0/L0, w0 = h0/R0, λ0 = H0/L0) triad (see Fig. 7.7), with

χ0 varying between 0.2 and 0.5, and (w0, λ0) = (1, 4) remaining fixed.

(a) (b) (c)

Figure 7.7: Schematic outline of periodic cells under combined tension and shear considered by
Tvergaard and coworkers: (a) plane–strain [16,21], (b) 3D [17], (c) staged deformed configurations
of the plane-strain cell in [16] under simple shear, i.e. κ = 0 (reprinted with permission from
Springer, Ltd).

Figure 7.7 shows the schematic outline of the plane-strain [16, 21] and 3D [17] periodic cells

as well as the deformed configuration of the plane–strain cell according to the numerical analyses

carried out in [16]. In the plane–strain cell, the out–of–plane dimension in both the void and the

cell is considered unit and, hence, χ0, w0, λ0 are all defined within the x1–x3 plane. In the 3D cell,
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however, the lateral dimensions are considered equal. Correspondingly, the initial porosity reads

Plane strain: f0 =
π

4

w0χ
2
0

λ0

3D: f0 =
π

6

w0χ
3
0

λ0

(7.6)

For the sake of better coincidence between analytical and numerical results, the calibrated

model predictions are firstly compared to their FEM counterparts for the same initial porosity [72],

with the initial microstructure and hardening identified by (χ0, w0, λ0) = (0.25, 1, 4), N = 0.1 for

the plane-strain cell and (χ0, w0, λ0) = (0.3, 1, 4), N = 0.2 for the 3D cell, both shown in Fig. 7.7.

In all FEM-based studies, the analyses have been carried out by considering a maximum void

aspect ratio, beyond which the loading is applied onto the void faces rather than onto the cell upper

and lower boundaries. Herein, the results pertaining to a maximum void aspect ratio of wmax = 10

are considered as comparator.

(a) (b)

Figure 7.8: Comparison between the present model predicted shear responses vs. cell overall shear
angle ψ with FEM cell-model outcomes of Tvergaard and coworkers: (a) for an initially circular
void inside a plane-strain unit cell under κ = 0.6 as well as simple shearing (κ = 0) [16, 21];
(b) comparison with FEM outcomes of Nielsen et al. [17] for an initially spherical void inside a
square-prismatic cell under combined axial and shear loading (with the ratio denoted with κ) and
χ0 = 0.3.

Figure 7.8 shows the comparison between the hybrid model predicted response and numerical

outcomes for the plane-strain and 3D cells (see Paper P7 for more comparisons).
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(a) (b)

(c) (d)

Figure 7.9: Comparison between the present model predicted variables with FEM outcomes of
Nielsen et al. [17] for an initially spherical void inside a square-prismatic cell under combined
axial and shear loading (with the ratio denoted with κ) and χ0 = {0.3, 0.5}: (a) void angle with
respect to the horizontal direction, (b) normalized porosity, (c,d) normalized major and minor void
semi-axes.

Further comparisons, pertaining to the 3D cell with initial ligament parameters χ0 = {0.3, 0.5}

and N = 0.2, are showcased in Fig. 7.9 for selective state variables including the void angle with

respect to the m–p plane, equaling 90− θ (with θ identified in Fig. 6.8), porosity f , and the void

major and minor semi-axes. The latter is shown only for the in-plane semi-axis b1.

Fig. 7.9d demonstrates that the overall trend of porosity evolution, inclining or declining, is

common between analytical and numerical results with the difference lying in the dilatancy level

in FEM values reflected by the more remarkable slope of evolution, especially at larger normal

stress portions, i.e. larger κ’s. Yet, the observed clear distinction between the FEM and analytical

porosity values does not bare significant changes in the stress response (as shown in Fig. 7.9a)
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inasmuch as the failure mechanism is mainly influenced by χ̄ rather than porosity.

Note that the analytical evolution of 90 − θ is founded on the initial void orientation directed

towards e3 since w0 = 1.1 has been taken slightly above unity to forestall the singular behavior

of void orientation laws at the limit of a spherical void, and therefore, the initial orientation is

well–defined. Within the numerical model, however, the orientation of a strictly spherical void is

ill–defined. Upon convention, the void orientation in this case is considered along the principal

stretch, which is close to that considered in [16, 17]. Accordingly, the jumps in the numerical

evolution of orientation is an artifact employed to extract the major void axis [17].

7.3 Parametric Studies

A more extensive investigation on the various state variables under combined axial and shear

stresses, upon the calibrated hybrid model, is addressed next for spheroidal voids. The results are

briefly reflected by the following subsections. Further details in this regard are provided in Paper

P7 .

7.3.1 Effect of loading

The effect of loading is quantified via the κ ≡ σn/τn ratio. This section addresses this effect

through Fig. 7.10 on the microstructural state variables with the same cell as considered in Sec.

7.2.2 and χ0 = 0.3. A complete scope of κ ranging from infinity (uniaxial loading) down to

(near) zero (simple shearing) can best be exhibited in terms of ε̄ since the axial or shear strain each

becomes vanishingly small at either of the two extremes. It can be seen, through Fig’s 7.10(a,b),

that the strain to the onset of localization εc, as well as strain to failure εf , from infinity at κ −→∞

(corresponding to T = 1/3), decreases and then increases again with decreasing κ (increasing

shear). As farther observed in Fig. 7.11, the minimum strain to failure occurs approximately at

κ = S/T , which is nothing but the point of transition between the curved and planar parts of ΦI

according to (5.2). Furthermore, the difference between εc and εf becomes smaller with larger

κ’s noting that a larger portion of the normal stress superposed by shear accelerates rotation, as

revealed by Fig. 7.10d, and thus hastens the increase of χ̄, as demonstrated by Fig. 7.10b. The
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(a) (b)

(c) (d)

(e) (f)

Figure 7.10: Predicted microstructural parameters upon the calibrated hybrid model, plotted
against equivalent plastic strain ε̄ for the same initial microstructure as considered in Sec. 7.2.2
and χ0 = 0.3, under a full range of κ: (a) shear response, (b) effective ligament parameter, (c)
normalized porosity, (d) void angle with the horizontal direction, (e) logarithmic void aspect ratio,
(f) void semi-axes.
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latter also shows that, for sufficiently large κ’s (i.e. κ >> S/T ), χ̄ increases during both nearly-

homogeneous and localized processes whereas, for smaller κ’s, it decreases during the nearly-

homogeneous process. This alludes to the fact that, with larger normal stress portions, the void

can rotate faster than the cell during the nearly-homogeneous process whilst, at shear-dominated

processes, the cell moves faster during this process. During the localized process, however, the void

always rotates faster since plastic deformation is (ideally) confined to the ligament intercepted by

void poles.

Moreover, one can assert, from Fig. 7.10c, that porosity increases, with its increase accelerated

after the onset of localization, for κ > S/T , i.e. normally-dominated fields. All the same, for

κ < S/T , i.e. shear-dominated fields, porosity decreases during the nearly-homogeneous process

and stays constant after localized deformation begins. This lies in the traceless nature of Dp

according to ΦI for this range of κ.

The s1 and s2 void aspect ratios shown in Fig. 7.10e denote, respectively, a/b1 and a/b2. Under

all combinations of (tensile) axial and shear stresses, in absence of sufficient lateral loads, s as

well as s1 and s2 increase, with their increase accelerated after localization begins. Throughout the

process, s1 > s2 and the difference between the two increases with deformation advancement. At

the end of the localized process, the void aspect ratio increases with its slope approaching infinity.

This stage signifies the vertical movement of void poles after extreme shearing, as shown in Fig.

7.7c. Correspondingly, as depicted in Fig. 7.10f, the major and minor void semi-axes increase and

decrease, respectively, with shearing, and the trend slope accelerates after the onset of localization.

The out-of-plane axis also decreases slightly but stays almost constant throughout the process due

to the loading being devoid of lateral stresses.

As earlier remarked, 7.10a was suggestive of a local minimum within εc and εf with varying

κ. Figure 7.11 gives more insight into this effect by presenting εc and εf as function of stress

triaxiality T , and provides the physical reason for this local minimum.
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(a) (b)

Figure 7.11: (a) Predicted strain to onset of localization εc as well as strain to failure εf as function
of stress triaxiality T for the same cell as shown in Fig. 7.7a, with (w0, λ0) = (1.1, 4), hardening
exponent N = 0.2 and various initial ligament parameters χ0; (b) evolution of εc as function of
stress triaxiality at the example Lode angle of θ = π/12 at the isotropic material limit for several
values of χ̄.

In some references, including [88], εc is normally regarded as equal to εf for the material since

the plastic deformation prior to this point is considerably larger than that after this onset. Figure

7.11, however, reports both strains as function of triaxiality. The underlying microstructure for

this evolution is reflected by the same unit cell as shown in Fig. 7.7a, with (w0, λ0) = (1.1, 4),

hardening exponent N = 0.2 and various initial ligament parameters χ0, under combined normal

and shear stresses. The two parameters of interest are consequences of the Runge–Kutta integration

of equations stating the time rate of (f, w,n(3)) as function of ε̄. See Paper P7 for more details.

One can notice, through Fig. 7.11a, that εc is close to εf at the shear–dominant range of

triaxialities. Yet, the difference therein cannot be neglected in a significant range of triaxial loads,

esp. in an interval of 0.5 < T < 2 where void coalescence is accelerated due to the existence of

lateral loads but significant stress–bearing capacity still remains after the onset of void coalescence.

More importantly, in the shear–dominated region (0 < T < 1/3), both εc and εf admit their

minimum values not at the simple–shear limit but somewhere between the two limits. Within a

reasonable accuracy, it can be deduced that the minimum to εc and εf occurs almost at κ = S/T ,
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which corresponds to

T (εfmin) =
1

3

S√
S2 + 3T 2

(7.7)

for a combined normal–shear loading, with S and T defined in (5.3).

It is, however, noteworthy that, at the limit of isotropic yielding shown in Fig. 7.11b, which

stems from random distribution of voids, the εf vs. T curve is absolutely declining even for the

T < 1/3 range. Yet, as earlier pointed out in Chapter 5, the value at the T = 0 limit should be

finite though being admittedly large. The reader is referred to Paper P4 for more explanation.

In the forthcoming subsections, the results are limited to near–simple shearing, here character-

ized by κ = 0.02.

7.3.2 Effect of void spacing

(a) (b)

(c) (d)

Figure 7.12: Predicted microstructural parameters for the same cell subjected to κ = 0.02 for
various values of χ0.
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The effect of void spacing can be reflected through the notion of initial ligament parameter χ0.

Figure 7.12 presents selective state variables under near-simple shearing (κ = 0.02) with various

values of χ0, ranging from zero (pertaining to the limit of a dilute matrix) up to rather large val-

ues, e.g. 0.5. Figure 7.12a reveals that the stress curve (and the tangential stiffness accordingly)

up to the point of transition (εc) is almost insensitive to void spacing provided the other (initial)

microstructural parameters stay constant. However, εc and εf are closely related to χ0. In par-

ticular, for very small values of χ0, towards the limit of a dilute material, the onset of localized

deformation, as well as failure, gets significantly delayed.

During nearly-homogeneous yielding, as shown in Fig. 7.12b, χ̄ decreases at the early stages of

deformation, but it admits a minimum which sets the precursor for the onset of localized deforma-

tion. The void aspect ratio, according to Fig. 7.12d, increases with a decreasing inclination slope.

The largest slope of increasing s corresponds to the onset of localization, and void elongation slows

down further towards failure.
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7.3.3 Effect of cell aspect ratio

(a) (b)

(c) (d)

Figure 7.13: Predicted microstructural parameters for the same cell with (f0, w0) = (0.01, 1.1)
subjected to κ = 0.02 for various values of λ0: (a) normalized shear response, (b) effective liga-
ment parameter, (c) void angle with the horizontal direction, (d) logarithmic void aspect ratio.

The effect of initial cell aspect ratio is considered for investigation next. Other parameters,

including initial porosity f0 and void aspect ratio w0, as well as the hardening exponent N = 0.2,

are kept fixed upon selective values of (f0, w0) = (0.01, 1.1). Figure 7.13 illustrates this effect.

Due to the load representing simple shear (κ = 0.02), λ remains almost constant throughout, and

thus is not shown.

At a fixed porosity level, the void spacing χ0 is smaller in a shorter cell, and thus the void, even

after deformation turns localized, has to elongate and rotate more to reach the cell boundaries.

The strains to localization and failure are hence larger with shorter cells, as seen in Fig. 7.13a.
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Correspondingly, the projection of a rotating-elongating void on a shorter intervoid distance (at a

larger λ) evolves faster than that on a longer distance (at a smaller λ). The slope of χ̄ evolution,

therefore, is smaller for a shorter cell, and vice versa (see Fig. 7.13b). The void would, accordingly,

rotate (Fig. 7.13c) and elongate (Fig. 7.13d) more slowly at the post-localized deformation process,

in a shorter cell and vice versa.

7.3.4 Effect of void shape

(a) (b)

(c) (d)

Figure 7.14: Predicted microstructural parameters for the same cell geometry with (f0, λ0) =
(0.01, 4) subjected to near-simple shearing (κ = 0.02) for various initially upright voids (θ0 = 0)
with aspect ratios w0 ranging from 1/4 to 4: (a) normalized shear response, (b) logarithmic void
aspect ratio, (c) normalized porosity, (d) void angle with the horizontal direction.

The effect of void shape is studied via the variation of the initial void aspect ratio w0. The

latter effect, with w0 ranging from 1/4 to 4, on the microstructural behavior under simple shearing

is shown in Fig. 7.14 at fixed porosity level f0 = 0.01 and cell aspect ratio λ0 = 4, with the
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same hardening exponent N = 0.2. Figure 7.14f substantiates the mechanism shown in Fig. 7.2

and schematized in Fig. 6.8a. Prolate and oblate voids rotate in opposite directions so that the

larger axis moves towards aligning with the principal stretch direction, here initially lying close to

45◦ from the vertical direction and lying further down during the deformation process. Therefore,

a prolate void rotates along with shearing and an oblate rotates opposite thereto. There exists,

however, a maximum point within the angle curve pertaining to the oblate void which corresponds

to a back-turn in rotation. The latter was also observed earlier with the difference being that,

within the modified hybrid model, this instant takes place at the onset of localized deformation.

This point further corresponds to the instant when the void closes, i.e. a −→ 0, w −→ 0 and

f −→ 0 as indicated by Fig. 7.14c. At this point, deformation abruptly turns localized where and

failure occurs soon afterwards. This observation signifies crack propagation for flat voids under

limited void growth. Further, Fig. 7.14a shows the highest ductility as well as limit load for an

initially spherical void. Meanwhile, an oblate void with w = 1/x is more ductile than its prolate

counterpart with w = x (x > 1 implied) under a shear field.

The reader can gain a deeper insight into the behavior of oblate voids in shear fields by con-

sidering the behavior of an oblate void under various load combinations (denoted with different

κ’s). Moreover, a non-spherical void can exhibit widely different conducts under shearing when

its initial orientation departs negatively or positively from the upright position. The reader is well-

advised to refer to Sections 5.5 and 5.6 of Paper P7 to illustrate these effects. They are skipped

herein in the interest of brevity.

7.4 Example Finite Element Simulation

An example FEM–based simulation is presented to demonstrate the capability of the proposed

hybrid model to solve boundary–value problems. To this end, the local analysis is realized by the

time integration of the material constitutive framework implemented in a user–defined subroutine

(UMAT), and the global analysis is carried through discretization of the domain in ABAQUS stan-

dard. The example comprises an axisymmetric notched bar under an axial target displacement,

which admits triaxial loading towards the center and combined triaxial and intermediate shearing
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towards the notch corners 1.

(a) (b)

Figure 7.15: (a) Geometry of an axisymmetric bar under axial remote loading, (b) geometry of an
equivalent tensile specimen with axisymmetric elements.

To reduce the computational cost, only a quarter of the assemblage is modeled with relative di-

mensions (L0, L1) = (1.95, 3.5), (H0, H1) = (2.9734, 28.75), and U̇0 is a prescribed displacement

rate exerted at the top chord, as shown in Fig. 7.15. The prescribed relative value at the current

study is 10. A uniform grid is used in the gauge section, Fig. 7.15a and, altogether, 756 eight–

noded axisymmetric (CAX8R) elements with reduced integration are used. The global boundary

conditions are stated in more detail in Paper P7 . The matrix material is endowed with the same

constants as listed in Eq. (7.5). A stabilizing factor of 0.1 was considered in the global analy-

sis. Further, a line–search algorithm (with the parameters declared in Paper P7 ) was acquired to

capture the substantial change in the stress slope at the onset of inhomogeneous yielding.

1Models with more intense shearing encounter more serious global convergence problems. So for the model to
be capable of simulating those models, a multi–surface model should be implemented in terms of a linear combina-
tion of ΦH and ΦI. Alternatively, an artificial damping can be incorporated within the constitutive framework and,
accordingly, into the exported consistent tangent matrix
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Figure 7.16: Normalized vertical stress emanating from the vertical reaction force divided by the
initial cross sectional area at the notched section.

(a) (b) (c)

(d) (e) (f)

Figure 7.17: Spacial contours of selective internal state variables for the notched bar shown in Fig.
7.15, including: (a,b) axial and shear stresses, respectively, (c) porosity, (d) ligament parameter χ̄,
(e) logarithmic void aspect ratio s = lnw, (f) stress triaxiality T .

Figure 7.16 shows the global response given in terms of the bottom face vertical reacting trac-

tion vs. relative radius reduction. The analysis has stopped prior to utter failure due to global

convergence issues. One can envisage significant softening prior to inhomogeneous deformation
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due to damage accumulation, which results in a more than six–fold increase in porosity, as further

observed in Fig. 7.17.

To gain better insight into the space distribution of the internal state variables, some selective

state variables are shown in Fig. 7.17. Plastic strains are mainly confined within the notched

zone, and the gauge zone remains (approximately) elastic. This is totally commensurate with

experimental observations in notched bar uniaxial testing. Figure 7.17 demonstrate that the normal

stress σ22, along with porosity f , effective void spacing χ̄, and stress triaxiality T are maximum at

the specimen center and decrease to their initial values moving towards the gauge section. A closer

probe into Fig. 7.17a reveals a dropping stress approaching the bar center, which is characteristic

of void coalescence, as further observed in Fig. 7.18b. Among all, χ̄ reduces precipitously with

increasing distance from the center towards the notch surfaces. This will be further observed in

Fig. 7.18c. All the same, shear stresses are maximum at the notch surface vicinity away from

the base. Accordingly, the shear–dominant part of Eq. (5.2) would take over very soon without

plasticity being localized at this region. Therefore, the transition to inhomogeneous yielding should

be realized merely upon the normal portion of Eq. (5.2) at the vicinity of the notch surface.

The void aspect ratio, however, as shown in Fig. 7.17e, enlarges towards the notch surface near

the bottom end. The reason for the void aspect ratio being maximum at this region is the existence

of a dominant normal stress superposed by an intermediate shear stress, which corresponds to

a maximal void elongation, also stipulated in Ref. [17]. The parts above this zone are either

moderately sheared or uniaxially loaded, both triggering less elongation.

The internal state behavior is significantly versatile upon moving away from the reduced cross

section. To perceive that, selective state variables are plotted for three different zones starting from

the center of the specimen and moving towards the curved surface (shown in Fig. 7.18a), where

the shear stress ranges from zero to a finite value.
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(a) (b) (c)

(d) (e) (f)

Figure 7.18: Selective microstrucrural parameters for zones A–C, as shown in part (a), with shear
stresses ranging from zero to finite values: (b,c) normalized axial and shear stresses, respectively,
(d) normalized porosity, (e) effective ligament parameter, and (f) logarithmic void aspect ratio.

Note that inhomogeneous deformation and/or void coalescence occurs in zones (A) and (B),

with the transition points shown in red dots. The inhomogeneous yielding, however, is not reminis-

cent of void coalescence at zone (B) due to the progressive increase in the stress bearing capacity,

according to Fig. 7.18b. The average stress response, however (as represented by Fig. 7.16), is

declined after the inhomogeneous yielding onset. The shear stress, as depicted in Fig. 7.18c, in-

creases in a more retarded manner at zone (B) due to inhomogeneous deformation being confined

to intervoid ligaments, whereas it continues to grow faster at the notch surface (C). More impor-

tantly, the effective ligament parameter χ̄ increases at the center, with accelerated increase after

coalescence, whereas it decreases at zones (B) and (C). This occurs due to the lateral stresses liter-

ally annihilated at these two zones. The inhomogeneous yielding mechanism, however, diminishes

the decrease rate of χ̄, as shown after the dotted spot in Fig. 7.18e while it continues decreasing
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with an even larger slope at zone (C). Moreover, Fig. 7.18f reaffirms the observation in Fig. 7.17e

that the rate of increase in the void aspect ratio enlarges when some shear stress is superimposed to

a normal dominant stress. Moreover, the post–localized trend of s = lnw ranges from declining at

the center (with maximum lateral stresses) to increasing at zones (B) and (C) with lateral stresses

vanishing and shear stresses coming into play.

7.5 Effect of Matrix Anisotropy

This subsection adumbrates on the fracture process to failure under combined tension and shear

with anisotropic matrix materials with the matrix anisotropy idealized as Hill–type orthotropy.

The results under triaxial loading, as well as the constitutive model assessment against numerical

outcomes, are skipped herein, yet can be found in Paper P8 .

Figure 7.19: Schematic outline of a microstructure consisting of an aggregate of aligned spheroidal
voids surrounded by an anisotropic matrix.

To this end, the constitutive framework is governed by the intersection of nearly-homogeneous

and localized yield criteria obeying Eq’s (6.3) and (6.39) as ΦH and ΦI, respectively, which are

both endowed with the effect of matrix anisotropy of a Hill type. The predictive capability of the

latter two-surface hybrid model was successfully assessed from comparison to the same benchmark

calculations from Pardoen and Hutchinson [20] and Nielsen et al. [17] in absence and in presence

of shear loads, respectively. See Paper P8 in this regard.

The principal axes of orthotropy are initially oriented along the base vectors eL, eT and eS, as

indicated by Fig. 7.19, and are taken to rotate with the material, in accordance with Eq. (6.25).
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Note that the matrix orthotropy basis (eL, eT, eS), that tied to the voids (n(1),n(2),n(3)), and the

principal loading directions (e1, e2, e3) do not necessarily coincide, even when they do initially.

Here considered are situations where the principal loading axes are misaligned with the princi-

pal directions of matrix orthotropy. The latter was investigated by Kweon et al. [224] under triaxial

loading, with the whole fracture process considered homogeneous with ΦH obeying Eq (6.3). Yet,

the effect induced by shearing, in conjugation with matrix anisotropy, remains to be evaluated. For

the sake of brevity, only the results under near-simple shearing are chosen for the present chapter.

Similar parametric studies under triaxial loading can be found in Paper P8 .

The rationale underlying the strong effect of matrix anisotropy on void growth has been expli-

cated by Benzerga and Besson [95] and further expanded in [229]. Note that the idealization of a

spheroidal void shape is an approximation. Within an anisotropic matrix, the void can develop into

a 3D void even under axisymmetric loading.

7.5.1 Effect of shear Hill coefficients

The effect of matrix plastic anisotropy is firstly studied with a spherical void embedded therein.

Focus is placed on near–simple shearing with κ = 0.02, and the cell is considered the same as that

shown in Fig. 7.7a, with (w0, χ0, λ0) = (1.1, 0.5, 4) with a hardening exponent of N = 0.2.

Among the principal directions of orthotropy, the axis of transverse isotropy eS is taken parallel to

the main loading plane normal n ≡ e3.
Table 7.1: Matrix anisotropy coefficients, hi expressed in the basis of material orthotropy
(eL, eT, eS).

Matrix hL hT hS hTS hSL hLT

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000

MAT1 1.000 1.000 1.000 2.333 2.333 1.000

MAT2 1.000 1.000 1.000 0.500 0.500 1.000

The anisotropy coefficients in the local coordinate system tied to the orthotropy directors are
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tabulated in Table 7.1, with the material notation taken from [14]. All the three matrices have

the same Hill coefficients along the three principal directions, i.e. hL, hT and hS. Note that a

large Hill coefficient in a given direction signifies the weakness/softness of the material in that

direction. MAT1 and MAT2 are, therefore, softer and stiffer under shear in comparison to the

isotropic material, respectively.

As earlier demonstrated in [224], and further corroborated by the present work, materials with

different orthotropy coefficients exhibit different responses even in absence of shear. The latter

occurs due to the presence of voids, which develops microscopically nonzero shear stresses at the

cell level. This line of results can be found in Paper P8 .

(a) (b)

(c) (d)

Figure 7.20: Selective microstrucrural parameters with the selected materials of Table 7.1 under
near–simple shearing characterized with κ = 0.02 for the same cell considered in Sec. 7.3 with
(w0, χ0, λ0) = (1.1, 0.5, 4): (a) normalized shear stress, (b) void angle with respect to the horizon-
tal axis, (c) normalized porosity, (d) natural logarithmic void aspect ratio.

During the nearly-homogeneous deformation, the correlation between plastic anisotropy and
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porosity is taken into account by the κ parameter, with its full expression provided in Paper P7

. The analogous correlation during localized yielding, described by ΦI obeying (6.39), can be

envisaged through the notion of σc in Eq. (6.40).

Figure 7.20 illustrates this effect on various internal state variables for the selected materials

of Table 7.1 under near–simple shearing characterized with κ = 0.02. Figure 7.20a reaffirms

the stronger and weaker nature of MAT2 and MAT1 in comparison to the isotropic material, re-

spectively. More appealingly, MAT2 is more ductile against shearing albeit stiffer. Accordingly,

ductility and strength can coincide upon regular orthotropy against shear while the same feature

cannot be acquired under triaxial loading. See Paper P8 for more details. It can also be observed,

through Fig. 7.20(b,d), that the rate of void elongation (and rotation) is only slightly affected by

matrix anisotropy when the material orthotropy directors are aligned with the main loading direc-

tions. Nevertheless, the values of these parameters become more distinctively apart with matrix

shear anisotropy during localized deformation.

Note that, porosity evolution in general, be the void growing or shrinking, is faster for the

material stronger in shear [224]. The latter may itself be attributed to the faster void elongation

depicted in Fig. 7.20d, which takes place on account of faster squeezing of the rotating void by

the stronger matrix owing to its stronger shear strength (hTS and hSL), that withstands material

slippage along the shearing direction. The increased stress level for MAT2 (Fig. 7.20a) can then

be ascribed to the sharper decrease in porosity f during nearly-homogeneous yielding. A similar

comparison has earlier been observed under triaxial loading [224].

On the other hand, transformation of the (eL, eT, eS) basis with respect to (e1, e2, e3) can

induce minimal to significant changes in the rotation rate. The following subsection adduces this

effect.
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7.5.2 Effect of orthotropy axis change

(a) (b) (c) (d)

Figure 7.21: Flipped and rotated planes of transverse isotropy at the cell level, with the shear and
normal tractions applied along m and n, respectively: (a) eL = m, i.e. L = 1, (b) eL = p, i.e.
L = 2, (c) eL = n, i.e. L = 3, (d) eL = cos βm+ sin βn.

This subsection addresses the internal state variation with a flip or rotation over the material

orthotropy directors with respect to the principal loading plane. To this end, the plane of transverse

isotropy is subjected to flip or rotation, as sketched schematically in Fig. 7.21, with the planes

of transverse isotropy denoted with grated lattices. Note that the right permutation rule holds for

all transformation scenarios. For the case of L = 2, for instance, eT = n and eS = m, i.e.

(T, S) = (3, 1). The corresponding transformation tensor between the Cartesian and orthotropy

frames,R∗, obeys the following forms, as tabulated in Table 7.2, for the above–mentioned cases:

Table 7.2: R∗ transformation tensors for the transverse isotropy planes schematized in Fig. 7.21.

Case eL = m eL = p eL = n eL = cos βm+ sin βn

R∗




1 0 0

0 1 0

0 0 1







0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0







cos β 0 − sin β

0 1 0

sin β 0 cos β



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R∗ is exploited in the calculation of h and p in the global coordinate system. See Paper P8 for

more details on the transformation.

(a) (b)

Figure 7.22: Normalized shear stress evolution for MAT1 and MAT2 under near–simple shear-
ing characterized with κ = 0.02 for the same cell considered in Sec. 7.3 with (w0, χ0, λ0) =
(1.1, 0.5, 4), with L = 1, 2, 3, denoting eL directed along e1, e2, and e3, respectively.

(a) (b)

(c)

Figure 7.23: Additional selective state variables provided for MAT2 with the stress response shown
in Fig. 7.22b: (a) effective ligament parameter, (b) void angle with respect to the horizontal axis,
and (c) natural logarithmic void aspect ratio.
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Figure 7.22 shows the shear stress evolution for MAT1 and MAT2 with eL directed along e1,

e2, and e3, briefly noted with the "L" index taking on values of 1, 2, and 3, respectively. See Fig.

7.19. In order to gain more insight into this effect, other influential state variables are collected

in Fig. 7.23 for MAT2. Figure 7.22a implies negligible difference in the softer material response

under shear with flipping the weak macro–scale slip planes horizontally or vertically, with the

ductility slightly higher for eL = e1. This happens due to the perspicuous coupling between

shearing in the x1 − x3 and x2 − x3 by which one weak/strong plane enfeebles/stiffens the other

response vs. shear, and vice versa, whereby eL = e1 and eL = e3 exhibit close behaviors.

Note that, for both materials with varying shear Hill coefficients, the responses for L = 1

and L = 3 lie close to one other. This can be vindicated by the negligible Poisson effect under

near-simple shearing such that both material configurations would constitute smaller parallel cross

sections with the effective subcell heights remaining equal. In both scenarios, reflected by Fig’s

7.21 (a) and (c), parallel planes operate almost independently under shearing for the weak ma-

terial MAT1, and they would both act parallel plus an additional constraint caused by the strong

orthotropy planes in MAT2. This observation is antithetical to that under triaxial loading, where

there is clear distinction between the outcomes upon variation of eL (see [224] for details).

Nevertheless, within the L = 2 case, reflected by Fig. 7.21b, subcells function almost consec-

utively, i.e. in series, as being subjected to the shown shear traction τ . On this further occasion,

the weak material MAT1 responds close to the other two cases due to being almost devoid of ad-

ditional inter-planar shear constraints whereby the shear stress is distributed over smaller subcell

cross sections. For the stronger material MAT2, however, L = 1 and L = 3 exhibit clear differ-

ence from L = 2. A closer examination of Fig. 7.21 can be indicative of this difference. That is,

in the (a) and (c) subfigures, the inter-planar shear constraint is induced by the entire orthotropy

planes being sheared whereas, in subfigure (b), this constraint is caused by mere rotation of these

planes against shear deformation. The former would clearly bare higher stress-bearing capacity

and ductility, as demonstrated by Fig. 7.22b.

In view of Fig. 7.23 for MAT2, the shear constraint within the rotating orthotropy planes,
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characterized by the L = 2 case and as schematized in Fig. 7.22b, fairly impedes void elongation,

thereby the corresponding void aspect ratio being smaller at the same shear strain level (Fig. 7.23c).

Higher stresses are, however, demanded for the same strain level at the L = 1 and L = 3 cases

considering the foregoing discussion.

The effect of rotating the plane of orthotropy on the state evolution under simple shearing

comes next. The results will be presented for the weaker material in shear, MAT1 due to the

targeted effect being more significant therefor.

(a) (b)

(c) (d)

Figure 7.24: Selective internal state variables subjected to a rotated plane of transverse isotropy
around the eT axis for MAT1 (upon properties given in Table 7.1) under near–simple shearing char-
acterized with κ = 0.02 for the same cell considered in Sec. 7.3 with (w0, χ0, λ0) = (1.1, 0.5, 4):
(a) normalized shear stress, (b) void angle with respect to the horizontal axis, (c) normalized poros-
ity, (d) natural logarithmic void aspect ratio.

Further, Fig. 7.24 illustrates the effect of rotating the plane of transverse isotropy around the

eT axis on the internal state evolution for MAT1 upon properties provided in Table 7.1. The cor-

responding initial rotation angle β0 (as shown in Fig. 7.21d) assumes negative, zero, and positive
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values. A remarkable difference happens to the material conduct with β0 changing sign. This large

difference can be accredited to the equivalent stress state in the orthotropy frame. That is, β0 < 0

imparts a pressure on the void, and thus delays failure in shear whereas β0 > 0 increases tension

which, in conjunction with shear, accelerates rotation and elongation, as demonstrated in Fig’s 7.24

(b) and (d), respectively. As such, the porosity increase, indicated by Fig. 7.24c, would further

expedite failure. There being, as seen in Fig. 7.24a, failure triggered soon after the elastic limit, a

weak plane of transverse isotropy (with respect to shear), rotated positively relative to the plane of

loading, is reminiscent of a crack. Note that the predicted stress response is based on the heuristic

modification employed in accordance with Eq. (6.18), and is thus amenable to further modification

in prospect. More precise results may exhibit larger ductility for the β0 > 0 case. See Paper P8

for more explanation.
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CHAPTER 8 EXTENSIONS

This chapter presents some extended versions of inhomogeneous yield criteria in respect to

those presented in Chapter 5. The demand behind these extensions lies in the physical characteris-

tics of ductile fracture under combined tension and shear that are not well captured by the simpler

models. The limitations accompanying the models derived within the confines of this work are

due, in part, to the circular cross section considered at the surrogate cell base. In fact, initially

3D voids under shear may have to undergo significant deformation before the voids can transform

into spheroids that could be more realistically considered equivalent to cylindrical surrogate voids.

In the existing literature, the model introduced by Madou and Leblond [230] accounts for inho-

mogeneous yielding in microstructures with 3D voids represented with ellipsoids. A well–suited

counterpart thereof concerning inhomogeneous yielding is an extension to Eq. (5.2) that is devel-

oped over an RVE with elliptical cross sections. The other limitation within the present models is

germane to the specific failure mechanism, i.e. combined internal necking and shearing, which may

not invariably hold in all loading conditions, esp. with the prevalence of lateral to normal stresses

or upon variations in the microstructural geometry. Void coalescence in columns (necklace coales-

cence), counter to coalescence in layers, is a newly uncovered ductile fracture mechanism [221]

that has not been exhaustively investigated in the literature. A partly-revealing macroscopic stress

parameter indicative of the distinction between void coalescence in layers and columns is the Lode

parameter L, earlier introduced in Chapter 1. Under triaxial loading, void coalescence in columns

is known to prevail for a Lode parameter L = +1 (which represents predominant lateral stress)

as well as for L = −1 (which implies the converse) and elongated voids. The latter was explored

by Benzerga [221] in the peculiar distribution of voids in laminated plates, where the extremely

prolate (elongated) voids were generated through decohesion of the metallic matrix circumscrib-

ing inclusions elongated by the rolling process. Nevertheless, the potentially significant effect of

microstructure on this mechanism has remained elusive by far. Gologanu et al. were the first and

only ones who strove to develop a micromechanics–based model that could describe coalescence
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in columns [50, 220]. Their model was derived on the basis of re–homogenization on the ho-

mogenized plastic plugs surrounded by a solid torus. The only microstructural parameter deemed

effective in their model was porosity. Moreover, they could not derive a closed–form yield crite-

rion. What we opt to do in the present context is to derive a closed-form yield criterion accounting

for necklace localization that incorporates the effects of all the three independent microstructural

parameters. Meanwhile, more sophisticated models will be introduced, in parametric rather than

closed form, based on higher-order tentative velocity fields at the cell level. Since strain localiza-

tion along columns prevails under the domination of normal loads, the latter is modeled with the

effect of shear stresses disregarded.

The extensions of interest are, therefore, derivation of a model accounting for plane-localized

yielding with 3D voids, and a series of models predicting column-localized yielding. Farther in

the sequel, the effective failure mechanism will be drawn from the innermost yield surface between

those corresponding to plasticity localized in layers and columns.

8.1 Coalescence of 3D Voids

8.1.1 Microstructural geometry

The outline of a general porous microstructure under remotely applied loading is schematized

in Fig. 8.1a. The exact treatment of such a problem is complex if not impossible. The least level

of complexity can be ascribed to the localization limit load not being worked out analytically for

an orthorhombic cell containing an ellipsoidal void. Therefore, a surrogate cell is considered, as

shown in Fig. 8.1b, which may not be space filling but is amenable to mathematical treatment.
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(a) (b)

Figure 8.1: (a) Schematic outline of a porous microstructure under remotely applied loading; (b)
geometry of a representative cylindrical cell with elliptical base and void under combined tension
and shear.

The imposed displacement boundary conditions, as shown in Fig. 8.1b, give rise to a macro-

scopic stress state with a dominant axial stress, Σ33 > Σ11 , Σ33 > Σ22, as well as shear stresses,

Σ31 and Σ32. The local cylindrical basis (er, eθ, ez) and its global Cartesian counterpart (e1, e2, e3)

are utilized in the derivations. Upon the same method advised in Chapter 5 and expounded in Ap-

pendices P1 and P2 , the cell is subdivided into a central porous layer identifying a ligament

domain, Ωlig, attached to two dense matrices above and below.

The microstructural geometry can be uniquely identified by means of the following dimension-

less parameters, only five of which are independent.

αv =
R1

R2

, αc =
L1

L2

χ1 =
R1

L1

, χ2 =
R2

L2

w1 =
h

R1

, w2 =
h

R2

λ1 =
H

L1

, λ2 =
H

L2

(8.1)
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where αv and αc are, respectively, the void and cell in–plane aspect ratios. χi is the ligament

parameters along the cell axis xi (with i = 1, 2), and w1 and w2 are, respectively, the out–of–plane

void aspect ratios in the x1 − x3 and x2 − x3 planes. Finally, λ1 and λ2 are the cell aspect ratios

in the corresponding planes. Note that, in principle, αv and αc can take any positive value below

or above 1. Without loss of generality, however, one can consider the cell major axis along x1, i.e.

αc ≥ 1 while 0 < αv < ∞. For the sake of convenience, the parameters adopted for presenting

results are αc, χ1, χ2, w1, λ1. λ1 and λ2 are ineffective in the yield condition for localization while

they can influence the onset of localization through the notion of porosity f [97].

8.1.2 Tentative velocity field

(a) (b)

Figure 8.2: (a) Reference circular cross section and its homothetic elliptical counterpart, (b)
schematic cross sections of a cylindrical cell with arbitrary inner (void) ellipses coaxial with the
same outer (boundary) ellipse.

In order that the extended velocity field can deliver a closed–form solution, the cell cross sec-

tion should be homothetic with the void, i.e. χ1 = χ2, as shown in Fig. 8.2a. This renders the

values of α constant throughout the cell domain. To this end, the reference cell, characterized with

a circular cross section, can be mapped into the cell with a homothetic cross section through a con-

travariant coordinate transformation [231]. Following rather cumbersome algebraic manipulations,

the volume–preserving velocity field employed for the reference cell is transformed, in absence of
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shear, into the following mapped field:

v(x) =
D33

c


1

4

(
L2

r
− r
)
[
(A+ B cos 2θ)er − B sin 2θeθ

]
+ zez


 (8.2)

where A =
√
α + 1/

√
α and B =

√
α − 1/

√
α on account of α ≥ 1. Moreover, α follows

the coordinate transformation from (r, θ, z) into (x1, x2, x3), with x3 ≡ z, which remains constant

α = αc = αv for a homothetic cross section. Under the same simplistic approach adopted in

Chapter 5, the velocity field under combined tension and shear follows the same superposition as

exploited in Appendices P1 and P2 .

The steps to derive the localization criterion for coaxial cylindrical cells having elliptical bases

with arbitrary χ1 and χ2 are similar to those for homothetic cells, except for α varying with r

which renders the volumetric integral not analytically calculable. Out of the infinite number of

ellipses passing through every point lying in the cell domain, one can pick that emanating from a

known A and B profile. As later demonstrated in the results, an upper bound to the dissipation for

this case can be evaluated by neglecting the r–derivative of α and considering a simplified linear

profile for the variation of A and B with r. To this end, let the subscripts ’v’ and ’c’ pertain to the

inner ellipse (void boundary) and the outer ellipse (cell boundary), respectively. Correspondingly,

the outer ellipse can be identified with αc, which can be prescribed by the user and is generally

different from that of the void ellipse αv, the latter uniquely determined from known values of χ1

and χ2. It can be easily verified that

αv =
χ1

χ2

αc (8.3)

Therefore, the corresponding values of A and B obey the following relations:

Av =

√
αvχ1

χ2

+

√
χ2

αvχ1

, Bv =

∣∣∣∣∣

√
αvχ1

χ2

−
√

χ2

αvχ1

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

(8.4)

where αc ≥ 1 is implied in the definition of Bc.
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Remark: The yield load corresponding to the localization limit is majorly affected by the

minimum void spacing and minorly affected by its maximum value. Hence, as henceforth seen in

Fig. 8.3, the yield load in a non–homothetic cell proves smaller in comparison to its homothetic

counterpart. Correspondingly, an upper bound to the yield load will be obtained from χmax taken

as the effective ligament parameter, and a lower bound thereof will be a function of χmin involved

in the equations. However, a more rigorous upper bound to the yield load can be estimated via the

following relation

αv =
χmin

χmax

αc

which gives rise to the following modified counterpart of (8.4):

Av =

√
αvχmin

χmax

+

√
χmax

αvχmin

, Bv =

∣∣∣∣∣

√
αvχmin

χmax

−
√

χmax

αvχmin

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

(8.5)

where αc ≥ 1 is implied. The simplest profile that can be conceived is a linear function of dimen-

sionless variable r/L, which preserves the upper–bound character. Let

A(r) = Av + (Ac −Av)
r
L
− χ

1− χ

B(r) = Bv + (Bc − Bv)
r
L
− χ

1− χ

(8.6)

which, even upon this simplification, the effective dissipation Π cannot be determined analytically.

However, theA and B can be replaced with their volumetric averages, here denoted with Ā and B̄,

so that Π is analytically calculable. Details aside, Ā and B̄ can be expressed as

Ā =
Av + χAc

1 + χ

B̄ =
Bv + χBc

1 + χ

(8.7)

which clearly simplifies into Ā = A and B̄ = B in the case of a homothetic cell, identified by
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Av = Ac = A and Bv = Bc = B. Here, χ =
√
χ1χ2 is the geometric average of the major and

minor ligament parameters.

8.1.3 Effective yield criterion

The effective yield criterion accounting for localized deformation under combined tension and

shear would then read

Φ(Σ, χ1, χ2, w1, w2,αv,αc) =

( |Σ33| − S
V

)2

H(|Σ33| − S) +
Σ2

31 + Σ2
32

T 2
− 1 (8.8)

with H(x) being the Heaviside step function (with H(x) = 1 for x > 1, H(x) = 0 for x < 0, and

H(0) = 1/2), and

χi =
Ri

Li
, wi =

h

Ri

αv =
R1

R2

, αc =
L1

L2

(8.9)

with i taking in the values of 1 and 2. Among the geometric arguments, only four of them are

independent and need be prescribed. They are adopted to be (χ1, χ2, w1,αc) in the present context.

The rest follow from these independent parameters as

w2 =
χ1

χ2

αcw1

αv =
χmin

χmax

αc

(8.10)

and

w2 =
χ1

χ2

αcw
2
1

χ2 = χ1χ2

(8.11)
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are the geometric average values that are inserted into the following microstructural functions:

V
σ̄

=
1

2
√

3



√
C1 ln


4u

√
C1

[
√
C1 +

√
C1 +

C2

u2

]
−

√
C1 +

C2

u2




1/χ2

1

S
σ̄

=
1

24
√

3 χ(1− χ)w

[
3(1 + χ− 2χ2)(Ac −Av) + 4(χ3 − 3χ+ 2)(Av −Acχ)

]

T
σ̄

=
1− χ2

√
3

where

Av =

√
αvχmin

χmax

+

√
χmax

αvχmin

, Bv =

∣∣∣∣∣

√
αvχmin

χmax

−
√

χmax

αvχmin

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

Ā =
Av + χAc

1 + χ
, B̄ =

Bv + χBc

1 + χ

C1 = Ā2 +
B̄2

2
, C2 = Ā2 + B̄2 + 8

and, upon convention, χmin = min(χ1, χ2) and χmax = max(χ1, χ2). The αc ≥ 1 is implied in the

definition of Bc. See Paper P9 for more details and algebraic proofs.

Selective results are hereby presented under stress states in absence of shear as well as under

combined tension and shear. Figure 8.3 depicts the variation of the axial limit load for a unit

cell with both homothetic and arbitrary elliptical bases vs. the αc ratio as formerly defined. In the

former case, αv = αc = α constitutes the abscissa, whereby χ1 = χ2 = χ can be varied. Subfigure

(b) shows the same variation upon arbitrary values of χ1 and χ2 and, correspondingly, arbitrary αv

and αc. For convenience, χ1 and χ2 are chosen such that the effective spacing χ, according to

(8.11), stays constant, equaling 0.4 at present.
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(a) (b)

Figure 8.3: Evolution of axial yield load vs. the αc ratio in comparison to its numerical counter-
parts: (a) for a homothetic cell, with αc = αv = α, considering several χ1 = χ2 = χ’s with
w1 = 1; (b) effect of different χ1 values, ranging from 0.4 to 0.8 with χ =

√
χ1χ2 = 0.4 fixed,

and w1 = 1. The solid lines stand for analytical values, and the dots show numerical ones from
cell-model calculations.

The predicted analytical limit loads are seen to be in sensible agreement with their FEM-based

counterparts, being mindful of the fact that the model does not incorporate any adjustable parame-

ter nor does it preserve the upper-bound character.

(a) (b)

Figure 8.4: Correlation between normal and shear stresses for a homothetic cell with χ = 0.4
and w1 = 1 with several values of α: (a) under shearing applied along x1 (major axis); (b) under
shearing applied along x2 (major axis). The solid lines stand for analytical values, and the dots
show numerical ones from cell-model calculations.

153



Remark: In accordance with both analytical and numerical results, the minimum limit load,

in almost all geometric configurations, corresponds to αc = 2 rather than the circular cross section

denoted by αc = 1. Beyond this point, for αc ≥ 2, the axial limit load increases with increasing

αc which increases the overall stiffness of the cross section and makes void impingement harder.

See Paper P9 for observations.

For the state of combined tension and shear, the results are presented for homothetic cells (for

arbitrary cells, they will be similar). The shear stress is once applied along x1 and once along x2,

one being the semi-major and the other being the semi-minor axis. Figure 8.4 shows the correlation

of normal and shear stresses for the aforesaid conditions and several values of the α ratio.

(a) (b)

Figure 8.5: Correlation among Σ33, Σ31, and Σ32 for a homothetic cell with χ = 0.4 and w1 = 1:
(a) reference cell with a circular cross section; (b) effect of the α ratio selected below, equal, and
above 1. The latter surfaces are shown partially for better clarity of the effect.

In order to acquire a deeper insight into the yield surface, the yield surface can be presented in

the Σ33–Σ31–Σ32 stress space, as shown in Fig. 8.5 for the homothetic cell with frozen microstruc-

ture denoted with χ = 0.4 and w1 = 1 and several values of α. Symmetry with respect to the Σ31

and Σ32 is envisaged.

Fig. 8.4 demonstrates that, for a shear stress applied along the major axis, the de facto maxi-

mum shear stress T , i.e. the shear limit load at zero axial stress, stays almost constant with varying

ellipticity. This lies in the rather even distribution of shear strains/velocities. For shearing along
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the minor axis, however, some normal strain (and stress) is developed in the form of local vortices

around the void (see Paper P9 for observations). As a consequence, T , especially for larger values

of αc, decreases with increasing αc. Nevertheless, T in the analytical model is agnostic to the

shearing direction. This reveals the limitation of the simplistic Gurson-like shear field developed

based on a linear shear velocity profile along the vertical direction in both directions. This con-

straint warrants a more realistic shear velocity profile that can take into account the effects induced

by the cell shape as well as the void shape.

8.2 Void Coalescence in Columns

8.2.1 Microstructural geometry

Figure 8.6: (a) Geometry of a cylindrical RVE representing column-like localization under a triax-
ial loading scheme; (b) lateral projection of the RVE with the induced geometry and macroscopic
rate-of-deformation components belonging to each subpart.

Consider the RVE subdivision as shown in Fig. 8.6a. The overall volume can be then decom-

posed into the following constituents:

Ω = V (Ω) = Ω(P) + Ω(V) + Ω(M) (8.12)

where the subparts (V ), (P ), and (M) stand for the void, the porous part (excluding the void),

and the matrix tori, respectively. The overall geometry of the RVE is then determined by the same

independent dimensionless parameters targeted throughout this thesis: χ, w, and λ.

155



8.2.2 Kinematic relations

The continuity from the macroscopic perspective, along with the isochoric nature of the solid,

i.e. the (P) and (M) zones, entails that the following relationships hold among the macroscopic

rates of deformation (see Paper P10 for details):

D
(P+V)
33 = D

(M)
33 = D33

D
(P+V)
11 =

D11

χ2
+

1

2

(
1

χ2
− 1

)
D33

D
(M)
kk = 0 ∴ D

(M)
11 = −D33

2

(8.13)

8.2.3 Tentative velocity field

The isochoric nature of plasticity entails that Ω(P) and Ω(M) stay constant. Therefore

d
(P)
kk = divv(P) = 0 , d

(M)
kk = divv(M) = 0 (8.14)

The tori obey a Gurson-like velocity field, which reads:

v(M)
r =

A

r
− B

2
r , v(M)

z = Bz

v(M)
z (H) = BD33 ∴ B = D33 , v(M)

r (L) = D11L ∴ A =
DkkL

2

2

(8.15)

The plugs, in the simplest-case scenario, admit the following form of vr:

v(P)
r = D

(P+V)
11 r =

1

2χ2

(
Dkk − χ2D33

)
r (8.16)

Therefore, satisfying v(P)
r (R) = v

(M)
r (R) reassures aC0-order continuity along the r direction. The

z-wise velocity function should then be derived from a zero-divergence condition, which yields

v(P)
z =

1

χ2
[Dkk(H − z) + χ2D33z] (8.17)
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(see Paper P10 for details).

One can easily observe that the derived v(P)
z is discontinuous with respect to z. While this dis-

tribution is contrary to reality, it proves feasible in the macroscopic scale provided the macroscopic

dissipation induced by this discontinuity is affixed to the total dissipation function. This will be

further clarified in Sec. 8.2.4.

A more realistic velocity field is created upon higher continuity induced by a higher-order

choice of v(P)
z . To this end, one can arbitrate the following field for v(P)

z :

v(P)
z = D33z + 2

Dkk

χ2
(H − z)

[
1−

(
r

R

)2
]

(8.18)

which, upon satisfaction of divv = 0, delivers the following r component:

v(P)
r =

−r
2


D33 +

Dkk

χ2

[
−2 +

(
r

R

)2
]
 (8.19)

8.2.4 Effective dissipation

Following the same discussion as addressed in Section 4.3, the layer-wise effective dissipations

will turn out as

– Minimum continuity:

Π(P) =
1

Ω(P)

∫

Ω(P)

d(P)
eq dΩ = 2

∣∣∣D(P+V)
11

∣∣∣ σ̄ (8.20)

Besides, the discontinuity between v(P)
z and v(M)

z promotes an additional term as stated para-

metrically in (4.15), rewritten herein as follows:

Πsurf =
1

Ω(P)

∫

Sint

τ̄JvKdS =
w

χ2

1− c
c
|Dkk| τ̄ (8.21)

where τ̄ = σ̄/
√

3 is the matrix shear strength in terms of the uniaxial yield strength, and Sint
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is the area of the interface connecting (P) and (M) at r = R (see Paper P10 for details).

– Higher continuity:

Π(P) =
|D33| σ̄
1− c

∫ 1

v=c

Idv , I =

∫ 1

u=0

√
R(u)du (8.22)

with u = (r/L)2, and

U0 = (ξ1 − 1)2

U1 = ξ1 + ξ2
1(δ − 1)

U2 =
13

12
ξ2

1

ξ =
Dkk

D33

, ξ1 = 2
ξ

χ2

δ =
2

3

(
λ(1− v)

χ

)2

(8.23)

Note that I is fortunately calculable analytically. Since U2 ≥ 0, the following integral will

be admitted provided the following discriminant is positive [232]:

∆ = U0U2 − U2
1 > 0 (8.24)

Then, the integral is expressible as follows:

I =
1

2

[
(u+ B)

√
R(u) + P ln|L|

]1

u=0
(8.25)

where

B =
U1

U2

=
12

13

(
1

ξ1

+ δ − 1

)

P =
U0 − U

2
1

U2√U2

=

√
12

13

1

|ξ1|

[
(ξ1 − 1)2 − 12

13

(
1 + ξ1(δ − 1)

)2
]

L =
√
U2R(u) + U2u+ U1

(8.26)
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Note that the discriminant in (8.24) is absolutely positive on account of u > 0.

The overall integral in (8.22), however, is not solvable analytically. With the existing mathe-

matical tools, one can numerically estimate the integral. Alternatively, one can approximate

the integral by expressing I in terms of its volumetric average value. See Paper P10 for

details.

Note also that continuity between v(P)
z and v(M)

z is satisfied, thereby eliminating the additional

surface dissipation.

Moreover,

Π(M) =
1

Ω(M)

∫

Ω(M)

d(M)
eq dΩ ≡ 1

1− χ2

∫ 1

v=0

∫ 1

u=χ2

σ̄d∗(M)
eq (u, v)dudv =

σ̄

1− χ2

∫ 1

χ2

d∗(M)
eq du

(8.27)

The integral in Π(M) can be evaluated in exact or approximate form. The exact form is expressible

as

Π(M) =
σ̄|D33|
1− χ2

∫ 1

χ2

√(
ξ2

u

)2

+ 1 du = |ξ2|



√

1 +

(
u

ξ2

)2

− sinh−1

(|ξ2|
u

)


1

u=χ2

=
|Dkk|√

3(1− χ2)


sinh−1 (Y|ξ2|)−

√
1 +

1

(Yξ2)2




1/χ2

Y=1

(8.28)

where ξ2 = ξ/
√

3, with ξ defined in (8.23). The counterpart to (8.28) is reported in Paper P10 .

Altogether, the total dissipation is the volumetric average of Π functions over the whole vol-

ume. With cP and cT denoting the volume fractions of the (P) and (M) subvolumes, the following

can be written:

Π = cP

(
Π(P) + Πsurf

)
+ cTΠ(M) , cP = χ2(1− c) , cT = 1− χ2 (8.29)

where Πsurf obeys (8.21) in the minimum continuity and Πsurf = 0 in the higher continuity fields.
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8.2.5 Effective yield criterion

The dissipation function expanded based on the minimum-continuity velocity field is not dif-

ferentiable, and thus the primitive form of the principal inequality of limit analysis underlies the

following piecewise-continuous effective yield criterion. The latter, here termed Φcol = 0, can be

written as (see Paper P10 for algebraic details):

Φcol =





Σ33 − Σ11

σ̄
− (1− cχ2)sgn(Σ33)for

∣∣∣∣
Σ11

σ̄
sgn(Σ33) + (1− c)

∣∣∣∣ ≤
w√
3

(1− c)2

c

Σ33 − (1− χ2)Σ11

σ̄
− χ2

√
3

sgn(Σ33)




(1− c)2

c
+


sinh−1

(
Yχ

2

3

)
−
√√√√1 +

1
(
Y χ2

3

)2




1/χ2

Y=1




for

∣∣∣∣∣∣
Σ11

σ̄
sgn(Σ33)− 1√

3

(
w (1−c)2

c
+

[
sinh−1

(
Y χ2

3

)]1/χ2

Y=1

)∣∣∣∣∣∣
≤ 1− c

[
Σ33 − Σ11

σ̄
+ (1− c)χ2sgn(Σ11)

]2

+ 2χ2 cosh


√3

[
Σ11

σ̄
− (1− c)

(
1 +

w√
3

1− c
c

)
sgn(Σ11)

]
− (1 + χ2) Otherwise

(8.30)

Inasmuch as Π upon the higher-continuity field is everywhere differentiable, the corresponding

yield surface is everywhere smooth, thereby expressible in derivative form. Yet, the latter is not

attainable in closed form, but in parametric form, i.e. in terms of the ξ ratio, upon its definition in

(8.23), or any other related ratio.

To this end, the following fundamental derivative must be determined first:

I,ξ1 =
1

2

[
B′
√
R+ (u+ B)R∗ + P ′ ln|L|+ PL

′

L

]1

u=0

(8.31)
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where, with reference to the definitions in (8.23), we have:

B′ = ∂B
∂ξ1

=
−12

13ξ2
1

P ′ = ∂P
∂ξ1

=

√
12

133/2
sgn(ξ1)

[
−2(δ − 1)2 + 3− 1

ξ2
1

]

R∗ =
1

2
√
R
∂R
∂ξ1

=
13
12
ξ1u

2 + [1 + 2(δ − 1)ξ1]u+ (ξ1 − 1)√
13
12
ξ2

1u
2 + 2ξ1[1 + (δ − 1)ξ1]u+ (ξ1 − 1)2

L′ = ∂L
∂ξ1

=

√
13

12
|ξ1|R∗ +

13

6
ξ1u+ [1 + 2(δ − 1)ξ1]

(8.32)

Then, according to (8.29), the total stress subspace pertaining to localization along void columns

can be expressed as

Σ11

σ̄
=

Σ
(1)
11

σ̄
+

Σ
(2)
11

σ̄

Σ33

σ̄
=

Σ
(1)
33

σ̄
+

Σ
(2)
33

σ̄

(8.33)

where

Σ
(1)
11

σ̄
sgn(Σ33) = 2

∫ 1

v=c

Idv

Σ
(1)
33

σ̄
sgn(Σ33) = −2(ξ − 1)

∫ 1

v=c

I,ξ1dv + χ2

∫ 1

v=c

Idv

Σ
(2)
11

σ̄
sgn(Σ11) = α1 − α2

Σ
(2)
33

σ̄
sgn(Σ11) = β1 − β2

(8.34)

where

√
3α1 = sinh−1|ξ2| ,

√
3α2 = sinh−1 |ξ2|

χ2

√
3β1 =

√
1 + ξ2

2 ,
√

3β2 =
√
ξ2

2 + χ4

(8.35)

and ξ2 = ξ/
√

3 as mentioned in advance.
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There exist simpler approximate counterparts to both (8.30) or (8.33). The reader can refer to

Paper P10 in this regard.

(a) (b)

(c)

Figure 8.7: Comparison between yield surfaces based on minimum and higher-continuity fields:
(a) for fixed (w, λ) and various ligament parameters χ, (b) for fixed (χ, λ) and various void aspect
ratios w, (c) for fixed (χ,w) and various cell aspect ratios λ.

Figure 8.7 exhibits the difference between the yield surfaces based on minimum and higher-

continuity fields for various void aspect ratios, ligament parameters, and cell aspect ratios. At low

hydrostatic stresses, characteristic of mainly deviatoric loads, the predicted limit load is the least

sensitive to the velocity profile. This limit corresponds to minimal relative axial velocity between
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the plugs and the torus, with the whole cell admitting minimal, albeit nonzero, expansion. All

the same, higher continuity within the axial velocity would trigger a higher limit load at larger

hydrostatic stresses representative of higher lateral stresses superposed by axial loading. This

entails a larger Poisson effect when the torus and plugs are clamped than when they act in parallel

modulo minimum continuity. By the same token, the difference between the two surfaces proves

inconsequential at large χ’s and w’s as well as small λ’s due to the Poisson effect being limited.

Accordingly, the higher-continuity yield surface is a tight lower bound to its minimum-continuity

counterpart at large χ’s and w’s as well as small λ’s, and is an upper bound thereof at smaller χ’s

and w’s as well as higher λ’s. This upper bound becomes rather spuriously large with increasingly

large hydrostatic stresses in that the higher-continuity field exerts overconstraint on the point-wise

velocity gradients. As explored in the sequel, the minimum-continuity model stands closer to

numerical values, and will be thus favored over the other for assessment purposes.

Note also that the spuriously large hydrostatic stresses pertaining to χ = 0.2, w = 0.25, and

λ = 3 is indicative of localization in columns as an erroneous yielding mechanism. The effective

mechanism corresponding to these parameters is localization in layers.

The yield surface devised by Eq’s (8.30) and (8.33) has a large portion in proximity with the

surface accounting for homogeneous yielding which are, more specifically, the planar subsurfaces

of (8.30) and the zones with nearly horizontal slopes in (8.33). However, the highly-curved subsur-

face is the main matter of difference. In the minimum-continuity model, (8.30)3 is counterpart to

the planar part signifying localization in layers, i.e. with internal necking. The localization mech-

anism involves a zero increase in the lateral strain, i.e. a zero lateral rate of deformation D11 = 0,

which prompts a rigid behavior in the matrix (M) subparts. In order to predict the effective yield

surface at every microstructural state, (8.30) or (8.33) should be compared to the whole surface

containing homogeneous yielding ensued by localization in layers. Thereupon, the unified crite-

rion in absence of shear, according to (5.6) can be compared to its counterparts derived herein,

(8.30) or (8.33). An upper bound to the net yield surface for a specified microstructure will be then

close to the interior surface between the two surfaces. It would be more convenient to compare the
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two surfaces at the same ξ value. The parametric form of (5.6) is thus proposed for comparison in

Paper P10 .

(a) (b)

(c)

Figure 8.8: Effects of microstructural parameters on the yield loci representing the unified model
as well as plasticity localized in columns: (a) effect of ligament parameter χ; (b) effect of void
aspect ratio w; (c) effect of cell aspect ratio λ.

The effective yield surfaces are further compared to their FEM counterparts obtained from

single-step limit analysis over the same-cell geometry. Follwing the technique introduced in Sec-

tion 4.4, the theoretical grounds for the FEM-based calculation of the limit load at the onset of

localization in columns are extensively provided in Paper P10 . In brief, the numerical limit load

can be obtained via the imposition of normal and lateral target velocities, represented by target
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displacements U3 and U1, respectively. Every U1/U3 ratio then corresponds to a specific set of

lateral and normal limit loads (see Paper P10 on how to access the limit loads).

It suffices to emphasize herein that, in the present context, no restriction will be enacted on the

microstructural parameters nor on the U1/U3 ratio. Therefore, the localization mechanism will be

driven by both the microstructural state and the U1/U3 ratio. The only constraint exerted on the

geometry is then to assure that, with the adopted (χ,w, λ) set, the void fully fits into the unit cell.

That is, the condition c < 1 should be satisfied.

Figure 8.8 demonstrates the effects induced by every microstructural parameter on the effective

yield surface. While the figures entail attentive examination, it can be conveniently observed that

changing the χ orw variable from small to large values (while the rest are kept fixed) would transfer

the driving yielding mechanism from layered into column coalescence. Incidentally, for large

values of χ and w, the two yielding mechanisms occur almost synonymously while coalescence in

layers is triggered slightly sooner, and vice versa. For cell aspect ratios well below unity (λ < 1),

however, coalescence in columns is clearly preferred with significant distance between the two

predicted mechanisms. Moreover, the present model accounting for column coalescence violates

the upper-bound character [33] at very large values of χ and w as well as for small values of λ.

In particular, with χ approaching unity, both (8.30) and (5.6) violate this character. This is rooted

in the idealized choice of velocity fields that predict yielding at lower stress states. However, the

predicted driving mechanism is both qualitatively and quantitatively (except for χ −→ 1) well

commensurate with the FEM outcomes. Above all, λ induces an opposite effect on the driving

yielding mechanism compared to χ and w being varied. That is, changing λ from small to large

values (while the rest are constant) would transfer the driving yielding mechanism from column

into layered coalescence. Further, the effect of the cell aspect ratio λ is more remarkable when

plasticity is localized in columns whereas it bares almost no effect on void coalescence occurring

in layers. Thereupon, the points exhibiting FEM results for λ = 5 have been identified with solid

circles in order to be more easily distinguishable from those pertaining to λ = 1 since they stand

on the same slanted line denoting coalescence in layers.
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CHAPTER 9 SUMMARY AND OUTLOOK

9.1 Concluding Remarks

The grounds to a robust micromechanics-based constitutive framework to simulate ductile frac-

ture under combined tension and shear phenomenon in porous materials were addressed. The

building blocks to the expected framework are mechanism-based yield criteria and evolution laws

accounting for microstructural evolution in rated form, especially apropos of void rotation and

elongation under shearing. A key feature to the development of such frameworks is to adopt mea-

surable and/or observable parameters as descriptors, that could best be achieved through the notion

of a reference volume element (RVE), alias unit cell. Experimental observations reveal plastic de-

formation at the unit cell level as homogeneous or inhomogeneous. The latter can be idealized

with plasticity ideally confined within intervoid ligaments (under combined loading), exemplified

by void coalescence in layers, and occasionally with coalescence in columns (under the dominance

of normal loads) with plasticity more concentrated within intervoid plugs. The first objective was

thus to develop a set of analytical yield functions that could mimic localized yielding by either

mechanism. The latter was attained by limit analysis over a cylindrical cell containing a coaxial

void of finite height. The effective yield surface is bounded by the innermost surface signifying

the two mechanisms. Existing numerical analyses [16, 21] indicate that the shear-dominated de-

formation process is closer to being homogeneous at early stages and would approach the ideal

localized state towards the end. Admittedly, a hybrid bi-surface model was adopted that consisted

of simple modifications to both an existing criterion representing homogeneous yielding [14] as

well as a derived criterion denoting fully localized yielding. By its very nature, the latter acts

upon a surrogate microstructure aligned with a possible localization plane, that can emanate from

voronoi tessellation upon an underlying microstructure. The constitutive framework was closed

by a system of evolution equations pertaining to microstructural state variables during the nearly-

localized deformation state derived from first principles. The body of existing and derived yield
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criteria supplemented to existing and derived evolution equations were exploited in an implicit

numerical integration based on the Newton-Raphson iterative scheme. The latter sets the third ob-

jective of the present work. The hybrid model predictions were firstly subjected to assessment in

conformity with existing numerical outcomes under triaxial [20] as well as combined normal and

shear loading [16, 17, 21]. The parametric studies were then carried out under a complete range

of loading combinations from uniaxial to near-simple as well as near-pure shear loading, with the

loading combination characterized by κ denoting the ratio between a normal and a shear traction

on a possible localization plane. The effects of initial porosity, void and cell aspect ratios, void

misalignment with the principal loading directions, and matrix plastic anisotropy are accounted

for. The latter effect was investigated with reference to a counterpart of the here-derived inhomo-

geneous yield criterion recently introduced in [96]. The strain to failure was further evaluated in

terms of stress triaxiality for a complete scope of stress triaxialities upon the loading path consti-

tuted by combined normal and shear stresses. An axisymmetric notched bar was finally presented

as an example finite-element simulation demonstrating the capability of the hybrid model to solve

structural boundary-value problems. To this end, the constitutive framework for the porous ma-

terial was implemented in an ABAQUS user-defined subroutine (UMAT), and the material was

modeled using dilute material elements without need for modeling the microstructure.

Some of the featured findings are enumerated in the following items:

• The effective ligament parameter χ̄, representative of the relative void spacing in the surro-

gate cell, is the main factor of influence that accounts for failure under combined tension

and shear. It is itself a function in direct proportion to the current porosity as well as the

cell aspect ratio, and scales inversely with the surrogate void aspect ratio. The latter, under a

shear-dominated stress state, starts with a finite value and evolves towards zero until failure.

More specifically, the onset of localized deformation as well as ultimate failure were delayed

with a smaller χ0. The limit of a dilute material (χ0 −→ 0) would exhibit no failure under

shear.

• A shorter cell, characterized by a smaller cell aspect ratio λ, would have a larger strain to

167



the onset of localization εc, as well as a larger strain to failure εf under near-simple shearing.

The latter is rooted in the fact that unlike a larger-than-cubic cell (with λ > 1), a shorter-

than-cubic cell (λ < 1) initially rotates faster than the void does. Besides, at a fixed porosity,

a void within a shorter cell is more distant from the cell boundaries than its counterpart in a

taller cell.

• Under near-simple shearing (κ ≈ 0), an oblate void (w < 1), contrary to a prolate void

(w > 1), rotates transiently opposite to the shearing direction. Yet, there is a turning point in

the middle of the process, which normally occurs at the point of transition into the localized

deformation mode, where the void starts moving back towards the shearing direction. Failure

for an oblate void occurs in the form of penny-shaped crack propagation that is realized after

void closure (characterized by the porosity f approaching zero). Altogether, for both prolate

and oblate voids, the larger void axis tends to align with the direction of the principal stretch.

• The strain to the onset of localization εc, as well as strain to failure εf was plotted in terms

of stress triaxiality for the whole scope of stress triaxialities ranging from zero to 1/3 (shear-

dominated interval) and from 1/3 to 3 (normal-dominated interval) by numerical integration

of the differential equations expressing porosity, void aspect ratio, and void orientation in

terms of the equivalent plastic strain ε̄. Within the shear-dominant interval, εf admits a

minimum that can be roughly expressed in terms of the microstructural parameters within

the inhomogeneous yield criterion.

• A void was found to be distorted, i.e. squeeze (via f decrease), elongate (via w increase),

and rotate faster inside a stronger matrix against shear (with hSL < 1 and hTS < 1). Such

a matrix would withstand material slippage along the shearing direction. Hence, the void

ought to distort more and close sooner at the same shear strain level.

• Higher ductility could not be achieved in simultaneity with larger strength in absence of

shear (here denoted with triaxial loading). Yet, the two could coexist under shear-dominated

loading. To this end, the plane of transverse isotropy can be placed either parallel or perpen-
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dicular to the plane of possible strain localization or normal, the latter such that the shear

traction is parallel to the plane. The plane of transverse isotropy can alternatively be rotated

clockwise with respect to shearing.

• Below a certain limit of shear-related Hill coefficients hSL or hTS (with S denoting the di-

rection of the normal to the principal loading plane as well as the direction of transverse

isotropy), or beyond a certain rotation angle within the plane of transverse isotropy, failure

was never predicted under near-simple shearing. Thereupon, shear Hill coefficients, or the

placement of orthotropy planes, can be engineered such that, at a specific initial porosity

level, failure under shear never occurs.

9.2 Prospective Extensions

The simplifying assumptions as well as the predictive limitations within the introduced models

warrant future amendments or extensions to the present work. The suggested prospective work can

fall into two main categories that prompt two major lines of future work in extension to this thesis:

9.2.1 Analytical extension

• A major drawback by which the authors were driven to the use of a surrogate microstruc-

ture was the crude Gurson-like shear velocity field that would predict no failure within a

rotating cylindrical void under simple shearing. A more sophisticated shear field is thus rec-

ommended that is commensurate with real void distortion under shear fields. To this end,

evolution-based direct cell-model FEM calculations would definitely prove efficacious in the

sense of being suggestive of tentative higher-order shear velocity fields. The effect of void

orientation should definitely be taken into account.

• The body of analytical models derived in the present context invoked an elastic-perfectly

plastic matrix admitting the J2 flow theory. The effect of hardening would thus be under-

rated in the corresponding predictions, particularly at the post-localized regime. A proper

extension to the series of analytically-derived models is then to incorporate the effect of

strain hardening, preferably of a power type.
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• Void coalescence in columns is mainly known to prevail under normal load dominance,

and thus the effect of shear stresses has been neglected in its corresponding model. Yet,

shear can bare a potentially remarkable effect at least in regards to the ranges of shear loads

under which necklace coalescence can still be effective. Extensions to the present models

accompanied by shear stresses are thus worthwhile attempts.

• The effect due to plastic anisotropy into the unified homogeneous-to-localized model, stated

in Eq. (5.6), was uncalled for. Introduction of this effect would be a significant contribution

for the numerous numerical virtues associated with this model, mainly thanks to the slope

continuity within the resulting yield surface.

9.2.2 Numerical extension

• The effective flow rule was expressed in terms of a consecutive satisfaction of the yield

surfaces describing nearly-homogeneous (ΦH) and fully localized (ΦI) deformation modes.

That is, only one flow potential was deemed effective at a time. A concurrent use of the

yield surfaces would be favored from numerous perspectives. Not only will the resulting

solution on this basis be less sensitive to the time step, but also it would generate a smoother

transition from ΦH to ΦI. This would allow for easier global convergence, i.e. convergence

within the equilibrium equations in the discretized space. The latter has been observed as a

major downside within the user-defined subroutine (UMAT).

• The above-mentioned lack of global analysis convergence within the UMAT was seen to be

more pronounced under significant shear loads, even when superposed by normal loading.

Aside from invoking a concurrent multi-surface model, one may need to introduce an artifi-

cial damping into the framework, that can make the transition from ΦH to ΦI even smoother

and let the solution progress further until failure, viz. total loss of stress-bearing capacity.

The latter method has been formerly employed by Benzerga [221].

• The example FEM simulation was a minuscule case study presented mainly to demonstrate

the potential capability of the proposed model in structural boundary-value analysis. The
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UMAT written by the author is still at an elementary stage and is yet to be subjected to

remarkable advancement until becoming full-fledged and ready for a vast variety of case

studies. The strategies proposed in the above two bullets seem indispensable steps towards

global convergence. Among the suggested case studies is the simulation of Arcan tests under

combined remote normal and shear loading, pure torsion tests on hollow tubes, and notched

bar simulation with plastic anisotropy that triggers the formation of shear bands inside the

notch zone. In particular, Arcan tests can be simulated to assess the model in accordance

with the experimental outcomes acquired by Basu [43] on magnesium alloys. Moreover, the

micromechanical process taking place inside the shear band would be a major consequence

of our model. The latter was recently studied [233] merely based on homogeneous yielding

according to ΦH equaling the KB model [14]. In a general continuum with arbitrary geome-

try, more than one possible localization system should be accounted for. A judicious choice

of possible systems, however, is dependent upon the underlying microstructure as well as

the geometry and boundary conditions.

• The propensity of localization by necklace coalescence was overlooked throughout. Just as

strains can localize inside possible planes (here via the notion of a surrogate microstructure),

so too could they localize along the direction normal to the plane or along other directions

neither in line with the plane normal nor inside the plane. Counting the corresponding yield

surfaces in the multi-surface model would deliver a closer-to-real response within the ma-

terial at hand. A particular example in this regard is porous media with initially elongated

voids or that with voids closely spaced apart along the principal loading plane, i.e. w0 > 1

or λ0 < 1, respectively.

• The use of elliptical-base cells in the post-localized deformation process, along with the

counterpart to the KB model introduced by Madou and Leblond [230] for ellipsoidal rather

than spheroidal voids, would better portray the multi-axial distortion of voids under shear

fields. The model according to Eq. (8.8) is ready for numerical implementation.
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• There is significant numerical advantage in the unified model with seamless transition from

homogeneous to localized yielding. Thanks to it being endowed with slope (C1) continuity,

no abrupt change in stress responses is anticipated. This will potentially eliminate the need

for the introduction of artificial damping or any other fictitious stratagem. The model was

derived, according to Eq. (5.6), in the present work, and is ready for numerical implementa-

tion.
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APPENDIX A

SOME FEASIBLE LOCALIZATION SYSTEMS

This section describes a consistent and convenient method that allows for a clear identification

of the initial microstructure within a voided material. These initial values can then be utilized to

evaluate the current values with proper evolution laws. See Eq’s (6.23), (6.25), and (6.27).

A.1 Planar Geometry

In a state of arbitrary loading, plastic strain localization among a clustered array of voids can

occur according to various patterns. Each pattern is uniquely determined by resolving the stress

tensor as well as calculating the microstructural parameters on a plane of localization associated

with normal n.

In general, any arbitrary plane that can connect an array of voids can be conceived. Not every

plane, however, can prove efficacious unless at the limit of randomly distributed voids. Among the

feasible ones, we can consider the planar bands connecting up to the first (orthogonal) or second

(diagonal) nearest neighboring voids. Therefore, there can exist 3 generic classes of planes which

take after the (100), (110), and (111) indices by scaling the dimensions. Each class embraces more

than one specific plane. For instance, (100) generalizes into ({100}, {1̄00}), ({010}, {01̄0}), and

({001}, {001̄}), constituting the normals to all localization planes as being sub-classes of (100)

((̄.) denoting the negative sign). See Fig. A.1.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure A.1: Geometric outline of the possible localization planes connecting up to the first (orthogonal) or
second (diagonal) nearest neighboring voids: (a-c) sub-classes of a vertical system, (d-g) sub-classes of a
diagonal system.

With the provided background, voids can be deployed in a lattice as illustrated in Fig. A.1.

Each plane of localization can be uniquely defined with a normal n and is also endowed with two
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in-plane main directors (m,p), as being perpendicular to one another and perpendicular to n.

A.2 Initial Microstructure

Within the identified cubic lattice, each localization system can be uniquely identified via its

normal n. In the considered set of feasible systems, the initial n within every system can be con-

structed with the initial lateral vectors m0 and p0 that can directly emanate from the initial lattice

geometry, as discussed below. Nevertheless, the evolved normal n, that can uniquely identify the

evolved lattice geometry, need not be expressed in terms of the evolved lateral vectors m and p

and can solely depend on n0 and the current deformation gradient F . The evolved m can then

be expressed in terms of the resolved shear traction onto the plane with normal n, and p would

result from the cross product of n and m (see Section 6.3.4.1 for further illustration). The initial

triad n0,m0,p0 can be evaluated, on every localization plane, as function of the initial lattice ori-

entation denoted by its tied basis (d10,d20,d30). With reference to Fig. A.1 one can consider the

following cases, where localization systems are denoted with Roman numbers:

– Systems (I – III) (Fig’s A.1 (a – c)):

(I) : n0 = d10 , m0 = d30, p0 = d20

(II) : n0 = d20 , m0 = d10, p0 = d30

(III) : n0 = d30 , m0 = d10, p0 = d20

(A.1)

In the next two plane classes, n is obtained from the cross product of its two generators L1

and L2. For the sake of more brevity in what follows, the following relative distances are

defined:

λ12 =
d2

d1

, λ23 =
d3

d2

, λ13 =
d3

d1

(A.2)

– Systems (IV – VI) (Fig’s A.1 (d – f)):
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(a) (b) (c)

Figure A.2: Constituents of the effective cell aspect ratio λ̄ at systems (IV – VI). Note that L2 is perpen-
dicular to the plane, and that L̄ =

√
L1L2 emanates from geometric averaging.

(IV) : m0 =
1√

1 + λ2
12

(d10 − λ12d20) , p0 = d30 , n0 = m0 × p0

(V) : m0 = d10 , p0 =
1√

1 + λ2
23

(d20 + λ23d30) , n0 = m0 × p0

(VI) : m0 =
1√

1 + λ2
13

(d10 + λ13d30) , p0 = d20 , n0 = m0 × p0

(A.3)

where |.| stands for vector magnitude and × denotes cross product between two vectors.

– System (VII) (Fig. A.1(g)):

Figure A.3: Effective cell height in system (VII) emanating from the distance between the origin and the
plane passing through the intercepts (d1, 0, 0), (0, d2, 0), and (0, 0, d3).
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m0 =
1√

1 +
(
λ13
2

)2
(d10 + λ13

2
d30) , p0 =

1√
1 +

(
λ23
2

)2
(d20 + λ23

2
d30) , n0 = m0 × p0

(A.4)

Remark: The resolved traction magnitudes are insensitive towards the sings of components

in n0,m0,p0. Only one representative component has thus been considered in every localization

system. In other terms, among all imaginable systems, only seven of them are independent as

explicated above. Any other system is analogous to one of the above.

The initial surrogate cell aspect ratio λ̄0 at every system originates from the ratio of the intervoid

distance perpendicular to the corresponding plane over the average intervoid distance within the

plane. Therefore:

– Systems (I – III):

λ̄0I =
d1√
d2d3

=
1√

λ12λ13

λ̄0II =
d2√
d1d3

=

√
λ12

λ23

λ̄0III =
d3√
d1d2

=
√
λ13λ23

(A.5)

– Systems (IV – VI):

With reference to Fig. A.2:

λ̄0IV =
H110√
L1L2

, L1 =
√
d2

1 + d2
2 , L2 = d3 , H110 = d1 sinα =

d1d2

L1

∴ λ̄0IV =
1

(λ12 + 1/λ12)
3
4 (λ13λ23)

1
4

λ̄0V =
H011√
L1L2

, L1 =
√
d2

2 + d2
3 , L2 = d1 , H011 = d3 sinα =

d2d3

L1

∴ λ̄0V =
(λ12λ13)

1
4

(λ23 + 1/λ23)
3
4

λ̄0VI =
H101√
L1L2

, L1 =
√
d2

1 + d2
3 , L2 = d2 , H101 = d3 sinα =

d1d3

L1

∴ λ̄0VI =
(λ23/λ12)

1
4

(λ13 + 1/λ13)
3
4

(A.6)
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– System (VII):

With reference to Fig. A.3, the slanted plane has the following equation:

x1

d1

+
x2

d2

+
x3

d3

= 1

Herein, H is the distance between the origin O and the slanted plane, which follows from

the equation below:

HVII =
1√

1
d21

+ 1
d22

+ 1
d23

and the area of the parallelogram, as being twice that of the confined triangle, is calculated

from the magnitude of the cross product of the generating vectors, that is:

A = |(−d1, d2, 0)× (0,−d2, d3)| =
√

(d1d2)2 + (d2d3)2 + (d1d3)2 (A.7)

Therefore, the equivalent cell aspect ratio in this system reads:

λ̄VII =
HVII√
A

=
1

[
(λ12λ13 + λ23 + 1

λ23
)2 + (λ13 + λ23

λ12
+ 1

λ13
)2 + (λ12 + 1

λ12
+ 1

λ13λ23
)2
]1/4

(A.8)
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APPENDIX B

INITIAL AND CURRENT CELL ASPECT RATIOS

In order to derive λ0(n) –with the 0 superscript denoting initial state– in terms of λ1 and λ2 as

well as an arbitrarily-oriented normal n, one should evaluate the average inter-void distance inside

the plane with normaln, here termed L as well as the inter-void distanceH , defined as the distance

between the inter-plane distance parallel to n. See Fig. B.1 first.

Figure B.1: Arbitrary localization plane relative to an octant of the void lattice.

Without loss of generality, one can assume that the plane passes through the lattice origin (O).

With a prescribed initial normal orientationn0 and known initial lattice directors di0, one can write

the plane equation within the di0 local basis as

n1x1 + n2x2 + n3x3 = DO (B.1)

where ni = n · di and DO = n1x1O + n2x2O + n3x3O = 0, with the 0 subscripts removed for

brevity. xi are identified within the di0 basis.

Upon recasting (B.1) as x3 = φ(x1, x2), one can determine the area A of the plane within the

confines of the lattice octant based on the domain emanating from its projection onto the d1–d2
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plane, here denoted with S. To this end, one can write [234]:

A =

∫ ∫

S

√
1 + φ2

,1 + φ2
,2 dx1 dx2 (B.2)

which, with

φ(x1, x2) = −
(
n1

n3

x1 +
n2

n3

x2

)

would simplify, noting n2
1 + n2

2 + n2
3 = 1, into

A =
d1d2

n3

(B.3)

Moreover, H can be expressed as the distance between two parallel planes x3 = 0 and x3 =

d3 along the direction n between the intercepts denoted with points C and C ′. Without loss of

generality, point C can be taken to pass through the origin (O). Accordingly, the line passing

through intercepts O and C ′ can be expressed via the following equation:

x1

n1

=
x2

n2

=
x3

n3

(B.4)

With the above equation known, the C ′ intercept can be obtained by letting x3 = d3 which,

with reference to (B.4) gives

xiC′ =
ni
n3

d3 (B.5)

with i = 1, 2, 3. Therefore, H , identified by the distance between C and C ′ intercepts, reads

H = C̄C′ =

√(
n1

n3

)2

+

(
n2

n3

)2

+ 1 =
d3

|n3|
(B.6)

Then, λ0(n) will be written as the following ratio:

λ0(n0) =
H(n0)√

A
=

d30

|n3|

√
|n3|
d10d20

=

√
λ1λ2

|n0 · d30|
(B.7)
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which retrieves λ0 =
√
λ1λ2 when n0 = d30, and λ1 and λ2 refer to (6.21).

With the initial cell aspect ratio at hand, one can explicitly evolve it according to the algebraic

steps below, that follow Eq. (21) of Ref. [235] for initially cubic cells. To this end, one could firstly

write:

λ(n) =
H(n)

L(n)
=
H0(n)

L0(n)

H(n)/H0(n)

L(n)/L0(n)
(B.8)

where the 0 subscripts denote the initial state, and

H0(n)

L0(n)
= λ0(n)

Moreover, V0 and V (initial and current cell volumes) are related via

V = JV0

which implies
H(n)

H0(n)
= J A0(n)

A(n)
(B.9)

The average cell length L and ligament area A correlate through

L(n)

L0(n)
=

√
A(n)

A0(n)
(B.10)

On the other hand, a continuum relationship between A0 and A reads

An = JF−TA0n0

which can be recast, by exploiting a dot product, into the following

(A0n0) · (A0n0) =
1

J2
(F TAn) · (F TAn) =

1

J2
A2n · FF Tn ∴ A0

A
=

1

J

√
n · FF Tn (B.11)
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Finally, the combination of (B.9 – B.11) yields

λ(n) = λ0(n)J

(
A0(n)

A(n)

) 3
2

=
λ0(n)√

J

(
n.(FF T).n

) 3
4

(B.12)
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APPENDIX C

CONSERVATION OF STRESS RATIOS

The ratios among the normal, lateral, and shear stresses ought to be kept constant throughout

the analysis. These ratios are defined as κn := Σll/Σnn and κsh := Σnl/Σnn in the present

context. In other terms, the dimensionless stress parameters named as stress triaxiality (T ) and

Lode parameter (L) should be constant throughout. To this end, if the discretization with respect

to time and space is done through ABAQUS (whilst the time integration is worked out in a user-

defined subroutine (UMAT)), one can make use of the Rik’s algorithm (known alternatively as

arc-length in ANSYS), which performs analyses upon a load-controlled basis with constant ratios

amongst the loads. However, in case the user would like to use an in-house code for time integration

of the constitutive laws, then one should include additional subroutines to control the values of T

and L. With (Σll,Σnn,Σnl) being the nonzero stress components, the values of T and L obey the

following formulas:

T =
1

3

2κn + 1√
(1− κn)2 + 3κ2

sh

L = −(1− κn)
9
2
κ2

sh + (1− κn)2

[(1− κn)2 + 3κ2
sh]3/2

(C.1)

In the present program, a rather simple cutting-plane algorithm has been utilized to do this. The

following items describe this procedure in the cases of small and large shear-to-normal stress ratios.

– At small to medium shear-to-normal stress ratios (0 ≤ κsh ≤ 1):

Each analysis step is associated with a prescribed normal strain increment dεnn, which is a

fraction of a total normal strain calculated from a prescribed normal displacement Un:

εnn = ln

(
1 +

Un
H

)
, dεnn =

∆t

T
εnn , ε(i)nn =

i

Ns

εnn (C.2)
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where T is the total time duration, and Ns is the total number of steps. The initial values of

normal and shear strain increments come from elasticity:

Rn =
εll
εnn

=
(1− ν)κn − ν

1− 2νκn
, Rsh =

εnl
εnn

=
(1 + ν)κsh

1− 2νκn

εll = Rnεnn , εnl = Rshεnn

ε
(i)
ll =

i

Ns

εll , ε
(i)
nl =

i

Ns

εnl

dε
(i)
ll =

∆t

T
ε

(i)
ll , dε

(i)
nl =

∆t

T
ε

(i)
nl

(C.3)

Then, the elastic values of Rn and Rsh should be manipulated in such a way that the desired

values of T andL are preserved. The following differential values can be added to the current

lateral and shear strains to produce new incremental strains (dε(i)ll , dε
(i)
nl ).

dκn = κn −
Σll

Σnn

, dεll =

(∣∣∣∣
Σll

2λΣll − 2(λ+ µ)Σnn

∣∣∣∣

)p1

dκn

dκsh = κsh −
Σnl

Σnn

, dεnl =

(∣∣∣∣
Σnl

2µΣnl − 2(λ+ µ)Σnn

∣∣∣∣

)p2

dκsh

(C.4)

The powers (p1, p2) depend on the values of T and L, and on the dynamic process (growth

or coalescence). The best convergence rate is found to occur if (p1, p2) are taken as follows:

−0.1 ≤ (p1, p2) ≤ 0.25 (C.5)

With these new incremental strains, the Newton-Raphson method solves for the microstruc-

tural variables, and with the calculated stresses the new stress values are used to calculate

the new values of T (i) and L(i). This procedure is reiterated until the desired values of T

and L are retrieved. If the number of iterations for a specific time step tends to be large (e.g.

> 20), then one can choose the lower bound of p1 for triaxiality control and the lower bound

of p2 for control of the Lode parameter. Otherwise, the upper bound 0.25 can be considered.

Remark: If the number of steps is very large, e.g. Ns = 20000, then a fraction of Ns, here

207



termed ns, should be considered in the calculation of (dε(i)ll , dε
(i)
nl ). The rate of convergence

was proven to be best if 1000 ≤ ns ≤ 2000.

– At large values of shear-to-normal stress ratios (for κsh > 1):

With large values of shear-to-normal stress ratios, it would be best that the shear strain be

prescribed instead of the normal strain. Otherwise, the declining curve of stress vs equivalent

strain will not be captured by the model. That is, the total shear strain is calculated from a

prescribed tangential displacement Ut:

εnl =
1

2

Ut√
U2
t +H2

, dεnl =
∆t

T
εnl , ε

(i)
nl =

i

Ns

εnl (C.6)

Then, the initial values of normal and lateral strain increments come from elasticity:

Sn =
Rn

Rsh

, Ssh =
1

Rsh

εll = Snεnl , εnn = Sshεnl

ε
(i)
ll =

i

Ns

εll , ε(i)nn =
i

Ns

εnn

dε
(i)
ll =

∆t

T
ε

(i)
ll , dε(i)nn =

∆t

T
ε(i)nn

(C.7)

Then, the elastic values of Sn and Ssh should be manipulated in such a way that the desired

values of T andL are preserved. The following differential values can be added to the current

normal and lateral strains to produce new incremental strains (dε(i)nn, dε
(i)
ll ).

dKn =
κn
κsh

− Σll

Σnl

, dεll =

(∣∣∣∣
Σll

2λΣll − 2µΣnl

∣∣∣∣

)q1

dKn

dKsh =
1

κsh

− Σnn

Σnl

, dεnn =

(∣∣∣∣
Σnn

2µΣnl − 2(λ+ µ)Σnn

∣∣∣∣

)q2

dKsh

(C.8)

The powers (p1, p2) depend on the values of T and L, and on the dynamic process (growth
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or coalescence). The best convergence rate is found to occur if (q1, q2) are taken as follows:

0.1 ≤ (q1, q2) ≤ 0.25 (C.9)
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P1 ON VOID COALESCENCE UNDER COMBINED TENSION AND SHEAR

This chapter is reprinted with permission from On Void Coalescence under Combined Tension

and Shear by M. E. Torki, A. A. Benzerga, and J.-B. Leblond (2015). Journal of Applied Mechanics

82(7): 071005-1 – 15, Copyright 2015 by ASME.
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M. E. Torki1, A. A. Benzerga1,2, J.-B. Leblond3
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Abstract
A micromechanics-based yield criterion is developed for a porous ductile material deforming by lo-

calized plasticity in combined tension and shear. The new criterion is primarily intended to model void
coalescence by internal necking or internal shearing. The model is obtained by limit analysis and ho-
mogenization of a cylindrical cell containing a coaxial cylindrical void of finite height. Plasticity in parts
of the matrix is modeled using rate-independent J2 flow theory. It is shown that for the discontinuous,
yet kinematically admissible trial velocity fields used in the limit analysis procedure, the overall yield
domain exhibits curved parts and flat parts with no vertices. Model predictions are compared with avail-
able finite-element based estimates of limit loads on cubic cells. In addition, a heuristic modification
to the model is proposed in the limit case of penny-shape cracks to enable its application to materials
failing after limited void growth as well as to situations of shear-induced void closure.

Key Words: Ductile fracture; Low triaxiality; Internal necking; Internal shearing; Homogenization;
Penny-shaped cracks.

1 Introduction

Ductile fracture under combined tension and shear has seen increasing interest in recent years. Earlier ex-
periments on aluminum alloys and steels indicated that the materials were less ductile in shear than under
uniaxial tension [1, 2]. However, more recent experiments show the opposite trend [3]. Keeping in mind
specimen geometry and material variability, the extent to which shear affects ductile fracture remains fairly
unsettled. Meanwhile, tentative understanding of such effects has been developed by considering the poten-
tial effect of the third invariant of the stress deviator, J3, e.g., [4–6]. However, the fundamental mechanisms
underlying such effects remain elusive. In addition, a paradigm shift seems necessary in approaching ductile
fracture in combined shear and tension, particularly at low stress triaxiality because models based on stress
invariants limit the scope to isotropic behavior. What is peculiar to low triaxiality fracture is that the large
plastic strains induce strong microstructural evolutions in terms of void shape, orientation and arrangement,
even if the anisotropy of the embedding matrix is disregarded. Thus, analyses of ductile fracture under
shear-dominated loading and interpretation of currently available experiments rely, to a great extent, on
accounting for the induced, and eventually initial anisotropies.

Void nucleation under predominately shear loading involves complex void–particle interactions [7]. Mi-
cromechanical void nucleation analyses of the kind pioneered by Needleman [8] are still not available for
such loadings. Whether these nucleation conditions fundamentally differ from those under tension with
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particle locking effects [9, 10] remains to be investigated. On the other hand, the behavior of a void, free of
particle constraints, in a shear field has been observed [11] and simulated [12, 13]. In a shear field, the ini-
tially spherical void would rotate and eventually close into a penny-shape crack [14,15], unless localization
in the ligament takes place before closure [6,13,16,17]. This behavior is in contrast with that prevailing in a
triaxial tensile field. In the latter case, Gurson’s void growth model [18,19] and its extensions by Needleman
and Tvergaard, e.g., [20,21] have set the standard for decades. A particularly important, generally neglected
aspect of ductile fracture is failure with a limited amount of void growth, even in the absence of a shear
component. The linkup of crack-like voids in aluminum alloys [22] and magnesium alloys [23], as recently
revealed in tomography, provides such examples.

In general, whether the loading comprises a predominant tensile field or consists of combined tension
and shear, fracture ultimately takes place because of plastic flow localization in the intervoid ligament,
unless failure occurs by some mechanical instability of the specimen itself. This micro-scale localization
is a precursor to void coalescence and must be modeled in order to predict quantitatively ductile fracture.
It is generally reported that void coalescence occurs by internal necking [24] or by void-sheeting; see [25]
for more details on micromechanisms. In the latter, a shear band typically forms between the voids, and
secondary voids may nucleate therein due to intense strains. To date, the void coalescence mechanism
that is best understood is by internal necking (see [26] and references therein) motivated by the pioneering
computational work of Koplik and Needleman [27]. On the other hand, microscale localization by so-called
internal shearing also begins to be understood on the basis of cell model calculations [6, 16, 17, 28]. In a
weakly rate-sensitive material, void coalescence by internal necking or shearing manifests by the onset of
elastic unloading in layers above and below the void [17, 27, 29, 30].

Interestingly, the micromechanics basis for understanding and analyzing low triaxiality fracture has
been available since the early nineties [31–33] and has been used to model fracture in engineering materials,
e.g. [24]. Over time, the models have gained in maturity and accuracy, e.g., [34–37]. Deformation-induced
anisotropies constitute the essence of the damage mechanics of low triaxiality ductile fracture [38,39]. This
anisotropy is of two kinds: that related to the voids themselves (changes in void shape and orientation);
and that related to their spatial arrangement. With this in mind, this paper is a step toward elucidating the
effects of shear on ductile fracture. More specifically, the objective is to develop a mathematical model
able to describe the yielding and subsequent flow of a material containing voids in configurations such that
microscale localization of plastic flow is possible under combined shear and triaxial tension. Such a model
would directly be relevant to modeling void coalescence by internal necking, internal shearing or both. The
voids are not necessarily equiaxed thus allowing in principle to deal with void configurations that may be
produced by evolution from an eventually isotropic initial state.

Mathematical modeling of void coalescence, as a microscale strain localization problem, goes back to
the work of Thomason [40] who considered square-prismatic as well as cylindrical voids embedded in a fi-
nite cell and subjected to some remote triaxial tensile field. Thomason used discontinuous but kinematically
admissible velocity fields to obtain upper-bound estimates of the limit load. He did not provide an analytical
solution to the problem. Instead, he obtained numerical solutions and proposed a heuristic formula estimat-
ing the limit load at localization as a function of geometric parameters. Subsequent improvements of his
model have focused on deriving evolution equations of the microstructural variables [30, 41] with heuristic
modifications to Thomason’s formula. None of the above models takes into account combined tension and
shear loadings. Leblond and Mottet [42] tackled this problem by means of 3D finite-element calculations
and developed an analytical model based on limit analysis in the spirit of earlier models by Gologanu and
co-workers [43,44]. Instead of defining some localized velocity field in full 3D detail, it was assumed in [42]
that the limit-load for such a field could be estimated by replacing the central void-rich region of the RVE
by some ”equivalent” homogeneous porous layer obeying Gurson’s homogenized criterion or some variant.
Tekoglu et al. [45] have improved upon this model through some suitable extension of Thomason’s treat-
ment of coalescence to non-axisymmetric loadings. In doing so, they accounted for both the extensional
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and shear components of the microscopic velocity field. However, only that corresponding to shear was
expressed in explicit, analytical form. No analytical solution was available then for void coalescence under
axisymmetric loadings.

Quite recently, Benzerga and Leblond [26] developed a closed-form solution to the axisymmetric prob-
lem of void coalescence. Incidentally, their solution revealed some inaccuracy in the fitting procedure pro-
posed by Thomason [40]. Even more recently, Morin et al. [46] developed improved models by considering
either continuous velocity fields or generalized discontinuous fields. Their models provide, in general,
tighter upper bounds, albeit for different ranges of structural paramaters. The models in [26, 46] are valid
under axisymmetric loadings. The main objective of this paper is to extend the coalescence criterion of
Benzerga and Leblond [26] to non-axisymmetric loadings. In a sense, the sought model is an elaboration
of that previously developed by Tekoglu et al. [45]. Explicit consideration of the microscopic velocity field
around the void in fully analytical form constitutes indeed a more coherent approach to the problem at hand.
A secondary objective of this work is to develop a heuristic modification to the criterion of Benzerga and
Leblond enabling its application to penny-shape cracks. The proposed modification is motivated by the
prescription for the model to pick up the coalescence of flat voids, as would arise for example under shear
dominated loadings or in materials failing after limited void growth [22, 23].

The paper is organized in three main sections and three appendices. In Section 2 we develop from
first principles the mathematical model of void coalescence, including a graphical method for obtaining the
effective yield surface in closed form. In Section 3 we motivate and introduce a heuristic model for flat
voids or penny-shaped cracks. The results are presented in Section 4 and discussed in light of available
micromechanical finite-element analyses. Details pertaining to the calculation of the effective dissipation
and construction of the yield locus are provided in Appendices A and B, respectively. A variant of the
homographic function used in the heuristic modification is presented in Appendix C.

2 Mathematical Model

2.1 Variational Principle

The effective yield criterion of a material containing microvoids can be determined using the following
inequality of limit analysis [25]:

∀D, Σ : D ≤ Π(D) (1)

where Σ and D denote the macroscopic stress and rate of deformation tensors, defined as the volume
averages of their microscopic counterparts σ and d, and Π(D) is the effective plastic dissipation given by

Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω (2)

Here, Ω refers to the spatial domain over which macroscopic quantities are defined, 〈·〉Ω stands for averaging
over Ω, inf and sup respectively stand for the infimum (greatest lower bound) and supremum (least upper
bound) of a set, and C is the microscopic reversibility domain (the boundary of which is the yield surface).
Also, the set of kinematically admissible velocity fields, K(D), is made of incompressible fields (vk,k = 0)
that are compatible with the overall deformation imposed through D. If the velocity field is discontinuous
across an interface S then a surface term must be added which writes

1

Ω

∫

S
sup
σ∗∈C

t∗i JviK dS (3)

where JvK is the velocity jump across the interface and t∗ the traction acting on it. If the dissipation function
is differentiable then the effective yield surface is smooth and (1) is equivalent to:

Σij =
∂Π

∂Dij
(D) (4)
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where D is no longer arbitrary as in (1) but represents the rate of deformation corresponding to Σ through
the macroscopic flow rule. To sum up, if the effective yield surface is smooth then (4) constitutes its para-
metric equation; if not inequalities (1) define the effective reversibility domain C (which is different from
the microscopic one C). The reader is referred to [25] for further background on this variational definition
of the effective yield locus.

2.2 Representative Volume Element

Here, the elementary volume Ω is a cylindrical cell embedding a coaxial cylindrical void ω, Fig. 1a. Al-
though this RVE is not space filling, it stands as a reasonable approximation of more complex geometries,
such as hexagonal-prismatic or square-prismatic cells, which may be considered as unit cells in periodic
media. This geometry is determined by the following independent dimensionless parameters:

W =
h

R
, χ =

R

L
, λ =

H

L
(5)

i.e., the void aspect ratio, the ligament parameter, and the cell aspect ratio, respectively. When parameter λ
is different from unity it represents the anisotropy in void spacing. The local orthonormal basis associated
with cylindrical coordinates r, θ, z is denoted (er, eθ, ez) and the global one associated with Cartesian
coordinates x1, x2, x3 is denoted (e1, e2, e3), with e3 = ez .

(a) (b)

Figure 1: (a) Geometry of the cylindrical RVE under combined shear and tension; (b) Cell parameters.

The same geometry was considered by Benzerga and Leblond [26] and by Morin et al. [46]. The finite
element calculations in [46] suggest that the limit analysis results are weakly sensitive to the exact shape of
the void (cylindrical versus spheroidal) at fixed aspect ratio. On the other hand, comparison of their results
with those of Tekoglu et al. [45] shows that the effect of the shape of the cell (cylindrical versus cubic) is
small, but not negligible. This issue will be addressed in more detail when discussing the results. For Ω
to be representative of a material in a coalescence state, plastic flow within it is assumed to be confined to
the ligaments, Fig. 1b. Hence, the RVE consists of a central porous layer, Ωlig, with plastically deforming
ligaments, sandwiched between two rigid zones. The interfaces between these two zones and the central
one are denoted Stop and Sbot (Fig. 2a) and their union Sint. The rigid zones represent regions where elastic
unloading would take place after strain localization in the full evolution problem studied by cell model
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analyses [6, 17, 27]. In what follows, it proves useful to introduce auxilliary geometric parameters:

fb ≡
ω

Ωlig
=
R2

L2
= χ2

c ≡ Ωlig

Ω
=

h

H
=
Wχ

λ

f ≡ ω

Ω
= cfb

(6)

where the domain and its volume are identified for convenience. In (6), fb is the porosity in the central
porous band, c is the volume fraction of the band and f is the overall porosity, which does not play an
essential role, unlike in void growth models.

2.3 Matrix Plasticity Model

Plastic flow in the matrix (in fact in Ωlig \ ω) is assumed to obey the von Mises yield criterion:

φ(σ) = σ2
eq − σ̄2 = 0

σeq ≡
√

3

2
σ′ijσ

′
ij ; σ′ij ≡ σij −

1

3
σkkδij

(7)

with the associated flow rule:

dij =
3

2

deq

σ̄
σ′ij

deq ≡
√

2

3
dijdij

(8)

where σeq and deq denote the von Mises equivalent stress and equivalent strain rate, respecively. Criterion (7)
defines the boundary of the microscopic reversibility domain C involved in (2).

2.4 Boundary and Admissibility Conditions

Solving variational problem (1)–(2) for a given RVE and the J2 matrix flow model would deliver the min-
imum involved in (2) as well as the velocity fields that realize the minimum. Focussing on symmetric
solutions, the exact velocity fields can be of two types. One type is consistent with uniform strain-rate
boundary conditions (of the Hill–Mandel kind), the other is consistent with nonuniform boundary condi-
tions, such as those resulting from the presence of rigid zones in the RVE. These two types correspond to
plasticity being diffuse in the matrix or localized in the ligaments, respectively. For the considered RVE,
due to the presence of rigid zones above and below the central void, the cell cannot deform along the x1 and
x2 directions nor can it shear in the x1–x2 plane, i.e., D11 = D22 = D12 = 0. Thus, the boundary velocity
must be consistent with the following constraints:





vr(L, θ, z)er + vθ(L, θ, z)eθ =
2z

c
(D31e1 +D32e2) (−h ≤ z ≤ h; 0 ≤ θ ≤ 2π)

vz(r, θ,±H) = ±D33H (0 ≤ r ≤ L; 0 ≤ θ ≤ 2π).

(9)

where D31 and D32 are the imposed shearing rates and D33 is the imposed axial rate of deformation. Con-
dition (9)1 is completed by requiring that the tangential shear velocity be continuous across the rigid–plastic
interfaces and obviously constant in the rigid zones (h ≤ |z| ≤ H). Boundary conditions (9) stand as an
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appproximation of periodic boundary conditions and are consistent with the onset of a localization as in cell
model studies [6, 17, 27].

In addition, at the interface between the plastic and rigid parts, the velocity jump, if any, must be purely
tangential:

JvK.n = 0 ∀x ∈ Sint (10)

where n is the interface normal. Also, matrix incompressibility in the intervoid ligament demands that

tr d = div v = 0 ∀x ∈ Ωlig \ ω (11)

The corresponding stress state is one in which Σ11 = Σ22 < Σ33, Σ31 6= 0 and Σ32 6= 0. Note that Σ11,
Σ22 and Σ12 do not affect the yield condition since by the normality flow rule:

D11 =
∂Φ

∂Σ11
= 0 D22 =

∂Φ

∂Σ22
= 0 D12 =

∂Φ

∂Σ12
= 0 (12)

where Φ is the sought macroscopic yield function. Having assumed normality at the microscopic scale,
equation (8), macroscopic normality is a rigorous consequence of the combination of homogenization and
limit-analysis [25].

2.5 Admissible Trial Velocity Fields

In general, the exact solution to problem (1)–(2) can only be obtained numerically, e.g., using the finite
element method [45]. In analytical treatments, however, trial velocity fields are used in (2) so that upper-
bound estimates of the yield locus are obtained from (1) or (4). Any two admissible velocity fields can be
compared, the best being that which results in the lowest effective dissipation [25]. Here, we only consider
velocity fields that are consistent with localized plasticity, i.e., obeying the boundary conditions expounded
in Section 2.4 above. The trial velocity field in the central zone (−h ≤ z ≤ h) is decomposed in two parts

v = vE + vS (13)

with vE induced by tension and vS by shear:

vE(x) =

(
A

r
−Br

2

)
er +Bzez

vS(x) = βx

(14)

where all parameters (A, B and the constant traceless tensor β) are set by the boundary conditions. The
extensional field vE is that used by Benzerga and Leblond [26]. Since it already includes a deviatoric
component, the additional field need only be of the form:

vS =
2z

c
(D31e1 +D32e2) (15)

where c is given by (6)2 so that β reads in component form:

[β] =
2

c




0 0 D31

0 0 D32

0 0 0


 (16)
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In cylindrical coordinates, the components of the velocity of a material point in the ligament are:

vr =
D33

2c

(
L2

r
− r
)

+
2z

c
(D31 cos θ +D32 sin θ)

vθ =
2z

c
(−D31 sin θ +D32 cos θ)

vz =
D33

c
z

(17)

The corresponding microscopic rate-of-deformation components are obtained as

drr =
∂vr
∂r

= −D33

2c

(
L2

r2
+ 1

)

dθθ =
1

r

(
vr +

∂vθ
∂θ

)
=
D33

2c

(
L2

r2
− 1

)

dzz =
∂vz
∂z

=
D33

c

drθ = dθr =
1

2r

(
∂vr
∂θ

+
∂vθ
∂r
− vθ

)
= 0

drz = dzr =
1

2

(
∂vr
∂z

+
∂vz
∂r

)
=

1

c
(D31 cos θ +D32 sin θ)

dzθ = dθz =
1

2

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)
=

1

c
(−D31 sin θ +D32 cos θ)

(18)

2.6 Effective Dissipation

For convenience, the dissipation function associated with the above velocity field is denoted Π(D) although
one should bear in mind that it is in fact an upper bound estimate of the exact dissipation. Using (7) and (8)
a classical calculation [25] leads to:

Π(D) = 〈σ̄deq〉Ω (19)

where it should be noted that, since the velocity field (17) is discontinuous across the rigid–plastic interfaces
Sint, the above expression must be taken in the sense of distributions with a strain rate concentrated on a
surface. This is equivalent to writing Π(D) as the sum of volumetric and surface terms:

Π = Πvol + Πsurf (20)

where




Πvol = c〈σ̄deq〉Ωlig
= c(1− fb)〈σ̄deq〉Ωlig\ω

Πsurf =
1

Ω

∫

Sint

σ̄√
3

∣∣JvtK
∣∣ dS

(21)

JvtK denoting the discontinuity of tangential velocity. Because the latter only arises from the extensional
field vE, the calculation of the surface term leads to [26]

Πsurf = |D33|Σsurf(χ,W ), (22)
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with
Σsurf

σ̄
=

1

3
√

3

χ3 − 3χ+ 2

χW
(23)

The volumetric term requires careful treatment. Instead of calculating deq directly based on (18) we first
begin by decomposing the total rate of deformation d = dE + dS based on (13) to make use of the orthog-
onality condition dE : dS = 0 so that

d2
eq =

2

3

(
dE : dE + dS : dS

)
=

2

3
dE : dE +

1

3
β : β (24)

where use has been made of the relation dS = (β + βT)/2 and the components of dE are given by:

[dE] =
D33

2c




−
(
L2

r2
+ 1

)
0 0

0

(
L2

r2
− 1

)
0

0 0 2



. (25)

Using (25) and (16) we thus obtain the expression of deq:

d2
eq =

D2
33

3c2

[
3 +

L4

r4

]
+

4

3c2

(
D2

31 +D2
32

)
, (26)

then that of Πvol from (21) as:

Πvol = (1− χ2)
σ̄√
3

〈√
δ2

E + δ2
S

〉

Ωlig\ω
(27)

where c cancels out; also δE and δS are shorthand notations for:

δE(r) = |D33|
√

3 +
L4

r4

δS = 2
√
D2

31 +D2
32

(28)

Next, the integral in (27) is evaluated approximately as

Πvol ≈ (1− χ2)
σ̄√
3

√
〈δE〉2Ωlig\ω + δ2

S (29)

This approximation, which was initially introduced in [45], is not upper-bound preserving and therefore
warrants some assessment against numerical estimates. The calculation is given in Appendix A and yields

Πvol =

√
Σvol2D2

33 + T 2
(
D2

31 +D2
32

)
(30)

where Σvol and T are functions of the ligament parameter given by:

Σvol(χ) =
σ̄√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

T (χ) =
2σ̄√

3
(1− χ2)

(31)

Finally, the total dissipation is given by

Π(D) =

√
Σvol2D2

33 + T 2
(
D2

31 +D2
32

)
+ Σsurf |D33| (32)

where the function Σsurf(χ,W ) is given by (23).
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2.7 Void Coalescence Criterion

The effective yield criterion Φ(Σ) = 0 corresponding to the effective dissipation (32) is the criterion for
void coalescence under combined tension and shear. As it turns out, the dissipation function calculated
in (32) is not differentiable because of the term involving |D33|. For this reason, one cannot directly obtain
the expression of Φ from Eq. (4). Instead, one must resort to the primitive definition of the reversibility
domain C in (1), which writes:

Σ ∈ C ⇔ ∀D, Σ : D = Σ33D33 + 2(Σ31D31 + Σ32D32) ≤ Π (33)

With this definition, the yield criterion Φ(Σ) = 0 is the equation of ∂C (boundary of C ) which is the yield
surface. Note that the transverse stresses Σ11, Σ22, and Σ12 do not appear here, in agreement with Eq. (12).

2.7.1 General Solution to Inequality (33)

With no loss of generality, assume D32 = 0. This amounts to defining the transverse axes x1 and x2 in a
judicious manner. Let Π∗(D33, D31) stand for the corresponding dissipation function. Then inequality (33)
may be written considering (32):

∀D33, D31, Σ33D33 + 2Σ31D31 ≤
√

Σvol2D2
33 + T 2D2

31 + Σsurf |D33| ≡ Π∗(D33, D31) (34)

The right-hand side of (34) is fully determined since Σsurf , Σvol and T are given by (23) and (31). In order
to focus on non-negative values of D31 only, we re-write (34) as:

∀D33,∀D31 ≥ 0, −Π∗(D33, D31) ≤ Σ33D33 + 2Σ31D31 ≤ Π∗(D33, D31) (35)

where use has been made of (34) for the pair (−D33,−D31) considering that Π∗ is an even function. The set
of inequalities (35) is equivalent to some condition Φ(Σ33,Σ31) ≤ 0 where Φ is the sought yield function.
Since Π∗ is homogeneous of degree 1 in its arguments, (35) may be recast in the form:

∀p ∈ R, −g(p) ≤ f(p) ≤ g(p) (36)

where the ratio
p = D33/D31 (37)

plays the role of a parameter, and functions f and g are defined on R by:

f(p) = Σ33p+ 2Σ31

g(p) =

√
Σvol2p2 + T 2 + Σsurf |p| ≡ Π∗(p, 1)

(38)

Next, we implement a graphical solution to constructing the yield surface. The reversibility domain cor-
responds to straight lines q = f(p) lying between the graphs of the functions q = −g(p) and q = g(p).
The yield locus, on the other hand, corresponds to straight lines lying between these graphs but meeting one
of them at some point. We study in Appendix B some basic properties of function g to show that (i) g is
convex; (ii) it admits a minimum g(0) = T ; (iii) it has an angular point at its minimum, i.e., at p = 0; and
(iv) g admits straight asymptotes of slope ±(Σvol + Σsurf) for p → ±∞. We then proceed as follows to
construct the yield locus in three essential steps:

1. Consider the case of shear loading only (Σ33 = 0, Σ31 6= 0). The yield condition (36) becomes

{∀p ∈ R, −g(p) ≤ 2Σ31 ≤ g(p)} ⇔ |2Σ31| ≤ min
p
g(p) = T (39)

Thus, the points (Σ33 = 0, Σ31 = ±T /2) lie on the yield surface, as illustrated in Fig. 2. In the
following, we focus on loadings with Σ31 ≥ 0 taking advantage of the point symmetry of the yield
locus, i.e., Φ(−Σ) = Φ(Σ).
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(a) (b)

Figure 2: Step 1 of graphical solution to (36): case of shear loading only. (a) The curve q = f(p) = 2Σ31 is a
horizontal line that lies between the curves q = g(p) and q = −g(p) for all values of p provided that 2Σ31 is greater
than −T without exceeding T . (b) Corresponding yield points in the Σ33–Σ31 plane.

2. Next, in addition to the shear stress, consider increasing the magnitude of the normal stress subjected
to |Σ33| ≤ g′(0+) = Σsurf . Fig. 3a illustrates the case Σ33 > 0. Since q = f(p) is the equation of
a line whose slope is precisely Σ33, it is clear that the condition |Σ33| ≤ g′(0+) entails that f(p) ≤
g(p),∀p, provided that f(0) ≤ g(0). The converse is true. In other terms, the yield condition when
Σ33 ≤ Σsurf is that Σ31 = T /2. The same condition holds for g′(0−) < Σ33 < 0 by considering
the intersections of lines q = f(p) having negative slopes with the appropriate branches of g(p) and
−g(p). This step establishes the existence of straight parts in the yield locus, as illustrated in Fig. 3b.

3. Upon increasing further the magnitude of the normal stress, that is beyond Σsurf , the fact that f lies
below g and above −g at the origin no longer guarantees the same for all values of p (Fig. 4a). There
must me a condition on the shear stress in terms of Σ33 for the stress state (Σ33,Σ31) to lie on ∂C .
Given Σ33, the value of Σ31 must be smaller than that which would make the line q = f(p) tangent
to the curve q = g(p) (Fig. 4b). Only when this tangency holds or the line q = f(p) falls below
the tangent would the reversibility condition f(p) ≤ g(p),∀p be ensured (recall that we have focused
on Σ31 > 0 so that tangency with q = −g(p) is not an issue). Finding the yield point (Σ33,Σ31)
amounts then to determining the value of p, say p0, for which there is tangency. The derivation of p0

is straightforward (see Appendix B). Upon elimination of p0 from the tangency condition (also shown
in Appendix B) the following relationship is obtained between the shear and normal stresses:

(
Σ33 − sgn(Σ33)Σsurf

)2

Σvol2
+ 4

Σ2
31

T 2
= 1 (40)

which is the yield condition for |Σ33| > Σsurf . The corresponding part on the yield locus is illustrated
in Fig. 4c. It is shown in Appendix B that (40) represents the regular part of the yield surface, i.e., that
which could be obtained by mere differentiation of the dissipation function.
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(a) (b)

Figure 3: Step 2 of graphical solution to (36): case of combined shear and tension subject to |Σ33| ≤ Σsurf . (a)
Illustration for Σ33 > 0 and Σ31 > 0. The slope of the line q = f(p) is smaller than that of q = g(p) at the origin
so that the two curves do not cross each other provided that f(0) ≤ g(0), i.e. that Σ31 ≤ T /2. (b) Corresponding
straight portion of the yield locus appears as solid line. For completeness, the portion corresponding to negative slopes
of q = f(p) is shown dashed. As depicted, the asymptotic behavior of function g is exaggerated for clarity purposes.

(a) (b) (c)

Figure 4: Step 3 of graphical solution to (36): case of combined shear and tension subject to |Σ33| ≥ Σsurf . (a) For
an arbitrarily large value of the slope of q = f(p) the inequality cannot be guaranteed for all values of p. (b) Limit
case when the slope of q = f(p) is greater than that of q = g(p) at the origin but small enough so as to be tangent to
the curve q = g(p) at some point p0. This point defines the sought yield condition. (c) Corresponding curved portion
of the yield locus appears as solid line. For completeness, the portion corresponding to negative slopes of q = f(p) is
shown dashed.

2.7.2 Absence of corners in the yield locus

The existence of straight (singular) parts and curved (regular) parts on the yield locus raises the issue of
whether there are corners on the yield surface. It is apparent from the above derivation that there are none.
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Indeed, the curved parts defined by (40) are semi-ellipses which meet the points (Σ33 = ±Σsurf ,Σ31 =
±T /2) with vertical tangents. The complete yield surface is shown schematically in Fig. 5 where Σsh is the
signed length of the shear traction, i.e, Σshs = Σ31e1 + Σ32e2 with s a unit vector in the direction of shear.

Figure 5: Schematic outline of the complete yield surface.

It is worth noting that in their development of a model unifying void growth and void coalescence, Morin
et al. [47] have also obtained a smooth effective yield surface with curved and straight parts. This is traceable
to the nondifferentiability of the plastic dissipation function in their model as well. They also offered a
graphical construction of the reversibility domain, which is qualitatively similar to that of Section 2.7.1.

In crystal plasticity, as well as some hybrid theories of ductile fracture [39, 48], the presence of corners
on the effective yield surface follows from the ad hoc assumption of independent activation criteria for slip,
or deformation mode for the porous material, respectively. The absence of corners in the present theory is,
however, not so intuitive. Inspecting the geometrical arguments, one concludes that the origin of the absence
of corners is found in the nonlinear expression of the effective plastic dissipation over the intervals where it
is differentiable.

2.7.3 Synopsis of Model

The void coalescence criterion, viewed as the effective yield criterion of the porous solid with localized
plastic flow within the RVE, is defined as follows:

Φ(Σ;χ,W ) =





(|Σ33| − Σsurf)2

Σvol2
+ 4

Σ2
31 + Σ2

32

T 2
− 1 for |Σ33| ≥ Σsurf

4
Σ2

31 + Σ2
32

T 2
− 1 for |Σ33| ≤ Σsurf

(41)
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where Σvol(χ), Σsurf(χ,W ) and T (χ) are functions of the microstructural parameters χ and W given by
(23) and (31) and repeated here for ease of reference:

Σvol(χ) =
σ̄√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

Σsurf(χ,W ) =
σ̄

3
√

3

χ3 − 3χ+ 2

χW

T (χ) =
2σ̄√

3
(1− χ2)

(42)

3 Heuristic Model for Penny-Shaped Cracks

At the material point level, failure may occur by the coalescence of blunted micro-cracks. This phenomenon
is common in steels containing elongated inclusions and loaded transverse to the latter [38]. It begins to be
documented in various other metallic alloys of technological significance [22, 49]. The above works were
mainly concerned with predominately tensile loadings. In presence of shear, even initially equiaxed voids
would rotate while closing into micro-cracks and when linkage eventually occurs the voids are quite flat.
Furthermore, under compressive loading, microvoids would tend to close by evolving toward microcracks
for which the propensity for intervoid ligament localization may increase due to the increase in the ligament
parameter χ. Thus, it appears that the phenomenon of microcrack coalescence is of immense practical
importance; yet it eludes currently available models of ductile fracture. The objective of this section is to
motivate a heuristic modification of the above coalescence criterion to address the limit case of penny-shape
cracks.

By examination of the limitW → 0 it is evident that criterion (41) can never be met because of the 1/W
singularity of the Σsurf function. Clearly, this singular behavior is inherited from the model in the absence
of shear. In this case, (41) reduces to

|Σ33| = Σvol + Σsurf =
σ̄√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]
+

σ̄

3
√

3

χ3 − 3χ+ 2

χW
(43)

which is the criterion of Benzerga and Leblond [26]. The reason for this singular behavior is illustrated in
the sketch of Fig. 6.

In the currently available models, the height of the localization zone scales with the void height h. This
is shown schematically in Fig. 6a (also see Fig. 1a). Therefore, when W → 0 the localization zone vanishes
and the purely extensional deformation mode cannot be accommodated. Recently, Morin et al. [46] have
assessed criterion (43) against finite-element based limit analysis calculations for the exact same cylindrical
geometry. The lowest value of W they considered was 0.2. Their results showed that the model in [26] was
quite accurate for a range of microstructural parameters but revealed significant deviations from the finite-
element predictions for W < 0.5. To remedy this aspect of the model among other potential improvements,
Morin et al. [46] developed two new analytical models: one in which the extensional velocity field was
continuous across the rigid–plastic interface and one in which this interface was no longer planar but with
a discontinuity of the tangential velocity across it. Details aside, the model with the nonplanar interface
provided the best improvement to criterion (43) for W < 0.5. However, their model has two shortcomings:
(i) the coalescence criterion could not be obtained in closed form; and (ii) it still suffers from the 1/W
singularity. The reason for this is that the nonplanar interface degenerates into a planar one in the limit
W → 0. As discussed by Morin et al. [46], the height of the plastic localization zone in the finite-element
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(a) (b)

(c)

Figure 6: Sketch motivating the need for model calibration in the case of penny-shaped cracks. (a) Localization zone
height limited by microcrack height (situation considered in analytical model). (b) More realistic localization zones
based on finite-element simulations [46] (situation picked up by heuristic model). (c) Alternative possible localization
for random arrangement of voids.

calculations extends above and below the void when this one is very flat (see their Fig. 13b)1. In actuality,
the interaction plastic zones between neighboring microcracks are closer to the sketch of Fig. 6b. At present,
a model based on such RVE is not available and even if it were, the criterion would not be simple, let alone
in closed form.

With the above motivation in mind, criterion (41) is modified as follows:

Φ(Σ;χ,W ) =





(|Σ33| − tΣsurf)2

b2Σvol2
+ 4

Σ2
31 + Σ2

32

l2T 2
− 1 for |Σ33| ≥ Σsurf

4
Σ2

31 + Σ2
32

l2T 2
− 1 for |Σ33| ≤ Σsurf

(44)

1Benzerga’s [41] conjecture stating that the rigid zones intercept the void at the poles seems to be falsified for extremely flat
voids.
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where t, b and l are to be adjusted on the basis of available numerical solutions or experiments. In fact, b
and l are constants close to unity whereas t(W,χ) must be taken as a function of geometric parameters to
remedy the 1/W singular behavior, which manifests only through the Σsurf term. In the absence of shear,
criterion (44) reads:

|Σ33| = t(χ,W )Σsurf + bΣvol (45)

Since the original criterion (43) performs very well for W > 1 [46] we only require that function t be
endowed with the following asymptotic behavior:

t ∼
W→0

aW

t ∼
W→∞

1
(46)

with a some constant, hence the choice of the homographic function:

t(χ,W ) =
(t0 + t1χ)W

1 + (t0 + t1χ)W
(47)

where t0 and t1 are parameters to be determined.

4 Results and Discussion

4.1 Model calibrated for penny-shaped cracks

The calibration of the modified model (44) is based on available limit analysis calculations using the finite
element method [45, 46]. Tekoglu et al. [45] obtained such solutions for spheroidal voids in an orthorombic
cell whereas Morin et al. [46] mainly considered cylindrical voids in a cylindrical cell. Detailed comparison
between the two sets of FE results at fixed pair (χ,W ) and in absence of shear loads shows small, but not
negligible differences.

Figure 7: Coalescence stress in absence of shear, Σ33, normalized by the matrix yield stress, σ̄, versus the void aspect
ratio, W , according to the FEM results for a cylindrical cell [46] and a cubic cell [45] for two values of the porosity in
the band fb.

Part of the difference is rationalized by invoking the porosity in the band (fb in equation (6)), which
takes on different values at fixed χ depending on the assumed shapes of the void and the cell. When the
computed limit loads are plotted as a function of fb instead of χ (W being fixed) the difference between
the values calculated in Refs. [45] and [46] significantly decreases, as shown in Fig. 7. For reference, the
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porosity in the band fb corresponding to the cell geometry used in [45] is given by fb =
π

6
χ2 whereas

fb = χ2 for the cell used in [46]. Even with this normalization, some differences remain between the two
data sets, as depicted in Fig. 7. These differences must therefore be related to the effect of cell shape itself.

(a) (b)

Figure 8: (a) Coalescence stress in absence of shear, Σ33, normalized by the matrix yield stress, σ̄, versus the void
aspect ratio, W , according to the FEM results (points from [46]), the analytical model (dashed lines) and the modified
model (solid lines) using t0 = −0.84 , t1 = 12.9 and b = 0.9 for three values of the ligament parameter χ. (b) Σ33/σ̄
versus χ according to the FEM results and modified model for three values of W .

For the reasons above, the calculations of Morin et al. [46] are used here as a basis for calibrating
criterion (44) given that these authors considered the exact same geometry we have used to derive the
analytical model. In fact, parameters t0 and t1 can be found by confining attention to the value of the limit
load corresponding to the limit W → 0, which can be extracted from the estimates made by [50] and used
in [41]. Then parameter b is obtained using the numerical results in [46]. It is worth noting that the values of
t0 and t1 are affected by the choice of b. Using Gologanu’s estimates in the limit W → 0: Σcoal

33 /σ̄ = 4.336
for χ = 0.2 and Σcoal

33 /σ̄ = 2.355 for χ = 0.5, the values of t0 and t1 follow a linear relation with b
as t0 = 0.4b − 1.2, t1 = −10b + 21.9. The best fit is thus obtained using t0 = −0.84, t1 = 12.9
and b = 0.9. Fig. 8 illustrates the outcome of this calibration procedure. The solid lines correspond to
the modified criterion using the above parameters whereas the dashed lines correspond to the criterion, as
derived by Benzerga and Leblond [26]. The main correction is introduced for very flat voids. One may notice
that the rigorous upper-bound character of the model is lost with the heuristic correction. It is possible to
remedy this to some extent by using an alternative form for the t(χ,W ) function (see Appendix C). Finally,
parameter l, which does not affect the results in the absence of shear as in Fig. 8, is taken to be unity in the
following.

4.2 Coalescence Surfaces

Some example yield surfaces corresponding to the original criterion (41) as well as the modified one (44)
are depicted in Fig. 9 for selected values of the microstructural parametersW and χ. The surfaces are shown
in a Σ33–Σsh plane as they are insensitive to normal stresses Σ11 and Σ22 and to shear stress Σ12. As above,
Σ2

sh = Σ2
31 + Σ2

32 represents the shear stress magnitude.
The length of the straight parts is set by Σsurf . As expected, the effect of the modification manifests

mainly for flat cavities. Also, observe that the axial stress required for coalescence decreases with a su-
perposed shear stress. This may have important implications under combined loadings. In all cases, the
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(a) (b)

(c) (d)

Figure 9: Effective yield loci in the Σ33–Σsh plane (one quadrant shown) using the original analytical criterion (41)
(dashed) and the modified criterion (44) (solid) for various values of the ligament parameter χ and four values of the
void aspect ratio: (a) W = 0.25; (b) W = 0.5; (c) W = 1.0; (d) W = 3.0.

effective yield stress in shear is given by:

Σsh =
σ̄√
3

(1− χ2) (48)

i.e., a factor of 1−χ2 smaller than without the void, compare with a factor of 1−χ3 predicted by the Gurson
model. This type of reduction is consistent with the values obtained in cell model calculations [6, 17].

The yield surfaces in Fig. 9 may be thought of as coalescence surfaces since the rate of change of the
ligament size χ is directly related to the normal to these surfaces. Incidentally, the rate of χ is predicted to
be nil under pure shear.

4.3 Comparison with finite-element calculations

The only comparison that is presently possible in the case of combined loading is with the analyses carried
out by Tekoglu et al. [45]. Figure 10 portrays a comparison of yield surfaces, as predicted using the modified
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criterion, with the finite element results of Ref. [45]. In doing so, it is worth emphasizing that the two sets of
results correspond to different geometries. To minimize geometry effects, we compare again at fixed doublet
(W, fb). As discussed above in the context of Fig. 7, there are some expected differences in the absence of
shear.

(a) (b)

(c) (d)

Figure 10: Effective yield loci in the Σ33–Σsh plane using the modified criterion (44) (solid lines) and available FE
results [45] (points) for two values of the porosity in the band fb and four values of the void aspect ratio: (a)W = 0.5;
(b) W = 1.0; (c) W = 2.0; (d) W = 3.0.

Figure 10 reveals several points:

1. There is good qualitative and, in most cases, quantitative correspondence between model and FE
results.

2. In some cases with predominant tension, the model predictions lie interior to the FE results. This
behavior, which manifests mostly for W ≤ 0.5, is due to imperfections in the calibration function t
and may be remedied using the improved function of Appendix C.

3. In all cases with predominant shear, the model predicts an upper bound of the FE data. The predictions
could be further improved by adjusting parameter l. However, we refrain from doing so here because
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of uncertainties related to cell shape effects. A more conclusive comparison requires (i) an improved
analytical model that is upper-bound preserving (recall that approximation (29) deprives the final
criterion from this property); and (ii) a set of FE calculations on the same cylindrical cell subjected to
combined loadings. Such efforts are underway and results will be reported elsewhere.

4.4 Application of the Model

The chief concern here has been to develop an effective yield function that seamlessly describes void co-
alescence by internal necking or shearing. For practical use, the model needs to be supplemented with
evolution equations for the internal parameters. For tension dominated loadings, such evolution equations
are available [39, 41]. For shear-dominated loadings, the void morphology at the onset of coalescence is
heavily distorted. It remains to be seen whether the cylindrical geometry adopted here or the more general
ones considered in [39, 41] can represent actual, sheared peanuts shapes [13] even in some average sense.

As it stands, the void coalescence model assumes a doubly periodic distribution of voids whereas real
distributions are inhomogeneous. As discussed by Benzerga [41], whether the regular distribution provides
a lower or upper bound to ductility is far from settled. This is especially the case when considering random
loadings with a finite wavelength comparable with the average void spacing.

5 Concluding Remarks

A void coalescence model accounting for a general loading scheme was developed based on homogenization
and limit analysis. The model offers an extension of that recently derived by Benzerga and Leblond [26] to
more general stress states. It improves upon the model proposed by Tekoglu et al. [45] in two ways: (i) it
is based on a detailed analysis of the microscopic velocity field around the void; (ii) it offers a simpler, yet
more robust calibration in the limit of penny-shaped cracks. Salient features of the new model include the
following:

• The model captures seamless transitions between so-called internal necking and internal shearing in
solids with voids. The effective yield surface (or coalescence surface) exhibits planar (singular) parts
and curved (regular) parts and is devoid of any corners. The parameters of the yield surface are
functions of the microstructural parameters χ (ligament parameter) and W (void aspect ratio).

• The effective dissipation function arrived at by homogenization is strikingly similar to that used in
geophysics for granular materials [51, 52]. The function derived here is, however, non-differentiable
and this leads to the presence of planar parts in the coalescence surface.

• A heuristic modification to the analytical model was rationalized on the basis of comparisons with
finite-element based limit analysis results from the literature. The modification is mostly relevant to
relatively flat cavities, particularly penny-shaped cracks. With the calibration being carried out in
the absence of any shear loading, subsequent comparisons were made with available FE results for
combined loadings. The model performs quite well.

• Further improvement of the model requires removal of uncertainties associated with two aspects: (i)
a small, but non-negligible effect of the cell shape on the coalescence surface; (ii) the loss of the
upper-bound character due to approximations in the calculation of the effective dissipation.
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Appendix A Derivation of (30) giving Πvol

Approximate evaluation of Πvol in (29) involves calculating the integral:

〈δE〉Ωlig\ω =
1

Ωlig − ω

∫ L

R

∫ 2π

0

∫ h

−h
|D33|

[
3 +

L4

r4

]1/2

r dr dθ dz (49)

Integrating over θ and z and simplifying gives:

〈δE〉Ωlig\ω =
1

1− χ2

2|D33|
L2

∫ L

R

[
3 +

L4

r4

]1/2

r dr (50)

Using the change of variable u ≡ L2/r2 and rearranging leads to:

〈δE〉Ωlig\ω =
|D33|

1− χ2

[
arg sinh

(
u√
3

)
−
√

3

u2
+ 1

]1/χ2

1

(51)

=
|D33|

1− χ2

(
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

)
(52)

where the identity arg sinhu = ln
(
u+

√
1 + u2

)
was used to arrive at the final expression. Finally,

inserting (52) into (29) yields the desired relation (30) granted definitions (31).

Appendix B Details Pertaining to Section 2.7

B.1 Properties of function g in Eq. (36)

The functions f and g involved in inequality (36) are defined on R by:

f(p) = 2Σ31 + pΣ33

g(p) =

√
Σvol2p2 + T 2 + Σsurf |p|

(53)

Since g has a term proportional to |p| it has an angular point at p = 0. The first and second derivatives of g
in R \ {0} are:

g′(p) =
Σvol2p√

Σvol2p2 + T 2

+ sgn(p)Σsurf

g”(p) =
Σvol2T 2

(Σvol2p2 + T 2)
3
2

(54)

Since g”(p) > 0∀p, g is strictly convex. Therefore, it admits a unique minimum, which is attained at
p = 0, i.e. the location of the angular point. The minimum is g(0) = T and the slopes on either side are:
g′(0+) = Σsurf and g′(0−) = −Σsurf . Finally, the following limits hold:

lim
p→±∞

g(p)

p
= ±(Σvol + Σsurf) (55)

This establishes the existence of straight asymptotes at ±∞. It is important to note that these asymptotes
are common to the concave function −g(p), which is also involved in inequality (36).
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B.2 Derivation of Eq. (40)

Referring to Fig. 4b, the point p0 is defined such that the line q = f(p) is tangent to the curve q = g(p). As
in the main text, we focus on Σ31 > 0 so that the issue of tangency with the concave curve q = −g(p) does
not arise. However, no assumption is made on the sign of Σ33. Find p such that simultaneously:





f ′(p) = g′(p) =⇒ Σ33 =
Σvol2p√

Σvol2p2 + T 2

+ Σsurfsgn(p)

f(p) = g(p) =⇒ Σ33p+ 2Σ31 =

√
Σvol2p2 + T 2 + Σsurf |p|

(56)

Obtaining the square root term from the second of these equations and inserting it back into the first leads to

Σvol2p = (Σ33 − sgn(p)Σsurf)2p+ 2Σ31(Σ33 − sgn(p)Σsurf),

which is a simple linear equation in p considering that the sign of p is determined. Indeed, having focused
on non-negative values of D31 and Σ31 the positivity of the product Σ : D dictates that sgn(p) = sgn(Σ33).
By way of consequence, the point p0 is given by:

p0 = sgn(Σ33)
2Σ31(|Σ33| − Σsurf)

Σvol2 − (|Σ33| − Σsurf)2
(57)

To eliminate p0 from (56) insert its expression (57) back into either equation in (56), say the first; this
yields:

Σvol2 2Σ31(|Σ33| − Σsurf)

Σvol2 − (|Σ33| − Σsurf)2
= (|Σ33| − Σsurf)

√
Σvol2p2

0 + T 2

Upon squaring the right hand side and using (57) again one gets successively:

[
2Σvol2Σ31

Σvol2 − (|Σ33| − Σsurf)2

]2

= Σvol2

[
2Σ31(|Σ33| − Σsurf)

Σvol2 − (|Σ33| − Σsurf)2

]2

+ T 2

4Σ2
31[

Σvol2 − (|Σ33| − Σsurf)2
]2

[
Σvol2 − (|Σ33| − Σsurf)2

]
= T 2

4Σ2
31Σvol2

Σvol2 − (|Σ33| − Σsurf)2
= T 2,

which upon rearranging leads to the desired equation (40).

B.3 Regular vs. Singular Parts of the Yield Surface

The straight parts of the yield surface (Fig. 5) are singular in that they result from the non-differentiability of
the dissipation function at D33 = 0 for all values of the shearing rates. On the other hand, the curved parts
are regular. One can show that their equation (40), and more generally (41)1, may be obtained by direct
differentiation of Π(D). Consider for instance the case D33 ≥ 0; from parametric definition (4) of the yield
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locus one gets:

Σ33 =
∂Π

∂D33
=
∂(Πvol + Πsurf)

∂D33
(58)

Σ31 =
1

2

∂Π

∂D31
=

1

2

∂Πvol

∂D31
(59)

Σ32 =
1

2

∂Π

∂D32
=

1

2

∂Πvol

∂D32
(60)

from which one obtains using the expressions (30) and (22) for Πvol and Πsurf :

Σ33 = Σvol2 D33

Πvol
+ Σsurf (61)

Σ31 =
1

2
T 2 D31

Πvol
(62)

Σ32 =
1

2
T 2 D32

Πvol
(63)

In order to eliminate the components of D, which play the role of parameters, rearrange into:




Σ33 − Σsurf

Σvol
=

ΣvolD33

Πvol

2Σ3i

T =
T D3i

Πvol
for i = 1, 2

(64)

then sum the squares of the left hand sides to obtain:
[

Σ33 − Σsurf

Σvol

]2

+
4(Σ2

31 + Σ2
31)

T 2
=

Σvol2D2
33 + T 2(D2

31 +D2
32)

Πvol2
= 1 (65)

the right hand side of which is equal to unity by virtue of (30). Eq. (65) is identical to (41)1 in the case
Σ33 > Σsurf .

Appendix C Alternative t(W,χ) Function

Inspection of Fig. 8 reveals that most cases where the upper-bound character is lost belong to the set for
which W < 0.5. An alternative homographic function that addresses this is one which has the following
asymptotic behavior

t ∼
W→0

aW

t ∼
W→∞

0
(66)

The first of these conditions is identical to that of the t function proposed in the text, as this is required for
removing the singular character of the Σsurf function. The second is different but has no major consequence
because Σsurf itself vanishes for very elongated voids. One possible function that would not change too
much the strength of the decay at W →∞ is:

t(χ,W ) =
(t0 + t1χ)W

1 + (t0 + t1χ)W 4/3
(67)
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Figure 11: Distinction between the simple and more precise t functions.

(a) (b)

Figure 12: (a) Σ33/σ̄ versus W according to the FEM results (points from [46]) and the modified model (solid lines)
using t0 = −0.84 , t1 = 12.9 and b = 1 for three values of the ligament parameter χ. (b) Σ33/σ̄ versus χ according
to the FEM results and modified model for three values of W .

This function is plotted in Fig. 11 along with the simpler function given by equation (47). By interposing
a slight ”jump” in the t function for W < 0.5, the precision of the calibration is augmented. The values
of t0 and t1 are the same as those in the simpler function. However, the optimum value of b proves to be
unity here. This alternative function represents a good compromise between accuracy and simplicity, and it
corresponds to complete preservation of the upper-bound character of the model (Fig. 12), at least for the
wide range of parameters considered here.
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Abstract
Micromechanics-based constitutive relations are developed to model plasticity in solids with rel-

atively high levels of porosity. They are especially appropriate to model void coalescence in ductile
materials. The model is obtained by limit analysis of a cylindrical cell containing a coaxial void of finite
height with plastic flow confined to the ligaments, and loaded under combined tension and shear. Pre-
viously obtained analytical estimates were not upper-bound preserving when shear was present and, in
addition, were assessed against numerical results obtained for different cell geometries. Here, a rigorous
upper-bound model is developed and its predictions are consistently compared with finite-element based
estimates of limit loads on the same cylindrical unit cell exploiting quasi-periodic boundary conditions.
The numerical results are used to guide a heuristic modification of the model in order to capture the
behavior for extremely flat or extremely elongated voids.

Key Words: Ductile fracture; Low triaxiality; Internal necking; Internal shearing; Homogenization;
Upper-bound.

1 Introduction

Void coalescence is known to be the last elementary stage of ductile failure [1]. That is, as soon as the first
few largest voids approach each other within a fraction (∼0.3–0.5) of the intervoid distance, yet long before
they link up, the stress carrying capacity abruptly drops, and this upheaval continues to failure at the material
point level [2, 3]. This sudden change is associated with strain concentration in the intervoid ligament (a
form of micro-scale strain localization). Prior to this, void deformation occurs by diffuse plasticity, the
distorsion being due to void enlargement, change of shape, rotation or all [4, 5]. Ultimate failure of a
test piece can thus occur if plastic flow successively localizes in intervoid ligaments thereby leading to
macroscopic ductile crack growth. This mechanism prevails unless failure occurs by some plastic instability
at the scale of many-void populations.

As a precursor to void coalescence, the process of micro-scale strain concentration should thus be mod-
eled for predicting ductile fracture. This involves developing constitutive relations for voided solids in a
”coalescence state”, to be further defined below. When put together with available models for voided solids
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in ”pre-coalescence states”, e.g., [6] the transition between the two states will correspond to the abrupt
change in deformation mechanism.

It is noted that the developed constitutive relations are relevant to describe the plastic response of mate-
rials with relatively high levels of porosity, as for example considered by [7]. However, the resulting models
are different from pre-coalescence, Gurson-like models, because of fundamental differences in the bound-
ary conditions assumed in developing the said constitutive relations. What is of particular importance is that
the porosity levels of interest can be quite low by comparison with those prevailing in engineered porous
materials. Typical figures would be on the order of 0.01, perhaps even smaller.

It is also emphasized that this type of models is different from those where void coalescence is viewed
as an instability that can be predicted in terms of the pre-coalescence constitutive relations, e.g. [8]; also see
[5]. The fundamental premise of the line of models to be developed here is that the pre-coalescence consti-
tutive relations cease to be valid at the critical point, and thus provide no basis for predicting localization;
as explained by [9], ”An alternative hypothesis would be that some essentially new physical deformation
mechanism comes into play, abruptly, and rapidly degrades the strength of the material. In such cases the
pre-localization constitutive relations cannot be continued analytically at the critical point, and they provide
no basis for prediction of localization.”

Internal necking of the intervoid ligaments, as the most prevalent mechanism for void coalescence [1],
has been inferred from the pioneering computational work of [2], approximately modeled by [10], [11],
[12], [13] and [3], and recently tackled on more rigorous grounds by [14] and [15]. A ”coalescence state” is
defined in this context as any state after a neck has initiated in the intervoid ligaments, with the deformation
mode shifting to purely uniaxial, and elastic unloading taking place outside of these ligaments.

The void coalescence models listed above strictly apply to predominately tensile loadings even if ap-
proximate extensions have been attempted so as to incorporate more general loadings [3, 16]. In recent
years, there has been revived interest in ductile fracture under combined tension and shear e.g. [17, 18].
More generally, one needs to consider not only the normal stress acting on the localization plane but also
the shear stress. When available and fully developed, such models can be utilized to analyze ductile frac-
ture under more general loading schemes, as investigated in some recent works using micromechanical cell
analyses [19, 20, 21, 22, 23, 24, 25, 26]. The motivation in accounting for a shear component in the remote
loading is two-fold. First, it is of interest to quantify how the internal necking condition is affected by the
shear stress. Second, if loading is shear-dominated a seamless transition from internal necking to ”internal
shearing” may occur, that is with all shear deformation taken up within the intervoid ligament.

Any constitutive relations for a porous material involve dilatant plasticity, at least for associative plastic
flow as envisaged here. The chief concern of this paper is to develop such relations for a porous material
in which voids are in a state of incipient coalescence (by internal necking or shearing) and consider the
effects of normal as well as shear stresses. It is assumed that the presence of a remote shear stress would
not change the basic mechanism of strain concentration. There have been quite a few modeling efforts
in this direction. [19] and later [27] developed such equations using a ”sandwich model” whereby the
void is smeared out in the central layer of the sandwich. Later, [28] developed a closed-form solution to
the problem of void coalescence under combined tension and shear by considering explicit expressions of
the velocity field around the void. Recently, [29] extended the analysis of [14] to plastically anisotropic
matrices by considering a sub-family of velocity fields introduced by [15]. Their analysis also accounted
for combined tension and shear loadings. However, the limit analysis procedures in both [28] and [29]
involved ”uncontrolled” approximations which did not preserve the upper-bound character of the approach;
see [4] for background. In addition, [28] offered some comparisons of their model predictions with the finite
element results of [27]. The model was derived on the basis of a cylindrical cell containing a cylindrical void
whereas the calculations in [27] were for a tetragonal cell with a spheroidal void. Notable discrepancies
were observed between the finite element results and the model predictions. These discrepancies could be
attributed a priori to three possible causes: (i) the choice of trial velocity fields in the analytical approach; (ii)
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the uncontrolled approximation made in the analytical approach; (iii) the difference between the geometries
of the elementary cells considered in the analytical and numerical approaches. The aim of the present paper
is to examine possible causes (ii) and (iii). To this end we develop an improved model preserving the
rigorous upper-bound character and carry out cell model calculations using exactly the same cell geometry
as that considered in the analytical model.

The paper is organized as follows. Section 2 is devoted to the derivation of the upper-bound model, with
details deferred to Appendices A and B. Section 3 presents the principle of the finite element calculations
that use the same cylindrical cell, with details about boundary conditions gathered in Appendix C. Finally,
Section 4 reports our results, showing comparisons between the upper-bound and approximate models as
well as between the new model and unit cell calculations.

2 Analytical Model

2.1 Geometry and Loading

(a) (b)

Figure 1: (a) Geometry of a cylindrical cell under combined tension and shear; (b) cell parameters.

As in [28], the elementary volume Ω is a cylindrical cell of height 2H and radius L containing a coaxial
cylindrical void ω of height 2h and radiusR, Fig. 1. Use is made of both a local cylindrical basis (er, eθ, ez)
and a global Cartesian one (e1, e2, e3). The displacement boundary conditions imposed on the unit cell lead
to a macroscopic stress state with a predominant axial stress, Σ33 > Σ11 , Σ33 > Σ22, as well as shear
stresses, Σ12 and Σ31. With no loss of generality, the base vector e1 is taken parallel to the applied shear
force. While not space filling, the analyzed geometry stands as a reasonable approximation of a unit cell in
a periodic medium.

To represent ”coalescence states” the cell is further divided into a central porous layer that defines
the ligament domain, Ωlig, and fully dense regions above and below it. The interfaces between these two
regions and the ligament are denoted Stop and Sbot (Fig. 1a) and their union Sint. The height of the ligament
domain is set by the void height 2h; see [28] for background. This geometry is uniquely determined by the
independent dimensionless parameters identified in the first row of equation (1), respectively termed the
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void aspect ratio, the ligament parameter, and the cell aspect ratio.

W =
h

R
, χ =

R

L
, λ =

H

L

fb ≡
ω

Ωlig
= χ2

c ≡ Ωlig

Ω
=

h

H
=
Wχ

λ

f ≡ ω

Ω
= cfb

(1)

For convenience, Eq. (1) also introduces other auxiliary parameters which will be used in the derivations: fb

is the porosity within the ligament band, c is the volume fraction of the band, and f is the overall porosity.

2.2 Structure of Constitutive Relations

To mimic coalescence states, the regions above and below Ωlig are modeled as rigid (Fig. 1b). In actual
evolution problems using the cell model [2, 30, 24], these regions would correspond to elastically unloaded
ones. The mechanism of void growth abruptly changes due to the unloading that occurs above and below the
cavity. Hence, plastic flow is assumed to be confined to the ligament and obey the von Mises yield criterion
with the associated flow rule:

φ(σ) = σ2
eq − σ̄2 = 0 σeq ≡

√
3

2
σ′ijσ

′
ij

dij =
3

2

deq

σ̄
σ′ij deq ≡

√
2

3
dijdij

(2)

where σ′ is the stress deviator, and σeq and deq denote the von Mises equivalent stress and equivalent strain
rate, respectively. Also, σ̄ is the yield stress in simple tension.

The fundamental inequality of limit analysis gives rise to a variational definition of the effective yield
criterion of a porous material as follows:

∀D, Σ : D ≤ Π(D), Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω; (3)

if the velocity field is discontinuous across an interface S then a surface term must be added to Π(D) as

1

Ω

∫

S
sup
σ∗∈C

t∗i JviK dS (4)

In (3) Σ and D denote the effective stress and strain rate tensors, defined as volume averages of their
microscopic counterparts σ and d, and Π(D) is the effective plastic dissipation. Also, 〈·〉Ω stands for
averaging over Ω, K(D) is the set of kinematically admissible velocity fields v compatible with D, inf and
sup, respectively, represent the infimum and supremum over a set, and C is the microscopic reversibility
domain, the boundary of which is the yield surface of the matrix, here given by (2)1. In (4) t∗ denotes the
traction acting on the interface and JvK the velocity jump across it.

Thus, stress states that lie within the effective reversibility domain, here denoted C , are given by (3),
possibly augmented by (4), and the effective yield surface is the boundary of that domain, ∂C . The reader is
referred to [4] and [28] for further details. When the effective dissipation function is differentiable the yield
surface is smooth. In such cases, the yield surface is defined by the parametric equation:

Σij =
∂Π

∂Dij
(D) (5)

where D is no longer arbitrary as in (3)1 but represents the rate of deformation corresponding to Σ through
the macroscopic flow rule.
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2.3 Trial Velocity Fields

For general loadings, the exact velocity fields that minimize the integrals in (3)2 cannot be obtained analyti-
cally. Nevertheless, use of trial ones leads to an upper bound to the yield surface [4]. Here, the trial velocity
fields are taken from [28] and are briefly recalled for completeness. On account of the existing rigid zones
above and below the central void, the unit cell considered cannot deform along the x1 and x2 directions nor
can it shear in the x1–x2 plane, i.e., D11 = D22 = D12 = 0. In addition, the velocity jump across Sint, if
any, must be purely tangential. Thus, the velocity ought to be consistent with the following constraints:





vr(L, θ, z)er + vθ(L, θ, z)eθ = 2z
c D31e1 (−h ≤ z ≤ h; 0 ≤ θ ≤ 2π)

vz(r, θ,±h) = ±D33H (0 ≤ r ≤ L; 0 ≤ θ ≤ 2π)

JvK.n = 0 ∀x ∈ Sint

(6)

where D31 and D33 are the prescribed shear and axial strain rates, and n is the normal vector to the inter-
face. Condition (6)1 is supplemented by a constant velocity in the rigid zones (h ≤ |z| ≤ H). Boundary
conditions (6) stand as an appproximation of periodic boundary conditions and are consistent with the co-
alescence states defined above as in cell model studies [2, 30, 24]. It should be noted that owing to the
presence of rigid zones in the cell, the velocity field cannot be consistent with uniform strain-rate boundary
conditions (of the Hill–Mandel kind).

Details aside, the simplest trial velocity field that fulfills (6) along with the incompressibility condition
(tr d = div v = 0) is given by (in the ligaments only):

v(x) =

(
A

r
−Br

2

)
er +Bzez +

2z

c
D31e1 (7)

where c is defined in (1)3, and parameters A and B are determined by boundary conditions as follows:

A =
D33L

2

2c
, B =

D33

c

The corresponding components of the microscopic rate of deformation tensor d were reported in [28].
Because of its relative simplicity, velocity field (7) is not continuous across Sint.

2.4 Effective Dissipation

Following [28] an upper bound of the effective dissipation may be expressed as:

Π = Πvol + Πsurf (8)

with




Πvol = c(1− χ2)〈σ̄deq〉Ωlig−ω

Πsurf =
1

Ω

∫

Sint

σ̄√
3

∣∣JvtK
∣∣ dS

(9)

where the surface term Πsurf emerges as a result of the discontinuity of tangential velocity JvtK and is thus
a direct consequence of (4). The calculation of Πsurf was carried out by [14] to yield:

Πsurf = |D33|Σsurf , Σsurf(χ,W ) =
σ̄

3
√

3

χ3 − 3χ+ 2

χW
(10)
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It is in the calculation of the volumetric term Πvol that the present work differs from [28]. Indeed, to simplify
their treatment Torki et al. made an approximation in evaluating (9)1 which did not preserve the upper-bound
character. Here, careful treatment of this term is developed. In accordance with the calculations reported by
[28], the expression of deq as stated in (2) reads

d2
eq =

D2
33

3c2

(
3 +

L4

r4

)
+

4D2
31

3c2
(11)

Then the volumetric portion of the effective dissipation Πvol of (9)1 becomes:

Πvol ≡ Πvol(D33, D31) = (1− χ2)
σ̄√
3

〈√
D2

33

(
3 +

L4

r4

)
+ 4D2

31

〉

Ωlig−ω
(12)

where the parameter c has canceled out. The following approximation was exploited in [28] to reach a
simplified volumetric average in (12):

Πvol ≈ (1− χ2)
σ̄√
3

√√√√√
〈
D2

33

√(
3 +

L4

r4

)〉2

Ωlig−ω
+ 4D2

31 (13)

However, this approximation, which was initially introduced by [27], destroys the rigorous upper-bound
character, and therefore warrants some assessment against numerical estimates.

Unlike in [28, 27], no approximation is introduced herein. Introducing the change of variable (D33, D31)→
(D33, D̄) with

D̄2 = 3D2
33 + 4D2

31, (14)

with the constraint D̄D33 ≥ 0, Πvol can be written more concisely as

Πvol ≡ Π∗vol(D33, D̄) =
2σ̄√
3L2

∫ L

R

√(
D33

L2

r2

)2

+ D̄2 r dr (15)

which can be evaluated conveniently using the change of variable u ≡ L2/r2:

Πvol =
σ̄|D̄|√

3

∫ 1/χ2

1

√
1 + ζ2u2

du

u2
, ζ ≡ D33

|D̄| (16)

(Note that |ζ| ≤ 1/
√

3). The above integral emerges in various related problems, beginning with the Gurson
model as revisited by [4] and its extensions, for example [31]1. Thus, combining the volume term in (16)
with the surface term in (10) one finally obtains:

Π =
σ̄|D̄|√

3

[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/χ2

1

+ |D33|Σsurf (17)

with Σsurf given by (10)2. The dissipation function in (17) is not differentiable, just like the corresponding
estimate from [28], see their equation (32). However, unlike the estimate in [28], the above equation provides
a strict upper bound to the plastic dissipation.

1In equation (49) of [31] the term σ1/b
2 appears as a typo and should be replaced with hσ1Dm. Also, the bound of the integral

should read ξ/f . The same typos slipped in equation (6.11) of [4].
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2.5 Upper-Bound Criterion

Using the fundamental inequality of limit analysis (3) it can be shown that the upper-bound effective yield
surface associated with (17) contains singular parts and regular ones with no vertices. The general procedure
for determining the various regions in stress space follows that of [28].

First, since the dissipation function Π depends only onD33 andD31 the effective yield condition accord-
ing to (3) or (5) will not depend on Σ11, Σ22 and Σ12. Indeed by the normality flow rule2 Dij = Λ̇∂Φ/∂Σij

where Φ is the sought effective yield function and Λ̇ ≥ 0 the plastic multiplier; thus, the coalescence con-
ditions D11 = D22 = D12 = 0 entail independence of the yield condition vis-a-vis the above-mentioned
stress components.

Next, to obtain the singular parts one ought to resort to the primitive definition of the reversibility domain
C in (3). The reasoning for doing so is intricate (see Appendix A) and is based on a graphical method. The
result, however, is quite simple. Indeed, the yield locus is defined by:

|Σ31| = (1− χ2)τ̄ ; |Σ33| ≤ Σsurf (18)

where τ̄ = σ̄/
√

3 is the shear yield strength of the matrix. This equation means that for the indicated range
of normal stresses Σ33, the effective yield function is independent of the normal stress and the shear yield
stress is obtained by a simple rule of mixture between the yield stresses in the matrix and the void, since χ2

is exactly the porosity in the band. In what follows, we shall denote T = (1− χ2)τ̄ .
On the other hand, the regular parts require a totally different treatment, which is streamlined in Ap-

pendix B. The technical part involves eliminating parameter ζ defined by (16)2 to obtain an explicit expres-
sion of the effective yield function, which is given by equation (B-13).

The equations of the upper-bound model are recapitulated herein for ease of reference:

Φ(Σ;χ,W ) =





B2

τ̄2
+ 2fb cosh

(
|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2

)
− (1 + f2

b) for |Σ33| ≥ Σsurf

Σ2
31

T 2
− 1 for |Σ33| ≤ Σsurf

(19)
where τ̄ = σ̄/

√
3 is the shear yield strength, fb = χ2 is the porosity within the plastically-deformable band,

and

Σsurf(χ,W ) =
χ3 − 3χ+ 2

3χW
τ̄

T = (1− χ2)τ̄

B2

τ̄2
=

5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

Σ2
31

τ̄2

(20)

In general, the shear stress can be resolved into two components so that Σ2
31 should be replaced with Σ2

31 +
Σ2

32 everywhere in the above expressions.
By way of comparison, the equations of the approximate (not bound-preserving) criterion derived by

2Having assumed normality at the microscopic scale, equation (2), macroscopic normality is a rigorous consequence of the
combination of effective properties and limit-analysis [4].
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[28] are:

Φ(Σ;χ,W ) =





(
|Σ33| − Σsurf

Σvol

)2

+
Σ2

31 + Σ2
32

T 2
− 1 for |Σ33| ≥ Σsurf

Σ2
31 + Σ2

32

T 2
− 1 for |Σ33| ≤ Σsurf

(21)

where

Σvol(χ) =

(
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

)
τ̄ (22)

In both models (upper-bound and approximate) the yield surface is smooth, i.e., the transition between
the two parts is vertex-free; see Appendix A. Also, note that the effective yield stress in shear is much
smaller than that predicted by a Gurson-like model given that χ2 ≡ fb > f .

3 Cell-Model Calculations

Previously, [28] presented comparisons between their approximate model and the micromechanical calcu-
lations of [27], which were carried out for tetragonal cells containing spheroidal voids. In order to assess
the predictive capabilities of the upper-bound model, calculations have now been carried out for the very
same unit cell used in the development of the model, Fig. 1. Thereupon, a special small-strain finite element
framework is employed which is intended to be the numerical equivalent of the theory of limit analysis; see
also [32]. A classical consequence of limit-analysis is that elastic strain rates vanish when the limit load
is reached. Therefore, the elastic moduli disappear from the equations and may be chosen arbitrarily, and
in turn plasticity imposes an incompressible velocity field on the material. In this study, in order to mimic
such a velocity field, a high value of Poisson’s ratio is enforced (ν = 0.49). Thus the matrix material is
modeled as nearly isochoric-elastic ideal-plastic. Also, the yield strength to Young’s modulus ratio is taken
to be σ̄/E = 0.0002. All calculations were carried out using ABAQUS (Version 6.12) with the option of
geometric nonlinearity switched off.

Inasmuch as the calculations are meant to validate the analytical model, it is emphasized that the same
cylindrical geometry of Fig. 1 is used to avoid any ambiguity in the comparisons. One difficulty in making
this choice is that strictly periodic boundary-conditions cannot be imposed on the cylindrical cell, since it
does not truly represent a unit cell in a periodic medium but only ”mimics” such a cell. Instead, ”quasi-
periodic” boundary conditions are prescribed drawing inspiration from rigorous periodicity. Consider one
half of the cell (Fig. 2) with symmetry conditions imposed on the meridian plane. Anywhere in a periodic
cell, the displacement u at field point x would write:

u(x) = (E + Ω).x + ũ(x) (23)

where E is the macroscopic strain tensor, Ω the (skew-symmetric) macroscopic rotation tensor and ũ a
periodic field. For any two points in periodic correspondence one would therefore have:

∆u = (E + Ω).∆x (24)

where ∆u is the difference in displacement between the points separated by the vector ∆x. For a cylindrical
cell equation (24) cannot be applied to pairs of points in periodic correspondence since such pairs do not
exist. We shall impose instead conditions similar to (24) to specific, carefully selected pairs of surface
points. It is in that sense that such conditions are termed ”quasi-periodic”.
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x1 x2

x3

bc bc bc
bc
bc

Figure 2: One half of a cylindrical cell.

Specifically, the macroscopic strain enforced on the cell is represented by the tensor:

E = E11(e1 ⊗ e1 + e2 ⊗ e2) + E33e3 ⊗ e3 + E31(e1 ⊗ e3 + e3 ⊗ e1) (25)

or in matrix form

E =




E11 0 E31

0 E11 0

E31 0 E33




where

E11 = E22 ≡ ln

(
L

L0

)
≈ U1

L0

E33 ≡ ln

(
H

H0

)
≈ U3

H0

E31 ≡
Ut

2H0

(26)

Here, U1 denotes a prescribed displacement on the lateral surface (see Appendix C for details), whilst U3

and Ut are, respectively, the normal and tangential displacements prescribed on the top surface.
On the other hand, the macroscopic rotation tensor must be of the form:

Ω = Ω31(e3 ⊗ e1 − e1 ⊗ e3) (27)

The simplest choice for Ω in (24) would be to take Ω = 0. However, this would entail a vertical displace-
ment on the lateral surface. To avoid this, one can choose Ω13 = −Ω31 = E31. For the cylindrical cell
considered, this choice will considerably simplify the formulation of multi-point constraint conditions.

In matrix form, the strictly periodic boundary conditions (24) now read:




∆u1

∆u2

∆u3





=




E11 0 2E31

0 E11 0

0 0 E33








∆x1

∆x2

∆x3





(28)

They are replaced by the following quasi-periodic conditions:
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• On the top surface, ∆u = u(x1, x2, H)− u(x1, x2,−H) and ∆xT = {0, 0, 2H} so that:




∆u1 = 4E31H

∆u2 = 0

∆u3 = 2E33H

(29)

• On the plane Ox2x3,
u1(0, x2, x3) = 0 (30)

• On the lateral surface (x2
1 +x2

2 = L2, −H ≤ x3 ≤ H) multi-point constraints are imposed so that the
nodes lying on a semi-circle remain on a semi-circle of radius consistent with the prescribed value of
E11. Let uref be the displacement of some reference node on the semi-circle at some height x3, say
xT = {L, 0, x3} and ∆u = u(x1, x2, x3)− uref , then:





∆u1 = E11(x1 − L)

∆u2 = E11x2

∆u3 = 0

(31)

To simulate coalescence states whereby rigid zones preclude lateral straining we take E11 = 0, hence
U1 = 0. Under such circumstances, conditions (31) state that the circles move rigidly.

In theory, the quasi-periodic boundary conditions are most simply defined by (29)–(31). In practice,
however, it is of interest to employ only a quarter of the cell to further reduce the computation time. The
corresponding boundary conditions have been worked out by [25] for an tetragonal cell and have been
adapted to the cylindrical cell as detailed in Appendix C. In a given calculation the displacements U3 and Ut

are imposed and assigned values to cause plastic strains that are large enough compared with elastic strains
(see [27, 32] for further details). The ratio between the shear and normal stresses is governed by the Ut/U3

ratio.
For each choice of the pair (χ, W ) the critical stress values are, in principle, determined in a single-step

calculation. The time step needs to be large enough to ensure that the limit load is reached. In practice, this
is achieved within the first few increments (5 to 10) of the loading step. The absolute values of U3 and Ut

have no effect on the critical stress values.
The critical conditions on the stresses for attainment of the limit load are insensitive to the height H of

the cell, hence to λ. For this reason,H is adjusted so as to reduce computational cost. On the other hand, the
height H must be large enough to guarantee the possible presence of rigid zones above and below the void3.
In most cases, the void fully fits into the unit cell when the cell aspect ratio λ is taken as unity. Yet, for some
(χ,W ) pairs, the void would protrude, and thus λ ought to take other values. Different λ ratios were thus
adopted for varying (χ,W ) pairs, as shown in Table 1. For each (χ,W ) pair, 18 different displacement ratios
were imposed, obeying the relation Ut/U3 = k/2, where k = 0, 2, 3, ..., 10, 20, 30, 40, 80, 120, 160, 200. A
larger Ut/U3 ratio induces a smaller ratio Σcoal

33 /Σcoal
31 of the stresses at coalescence and vice versa (note that

Σ31 = 0 for Ut/U3 = 0).
Figure 3 shows two typical meshes, used for a void aspect ratio W = 0.5 and two values of the ligament

parameter χ = (0.4, 0.6). Each mesh consists of 20-node quadratic brick elements with reduced integration

3Also noteworthy is that the rigid zones above and below the void ought to be large enough to set grounds for localization to
occur in the x1 – x2 plane, referred to as ”internal necking”, as assumed in the present work. If the void is very close to the top
(and bottom) surfaces of the unit cell, coalescence occurs in the x2 – x3 plane (primarily named as a ”necklace-type” coalescence
by [33]), which is out of the scope of this investigation.
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W χ λ

0.1 0.4 0.5
0.1 0.6 0.5
1.5 0.4 1.2
1.5 0.6 1.5
2.0 0.4 1.6
2.0 0.6 2.0
2.5 0.4 2.0
2.5 0.6 2.5
3.0 0.4 2.4
3.0 0.6 3.0

Table 1: W − χ values used in the cell model calculations having λ 6= 1.

(a) (b)

Figure 3: Typical meshes used for W = 0.5 and: (a) χ = 0.4, (b) χ = 0.6.

(C3D20R in the ABAQUS element library). A coarser mesh is utilized outside the ligament where the
behavior is quasi-rigid. Some calculations have been performed with both C3D8, as in [27], and C3D20R
elements types. Differences were small, but C3D20R elements were found to provide more accurate results
with fewer elements.

Average stresses over the cell are defined as usual, Σij = (1/Ω)
∫

Ω−ω σij dV with Ω and ω denoting
the volumes of the cell and the void, respectively, as before. These average stresses are computed using the
discretized formula:

Σij =
N∑

n=1

M∑

m=1

(σij)
m
n v

m
n (32)

where N is the total number of elements, M the number of Gauss points per element (here M = 8), and
vmn = V m

n /Ω the volume fraction assigned to integration point m within element n. The components of
interest are Σ33 and Σ31, all others either are zero or do not affect the limit load in the coalescence regime.
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4 Results and Discussion

4.1 Upper-Bound versus Approximate Yield Loci

Representative yield loci corresponding to the upper-bound criterion (19) are shown in Fig. 4 as solid lines
for several values of the (χ,W ) pair. The porosity in the band takes on values between fb = 0.0625 and 0.36

(a) (b)

(c) (d)

Figure 4: Effective yield loci in the Σ33–Σ31 plane – comparison between the upper-bound estimate and its approxi-
mate counterpart (as derived in [28]) for several microstructural parameters (χ,W ).

for the extreme cases shown of χ = 0.25 and 0.6, respectively. Corresponding values of the total porosity
fall between f ≈ 0.004 and ≈ 0.2 depending on the void aspect ratio and taking λ = 1 where appropriate.
Previous work in the literature shows that for χ < 0.2, yield loci given by (19) are unlikely to be physical,
because strain concentration within the intervoid ligaments does not occur [3]. In such cases, Gurson-like
potentials are more likely to prevail. The case χ = 0.25 is not shown in Figs.4a,b because for flat voids and
χ < 0.3 coalescence is unlikely (see Table 1 in [3]). In all, the vertical straight parts represent the singular
portions of the yield loci. Such parts are not physical, as they follow from considering discontinuous trial
velocity fields. They occupy an increasingly small portion as χ increases so that the criterion resembles
more and more an elliptic one in the space of normal and shear stresses.

For comparison, the approximate yield loci of [28] defined by (21) are also shown dashed in Fig. 4. The
singular parts are common to both models. The predictions differ only on the regular curved parts. While
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the upper-bound preserving curve is invariably exterior to the elliptic approximation, the two evaluations
are always close to each other, especially for larger values of χ. The key observation, therefore, is that the
elliptic approximation is quite good over a wide range of internal parameters.

The fact that both models lead to very close predictions can be rationalized as follows. As mentioned
above, the two models share the same singular parts; in particular the end points (for Σ33 = Σsurf ) are the
same in the two models; also see Appendix B. Furthermore, the two criteria meet on the Σ33 axis, that
is in the absence of shear. (Although not obvious, this property is demonstrated in Appendix A; its basic
explanation lies in the fact that approximation (13) becomes exact for D31 = 0). In short, because both loci
must meet at the intersections as well as on the Σ33 axis, and because they are both convex, they must lie
quite close to each other.

4.2 Comparison with Numerical Results

Figure 5 depicts contours of equivalent plastic strain at the onset of localization obtained in the finite element
simulations, for two (χ,W ) pairs and various values of shear- to normal-strain ratios. The figure illustrates
that plastic deformation is diffuse in the plastically-deformable ligament, and it spreads over part of the
ligament (a–d) or its entirety (e,f). In the mathematical model, however, it has been presumed that the whole
ligament yields, which leads to an overestimation of the limit load. Hence, the analytical model preserves the
upper-bound character. Moreover, plastic strains are negligible in the region above the void for all tension-
shear combinations. This supports the underlying assumption of rigidity within the parts located above and
below the ligament in developing the model (see Fig. 1).

Figure 6 shows the comparison between the cell-model calculations (points) and the upper-bound yield
criterion (19) for various combinations of χ and W . Other numerical results were obtained but they are not
shown for brevity. It is thus verified that the yield locus predicted by the model is always exterior to that
determined numerically. In addition, the predicted locus is reasonably close to the exact one considering
the fact that the model does not involve any adjustable parameter. This is especially true for void aspect
ratios about unity or larger. However, differences may be noted in the some cases. For instance, in the limit
W → 0 of a penny-shape crack, the predicted coalescence stress in the absence of shear wrongly diverges,
although not shown in Fig. 6 The singular behavior of the model in this limit has been discussed previously.
The corresponding coalescence mechanism is arguably not by internal necking. In this case, modeling the
localization would require adopting a thickness of the localization band larger than that of the void, which
is nil in this case [34]. Also, for small shear to normal stress ratios, differences are larger for smaller values
of χ. For large shear to normal stress ratios, differences are larger for larger values of W , irrespective of χ.
It is also worth noting that the predictions could hardly be improved in the pure shear case with (W = 0.5,
χ = 0.4) or the pure tension case with (W = 3, χ = 0.6) without using overly sophisticated velocity fields.

We emphasize that the presence of flat parts in the yield loci near the horizontal axis is a direct conse-
quence of considering discontinuous trial velocity fields in the limit-analysis. Hence, they are not physical.
This does not prevent the analytical and numerical criteria to be close to each other in this region. Note that
in the absence of shear the improved model of [15], which was based on continuous velocity fields, provides
tighter upper bounds for several combinations of the internal parameters.

4.3 Modified Model

The discrepancies with respect to numerical results motivate a heuristic modification of the original model.
The main discrepancies occur in two distinct cases, both of some practical importance: (i) very flat voids
under conditions of dominant tension; (ii) very elongated voids under conditions of dominant shear. Some
improvements have been proposed to remedy these aspects in the context of an approximate model [28]. The
same is attempted here for the upper-bound model. Such a heuristic modification unavoidably destroys the
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Examples of equivalent plastic strain distributions on initial configurations at the onset of internal neck-
ing localization, for: (a,b) Ut/U3 = 0 (zero shear) and (χ,W ) = {(0.4, 0.5), (0.6, 3.0)} , (c,d) Ut/U3 = 5 (in-
termediate shear) and (χ,W ) = {(0.4, 0.5), (0.6, 3.0)} , (e,f) Ut/U3 = 20 (near-extremum shear) and (χ,W ) =
{(0.4, 0.5), (0.6, 3.0)}.
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(a) (b)

(c) (d)

Figure 6: Comparison between the upper bound model (solid lines), modified model (dashed) and numerical yield
loci (points) for void coalescence under combined tension and shear, for various values of microstructural parameters
W and χ. The modification (described in Section 4.3) is made to improve the results for very oblate (W −→ 0) and
very prolate (W −→∞) cavities.
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rigorous upper-bound character of the model. Again, however, the main implications of this modification
are only for extremely flat voids in tension and elongated voids in shear.

Following the procedure explained in Appendix D, the derived criterion is modified as follows:

Φ(Σ;χ,W ) =





B2

τ̄2
+ 2fb cosh


 |Σ33| − tΣsurf

τ̄
−

√

3
B2 −

(
Σ31/l

)2

τ̄2


− (1 + f2

b) for |Σ33| ≥ tΣsurf

(
Σ31

lT

)2

− 1 for |Σ33| ≤ tΣsurf

(33)
where

B2

τ̄2
=

5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

(
Σ31

lτ̄

)2

(34)

and t and l are parameters that can be adjusted on the basis of the cell model calculations of Section 3.
Formulae for these quantities, as functions of the internal parameters, are presented in Appendix D. The
basic idea is to employ a homographic function of W for t so as to eliminate the singular behavior in the
limit of penny-shaped cracks, and a corrective bilinear function for l to improve the prediction for shear
loading of elongated voids.

The example yield loci shown below are intended to compare the modified yield criterion with FEM
results, as well as assess its putative upper-bound character. Figure 6 illustrates this comparison for various
values of χ andW . The calibrated loci for Figs. 6c and 6d may be compared to Figs. 4c and 4d, respectively,
to assess the effect of large values of W on the maximum shear stress at coalescence. The largest difference
between the modified model and the numerical results is obtained for very flat voids (W = 0.1) but only
for χ = 0.4, Fig. 6a. The proposed heuristic correction performs much better for larger values of χ. More
elaborate choices for the correction functions are possible, albeit at the expense of simplicity.

5 Concluding Remarks

An upper-bound model of dilatant plasticity has been developed based on limit analysis of a cylindrical
elementary cell. The model consists of an effective yield criterion that is appropriate to the regime of void
coalescence in materials failing by ductile damage accumulation. Incidentally, the model is also applicable
to porous media with periodic distribution of pores, as in some cellular structures. In all applications,
the model would represent certain portions of the yield locus and should be supplemented with a model
that appropriately represents other portions where plasticity cannot be confined to intervoid ligaments. This
results in a hybrid multi-surface approach [35]. Alternatively, [36] have recently developed a unified upper-
bound model that describes both void growth and coalescence in the absence of shear. Their approach can
be extended to account for shear effects.

In practice, the model can be used in two ways. If there is a finite set of localization planes, such as
for periodic or clustered void distributions, then the coalescence criterion (19) may be checked, as is, on as
many localization planes as dictated by the underlying void distribution. In this case, an anisotropic void
growth model must be used prior to coalescence, e.g. [37, 38]. In such a hybrid multi-surface approach,
some approximations would be necessary to account for the different elementary cells used prior to and
after coalescence. To this end, the model should also be extended to include evolution equations of the
state variables, notably to describe void rotation under shear-dominated loadings. Such work is underway
and will be reported elsewhere. On the other hand, if the void distribution is considered as random then an
isotropic version of the model may be developed by probing all possible angles in the orientation space [19].
In this case, an isotropic void growth model, such as Gurson’s, may be used prior to void coalescence.
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The trial velocity fields used in the limit analysis are not as sophisticated as those recently considered
by [15] or [29]. However, they present the considerable advantage of enabling an upper-bound result to be
derived in closed form.

To further assess the model, cell-model calculations of a new type have been carried out using special
boundary conditions, termed quasi-periodic as they simulate rigorous periodicity. The availability of such
computational results made it possible to unequivocally validate the model as well as an earlier version that
did not preserve the upper-bound character. The major conclusions are as follows:

• The present findings remedy for the uncertainties associated with the model recently derived by [28]
from two perspectives: (i) the mathematical approximation involved in the homogenization procedure
is relaxed, so that the new model now preserves the rigorous upper-bound character; (ii) the numerical
results used for validation of the model are carried out for a cell identical to that considered in its
derivation. Although the new model is more complex than the previous one, it remains fully explicit
(the yield criterion is still expressed in explicit, not parametric form).

• Salient features of the new model include the following: (i) The planar (singular and non-physical)
parts apparent in the approximate effective yield locus of [28] are identically retrieved in the new
model. The curved (regular) parts, however, are exterior to their approximate counterparts; (ii) The
transition between the two planar and curved zones is devoid of any corners; (iii) All parameters
defining the yield surface are functions of the microstructural variables χ (ligament parameter) and
W (void aspect ratio).

• The availability of the upper-bound solution allows to check that the approximation previously intro-
duced by [28] did not introduce important errors.

• The discrepancies that were noted in the previous work between the approximate model and numerical
results cannot be attributed to the uncontrolled approximation used, nor to the difference between the
elementary cells used. Instead, the gap between analytical and numerical results can only follow from
the choice of trial velocity fields. The quality of the estimate derived with the velocity fields chosen
here may be improved using the kind of heuristic fit described in the paper.

• A heuristic modification to the model was proposed on the basis of the numerical results in order to
better predict the onset of coalescence in practical applications. The modifications are two-fold. First,
a correction is proposed in the limit of penny-shaped cracks, which reduces to the correction proposed
by [28] in the absence of shear loading. Second, a correction is introduced in the case of elongated
voids under shear-dominated loading.
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Appendix A Singular parts of the yield surface

The primitive definition of the reversibility domain C in (3) writes:

Σ ∈ C ⇔ ∀D, Σ : D ≤ Π (A-1)
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Considering (17) and the non-zero components of D, it may be recast as:

∀D33, D31, Σ33D33 + 2Σ31D31 ≤
σ̄|D̄|√

3

[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/χ2

1

+ Σsurf |D33| (A-2)

with D̄ defined by (14) and ζ = D33/|D̄|. Focussing on non-negative values of D31 only, (A-2) is rewritten
as:

∀D33,∀D31 ≥ 0, −Π(D33, D31) ≤ Σ33D33 + 2Σ31D31 ≤ Π(D33, D31) (A-3)

where use has been made of (A-2) for the pair (−D33,−D31) and of the fact that Π is an even function.
Inequalities (A-3) are equivalent to some condition Φ(Σ33,Σ31) ≤ 0 where Φ is the sought yield function.
Since Π is positively homogeneous of degree 1, (A-3) may be written in terms of the ratio p = D33/D31 as:

∀p ∈ R, −g(p) ≤ f(p) ≤ g(p) (A-4)

where the functions f and g are defined on R by:

f(p) = Σ33p+ 2Σ31

g(p) ≡ Π(p, 1) = σ̄

√
3p2 + 4

3


 p√

3p2 + 4
sinh−1

(
pu√

3p2 + 4

)
−
√

1

u2
+

p2

3p2 + 4




1/χ2

1

+ Σsurf |p|

(A-5)
In writing (A-5) use has been made of the relationship:

p =
2ζ√

1− 3ζ2
(A-6)

The function g is convex, admits a minimum g(0) = 2T , its graph has an angular point at its minimum, and

admits straight asymptotes of slope±σ̄
[

1√
3

sinh−1
(
u√
3

)
−
√

1
u2

+ 1
3

]1/χ2

1

+sgn(D33)Σsurf for p→ ±∞;

see Fig. A-1a.
The yield surface is the boundary of the reversibility domain, now defined by (A-4). As such, the yield

locus is the envelope of the straight lines q = f(p) lying between the graphs of the functions q = −g(p)
and q = g(p) and meeting one of them at some point, Fig. A-1c. To construct this locus, we only consider
loadings with Σ31 ≥ 0 due to point symmetry about the origin, and implement a graphical solution as
follows.

Two cases are analyzed separately depending on the magnitude of the normal stress. Consider first the
case |Σ33| ≤ g′(0+) = Σsurf . As illustrated in Fig. A-1a, the slope of the straight line q = f(p) is smaller
than that of the curve q = g(p) at the origin so that the two curves do not cross each other provided that
f(0) ≤ g(0), i.e. that Σ31 ≤ T . In this case, therefore, the yield condition is that Σ31 = T , which is
a constant (Fig. A-1b). The same condition holds for g′(0−) < Σ33 < 0 by considering the intersections
of lines q = f(p) having negative slopes with the appropriate branches of the representative curves of the
functions g(p) and −g(p).

Next, for |Σ33| ≥ Σsurf there must be a condition on the shear stress Σ31 in terms of Σ33 for the stress
state to lie on the yield surface. Given Σ33, the value of Σ31 must be smaller than that which makes the line
q = f(p) tangent to the curve q = g(p) (Fig. A-1c). Only in this case would the condition f(p) ≤ g(p) be
ensured for every p. Finding the yield point (Σ33,Σ31) then amounts to determining the value of p for which
there is tangency. The derivation is quite involved and was illustrated by [28] in the case of the approximate
dissipation g(p). It is emphasized that in this case the dissipation function is differentiable and the procedure
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(a) (b)

(c) (d)

Figure A-1: Construction of the yield locus by a graphical method. (a) Illustration of inequalities (A-4)
for |Σ33| ≤ Σsurf ; (b) corresponding (singular) part of yield locus. (c) Illustration for |Σ33| ≥ Σsurf ; (d)
corresponding (regular) part of yield locus.

leads to a locus exactly given by (B-13). Fig. A-1d depicts the corresponding (regular) curved portion of the
yield locus. For completeness, the portion corresponding to negative slopes of the line q = f(p) is shown
dashed in the figure.

Remark 1: In absence of shear Eq. (B-13), or equivalently Eq. (19)1, predicts a limit load equal to
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Σsurf + Σvol, which is the same value as that obtained by [14]. Indeed, setting Σ31 = 0 in (19)1 one gets:

B2

τ̄2
=

5

3
+ f2

b −
4

3

√
1 + 3f2

b =
1

3
(
√

1 + 3f2
b − 2)2 (A-7)

which, after plugging in the yield function gives:

cosh

(
|Σ33| − Σsurf

τ̄
−
√

3
B
τ̄

)
= C , C =

1 + f2
b − (B/τ̄)2

2fb
=

2
√

1 + 3f2
b − 1

3fb

hence C2 − 1 =
1

3




2−
√

1 + 3f2
b

fb




2

|Σ33| − Σsurf

τ̄
−
√

3
B
τ̄

= cosh−1 C = ln (C +
√
C2 − 1) = ln

1 +
√

1 + 3f2
b

3fb

=⇒ |Σ33|
τ̄

=
Σsurf

τ̄
+ 2−

√
1 + 3f2

b + ln
1 +

√
1 + 3f2

b

3fb
≡ Σsurf

τ̄
+

Σvol

τ̄

(A-8)

Remark 2: The upper-bound and approximate yield criteria given by Eqs (19) and (21), respectively,
give the same yield condition in the absence of shear. In other words the loci meet on the Σ33 axis. This
property follows from the fact that approximation (13) is exact for D31 = 0. Upon examination of the two
criteria, Eqs (19) and (21), this seems strikingly surprising. Nevertheless, it was shown above that (19) does
lead to Σ33 = Σsurf + Σvol when Σ31 = 0 although Σvol does not appear explicitly in (19). Obviously,
this result is easier to establish by starting from the expression of the total dissipation. Indeed, if one sets
D31 = 0 or equivalently ζ = 1/

√
3 in equation (17) then one gets:

Σ33 − Σsurf

σ̄
=

[
1√
3

sinh−1

(
u√
3

)
−
√

1

u2
+

1

3

]1/χ2

1

=
1√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

=
Σvol

σ̄
(A-9)

where use has been made of the identity: sinh−1(x) = ln (x+
√
x2 + 1) and that the left-hand side of the

above equation is nothing but Π∗vol/D33 in the absence of shear.
Remark 3: The transition from the regular (curved) part to the singular (straight) part occurs without any

vertex as shown by [28]. A geometric proof of this property was provided by [36]. So is the case because
the first derivative of Φ with respect to Σ31 from Eq. (19)1 would become unbounded at Σ31 = T or,
equivalently, its derivative with respect to Σ33 would vanish as follows. Letting (|Σ33|, |Σ31|) = (Σsurf , T )
would give:

B2

τ̄2
=

5

3
+ f2

b −
2

3

√
4 + 12f2

b − 3(1− fb)2 = f2
b − 2fb + 1 = (1− fb)2

hence 3
B2 − Σ2

31

τ̄2
= (1− fb)2 − (1− fb)2 = 0 and

|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2
= 0

=⇒ ∂Φ

∂Σ33
=

∂

∂Σ33

(
B2

τ̄2

)
+ 2fb

sgn(Σ33)

τ̄
sinh

(
|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2

)
= 0

(A-10)

This demonstrates that the yield locus is devoid of any corners.
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Appendix B Regular parts of the yield surface

On these, the dissipation function is differentiable so that equation (5) may be used. Since Π is posi-
tively homogeneous of degree 1, ∂Π/∂D is positively homogeneous of degree 0, i.e. (∂Π/∂D)(αD) =
(∂Π/∂D)(D), where α is an arbitrary positive real number. By way of consequence, ∂Π/∂D depends
only on the ratio D31/D33 of the two independent components of D. This ratio can then, in principle, be
eliminated between the two parametric equations of the yield locus; see [4] for generalities.

In practice, however, there arises the difficulty that the obtained expression (17) involves a different
ratio, ζ, of D33 to the composite strain-rate measure D̄. Hence, proceed as follows. From (5) and using the
variables (D33, D̄) in lieu of (D33, D31) obtain the nonzero stress components as:

Σ33 =
∂Π

∂D33
=
∂Π∗vol

∂D33
+
∂Π∗vol

∂D̄

∂D̄

∂D33
+ sgn(D33) Σsurf

Σ31 =
1

2

∂Π

∂D31
=

1

2

∂Π∗vol

∂D̄

∂D̄

∂D31

(B-1)

where the factor 1/2 in the second equation is due to the fact that D31 appears in fact twice in the actual
dissipation function, as D31 and D13. In (B-1) appear stress-like auxiliary variables A and B:

A ≡ ∂Π∗vol

∂D33
=

σ̄√
3

[
sinh−1(ζu)

]1/χ2

1

B ≡ ∂Π∗vol

∂D̄
= −sgn(D̄)

σ̄√
3

[√
1

u2
+ ζ2

]1/χ2

1

(B-2)

which have just been evaluated using the volume term of (17). Hence (B-1) may be rewritten as:

Σ33 = A+ 3 sgn(D̄)ζB + sgn(D33) Σsurf

Σ31 = sgn(D̄D31)
√

1− 3ζ2 B
(B-3)

Relations (B-3) represent parametric equations of the yield surface. Elimination of ζ leading to an
explicit relationship between stress components Σ33 and Σ31 is somewhat tedious. Its three main steps are
summarized below.

First, the definitions of A and B are, in fact, a short-cut towards such an elimination process. Indeed,
expanding (B-2)1 and (B-2)2, taking the cosh of both sides of (B-2)1, then simplifying leads to:

χ2 cosh

(√
3
A
σ̄

)
=
√

1 + ζ2
√
χ4 + ζ2 − ζ2

√
3
|B|
σ̄

=
√

1 + ζ2 −
√
χ4 + ζ2

(B-4)

Taking the square in (B-4)2 then permits to eliminate ζ; the following relationship is then obtained in terms
of the auxiliary variables A and B:4

(√
3
B
σ̄

)2

+ 2χ2 cosh

(√
3
A
σ̄

)
− (1 + χ4) = 0 (B-5)

Second, to obtain the explicit yield criterion, the quantities A and B need to be replaced with Σ33 and
Σ31 in (B-5). A useful intermediate result obtained from (B-4) is

1− χ2 cosh

(√
3
A
σ̄

)
= 1 + ζ2 −

√
1 + ζ2

√
χ4 + ζ2 =

√
3
|B|
σ̄

√
1 + ζ2 (B-6)

4These steps are similar to those followed in a ”modern” derivation of the Gurson model, e.g. [4].
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Taking the squares of (B-3)2 and (B-6), one gets

(
Σ31

σ̄

)2

= 4

(B
σ̄

)2

−
[

1− χ2 cosh

(√
3
A
σ̄

)]2

(B-7)

where ζ is no longer present. Using then equation (B-5) one obtains:

(
Σ31

σ̄

)2

= 4

(B
σ̄

)2

− 1

4

[
1− χ4 +

(√
3
B
σ̄

)2
]2

, (B-8)

which is a quadratic equation in (B/σ̄)2. Discarding the largest root by noting that (
√

3B/σ̄)2 ≤ (1−χ2)2 <
1 from (B-5), we retain the solution:

(√
3
B
σ̄

)2

=
5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

(√
3

Σ31

σ̄

)2

(B-9)

where the
√

3 factors are introduced to evidence the yield stress in shear τ̄ ≡ σ̄/
√

3.
Third, to obtain A note that by (B-3)2,

(ζB)2 =
1

3
(B2 − Σ2

31) (B-10)

Hence (B-3)1 yields:

A = Σ33 − sgn(D33) Σsurf − sgn(ζBD̄)
√

3(B2 − Σ2
31) (B-11)

Now sgn(ζ) = sgn(D33) = sgn(D̄) by definition; hence sgn(ζBD̄) = sgn(B). Furthermore it follows
from (B-2)2 that sgn(B) = sgn(D̄) = sgn(D33). Finally sgn(D33) = sgn(Σ33) since all three terms in the
right-hand side of (B-3)1 have the sign of D̄ or D33. Hence (B-11) may be rewritten as

A = Σ33 − sgn(Σ33) Σsurf − sgn(Σ33)
√

3(B2 − Σ2
31)

= sgn(Σ33)
[
|Σ33| − Σsurf −

√
3(B2 − Σ2

31)
] (B-12)

Using (B-5), one thus gets the equation of the regular parts of the yield surface in the form:

Φ =

(√
3
B
σ̄

)2

+ 2χ2 cosh



√

3


 |Σ33| − Σsurf

σ̄
−
√(√

3
B
σ̄

)2

−
(√

3
Σ31

σ̄

)2




− (1 + χ4) = 0

(B-13)
where the quantity B2 is related to Σ31 by (B-9).

In the limit χ → 1, Σ33 = Σ31 = 0; indeed A and B must be zero by (B-5); then Σ31 = 0 by
(B-9), so that by (B-12), Σ33 = sgn(Σ33) Σsurf = 0 by (10). Also, it can be checked that the points
(Σ31 = ±T ,Σ33 = ±Σsurf), which lie at the intersections of the straight singular parts and curved regular
parts, do satisfy criterion (B-13). Indeed, in such cases

√
3|B|/σ̄ =

√
3|Σ31|/σ̄ = 1− χ2.

Appendix C Quasi-Periodic Boundary Conditions on the Unit Cell

The boundary conditions imposed on a quarter of the unit cell are expounded here. The normal and tangential
displacements are the two independent degrees of freedom at each center-line. Fig. C-1 shows the various
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Figure C-1: Finite element mesh for one quarter of an example unit cell with microstructural parameters given as
(χ,W ) = (0.25, 1.0), accompanied by the nomenclature used to define various surfaces and edges to which the
boundary conditions are imposed. The origin of the reference coordinate system stands at the void center in the
undeformed configuration.

surfaces and edges of the computational domain, together with an example mesh as well as the nomenclature
used.
Edge-Top-Middle

u2(x1, 0, H) =
1

2
Ut,

u3(x1, 0, H) =
1

2
U3. (C-1)

Surface-Top-Left/Surface-Top-Right

u1(x1,−x2, H)− u1(x1, x2, H) = 0,

u2(x1,−x2, H) + u2(x1, x2, H) = Ut,

u3(x1,−x2, H) + u3(x1, x2, H) = U3. (C-2)

Edge-Top-Left/Edge-Top-Right

u1(x1,−
√
L2 − x2

1, H) = u1(x1,
√
L2 − x2

1, H) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, H) =
1

2
(Ut ±

±
√
L2 − x2

1

L
U2),

u3(x1,±
√
L2 − x2

1, H) =
1

2
U3. (C-3)
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Surface-Lateral-Left/Surface-Lateral-Right

u1(x1,−
√
L2 − x2

1, x3) = u1(x1,
√
L2 − x2

1, x3) =
x1

2L
U1,

u2(x1,−
√
L2 − x2

1, x3)− u2(x1,
√
L2 − x2

1, x3) = −
√
L2 − x2

1

L
U2,

u3(x1,−
√
L2 − x2

1, x3)− u3(x1,
√
L2 − x2

1, x3) = 0. (C-4)

Edge-Bottom-Left/Edge-Bottom-Right

u1(x1,−
√
L2 − x2

1, 0) = u1(x1,
√
L2 − x2

1, 0) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, 0) = ±
√
L2 − x2

1

2L
U2,

u3(x1,±
√
L2 − x2

1, 0) = 0. (C-5)

Edge-Bottom-Middle

u2(x1, 0, 0) = 0,

u3(x1, 0, 0) = 0. (C-6)

Surface-Bottom-Left/Surface-Bottom-Right

u1(x1,−x2, 0)− u1(x1, x2, 0) = 0,

u2(x1,−x2, 0) + u2(x1, x2, 0) = 0,

u3(x1,−x2, 0) + u3(x1, x2, 0) = 0. (C-7)

Edge-Back-Middle

u1(−L, 0, x3) = −1

2
U1. (C-8)

Surface-Front

u1(0, x2, x3) = 0. (C-9)

Appendix D Rationale for Heuristic Modification

Criterion (19)1 is modified as follows:

B2

bτ̄2
+ 2fb cosh


 |Σ33| − tΣsurf

τ̄
−

√

3
B2 −

(
Σ31/l

)2

τ̄2


− (1 + f2

b) = 0 (D-1)
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where t, b and l are parameters. It is unlikely that constant parameters will fit all purposes. Therefore, t, b
and l are considered a priori functions of the internal parameters χ andW . The idea is to obtain the simplest
functions that reduce the error between the numerical results and model predictions shown in Fig. 6.

Firstly, parameters t and b are introduced in such a way that the same heuristic modification of [28] is
arrived at. There it was shown that a constant value of b ∼ 1 is appropriate. Also, a homographic function
of W was necessary for t in order to remove the singular behavior for W → 0. This behavior manifests in
the absence of any shear. The criterion in this case reduces to:

Σ33

σ̄

∣∣∣
Σ31=0

= tΣsurf + bΣvol (D-2)

following the same procedure as for obtaining (A-8). The simplest choice for function t is:

t(χ,W ) =
(t0 + t1χ)W

1 + (t0 + t1χ)W
(D-3)

where t0 and t1 are parameters to be determined on the basis of the numerical results. In doing so, we
improve upon the proposal of [28] by limiting the heuristic modification to the range χ ≥ 0.2 and taking
t(χ,W ) = t(0.2,W ) for χ < 0.2 so that the exact limit Σ33 → ∞ is retained for χ → 0. The choice of
parameters t0 = −1.3, t1 = 20.6 and b = 1.0 proves quite good.

Secondly, parameter l aims at reducing the error in the case of prolate voids under shear-dominated
loadings. Indeed, the modified criterion (D-1) reduces to Σ31 = l(W,χ)T in pure shear. The fact that
l should depend on W is easily inferred from the computational results. The simplest possible form for
l(W,χ) is a bi-linear function (again for χ ≥ 0.2 only):

l(χ,W ) =
[
1 + (l1χ+ l0)W

]
T (D-4)

The results shown in Fig. 6 were obtained using the choice (l0, l1) = (0.035,−0.15).
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P3 A UNIFIED CRITERION FOR VOID GROWTH AND COALESCENCE UNDER

COMBINED TENSION AND SHEAR

This chapter is reprinted with permission from A Unified Criterion for Void Growth and Co-

alescence under Combined Tension and Shear by M. E. Torki (2019). International Journal of

Plasticity, Copyright 2017 by Elsevier Ltd.
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A Unified Criterion for Void Growth and Coalescence under
Combined Tension and Shear

M. E. Torki
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract
An analytical micromechanics-based yield criterion is developed to describe both void growth and

coalescence under combined tension and shear, with smooth transition between growth and coalescence,
thus its name unified. The model is obtained by limit analysis over a cylindrical elementary cell embed-
ding a coaxial cylindrical void of finite height. The velocity field employed is an extended counterpart
of the discontinuous, yet kinematically admissible trial field utilized in a recent work. Plasticity in the
deformable matrix is modeled using rate-independent J2 flow theory, and the effective dissipation func-
tion is calculated by exact as well as approximate integration techniques, the latter generating a simpler
flow potential. The model is aimed to predict void growth as well as coalescence by internal necking or
shearing. The complete yield surface , being function of normal as well as shear stresses, exhibits curved
and planar parts signifying void coalescence. The transition between the curved and planar parts is cor-
nerless. The analytical predictions are compared to results of FEM single-step cell-model calculations
of limit analysis executed on an identical geometry exposed to quasi-periodic boundary conditions.

Keywords: Ductile fracture; Void growth; Void coalescence; Internal necking; Internal shearing; Rigor-
ous upper-bound character.

1 Introduction

Having been recognized as a driving challenge in solid mechanics, research work on ductile fracture under
combined tension and shear has recently received seminal advancement. The paradigm shift in the effective
failure mechanism correlates with the prevalence of stress triaxiality or Lode parameter vis-a‘-vis the other.
Both experimental results and existing model predictions demonstrate that, from the low-triaxiality (high-
ductility) to the high-triaxiality (low-ductility) regime, the failure mechanism switches from void collapse to
void growth [1]. Upon favorable conditions, damage in an initially spherical void under a shear-dominated
field proceeds up to rotation and eventually closure into a flattened ovalized crack [2, 3, 4, 5]. In a triaxial
stress field, however, voids will remain near-spherical. For the latter case, extensions after the seminal work
of Gurson (1977) for void growth in plastic solids with finite porosity [6] have established the caliber for
decades [7, 8, 9, 10, 11, 12, 13, 14].

The mechanism of void growth in shear was investigated in the pioneering work of Fleck and Hutchin-
son [15] while failure under the same effect was missing in work of the like. A tentative understanding of
the effect of shear on failure of materials has been examined through the third invariant of stress deviator
J3. More exhaustive studies, however, demonstrate that mere consideration of J3 cannot fully describe the
fundamental mechanisms underlying fracture under a combined loading scheme [16, 17]. Failure under
the effect of shear should be distinguished from the formation of shear bands. That is, failure in shear
is triggered by shear-induced localized deformation, i.e. coalescence in shear, whereas a shear band is a
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bifurcation (instability) phenomenon that can happen even in absence of shear [18, 19]. Yet, shear coa-
lescence can happen inside a shear band if there is significant amount of shear acting onto the voids. A
considerable fraction of work on ductile failure prediction in porous materials addresses supplementing ex-
isting yield criteria, mainly of a Gurson-type identity, with damage models. Amongst the featured models
proposed mainly for triaxial and shear-dominated loading conditions are the models proposed by Pardoen
and Hutchinson [20] and Nahshon and Hutchinson [21]), respectively. The latter introduced a modified
damage parameter (denoting porosity in absence of shear) through the addition of a heuristic function of J3.
This damage parameter, while remaining of a heuristic nature, could not preserve the identity of a physical
parameter such as porosity. Morgeneyer and Besson [22] introduced a modified strain rate as function of
the Lode parameter based on a Gurson-type yield criterion in order to simulate the transition from flat to
shear-induced crack propagation. Other efforts in the same respect have been made by Kadkhodapour et al.
[23] and Cao et al. [24]. Another class of work, including [25], examine failure mechanisms via cell-model
evolution analysis. This class of analyses can be considered as benchmark, but are not well suited for para-
metric studies due to high computational cost. Micro-mechanics-based models are thus more extensively
sought. The main body of mathematical models of ductile fracture developed from first principles is rep-
resentative of a periodic or quasi-periodic medium. The effect of void distribution can be dominant when
scaling becomes a matter of prominence. A well-motivated discussion on the effect of void distribution can
be found in [26, 27, 5, 28, 29, 30, 31, 32].

In essence, modeling of void coalescence in the existing literature is still in early stages. This can be
recognized from the very fact that the majority of existing models pertain to the growth regime, and that
the complexities and limitations arising when interpreting coalescence as a strain localization phenomenon
[33] would further complicate the modeling technique in that established homogenization methods relying
on clear separation of scales will be rather idealistic [34]. Yet, the use of an elementary cell, by no means
representative of the whole domain, proves efficacious in that volumetric averaging and the Hill–Mandell
lemma remain valid in all deformation processes [35]. While void growth correlates with plastic flow being
diffuse in the matrix, ultimate failure subsequent to the onset of coalescence can occur only if plastic flow
localizes in the inter-void ligament. 1

Existing mathematical models accounting for void growth are both well-established and sophisticated.
Rather, void coalescence models lie in a hue of empiricism. Following the pioneering work of Thomason
[36], it was only Benzerga [34] who extended the applicability of Thomason’s model into penny-shaped
cracks characterized by aspect ratios close to nil. Then, without any more advanced models introduced
from first principles, Pardoen and Hutchinson [20] proposed a better heuristic micro-mechanics-based void
coalescence model to mimic ductile fracture under triaxial loading. Over a decade past, Tekoglu et al. [37]
extended the realm of Thomason’s and Benzerga’s models into combined tension and shear. It remained for
Benzerga and Leblond [38], Torki et al. [39, 40], and also Morin et al. to develop void coalescence models
from first principles until [14] introduced a model for void growth accompanied by void coalescence in a
unified perspective.

Altogether, the first class of porous plasticity models account for the post-coalescence process via the
heuristic introduction of a porosity acceleration factor, without the physics underlying the process being
known [7, 14]. In a second class of models, void growth and coalescence are founded on intrinsic yield
criteria. Mathematical models for both processes are carried out through limit analysis. In doing so, void
growth and coalescence models, distinguished as being diffuse and localized, can be derived either indepen-
dently and combined in a hybrid approach or based on the same velocity fields in a unified fashion. There
are pros and cons associated with the hybrid perspective, considering different cell-level geometries before

1So is the case when void distorsion occurs due to void growth or rotation, and even for other sources of failure such as
mechanical instability or the like. In the latter, coalescence may not directly be triggered at local failure, but is mainly characteristic
of ultimate failure.
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and after the onset of coalescence. Among its notable virtues is better coincidence with numerical results.
Nevertheless, a hybrid model exhibits corners on its corresponding yield surface, as schematized in Fig. 1a,
which constitutes some undesirable features from a computational viewpoint. See [11, 12, 13] for further
illustrations. Fig. 1 depicts an example hybrid model invoking the Keralavarma-Benzerga and Torki et al.
[11, 39] models before and after coalescence, respectively, in comparison to a unified model with seamless
transition between void growth and coalescence. Corresponding stress-strain behavior curves have also been
schematized in Fig. 1b highlighting the smooth progression into the post-coalescence deformation process.

(a) (b)

Figure 1: (a) Schematic unified yield locus (as developed for zero shear stress by Morin et al. [14]) as compared with
a hybrid locus (exemplified by the Keralavarma-Benzerga model [11] for void growth and the T-B-L model [39] for
coalescence) for specific microstructural parameters as defined in 2.1; (b) schematic stress-strain curves in an arbitrary
evolution problem corresponding to a hybrid and a unified model.

Morin et al. [14] were the first to propose a unified model, who extended the work of Benzerga and
Leblond [38] to derive the first analytical model accounting for both the growth (among weakly interacting
voids) and coalescence of voids (among strongly interacting voids) but only under triaxial loading. Follow-
ing [14], the aim of the present work is to extend that model into combined triaxial and shear loadings from
the same unified perspective. Neglecting the effect of shear would not only lose one remarkable ingredient
within the consitutive framework in presence of significant shear stresses but also dramatically overestimate
strain to failure even at the limit of randomly distributed voids [41]. The present work, therefore, tends
to develop a model that can describe the whole process from void growth to coalescence under arbitrary
loading conditions. The effect of shearing might sound trifling at first sight. However, as adduced by
algebraic details in Sec. 2.7, it adds significant complexities to the model both in its parametric form and
in the final closed-form solution. The effect of shear stress manifests in elaborate coupled form within all
subfunctions of the yield surface that cannot be attained by mere addition or multiplication to the model in
absence of a shear-induced term. Moreover, it leads to an extra singularity within the model that cannot
be realized by simply appending Morin et al.’s model with the coalescence function in [40]. This singular
part constitutes a plane, rather than a line, that signifies the stresses’ correlation within the flow potential
under shear-dominated loads. The model explicitly involves the normal, lateral, and shear stresses rather
than implicitly through nondimensional loading indicators (as within the work of Keralavarma [41]). Last
but not least, the model accounts for the effects induced by all independent parameters that uniquely define
the microstructural geometry, including void and cell shape effects. Within the present modeling frame-
work, the applications would pertain to the ductile failure of metals (where the microstructure continuously
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evolves while the average porosity will remain small to moderate [42]) and even in polymers (where the
microstructure can remain fixed but the porosity may increase drastically [43]).

Meanwhile, steps to and results of limit analysis cell-model calculations with quasi-periodic boundary
conditions representing axisymmetric superimposed by shear loading, corresponding to a cell with the same
geometry, are presented. More details on imposition of periodic boundary conditions on the unit cell are
explained in Appendix C. The results of this section are utilized for assessment of the as-derived model with
numerical results. Of particular consequence is that FEM unit cell calculations — with no direct recourse
to trial velocity fields — would exhibit curved and flat zones [33, 14]. These distinct parts correspond,
respectively, to plastic flow occurring either filling across the matrix or localized through the intervoid
ligaments, the latter representing coalescence of internal necking/shearing. Hence, normality plays a crucial
role in determining the orientation of the parts corresponding to coalescence. Nevertheless, this attribute is
disregarded in Gurson’s extensions in a sense that uniform boundary conditions are assumed regardless of
the stress and microstructural state.

2 Problem Statement

2.1 Elementary (unit) cell

Earlier models of failure in ductile metals were developed for voids isolated in an infinite medium ([44,
45, 46], which would render the so-called porosity zero. All later studies, however, have incorporated the
effect of a finite porosity by identifying a reference (elementary) cell containing (normally) one or (gener-
ally) several voids. This approach would enable scale transitions from micro scale to macro scale whereby
the macroscopic response can be explicitly expressed in terms of some (nondimensional) microstructural
parameters related to the relative arrangement of voids.

(a) (b)

Figure 2: (a) Geometry of a cylindrical cell under a combined loading scheme. (b) Cell parameters.

The microstructural geometry is identified through the definition of an elementary cell, also known as
unit cell, chosen as schematically shown in Fig. 2 [39, 14]. The latter was first propounded by Benzerga
and Leblond [38] which, by its very nature, has supplied a totally analytical upper-bound coalescence model
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for the first time with the given velocity field. The elementary volume Ω is a cylindrical cell embedding a
coaxial cylindrical void ω, acted upon by macroscopic axial and lateral tensions as well as a macroscopic
shear stress as outlined in Fig. 2a. Despite its being not space filling, the given cell stands as a reasonable
approximation of more complex geometries in periodic media, e.g. a circumscribing hexagonal-prismatic or
a square-prismatic cell 2. Apart from that, Morin et al. [33] have found the effect of void shape on the yield
surface to be minimal for a given void aspect ratio.

The overall geometry of the cell is determined by the following independent dimensionless parameters:

W =
h

R
, χ =

R

L
, λ =

H

L
, (1)

defined as the void aspect ratio, the ligament parameter, and the cell aspect ratio, respectively. The local
orthonormal basis associated with cylindrical coordinates r, θ, z is denoted as (er, eθ, ez), with its global
counterpart associated with Cartesian coordinates x1, x2, x3 denoted as (e1, e2, e3), with e3 ≡ ez . Without
loss of generality, er and e1 are directed along the applied shear stress at will. As such, the applied tensile
stresses will be represented by Σ33 and Σ11, and the only nonzero shear component will be Σ31. Note that,
in presence of shear, the Σ11 = Σ22 assumption does not hold. This would bare no consequence in the
coalescence regime (since the coalescence criterion, as seen in Sec. 2.7.3, is independent of Σ11 and Σ22).
In the void growth regime, however, this premise is an approximation that warrants assessment against FEM
results (Sec. 3.1).

Recent studies demonstrate that geometry can induce a significant effect on the limit load value [47]
3. Yet, regardless of the employed cell geometry, the effective yield surface derived based on homogeniza-
tion over a unit cell will be exterior to its FEM counterpart unless the employed approximations are way
erroneous or the analytical velocity fields are too simplistic [33, 37, 39].

As discussed more thoroughly in Section 2.4, due to void growth being allowed along the radial and
axial directions, the matrix materials (circumscribing above and below the void) and the ligament are both
plastically deformable, admitting the J2 flow theory. However, as soon as void coalescence initiates, the
matrix layers will turn into rigid due to an elastic unloading running through them (see 2.4) as the strains
localize within the central ligament [48, 2, 5]. The interfaces between the matrix layers and ligament are
denoted Stop and Sbot (Fig. 2a) and their union Sint.
The following auxiliary parameters will be used in the sequel:

fb ≡
ω

Ωlig
=
R2

L2
= χ2

c ≡ Ωlig

Ω
=

h

H
=
Wχ

λ

f ≡ ω

Ω
= cfb

(2)

where the domain and its volume are identified for convenience. fb is the porosity in the central porous
ligament, c is the volume fraction of the ligament, and f is the overall porosity, which will not directly enter
into the yield criterion due to the existence of matrix layers, underlying that the ligament porosity is the
effective porosity in our formulation.

2Apropos of being truly representative of voids in various orientations, however, the unit cell obviously cannot be representative
of the real medium as is. However, the predictive capability of the cell can be well extended to slanted and/or elongated voids
by identifying an equivalent microstructure where the slanted void is taken equivalent to a coaxial cylinder with its radius being
the projection of the slanted void onto the plane of localization. The promising capability of this scheme has been successfully
envisaged in the research work that has been carried out after this work.

3In particular, Mbiakop et al. [47] have observed that the hydrostatic stress is overestimated, esp. at larger porosities, with a
cylindrical unit cell utilized.
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2.2 Matrix Plasticity Model

Plastic flow in the matrix (in fact in Ω \ ω) is assumed to obey the J2 flow theory. Hence, yielding occurs
along with the following condition being met at every possible point of the material:

φ(σ) = σ2
eq − σ̄2 = 0

σeq ≡
√

3

2
σ′ijσ

′
ij ; σ′ij ≡ σij −

1

3
σkkδij

(3)

with the associated flow rule

dij =
3

2

deq

σ̄
σ′ij

deq ≡
√

2

3
dijdij

(4)

where σeq and deq denote the von Mises equivalent stress and equivalent strain rate, respectively. Crite-
rion (3) is characteristic of the boundary of the microscopic reversibility domain C involved in (7) [38].

2.3 Limit analysis

The first and foremost feature of the so-called unified model is a generally nonzero value of D11 = D22, the
equality being due to the axial symmetry in the geometry of the unit cell. Therefore, the rate of work asso-
ciated with the plastic rate of deformation under the macroscopically-applied stress field takes the following
form:

Σ : D = 2Σ11D11 + Σ33D33 + 2Σ31D31

≡ (Σ11)(3Dm) + (Σ33 − Σ11)(D33) + (Σ31)(2D31)

≡ Σ̄1D̄1 + Σ̄2D̄2 + Σ̄3D̄3

(5)

The absence of Σ21 (as the out-of-plane shear stress) is mainly because the shearing process is taken
to happen in the e1–e3 plane, and thus Σ21 is ineffective on this process (see [39] for more explicit ex-
planations). More specifically, for a known possible localization plane (with normal n) Σ31 is replaced by
τn as being the resolved shear traction on that plane. This has been truly corroborated by FEM outcomes
demonstrating that, once plastic deformation localizes somewhere on the plane, it spreads in all directions
without necessarily being directed. Therefore, the direction of shear becomes naturally insubstantial when
localization is picked to occur at one plane or one among a discrete set of planes.

As illustrated in [39], the fundamental inequality of limit analysis gives rise to the effective yield crite-
rion of a porous material containing microvoids:

∀D, Σ : D ≤ Π(D) (6)

with Σ and D denoting the macroscopic stress and rate of deformation tensors, defined as the volume
averages of their microscopic counterparts σ and d, and Π(D) is the effective plastic dissipation given by

Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω (7)

Ω refers to the spatial domain over which macroscopic quantities are defined, 〈·〉Ω stands for averaging
over Ω, inf and sup, respectively, represent the infimum (greatest lower bound) and supremum (least upper
bound) of the set, and C is the microscopic reversibility domain, with the boundary known as yield surface.
The reader is referred to [35] for further details.

272



Solving the variational problem represented by (6)–(7) for a given cell and the J2 matrix flow rule
would deliver the minimum involved in (7) as well as the velocity fields realizing the minimum. Owing
to the presence of matrix layers in the cell, the exact velocity field is of the type consistent with uniform
traction boundary conditions, antithetical to that consistent with uniform strain-rate boundary conditions.
The former corresponds to plasticity being localized in the ligaments while the latter accounts for plasticity
diffuse in the matrix. Also, the set of kinematically admissible velocity fields, K(D), is made of expansion
fields superimposed by purely deviatoric incompressible fields (vk,k = 0) that are compatible with the
overall deformation imposed through D.

If the velocity field is discontinuous across an interface S, then a surface term must be added which
writes

1

Ω

∫

S
sup
σ∗∈C

t∗i JviK dS (8)

where JvK is the velocity jump across the interface and t∗ the exerted traction. Upon the condition of
differentiability, the stress tensor corresponding to the boundary of the domain of reversibility — associated
with the effective yield surface — can be derived as the first derivative of the effective dissipation with
respect to the rate-of-deformation tensor. In this case, the effective yield surface is smooth and (6) constitutes
the following parametric equation:

Σij =
∂Π

∂Dij
(D) (9)

where D is no longer arbitrary as in (6) but represents the rate of deformation corresponding to Σ through
the macroscopic flow rule. By way of contrast, if the effective yield surface is not smooth, the primitive
inequalities (6) define the effective reversibility domain C , generally differing from its microscopic coun-
terpart C. The reader is well-advised to refer to [35] and [39] for further details.

Hence, by rephrasing Π as Π̄(D̄) ≡ Π(D) in the problem at hand, one can define, in the macroscopic
level, the following stress state, with its nonzero components stated as corollary:

Σ̄(D̄) =
∂Π̄(D̄)

∂D̄
... Σ̄i =

∂Π̄

∂D̄i
i = 1, 2, 3 (10)

2.4 Kinematics

The reference volume element at hand, being identical to that designed in Fig. 2, can be conceived of as
including a plastically deformable ligament (l) and matrix (m) part, as well as a surface of discontinuity
(’surf’) in between. The inherent kinematic specifications of the problem entail the following properties:

D11 = D
(l)
11 = D

(m)
11

D33 = cD
(l)
33 + (1− c)D(m)

33

D31 = cD
(l)
31 + (1− c)D(m)

31 = cD
(l)
31

(11)

the first induced by the axisymmetric nature of the problem, and the rest derived from a simple volumetric
mixture rule, adding to the fact that void growth is only accounted for in the lateral (radial) and axial
directions. The factor c has been defined in advance. The third relation attributes shear deformation only to
the ligament, and the matrix is only subject to expansion/contraction (this is well in conformity with FEM
cell-model calculations). On the other hand, incompressibility of the matrix invokes a traceless rate-of-
deformation tensor, whence the following can be written:

tr(D(m)) = 0 ... D
(m)
33 = −2D

(m)
11 = −2D11 (12)
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Therefore, the following relation can be drawn among the porous-zone and average components:

D̄
(l)
1 ≡ 3D(l)

m =
D̄1

c

D̄
(l)
2 ≡ D

(l)
33 =

(
1

c
− 1

)
D̄1 + D̄2

D̄
(l)
3 ≡ 2D

(l)
31 =

D̄3

c

(13)

Remark It can be easily inferred, with reference to (12) and (13), that subsequent to the void co-
alescence onset, the zero lateral growth condition D11 = 0 would demand D

(m)
11 = D

(m)
22 = 0 and

D
(l)
11 = D

(l)
22 = 0. Hence, the matrix layers would freeze into totally rigid zones at coalescence.

2.5 Kinematically Admissible Velocity Fields

A Gurson-like velocity field can be utilized in the ligament zone. That is, for a cylindrical unit cell with a
coaxial cylindrical void, the admissible velocity field for |z| ≤ h reads:

v(l) =

(
A(l)

r
− B(l)

2
r

)
er +B(l)ze3 +

D31

c
ze1 (14)

with the admissibility condition for the velocity field to represent an isochoric process, i.e. divv = 0, which
is obviously satisfied by adopting the above form. The parameters A(l) and B(l) emanate from condition
(11)2 and that requiring v(l)

r (L) = D11L. Moreover, the shear-induced velocity field has been nominated
upon a simple linear shear strain along the ligament height with the shear stress being applied along x1,
which admits the presence of volume fraction c in its denominator due to the shear strain being confined
within the ligament. With the above conditions satisfied, as well as e1 expanded in polar form, Eq. (14)
become equivalent to

v(l)
r =

1

2

[
D̄

(l)
1

L2

r
− D̄(l)

2 r

]
+ D̄

(l)
3 z cos θ

v
(l)
θ = D̄

(l)
3 z sin θ

v(l)
z = D̄

(l)
2 z

(15)

And the velocity field in the matrix layers, where h < |z| ≤ H , should produce a uniform deviatoric strain
rate. Hence, in its simplest form, it can be written as:

v(m)
r =

1

2
(D̄1 − D̄2)r ± D̄(l)

3 h cos θ

v
(m)
θ = −(±D̄(l)

3 h sin θ)

v(m)
z = (D̄2 − D̄1)z

(16)

where the plus and minus signs pertain to h < z ≤ H and −H ≤ z < −h, respectively.

2.6 Effective Dissipation Function

The effective dissipation function Π is reminiscent of an equivalent rate of deformation, deq, as elucidated
in Eq. (4). On the other hand, since, with the J2 flow theory admitted for the matrix, Π is linear in deq [35],
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each volumetric portion of the cell contributes to Π in proportion to its volume fraction. The total dissipation
function can therefore be written as decomposed into three terms:

Π = cΠ(l) + (1− c)Π(m) + Πsurf (17)

whence the Σ̄i stresses can be obtained from the first derivative of Π as follows:

Σ̄i = c
∂Π(l)

∂D̄i
+ (1− c)∂Π(m)

∂D̄i
+
∂Πsurf

∂D̄i
i = 1, 2, 3 (18)

With infinitesimal straining taken for granted, the strain-rate tensor components can be written in the
following well-known cylindrical form component-wise:

drr =
∂vr
∂r

dθθ =
1

r

(
vr +

∂vθ
∂θ

)

dzz =
∂vz
∂z

drθ = dθr =
1

2

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)

drz = dzr =
1

2

(
∂vr
∂z

+
∂vz
∂r

)

dzθ = dθz =
1

2

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)

(19)

Calculation and simplification of the above strain rate components is conducive to the following equivalent
strain rates for the ligament and matrix layers:

[
d(l)

eq

]2
=

2

3
d(l) : d(l) = (D∗1)2L

4

r4
+ (D∗2)2

[
d(m)

eq

]2
=

2

3
d(m) : d(m) = (D̄1 − D̄2)2

(20)

where

(D∗1)2 =

(
D̄

(l)
1

)2

3
(21)

(D∗2)2 =
(
D̄

(l)
2

)2
+

1

3

(
D̄

(l)
3

)2
(22)

D∗1 and D∗2 have been defined in the interest of brevity for what follows in calculation of the volumetric
integral. With Eq. (20) as repository, the effective dissipation functions corresponding to the ligament and
matrix layers can be expressed as reads:

Π(l) = (1− fb)〈σ̄deq〉Ω\Ω(m) =
1

Ωlig

∫

Ω\Ω(m)

σ̄d(l)
eq dΩ\Ω(m)

=
σ̄

2πL2h

∫ L

R

∫ h

−h
d(l)

eq(2πr dr dz) =
2σ̄

L2

∫ L

R

√
(D∗1)2

L4

r4
+ (D∗2)2(r dr)

Π(m) =
1

Ωr

∫

Ωr

σ̄d(m)
eq dΩr = σ̄

∣∣D̄1 − D̄2

∣∣

(23)
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on account of Ω\Ω(m) being equal to (1 − fb)Ωlig, (m) representing the matrix, and \ denoting exclusion.
The dissipation integral can be evaluated either in an algebraically precise or approximate manner, the
difference residing in the square root in (23) being part of the integrand or circumscribing the whole integral.
The exact integration has been applied, in absence of shear stress, by Morin et al. [14] and the approximate
method was primarily proposed in [37] and further employed by Torki et al. [39] to identify their model
describing void coalescence under combined tension and shear.

In order to evaluate the integral in (23) precisely, the simple change of variable u ≡ L2/r2 (also ex-
ploited in [38]) can be exerted, rendering it in the following equivalent form for Π(l):

Π(l) = σ̄|D∗2|
[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/fb

1

(24)

with ζ = D∗1/|D∗2|. By the same token, approximation allows for the passing of the averaging integral
through the square root. That is, defining 〈.〉Ω\Ω(m) as volumetric average over the whole region excluding
matrix layers, the approximation at hand has it that the average can be evaluated using

〈√
F2 + a2

〉
Ω\Ω(m)

≈
√
〈F〉2Ω\Ω(m) + a2 (25)

where F is function of the independent variable (u herein) and a is constant in that terms (even though it
may be a function by nature). Consequently, Π(l) evaluated in approximate form reads:

Π(l) = (1− fb)

〈
σ̄

√
(D∗1)2

L4

r4
+ (D∗2)2

〉

Ω\Ω(m)

≈ σ̄(1− fb)

√〈
D∗1

L2

r2

〉2

Ω\Ω(m)

+ (D∗2)2 (26)

The virtue within this approximation is the ease of calculating the volumetric average of a simple rational
function in lieu of an improper function embedding another rational function. To this end, we have:

〈
D∗1

L2

r2

〉

Ω\Ω(m)

=
1

(1− fb)Ωlig

∫

Ω\Ω(m)

D∗1
L2

r2
dΩ

=
1

(1− fb)(πR2L)

∫ L

R

∫ h

−h
D∗1

L2

r2
(2πr dr dz) =

D∗1
1− fb

ln
1

fb

(27)

Furthermore, Πsurf can be recast, without any mutation, with reference to its original derivation in [38], as
reading:

Πsurf = |D̄1|Σsurf(χ,W ) (28)

with Σsurf defined as
Σsurf

σ̄
=

1

3
√

3

χ3 − 3χ+ 2

χW
(29)

Nevertheless, due to the piece-wise nature of absolute functions within the Π constituents, it should be
admitted that Π is, in general, not differentiable. Therefore, derivation of the whole yield surface amounts
to solving the primitive inequality of limit analysis [35] in Eq. (6). Upon reflection, the complete yield
criterion is a pentapartite function embracing the following subsections at each stress half-space: (i) pre-
coalescence straight part, (ii) pre-coalescence curved part, (iii) coalescence straight part, the latter demon-
strating a slanted negative-slope line in the Σ33 − Σ11 vs Σm curve and a horizontal line in the normal vs
radial stress diagram. Implicit here is the fact that the curved parts are derived by means of a closed-form
implicit function among the stress components. This closed-form relation will be formulated in its exact as
well as an approximate method.
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2.7 Subsections of the Unified Yield Surface

An alternative form of (6) can be established by defining:

p1 =
D̄1

D̄3
p2 =

D̄2

D̄3
(30)

which can vary as two independent variables in the nondimensional functions F and G defined as follows:

F (p1, p2) =
Σ : D

σ̄D̄3
= p1

Σ̄1

σ̄
+ p2

Σ̄2

σ̄
+

Σ̄3

σ̄

G (p1, p2) =
Π(p1, p2, 1)

σ̄
= c

Π(l)

σ̄D̄3
+ (1− c)Π(m)

σ̄D̄3
+

Πsurf

σ̄D̄3

=

√
[(1− c)p1 + cp2]2 +

1

3

[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/fb

1

+ (1− c)|p1 − p2|+|p1| sgn(Dm)
Σsurf

σ̄

(31)

where ζ is identified as the following ratio:

ζ2 =

(
D∗1
D∗2

)2

=
p2

1

1 + 3[(1− c)p1 + cp2]2
(32)

Hence, the following will be counterpart to the inequality in (6):

∀ p1, p2 |F | ≤ G ⇐⇒ −G ≤ F ≤ G (33)

Depending on the value of Σ31 (mainly influencing parameter p2), F and G functions can take various
forms, leaving the p1 parameter as axis variable. p2, however, later expressed as function of Σ31/σ̄, emanates
from (45). Due to D31 posited without any loss of generality, Π is differentiable with respect to D31 except
when the latter approaches infinity. The p2 ratio can, therefore, be directly obtained from Σ31 as follows.
By defining

ξ = D̄
(l)
2 /D∗2 =

1

1 + 1
3[(1−c)p1+cp2]2

(34)

as an auxiliary nondimensionalized ratio, Σ31 can be expressed, according to (18), by the following

Σ31 = Σ∗2

√
1− ξ2

3
(35)

which delivers p2 in terms of Σ31 as follows:

p2 = c

√√√√ 3
(1−fb)2

3(Σ31/σ̄)2
− 1

(36)

Herein, p2 is a monotonically descending function of Σ31, approaching 0 and infinity when Σ31 becomes
close to T and 0, respectively. Figure 3 exhibits a schematic evolution of F and G as function of p1 for
varying values of p2, each p2 being attributed to a specific magnitude of Σ31/σ̄.
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(a) (b)

Figure 3: Schematic outline of F and G functions vs p1 with varying values of p2 as function of Σ31/σ̄. The curve
corresponding to−G has been exhibited only for the general case 0 < p2 <∞. The distinction between left and right
slopes at p1 = 0 and p1 = p2 neighborhoods is illustrated by unequal angles.

Remark 1 Indubitably, F is a line while G represents a more elaborate curve entitled to having singular
corners at p1 = 0 and p1 = p2 due to the existence of absolute functions. At the limit cases of p2 = 0
(Σ31 = T ) and p2 −→ ∞ (Σ31 −→ 0), G admits only one singular (angular) point that corresponds to
p1 = 0. For the general case of 0 < p2 <∞ (0 < Σ31 < T ), however, G is a tripartite curve consisting of
three smooth sub-curves pertaining to −∞ < p1 ≤ 0, 0 < p1 ≤ p2, and p2 < p1 <∞.

Remark 2 The intermediary smooth curve ranging between singular corners at p1 = 0 and p1 = p2

expands with increasing p2, i.e. decreasing Σ31/σ̄. Namely, it extends throughout the whole halfspace, and
thus coalescence occurs at p2 −→ ∞ when Σ31 = 0. Looking into the other extreme p2 −→ 0, however,
the middle curved part would vanish, and coalescence would take place when Σ31 = T .

Remark 3 It can be proven that the G curve is always convex. All the same, the −G curve is concave
[33].

Remark 4 The G and −G curves admit straight asymptotes at p1 −→ ∞. The asymptotes to the −G
curve coincide with those pertaining to the G curve [33]. Agreeing with intuition, the asymptotes should
thus intersect somewhere on the p1 axis. In the interest of simplicity, the mathematical discussion in the
following will be given for the positive half-space.

Remark 5 As p2 approaches 0 and infinity, G becomes symmetric with respect to the vertical axis.
Consequently, the asymptotes intersect at the origin.

By satisfying the primitive inequality (6) considering various critical values of p1 and p2, the complete
yield surface comprises pre-coalescence planar part, pre-coalescence curved parts, and post-coalescence
planar parts. The yield surface is built up through a comprehensive discussion in the following.

2.7.1 Pre-coalescence straight parts

The pre-coalescence straight parts are delivered by the model due to the simple choice of the velocity field.
Yet, they are not physical even though they remain close to their curved numerical counterparts. These parts
can be represented by the specific case of p1 −→ 0, where Σ̄2/σ̄ remains constant and Σ̄1/σ̄ varies between
the two bounds stemming from (37), where the auxiliary stresses Σ∗1 and Σ∗2 would simplify into 0 and
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1 − fb, respectively and Σ̄1/σ̄ stays below its value in the curved part. As Fig. 4a clarifies, at a given p2,
F has a constant vertical intercept (equaling p2Σ̄2/σ̄+ Σ̄3/σ̄) but a varying slope (Σ̄1/σ̄) ranging between
the left and right-neighborhood slopes at p1 = 0.

(a) (b)

Figure 4: (a) Relative status of F and G functions satisfying the |F | ≤ G inequality justifying the pre-coalescence
singular (straight) parts, (b) corresponding zones on a representative yield locus at a given Σ31/σ̄.

The line F at a specific p2 (or Σ31 accordingly) ranging between the dashed tangential lines gives rise
to a range for Σ̄1 while the point of tangency stays fixed, i.e. at fixed Σ̄2. At this point, for yielding to occur:

F = G =⇒ Σ̄2

σ̄
= −(1− c)sgn(D11) + c

√
(1− fb)2 −

(
Σ31

τ̄

)2

F ′ ≤ G ′ =⇒

∣∣∣∣∣∣∣∣

Σ̄1

σ̄
+ (1− c)


 1√

1 + 1
3(cp2)2

(1− fb) + sgn(D11)




∣∣∣∣∣∣∣∣
≤ sgn(Dm)

Σsurf

σ̄

(37)

where τ̄ = σ̄/
√

3 is the matrix shear strength. Equation (37)1 demonstrates that yielding is independent
of Σm for a given value of fb and Σ31, and thus is represented by horizontal lines admitting constant Σ̄2

(which can lie below or above the Σm axis depending on sgn(D11)) at the corresponding range of Σm, which
emanates from (37)2. With reference to p2 from (36) and, since the right-hand side of (37)2 ought to be
always positive, the pre-coalescence straight portion of the yield surface can be expressed in the following
simpler style:

√
3T −

√(T
τ̄

)2

−
(

Σ31

τ̄

)2

= 0

∣∣∣∣∣∣∣
Σ̄1

σ̄
+ (1− c)


(1− fb)

√
1−

(
Σ31

T

)2

+ sgn(D11)




∣∣∣∣∣∣∣
≤ Σsurf

σ̄

where T =
1

c

(
Σ33 − Σ11

τ̄
+
√

3(1− c)sgn(D11)

)

(38)
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where the parameter T is so defined as it will be used extensively in the sequel.
Remark 1 The signs associated with the pre-coalescence straight part are sgn(D11) = −1 and sgn(Dm) =

+1 (for Σ33 ≥ 0) or sgn(Dm) = −1 (for Σ33 < 0).
Remark 2 Equation (37) simplifies into Eq. (37) of [14] when p2 −→ 0, which is representative of

Σ31 = 0.
Remark 3 The distinction between sgn(D11) being +1 or −1 can be associated with the two extrema

of (Σ33 − Σ11)/σ̄ at coalescence. This will be better clarified in subsection 2.7.3.

2.7.2 Pre-coalescence curved parts

Fig. 5a illustrates, at a given p2, a point of tangency (equality of values and slopes) between F and G at
an arbitrary point ranging between the two singular points (p1 = 0 and p1 = p2) on the G curve. For a
microstructure, Σ33 − Σ11 and Σm correlate through the D̄1/D̄2 ratio (see Eq. (45) for the derivations).
The corresponding yield locus then represents a curve intermediating between the pre-coalescence and co-
alescence straight zones (lying below or above the Σm axis depending on sgn(D11)), as illustrated in Fig.
5b.

(a) (b)

Figure 5: (a) Relative status of F and G functions satisfying the |F | ≤ G inequality justifying the pre-coalescence
regular (curved) parts, (b) corresponding zones on a representative yield locus at a given Σ31/σ̄.

Recollecting the technique set forth in [40], one can fabricate, by letting Π∗(l) ≡ Π(l)(D∗1, D
∗
2), auxiliary

stresses Σ∗1 and Σ∗2 as defined below:

Σ∗1 =
∂Π∗(l)

∂D∗1

Σ∗2 =
∂Π∗(l)

∂D∗2

(39)

which will take the below-mentioned forms:

Σ∗1 = σ̄

[
sinh−1

(
ζ

fb

)
− sinh−1(ζ)

]

Σ∗2 = sgn(D∗2)σ̄

(√
1 + ζ2 −

√
f2

b + ζ2

) (40)
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and

Σ∗1 =

(
σ̄ ln

1

fb

)2 D∗1
Π(l)

Σ∗2 =
[
σ̄(1− fb)

]2 D∗2
Π(l)

(41)

using the exact and approximate integration methods, respectively.
In the former, Σ∗1 and Σ∗2 are not explicit functions of Π(l), and thus elimination of ζ between Σ∗1 and Σ∗2
demands some intermediary manipulation utilizing trigonometric algebra which would, at furthest, lead to
the following relation: (

Σ∗2
σ̄

)2

+ 2fb cosh

(
Σ∗1
σ̄

)
− (1 + f2

b) = 0 (42)

See Appendix A for a detailed proof.
In the latter, however, both Σ∗1 and Σ∗2 are multiples of Π(l). Herein, one can easily write, with referral

to (27):

(
1− fb

ln 1
fb

)2

(Σ∗1)2 + (Σ∗2)2 = σ̄(1− fb)4

(
D∗

1 ln 1
fb

1−fb

)2

+ (D∗2)2

(
Π(l)

)2 = σ̄(1− fb)2

...

[
1

ln 1
fb

(
Σ∗1
σ̄

)]2

+

[
1

1− fb

(
Σ∗2
σ̄

)]2

= 1

(43)

Henceforth comes the calculation of the Σ̄ tensor constituents, as defined in (10). Primarily, the following
derivatives should be evaluated:

∂Π∗(l)

∂D̄i
=
∂Π∗(l)

∂D∗1

∂D∗1
∂D̄i

+
∂Π∗(l)

∂D∗2

∂D∗2
∂D̄i

= Σ∗1
∂D∗1
∂D̄i

+ Σ∗2
∂D∗2
∂D̄i

i = 1, 2, 3 (44)

Meanwhile, back to the definition of ξ in (34), the components of Σ̄ will become simplified, according to
(18), into the following:

Σ̄1 ≡ Σ11 =
Σ∗1√

3
+ (1− c)

[
ξΣ∗2 + σ̄sgn(D11)

]
+ sgn(Dm)Σsurf

Σ̄2 ≡ Σ33 − Σ11 = cξΣ∗2 − (1− c)σ̄sgn(D11)

Σ̄3 ≡ Σ31 = Σ∗2

√
1− ξ2

3

(45)

Elimination of ξ ratio between the first and the third, then plugging the eliminated value in the second and
third equations would allow for expressing Σ∗1 and Σ∗2 in terms of the major stress components Σ11, Σ33,
and Σ31. To this end, from (45)2 and (45)3, we have

(
Σ33 − Σ11 + (1− c)σ̄sgn(D11)

cΣ∗2

)2

= 1− 3

(
Σ31

Σ∗2

)2

∴ (Σ∗2)2 = 3Σ2
31 +

1

c2

[
Σ33 − Σ11 + (1− c)σ̄sgn(D11)

]2
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whence Σ∗1 can be derived from plugging the above Σ∗2 and and (45)3 in (45)1. Consequently, the implicit
relation amongst the existing stress components will become:

Φ(Σ, fb,W, c) =

(
Σ31

τ̄

)2

+
1

c2

(
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

)2

+ 2fb cosh


√3

[
Σ33 − sgn(Dm)Σsurf

σ̄
− 1

c

(
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

)]
− (1 + f2

b) = 0

(46)

using the exact method and

Φ(Σ, fb,W, c) =
1

(1− fb)2

[(
Σ31

τ̄

)2

+
1

c2

(
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

)2
]

+

√
3

ln 1
fb

[
Σ33 − sgn(Dm)Σsurf

σ̄
− 1

c

(
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

)]2

− 1 = 0

(47)

based on the approximate method.
Remark 1 The combination Σ33 − Σ11 has been termed quasi-equivalent throughout the text in that it

can be interpreted as a measure of Σeq, the equivalent macroscopic stress for the given cell, as being equal
to that only in case of zero shear stress (consult [14]).

Remark 2 Equation (46) specifies into Eq. (32) of Ref. [14] by Morin et al. in absence of shear stress
(Σ31 = 0).

Remark 3 With fixed microstructural parameters (χ,W, c), changing the signs of D and Σ tensors
would produce an identical Φ. Namely, Φ(−Σ, χ,W, c) = Φ(Σ, χ,W, c), and thus Φ has point symmetry
with respect to the stress space origin.

Remark 4 Gurson’s notion included a cylindrical hollow tube (being devoid of circumscribing matrix
layers), subjected to tensile loads only. This would entail that Σsurf and Σ31 vanish. Furthermore, the
dissipation integral is evaluated over the ligament only. Hence, c = 1 and fb = f = fb. Then, Eq. (46)
simplifies into the following, which is nothing but Gurson’s yield model for a cylindrical void in a cylindrical
matrix: (

Σeq

σ̄

)2

+ 2f cosh

(√
3

Σ11

σ̄

)
− (1 + f2) = 0 (48)

2.7.3 Coalescence limits

The coalescence regime is associated with zero radial strain rate, D11 = 0. This condition will be met if and
only if D̄1 = D̄2, or equivalently |p1 − p2| = 0. On the other hand, Π is differentiable at the coalescence
bounds. Therefore, the primitive inequality F ≤ G will hold if and only if the following derivative vanishes:

Dij ∝
∂Φ

∂Σij
...

∂Φ

∂Σ11
= 0 (49)
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(a) (b)

Figure 6: (a) Relative status of F and G functions satisfying the |F | ≤ G inequality justifying the coalescence
straight parts, (b) corresponding coalescence zones on a representative yield locus at a given Σ31/σ̄.

The graphical representation of coalescence can be described as demonstrated in Fig. 6, where F
touches G at p1 = p2 with its ordinate (p2Σ33/σ̄ + Σ̄3/σ̄) being constant (at a given p2) and its slope
(Σ̄1/σ̄) varying between the adjacent neighborhood slopes. The limit values of F and G at this vicinity are:

lim
p1→p2

G =

√
p2

2 +
1

3

[
ζ sinh− 1 (ζu)−

√
1

u2
+ ζ2

]1/fb

1

+ |p2|sgn(Dm)
Σsurf

σ̄

ζ =
|p2|√

1 + 3p2
2

lim
p1→p2

F = p2
Σ33

σ̄
+

Σ̄3

σ̄

(50)

With frozen microstructural parameters, the normal stress at a given applied shear stress is constant through-
out the coalescence region. That is, Σ33 is only function of Σ31 and the microstructural parameters χ and
W (c will cancel from the equations) at coalescence. Hence, by naming Σcoal

33 = f(Σ31), the mean and
quasi-equivalent stresses will be coupled according to the following:

g =
Σcoal

m

σ̄
+

2

3

(Σ33 − Σ11)coal

σ̄
− f

(
Σ31

σ̄

)
= 0 (51)

which represents a linear relation between Σ33−Σ11 and Σm, as shown in Fig. 6b. In the interest of brevity,
(46) and (47) can be rephrased as

Φ(Σ, fb,W, c) =

(
Σ31

τ̄

)2

+
T 2

3
+ 2fb cosh

(
Σ33 − sgn(Dm)Σsurf

τ̄
−T

)
− (1 + f2

b) = 0 (52)

and

Φ(Σ, fb,W, c) =

(
Σ31

T

)2

+
1

3

(
T

T /τ̄

)2

+
1√

3 ln 1
fb

[
Σ33 − sgn(Dm)Σsurf

τ̄
−T

]2

− 1 = 0 (53)
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where the common term 1
c

(
Σ33−Σ11

τ̄ +
√

3(1− c)sgn(D11)
)

has been replaced by T . Setting, for in-
stance, the derivative in (49) to zero will generate the following intervals for variation of Σ33 − Σ11 in the
coalescence regime:

∂Φ

∂(Σ11/σ̄)
=
−2

c2

[
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

]
+ 2fb

√
3 sinh

√
3

(
−T +

Σ33 − sgn(Dm)Σsurf

σ̄

)
= 0

∴ fb sinh
√

3

(
−T +

Σ33 − sgn(Dm)Σsurf

σ̄

)
=

1

c
√

3

[
Σ33 − Σ11

σ̄
+ (1− c)sgn(D11)

]
=

T√
3

∴ fb cosh
√

3

(
−T +

Σ33 − sgn(Dm)Σsurf

σ̄

)
=

√
f2
b +

T√
3

which, along with the cosh term extracted from Eq. (52), yields

T 4

4
− (M +

1

3
)T 2 + (M 2 − f2

b ) = 0

where 2M = 1 + f2
b − 3(Σ31/σ̄)2. A similar, rather simpler procedure can be adopted in the approximate

criterion (53). Altogether, the T extracted from solution to the above equation, here labeled T coal, can be
written as

(
T coal

)2
≡ 1

c2

(
(Σ33 − Σ11)coal

τ̄
+
√

3(1− c)sgn(D11)

)2

=
5

3
+ f2

b −
(

Σ31

τ̄

)2

− 2

3

√
4(1 + 3f2

b)− 3

(
Σ31

τ̄

)2
(54)

and

T coal ≡ 1

c

(
(Σ33 − Σ11)coal

τ̄
+
√

3(1− c)sgn(D11)

)

= κ(fb) c
Σ33 − sgn(Dm)Σsurf

τ̄
−
√

3(1− c)sgn(D11) , κ(fb) =
1

1 + 1
3

(
ln 1/fb
1−fb

)2

(55)

in the exact and approximate formulations, respectively, where 0 < κ(fb) < 1 is a bounded function of the
ligament parameter. In either form, the plus and minus signs introduced upon taking the square root of the
two sides will correspond to the upper and lower values of Σ33−Σ11 representing the bounds of coalescence.
Consequently, the yield criterion, expressed in a modified form in the coalescence region, writes:

Φcoal(Σ, fb,W ) =
1

L(fb)

(
Σ33 − sgn(Dm)Σsurf

τ̄

)2

+

(
Σ31

T

)2

= 0

L(fb) = 9

(
1− κ(fb)

ln 1/fb

)2

+
κ(fb)

(T /τ̄)2

(56)

in its approximate formulation, where κ(fb) has been derived in (55).
Remark 1 The coalescence portion, viewed separately, is built upon volumetric averaging within the

plastically deformable ligament. The main difference between the diffuse (growth) and localized (coales-
cence) mechanisms is that the latter is entitled with directionality. That is, plastic deformation becomes
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localized in a plane to be specified. In a sense, the post-localized deformation can be expressed as a special
case of the diffuse deformation mechanism in case the same microstructural parameters are utilized in both
regimes (where, in the present work, the localization plane direction is implicitly assumed). The only differ-
ence would then be that the diffuse plastic deformation can be mainly expressed in terms of the (f, w) pair
rather than the (χ,w, λ) triad, with f being the void volume fraction.

Remark 2 Equation (54) produces the same function as stated in Eq. (19)1 of [40] as the flow potential
for Σ33 ≥ Σsurf . Correspondingly, Eq. (56) resembles Eq. (41) of [39] (with a few percent of difference).
By the same reasoning as illustrated in Appendix A [40], the transition from the regular (curved) part into
the singular (straight) part of the coalescence yield locus occurs in a cornerless mode. The reason lies in the
first derivative of Σ33 with respect to Σ31 being unbounded at Σ31max due to vanishing of the denominator.

Remark 3: The signs attributed to D11 and Dm can come directly from the derivations. With reference
to Eq. (54), sgn(D11), appearing only during the growth regime, acts as function of the minimum positive
value of (Σ33 − Σ11)/σ̄ during void growth, which is fulfilled at the onset of coalescence. Since the post-
coalescence regime supposedly progresses down into the negative half-space of (Σ33 − Σ11)/σ̄, T coal sets
as the distinctive value for determining sgn(D11). Namely:

sgn(D11) = sgn(−(1− c) + cT coal − Σ33 − Σ11

σ̄
) (57)

Remark 4: Following the rationale given in [40], the value of sgn(Dm) at coalescence can be attributed
to the sign of Σ33. Since the process correlating void growth and coalescence is a monotonic one, a positive
Σ33 during void growth is followed by a positive Σ33 at coalescence, and vice versa. Namely:

sgn(Dm) = sgn(Σ33) (58)

2.8 Synopsis of the Model

The unified yield criterion is hereby summarized as to facilitate readership:

Φ(Σ, fb,W, c) =





√
3T −

√
T 2 − (Σ2

31 + Σ2
32)

τ̄

if

∣∣∣∣∣∣
Σ11
τ̄ +

√
3(1− c)

[√
T 2 − (Σ2

31 + Σ2
32)

τ̄
+ sgn(−

√
3(1− c) + cT coal − Σ33−Σ11

τ̄ )

]∣∣∣∣∣∣
≤ Σsurf

τ̄

(
Σ2

31 + Σ2
32

τ̄2

)
+

T 2

3
+ 2fb cosh

(
Σ33 − sgn(Σ33)Σsurf

τ̄
−T

)
− (1 + f2

b) if |T | ≥ T coal

(
Σ2

31 + Σ2
32

τ̄2

)
+

(T coal)2

3
+ 2fb cosh

(
Σ33 − sgn(Σ33)Σsurf

τ̄
−T coal

)
− (1 + f2

b) Otherwise

(59)
where

T =
1

c

(
Σ33 − Σ11

τ̄
+
√

3(1− c)sgn(−
√

3(1− c) + cT coal − Σ33 − Σ11

τ̄
)

)

(T coal)2 =
5

3
+ f2

b −
(

Σ31

τ̄

)2

− 2

3

√
4(1 + 3f2

b)− 3

(
Σ31

τ̄

)2
(60)
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in its exact form and

Φ(Σ; fb,W, c) =





√
3T −

√
T 2 − (Σ2

31 + Σ2
32)

τ̄

if

∣∣∣∣∣∣
Σ11
τ̄ +

√
3(1− c)

[√
T 2 − (Σ2

31 + Σ2
32)

τ̄
+ sgn(−

√
3(1− c) + cT coal − Σ33−Σ11

τ̄ )

]∣∣∣∣∣∣
≤ Σsurf

τ̄

(
Σ2

31 + Σ2
32

τ̄2

)
+

T 2

3
+

(T /τ̄)2

√
3 ln 1/fb

(
Σ33 − sgn(Σ33)Σsurf

τ̄
− T

3

)2

− (1− fb)2 if |T | ≥ T coal

(
Σ2

31 + Σ2
32

τ̄2

)
+

(T coal)2

3
+

(T /τ̄)2

√
3 ln 1/fb

(
Σ33 − sgn(Σ33)Σsurf

τ̄
− T coal

3

)2

− (1− fb)2 Otherwise

(61)
where

T coal = κ(fb) c
Σ33 − sgn(Dm)Σsurf

τ̄
−
√

3(1− c)sgn(D11)

κ(fb) =
1

1 + 1
3

(
ln 1/fb
1−fb

)2

(62)

in its simpler approximate counterpart. In either form, the first line represents the pre-coalescence singular
(straight) part, the second line signifies the pre-coalescence regular (curved) zone, and the third line accounts
for the coalescence straight line. As pointed out in advance, the transition from pre-coalescence to coales-
cence occurs without any slope singularity (sharp corners) except for the maximum shear stress equaling
T . A complete description over the extrema of stress components using the properties of F and G (or their
equivalents H and L ) is covered in Appendix B. Finally, the model predictions will be validated with
numerical outcomes in Section 3.1.

Remark: The difference between the regular portions of upper-bound and approximate functions is
small. However, the approximate model’s prediction of coalescence bounds is not as close as expected to
that of the upper-bound model. Therefore, T coal had better be evaluated from (60) if one wants to adhere
to the approximate model.

Notwithstanding the robust nature of the above model in predicting failure under combined tension and
shear, its capability is entitled to its own limitations at extreme circumstances. The word extreme alludes
to when the induced failure mechanism stays far from the real mechanism. Reference to [39, 40] declares
that the extreme cases mainly takes place at very flat (w << 1) or much elongated (w >> 1) voids under
predominantly tensile and shear loading schemes, respectively. The former refers to when the predicted
mechanism is internal necking (which entails more work with increasing rigid zones) while the adjacent
flattened voids can interconnect with plastic zones extending due to normal plastic deformation. All the
same, the latter occurs since, with a long void, internal shearing (extending diagonally) does not occupy
the entire ligament whereas the model presumes that plasticity is diffuse within the ligament. A flattened
void mainly overpredicts Σsurf and an elongated void tends to enlarge the maximum shear stress T . The
discussion pointed out in [39, 40] is suggestive of the following modification:
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Φ(Σ, fb,W, c) =
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(63)
based on exact integration and

Φ(Σ; fb,W, c) =


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(64)
as its approximate counterpart. The recommended calibration functions read:

t(χ,W ) =
(t0 + t1χ)W

1 + (t0 + t1χ)W
(65)

where t0 and t1 are parameters to be determined from numerical results (the choice of t0 = −0.84, t1 =
20.6 recommended in [39] is a proper one). To prevent an ill-behaved evaluation at χ −→ 0, t(χ,W ) =
t(0.2,W ) for χ < 0.2. Secondly, l reads (again for χ ≥ 0.2 only):

l(χ,W ) =
[
1 + (l1χ+ l0)W

]
T (66)

with (l0, l1) = (0.035,−0.15) proposed in [40].
The above scheme is heuristic. With regards to oblate voids, a recent work by Hure and Barrioz [49]

proposed to consider a plastic flow extending above/below the void. It seems at first sight that, upon a similar
approach, parameter c could be varied for the effective porous zone, which might eliminate the call for the
use of calibrated functions as multiple of Σsurf . However, such an effort is beyond the scope and is not along
with the driving purpose behind this work, and is therefore left as an outlook for future investigation.

3 Model Assessment and Predictions

3.1 Cell-Model Calculations

The capability of the derived model should be observed by comparison to numerical results. The objective
of this section is to elaborate on the steps to calculate the ultimate radial, normal, and shear stress values
required to yield under volumetric void growth or lateral void coalescence using FEM analysis. In effect,

287



the FEM framework employed in this study is intended to be the numerical equivalent of the theoretical
plastic limit load analysis of a structure, which corresponds to the problem of small-strain plasticity with
no elastic domain (see [37]). A classical consequence of limit-analysis with this attitude is that elastic
strain rates vanish when the limit load is reached. Therefore, the elastic moduli should disappear from the
equations and, in turn, plasticity imposes an incompressible velocity field on the material. In this study,
the base material of the unit cell is taken to be elastic-perfectly plastic. Yet, in order to mimic a de-facto
limit analysis, a high value of Poisson’s ratio, close to 0.5, should be enforced (the value used herein was
ν = 0.49, which maintains a quasi-incompressible velocity field and will not lead to singular solutions).
Following the yield strength to Young’s modulus ratio of σ̄/E = 0.000225, the Young modulus is taken
E = 4444.5σ̄.

The commercial tool ABAQUS is used to carry out the numerical calculations. Inasmuch as this part
of the research is meant to validate the analytical model, the FE model is featured as to include a unit cell
(with the geometric properties characterized in Section 2.1) admitting quasi-periodic boundary conditions
(the term quasi- denoting the fact that the cylindrical cell is not space-filling per se). The analysis procedure
allows for any alternative space-filling model with no significant increase in the computational demand. Yet,
the least uncertainty lies within the numerical and analytical cells with identical geometries. See [40].

The critical stress value for a specific void configuration (as dictated by a specific (χ, W ) pair) is sought
for at each FE analysis. To this end, the equilibrium equations are to be solved on the basis of initial geo-
metric specifications rather than the deformed state in order that the calculated stress values correspond to
a well-defined initial configuration with a perfectly circular cylindrical void shape. This can be achieved
through switching off geometric nonlinearity in ABAQUS (NLGEOM=No; for more technical details, con-
sult ABAQUS Documentation [50]). All the geometric parameters would then refer to the initial geometry.

(a) (b)

Figure 7: A numerically well–conditioned mesh illustrated for W = 0.5 and: (a) χ = 0.4, (b) χ = 0.6.

Figure 7 depicts a numerically well–conditioned mesh illustrated for χ = (0.4, 0.6) and W = 0.5. Due
to their quasi-rigid conduct, a coarse mesh can be utilized for the parts away from the voided region.

As stated above, a circular cylindrical cell is not space-filling at first sight. To overcome this apparent
shortcoming, the modeled cell figures a periodic void distribution where each void center corresponds to the
lattice point of a hexagonal crystal. In most configurations, the void fully fits into the unit cell when the cell
aspect ratio λ is considered as unity. Yet, for some (χ,W ) pairs, the void will protrude, and thus λ ought to
take other values. The reader, however, should be appreciative of the fact that λ bears no influence on the
critical stress values at the onset of coalescence so long as the height H is taken large enough to guarantee
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the possible presence of rigid zones above and below the void 4. On the other hand, a largerH value leads to
a greater number of elements, and the computational cost will be increased accordingly. Different λ ratios
were thus chosen for varying (χ,W ) sets, as shown in Table 1.

Table 1: W − χ sets for which λ 6= 1
W χ λ

0.1 0.4 0.5
0.1 0.6 0.5
1.5 0.4 1.2
1.5 0.6 1.5
2.0 0.4 1.6
2.0 0.6 2.0
2.5 0.4 2.0
2.5 0.6 2.5
3.0 0.4 2.4
3.0 0.6 3.0

The FEM analysis proceeds as controlled by three target displacements U1 = U2, U3, and Ut, denoting
the lateral, axial, and tangential (shear) displacements, respectively. The target displacements are applied
onto the main vertical chords on the lateral surface, and onto the upper surface, respectively. The radial
displacement is then distributed over the lateral surface elements through the periodicity equations expanded
in Appendix C. The stress distribution and resultant stress components are completely calculable as function
of the Rr = U1/U3 = U2/U3 and Rsh = Ut/U3 independent ratios. Since the ultimate load value is not
known as such, each stress component for the overall unit cell is calculated in obedience to a simple volume
averaging, which can be written as

Σij =
N∑

n=1

M∑

m=1

(σij)
m
n vn (67)

where vk = Vk/Ω is the volume fraction of each integration point with respect to the whole unit cell (with
Ω = Vcell being the total cell volume). In other terms, macroscopic stress components are calculated by
looping over all elements and all Gauss points for each and every element, where N is the total number of
elements andM is the number of Gauss points in an element (n = 8 for the 20-node quadratic brick element
with reduced integration, named as C3D20R in the ABAQUS element library [50]). Hence, σij is the local
stress value at the corresponding integration point.

4Also noteworthy is that the zones above and below the void ought to be large enough to set grounds for localization to occur
in the x1 – x2 plane at coalescence, referred to as internal necking the basis of coalescence derivations. If the void is very close
to the top (and bottom) surfaces of the unit cell, coalescence occurs in the x2 – x3 plane (primarily named as a necklace-type
coalescence by Benzerga [51], which is beyond the scope of this study. Prior to coalescence, during void growth, localization
occurs perpendicular to the ligament.
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Figure 8: Finite element mesh for one quarter of an example unit cell with microstructural parameters given as
(χ,W ) = (0.25, 1.0), accompanied by the nomenclature used to define various surfaces and edges to which the
boundary conditions are imposed. The origin of the reference coordinate system stands at the void center in the
undeformed configuration.

The FEM analyses are of a single-step strain-controlled identity. The rationale behind this is that the
initial configuration should also pertain to the ultimate state without large expansions and/or distortions
taking over the process. Moreover, the remote traction values at the onset of localization are not known
a priori. Therefore, the radial-to-normal and shear-to-normal stress ratios at the onset of coalescence are
mainly influenced by the radial-to-normal (Rr) and tangent-to-normal (Rsh) displacement ratios prescribed
for the lateral surface and top-face middle chord of the unit cell (0, x2, H), respectively (the latter is shown
with a dashed line in Fig. 8). A complete explanation on the imposition of periodic boundary conditions on
the unit cell is covered in Appendix C.
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(a) (b)

(c) (d)

Figure 9: Examples of equivalent plastic strain (PEEQ) contours for fixed microstructural parameters (χ,W ) =
(0.4, 0.5) and varyingRr andRsh ratios: (a,b) during void growth prior to coalescence, with (a) (Rr, Rsh) = (100, 0),
(b) (Rr, Rsh) = (1, 20), exhibiting diffuse plasticity; (c,d) at the onset of coalescence (with Rr = 0), exhibiting an
internal necking localization, (c) Rsh = 0 (denoting zero shear), (d) Rsh = 20 (denoting intense shear).

Figure 9 demonstrates examples of equivalent plastic strain (PEEQ) contours during void growth as well
as at the onset of void coalescence for a given geometry and different Rsh ratios. In the former, plasticity
extends into the solid zone bounding the void whereas, in the latter, it stays within the confines of the
ligament, clearly revealing the internal necking or shearing mechanism.

3.2 Model predictions vs. numerical results

Enough grounds are now provided for validation of the model. Figure 10a and 10b illustrate representative
yield loci in absence of shear (Σ31 = 0) as well as for various values of shear stresses, respectively, shown
as compared to FEM results. Similar analysis, only in absence of shear, were carried out by Morin et al. [14]
for the same unit cell geometry. Note that, due to the uncoupled nature of shear tractions from the triaxial
ones, all the points that constitute a curvilinear locus correspond to a single value of Ut.

291



(a) (b)

Figure 10: Comparison between analytical and numerical yield loci for microstructural parameters (W,λ) =
(1.0, 1.0) and χ = 0.4, 0.6: (a) in absence of shear (Σ31 = 0); (b) for Σ31 = {0, 0.3σ̄, T }. Note that the modi-
fied and analytical maximum shear stresses are almost equally T = 0.419σ̄ after modification is applied.

It can be obviously observed that the numerical yield surface subtends its analytical counterpart, admit-
ting the rigorous upper-bound character. That is, the analytical surfaces would invariably stand exterior to
its numerical counterpart [35]. The model, at best, should be both upper-bound and rigorous. As clearly
seen in Fig. 10, the present model proves close to rigorous for a wide range of shear stresses, and the only
case where it keeps being an upper bound but ceases to be rigorous is under extreme shearing, denoted by
Σ31 = T .

Also revealed is the point symmetry of the yield locus with respect to the stress space origin. Above all,
the points pertaining to near-maximum shearing all correspond to Ut ≥ 50U3. Such an intense shear would
trigger a constant axial stress Σ33 being equal to the case with U1 = 0, and the lateral stress Σ11 range stems
from U1 varying between −U3 and U3. It can be realized that, in a state of extreme shearing (Σ31 −→ T ),
the only mode of failure is internal shearing as there are no FEM data between the two parallel sets. That is,
the inclined linear parts for Σ31 = T in Fig. 10b are not physical.

3.3 Representative Yield Surfaces

This subsection reflects the analytical yield surfaces predicted by the model without relying on their FEM
counterparts. To this end, the typical well-behaved microstructural triple (χ,W, c) = (0.5, 1.0, 0.5) has
been adopted herein. Figure 11 shows various yield loci upon quasi-equivalent vs mean as well as normal
vs radial stress expressions, for shear stress values ranging from 0 to the maximum magnitude T . The
approximate loci can be seen to stand interior to the exact counterparts.
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(a) (b)

Figure 11: (a) Quasi-equivalent vs mean, and (b) normal vs radial stress yield loci for a representative set of mi-
crostructural parameters (χ,W, c) = (0.5, 1.0, 0.5) with several values of shear stress.

The complete yield surface will be generated upon considering shear stress as a third axis. The 3D yield
surfaces for the representative microstructural values (χ,W, c) = (0.5, 1.0, 0.5) are shown in Fig. 12. The
coalescence surfaces are illustrated with a sharper color. For more clarity, they are also exclusively shown
in Fig. 13. The projection of the cylindroidal coalescence surface on the Σ11 = 0 plane is nothing but the
coalescence yield locus, as showcased in Fig. 13c.

(a) (b)

Figure 12: (a) Quasi-equivalent vs mean, and (b) normal vs radial stress 3D yield surfaces for the representative
set of microstructural parameters (χ,W, c) = (0.5, 1.0, 0.5) with shear stress as the third axis. The sharp-colored
subsurfaces pertain to the coalescence regime.
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(a) (b)

Figure 13: (a) normal vs radial stress 3D yield surface only representing void coalescence for the same set of mi-
crostructural parameters (χ,W, c) = (0.5, 1.0, 0.5); (b) 2D surface projection onto the Σ31–Σ33 plane, retrieving the
yield locus introduced in [40].

The yield surfaces/loci shown in Fig’s are all associated with frozen microstructures. The effects due to
varying microstructural parameters are then illustrated in Appendix 3.4.

3.4 Effects of microstructure on yield surface bounds

The representative yield surfaces were given for a single triad of microstructural parameters. The reader,
however, may be avid to know how each parameter tends to affect the yield criterion independently, i.e.
when the rest of parameters are kept constant. The only independent microstructural parameters in the
model derived herein are the void aspect ratio (W ), the ligament parameter (χ), and the cell aspect ratio (λ)
or, alternatively, the ligament volume fraction (c). In the following comes discussion on the effect of each
microstructural parameter at varying values of shear stress.

3.4.1 Effect of cell ligament parameter

(a) (b) (c)

Figure 14: Effect of the ligament parameter χ on the bounds of the normal vs radial stress yield surface, the other
microstructural parameters kept constant at (W, c) = (1.0, 0.5): (a) Σ31 = 0, (b) Σ31 = 0.3σ̄, and (c) Σ31 = T .
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Figure 14 demonstrates the effect of the ligament parameter χ on the bounds of the yield surface in the
corresponding stress space. Increasing χ would shrink the yield surface along both axes, the so-called effect
being more remarkable on the axial (Σ33) stress bounds. Moreover, the shrinking effect of χ diminishes
with increasing shear.

3.4.2 Effect of void aspect ratio

(a) (b) (c)

Figure 15: Effect of the void aspect ratio W on the bounds of the normal vs radial stress yield surface, the other
microstructural parameters kept constant at (χ, c) = (0.5, 0.5): (a) Σ31 = 0, (b) Σ31 = 0.3σ̄, and (c) Σ31 = T .

The effect induced by variation ofW is depicted in Fig. 15. IncreasingW would, for the most part, decrease
the bounds of Σ33 while the influence on Σ11 may not be neglected. Altogether, the pre-coalescence zone,
accounting for volumetric void growth, is not significantly affected by the void aspect ratio.

3.4.3 Effect of cell aspect ratio

(a) (b) (c)

Figure 16: Effect of the cell aspect ratio λ, represented by the ligament volume fraction c in the formulation, on the
bounds of the normal vs radial stress yield surface, the other microstructural parameters kept constant at (χ,W ) =
(0.5, 1.0): (a) Σ31 = 0, (b) Σ31 = 0.3σ̄, and (c) Σ31 = T . The values of λ associated with c = (0.5, 0.75) are
λ = (1.0, 2/3).

The cell aspect ratio λ is in inverse proportion with the ligament volume fraction c. However, since the
yield functions are directly expressed in terms of c rather than λ, the effect imposed by the former parameter
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will be discussed. Figure 16 illustrates this effect. Interesting is the fact that, with other parameters fixed
c (or λ), will not affect the axial coalescence stress bounds, whereas it alters the lateral stress bounds at
coalescence. Mathematically explained, the c factor is canceled from the equations after setting ∂Φ/∂Σ11

to zero. Physically interpreted, plasticity at internal necking coalescence is mainly dictated by the plastic
deformation triggered in the ligament circumscribing the void, rather than the whole volumetric domain.
Disregarding coalescence, however, decreasing λ (increasing c) has a shrinking effect on the yield surface
bounds.

4 Discussion

The results represent a first analytically-derived micromechanics-based model describing void growth and
coalescence under combined tension and shear in unified form. The model was derived on the basis of limit
analysis over a cylindrical elementary cell embedding a coaxial cylindrical void. It can be clearly evidenced
that, unlike that in hybrid models, the transition between the pre-coalescence and coalescence zones occurs
in a cornerless mode. Hence, the overall surface, comprising straight and curved portions, admits a C1-
degree continuity. Comparison between analytical and numerical limit loads confirms that the model is
preservative of the upper-bound character. The difference between the upper-bound and approximate yield
loci is clearly negligible (or zero at maximum shear) even though the approximate model is significantly
simpler than the upper-bound counterpart.

Further observed from Fig. 11 is that the yield surface has point symmetry with respect to both space
origins. Moreover, the transition between the pre-coalescence and coalescence zones occurs in a cornerless
mode (except for the maximum shear stress magnitude, which is more of a theoretical value rather than
being practical).

Among all subsurfaces within the yield surface, the horizontal portions in Fig. 11a, equivalent to slanted
linear parts in 11b, are non-physical due to the simplistic choice of the velocity field, which satisfies a
first-degree continuity within the radial component between the ligament and matrix. Higher degrees of
continuity would create a more precise model (with curved parts taking place of the linear parts) but not in
closed form.

Upon a deeper scrutiny, the yield surface is found to have singularity in the whole area beneath the locus
corresponding to the maximum shear stress Σ31 = T , and the values of axial and radial stresses (and con-
sequently Σ33−Σ11 and Σm) can take any value –including zero– inside the circumscribing parallelogram.
This represents a planar part on the yield surface, can be more clearly observed in Fig. 12.

One could also see, by looking into the coalescence subsurface in 13, that the coalescence yield locus
introduced in [40] appears by viewing the subsurface along the Σ11 axis. Correspondingly, the same yield
criterion as in [40] will be retrieved by setting D11 = D22 = 0. See (593). This would reflect as an elliptical
function in (61)3, which resembles that proposed in [39].

The increased difference between analytical and numerical yield loci in Fig. 10 with increased shear
is due to the simplistic velocity field, which could have been extended into a more precise one but would
no more deliver a closed-form expression of the yield function. Moreover, unlike the onset of coalescence
identified in [48] and the like, the present model is devoid of adjustable parameters such as fc or heuristic
factors that could calibrate the function during void growth. However, the main concern regarding a yield
function upon derivation is to preserve the upper-bound character, which is fully satisfied herein. On the
other hand, the analytical and numerical counterparts cannot be too far, and hence, the model, at best, should
be both upper-bound and rigorous. The present model proves close to rigorous for a wide range of shear
stresses, and the only case where it keeps being an upper bound but ceases to be rigorous is under extreme
shearing, denoted by Σ31 = T .

In order for the model to set the benchmark for modeling ductile fracture, it should be numerically
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implemented in a plasticity analysis framework. A key feature is then to supplement the model with proper
constitutive equations to solve boundary-value problems.

Furthermore, the post-localization constitutive equations are meager in the literature. The evolved values
of χ andw has been proposed in [34] in absence of shear. However, void rotation triggers the microstructural
evolution, particularly for χ, w, and n3 (the latter denoting void orientation) more intricate. The simplest
corresponding challenge is to develop evolution equations on a localized basis. Moreover, in order for the
model to predict failure, a notion of surrogate microstructure comes into play, which maps the main cell into
an equivalent upright one that warrants the use of the mathematical model. This will be ground for future
investigation.

Among all microstructural parameters, the effect of the cell aspect ratio is more intricate. That is, in a
microstructural evolution boundary-value problem, the initial cell shape, through λ0, while f0 and w0 are
kept constant, would affect the onset of void coalescence due to changing the initial void spacing, through
χ0. It, therefore, bares an indirect effect at fixed f0 and w0. If, on the other hand, χ0 and w0 are fixed
instead, then λ0 would influence void growth as well as the lateral stress at the onset of coalescence via
affecting the value of porosity f (see Appendix 3.4 for better clarity on this effect). The effect of cell shape
has been elucidated through evolution analyses in [48, 16, 34].

Another implication of the methodology discussed herein is how representative the elementary cell can
be considered. In a sense, the cell shape could possibly affect the response. An extension of the present
work analogous to [29] would therefore be an appealing subject of future work.

5 Conclusions

An upper-bound model of dilatant plasticity was developed, in extension to a simpler model developed in
[14] as to incorporate the effect of shear, based on limit analysis of a cylindrical elementary cell. The nat-
ural framework of analysis was set by rate-independent J2 (Mises) plastic flow rule, idealizing the material
behavior as rigid-ideally plastic. The model consists of an effective yield criterion that unifies diffuse and
localized modes of deformation, mainly designated by void growth and coalescence, in materials failing by
ductile damage accumulation. With the choice of trial velocity fields considered in [14] as basis, so extended
as to include shear, the overall model was derived all analytically from first principles based on limit analysis
and expressed in piece-wise closed form in both upper-bound and quadratic approximate representations.
The model encompasses the stress limits to void coalescence, and the transition between subfunctions rep-
resenting growth and coalescence regimes is cornerless. With reference to a method introduced in [40], the
numerical equivalent results with the same cell geometry were obtained from single-step finite-deformation
FEM analysis, and the model was assessed therein. To extend the predictive capability of the model into
cases with flattened or elongated voids, the as-derived model was modified, with reference to its numerical
counterpart, with simple algebraic functions of the microstructural parameters. The model is yet to be
numerically implemented to exhibit all its pros and cons. Once implemented, along with essential evolution
equations for internal state variables, a complete failure procedure for porous materials from void growth
to coalescence ensued by failure can be simulated in a homogenized manner. The constitutive framework
can also be implemented in a user-defined subroutine (UMAT) for boundary-value problem simulation pur-
poses. Further, notwithstanding the model is a well-grounded one, more extensive models, as to incorporate
the void orientation and/or matrix anisotropy, would be appealing.
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Appendix A Proof of Eq. (42)

Equation (40) is firstly repeated here for ease of reference.

Σ∗1 = σ̄

[
sinh−1

(
ζ

fb

)
− sinh−1(ζ)

]

Σ∗2 = sgn(D∗2)σ̄

(√
1 + ζ2 −

√
f2

b + ζ2

) (A-1)

Consider the following identities

cosh (a− b) = cosh a cosh b− sinh a sinh b

sinh (a− b) = sinh a cosh b− cosh a sinh b
(A-2)

with (a, b) ∈ R are any two real numbers. With (A-2)1 applied on (A-1)1, one can write

fb cosh

(
Σ∗1
σ̄

)
=
√
f2
b + ζ2

√
1 + ζ2 − ζ2 (A-3)

which, along with (A-1)2, leads to ζ eliminated in terms of the auxiliary stresses as

ζ2 =

[
1− fb cosh

(
Σ∗1/σ̄

)

Σ∗2/σ̄

]2

− 1 (A-4)

Next, (A-2)2 can be applied on (A-1)1 and, together with (A-1)2, yield

fb sinh

(
Σ∗1
σ̄

)
= ζ

Σ∗2
σ̄

(A-5)

Then, exploiting the correlation between cosh2 a and sinh2 a, one can write

cosh2

(
Σ∗1
σ̄

)
− sinh2

(
Σ∗1
σ̄

)
= 1 ∴ 1 +

(
Σ∗2
σ̄

)2

− 2
√

1 + ζ2
Σ∗2
σ̄

= f2
b

which, with ζ plugged in from (A-4), generates the desired relation reading
(

Σ∗2
σ̄

)2

+ 2fb cosh

(
Σ∗1
σ̄

)
− (1 + f2

b ) = 0 (A-6)

Appendix B Bounds to the Yield Surface

It is advantageous to know the extrema of each applied stress in absence of the other stresses. This section
aims at deriving the applied stress bounds upon expressing the yield criterion in terms of the quasi-equivalent
vs mean or normal vs radial stresses, in presence of a nonzero shear stress. Since the absolute extrema
for every stress component is sought for, the procedure is, as formerly illustrated, resorting back to the
primitive inequality of limit analysis, i.e. Eq. (6). The first and foremost stage to this end is to express
the plastic rate of work as well as the dissipation function in an equivalent form that is nondimensional
with respect to the deformation rate components D̄i (or Dij), by dividing both functions by one arbitrary
component of D (or D̄). Like so we will have two functions with nondimensional stress coefficients as
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variables, as in (31) for instance. In general, the absolute evolution interval of each stress component
can be evaluated with two different attitudes, both resting on the primitive inequality of limit analysis (6):
by establishing the inequality condition either on the nondimensional factor (as for p variables) or on the
relative status of nondimensionalized functions in whole (as in F and G (31)). In the former, the condition
is met by setting the non-dimensional coefficient of the considered stress (p1 and p2 for instance, in section
2.7) to infinity (except for Σ31 as the one component free of multiples), and in the latter, it is satisfied by
enforcing the inequality for all values of variables (∀ p for instance). Extra care, however, should be taken
regarding the first procedure. That is, in order to evaluate the entire stress space bounds, all critical values
of nondimensional parameters (p1 and p2 for instance).

B.1 Quasi-equivalent vs mean stress, function of shear

Eq. (33) is the equivalent form of the primitive inequality in this case. By exploiting (32) and (42) or (41),
one can express the entire stress space, plastic rate of work, and the dissipation function in terms of the
(p1, p2) ratios, be it in exact or approximate form.

• Range of Σ̄1:

As formerly clarified in subsection (2.7), p1 −→ 0 would give the interval of Σ11 in the pre-coalescence
singular (straight) part. All the same, setting p1 −→ ∞ gives rise to the (absolute) maximum value of Σ11.
Consequently:

lim
p1→∞

(ζ2, ξ2) =

(
1

3(1− c)2
, 1

)

|F | ≤ G =⇒
∣∣∣∣∣
Σ̄1

τ̄

∣∣∣∣∣ ≤


sinh−1

(
u√

3(1− c)

)
−
√

1 +
3(1− c)2

u2




1/fb

1

+
√

3(1− c)sgn(D11) + sgn(Dm)
Σsurf

τ̄

(A-7)

in the exact formulation, and
∣∣∣∣∣
Σ̄1

τ̄

∣∣∣∣∣ ≤ (1− fb)

√
(
ln 1/fb

)2
+ 3(1− c)2(

T
τ̄

)2 +
√

3(1− c)sgn(D11) + sgn(Dm)
Σsurf

τ̄
(A-8)

in its approximate form. For the microstructural paramters (χ,W, c) = (0.5, 1.0, 0.5), for instance, the exact
and approximate values will turn out to be 2.83 and 2.81, respectively.

• Range of Σ̄2:

Regarding the range of Σ33 − Σ11, it can be obtained either from the |F | ≤ G inequality or directly from
the implicit relations, (47) or (46), the reason lying in the fact that Σ33 − Σ11 stands constant in the pre-
coalescence singular region (see subsection 2.7.1). The former approach entails evaluation of F and G at
p2 −→∞. The latter, however, demands that the inside of cosh be not smaller than 1 or, in the approximate
formulation, the inside of the square root giving solution for Σ33 − sgn(Dm)Σsurf be positive. Stated in
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mathematical terms:

|F | ≤ G , lim
p2→∞

(ζ2, ξ2) = (0, 1.0)

or 1− 1

(1− fb)2

[
T 2

3
+

(
Σ31

τ̄

)2
]
≥ 0

=⇒
∣∣∣∣∣
Σ̄2

τ̄
+
√

3(1− c)sgn(D11)

∣∣∣∣∣ ≤
√

3c

√
(
T
τ̄

)2 −
(

Σ31

τ̄

)2

...−
√

3[(1− c)sgn(D11)− c
√

(
T
τ̄

)2 −
(

Σ31

τ̄

)2

] ≤ Σ33 − Σ11

τ̄
≤ −
√

3[(1− c)sgn(D11) + c

√
(
T
τ̄

)2 −
(

Σ31

τ̄

)2

]

(A-9)

• Range of Σ̄3:

The range of Σ31 can be observed by letting (p1, p2) −→ 0. This would generate the following interval:

Σ31 ≤
1− fb√

3
σ̄ = T (A-10)

Remark 1: For the sake of more clarity, the yield locus associated with the maximum absolute shear
stress constitutes only of the pre-coalescence singular part and the coalescence part, the transition in between
occuring with a sharp vertex due to lack of the intermediate curved region, serving as a smoothing agent
(see Fig. 11).

Remark 2: The same interval can be derived from the (exact and approximate) formulas describing the
curved parts.

B.2 Normal vs Radial stress, function of shear

The components of the stress space herein are (Σ11,Σ33,Σ31), with the associated deformation rate compo-
nents being (D11, D22, D33). Following a similar procedure as elucidated in section 2.7, one can fabricate
an alternative form of (6) by defining:

q1 =
D11

D31
q2 =

D33

D31
(A-11)

By the same account, the following functions of (q1, q2) can be defined:

H =
Σ : D

σ̄D31
≡ 2q1

Σ11

σ̄
+ q2

Σ33

σ̄
+ 2

Σ31

σ̄

L =
Π(D)

σ̄D31
≡
√

4

3
+
[
2(1− c)q1 + q2

]2
[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/fb

1

+ 2(1− c)|q1|+|2q1 + q2| sgn(Dm)
Σsurf

σ̄
∀ q1, q2 : |H | ≤ L

(A-12)

where ζ is expressed in its transformed state as follows:

ζ2 =

(
D∗1/D31

D∗2/D31

)2

=
(2q1 + q2)2

3[2(1− c)q1 + q2]2 + 4
(A-13)
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Now the tools are at hand to calculate the bounds to the stress components. As formerly pointed out, the
absolute evolution interval of each stress component can be evaluated by setting the multiplied ratio to
infinity, except for the one component free of multiples, i.e. Σ31.

• Range of Σ11: q1 −→∞

lim
q1→∞

ζ2 =
1

3(1− c)2

|H | ≤ L =⇒
∣∣∣∣
Σ11

τ̄

∣∣∣∣ ≤


sinh−1

(
u√

3(1− c)

)
−
√

1 +
3(1− c)2

u2




1/fb

1

+
√

3(1− c)sgn(D11) + sgn(Dm)
Σsurf

τ̄

(A-14)

in the exact formulation and
∣∣∣∣
Σ11

σ̄

∣∣∣∣ ≤ (1− fb)

√
(
ln 1/fb

)2
+ 3(1− c)2(

T
τ̄

)2 +
√

3(1− c)sgn(D11) + sgn(Dm)
Σsurf

τ̄
(A-15)

in its approximate peer. Equations (A-14) and (A-15) are easily observed to be identical to (A-7) and (A-8),
respectively.

• Range of Σ33: q2 −→∞

lim
q2→∞

ζ2 =
1

3

|H | ≤ L =⇒
∣∣∣∣
Σ33

τ̄

∣∣∣∣ ≤
[

sinh−1

(
u√
3

)
−
√

3

u2
+ 1

]1/fb

1

+
sgn(D33) Σsurf

τ̄

(A-16)

in the exact formulation and
∣∣∣∣
Σ33

τ̄

∣∣∣∣ ≤
√
(
ln 1/fb

)2
+ 3(
T
τ̄

) + sgn(Dm)
Σsurf

τ̄
(A-17)

in its approximate counterpart. For the microstructural paramters (χ,W, c) = (0.5, 1.0, 0.5), for instance,
the exact and approximate values will turn out to be 2.35 and 2.31, respectively.

Remark 1: As clearly observed in Fig. 11, the extreme values of Σ33 occur at the coalescence regime,
signifying a saturation limit for axial remote stress consequent to the onset of coalescence. This, as illus-
trated in Fig. 10, has been substantiated by numerical outcomes.

• Range of Σ31: q1, q2 −→ 0

lim
(q1,q2)→0

ζ2 = 0

|H | ≤ L =⇒ Σ31 ≤
1− fb√

3
σ̄ = T

(A-18)
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which is identical to the expression stated in (A-10).
Remark 2: The same interval can be derived from (52) (as stated in terms of the coalescence-based

T coal) or (56) in its approximate counterpart. However, the stress state associated with the extreme value
of Σ31 would not stand limited to coalescence. In fact, in accordance with the rationale given regarding the
bounds of Σ̄3, the stress state may stand within a pre-coalescence regime represented by a straight part, or
within the coalescence trend exhibiting a slant line in the quasi-equivalent vs mean stress expression (see
Fig. 11).
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Appendix C Quasi-Periodic Cell Boundary Conditions

The periodic boundary conditions imposed on the unit cell are expounded on. Thanks to its geometry,
the problem can be completely represented by modeling one quarter of the whole cell. The normal and
tangential displacements are then the two independent degrees of freedom at each center-line. Fig. 8 shows
the various surfaces and edges of the reduced cell, together with an example meshing of the domain as well
as the nomenclature used throughout this section.

For any two points in a periodic array of cells one could write [40]:

∆u = (E + Ω).∆x (A-19)

where ∆u is the difference in displacement between the points separated by the vector ∆x. For a cylindrical
cell, however, (A-19) cannot be applied since paired points with periodic correspondence do not exist. We
should then impose conditions similar to (A-19) onto selected pairs of surface points instead, thus its name
“quasi-periodic”. See [40] for more details.

A complete case-by-case definition of the boundary conditions is written below in accordance with the
nomenclature clarified beforehand.

Edge-Top-Middle

u2(x1, 0, H) =
1

2
Ut,

u3(x1, 0, H) =
1

2
U3. (A-20)

Surface-Top-Left/Surface-Top-Right

u1(x1,−x2, H)− u1(x1, x2, H) = 0,

u2(x1,−x2, H) + u2(x1, x2, H) = Ut,

u3(x1,−x2, H) + u3(x1, x2, H) = U3. (A-21)

Edge-Top-Left/Edge-Top-Right

u1(x1,−
√
L2 − x2

1, H) = u1(x1,
√
L2 − x2

1, H) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, H) =
1

2
(Ut ±

±
√
L2 − x2

1

L
U2),

u3(x1,±
√
L2 − x2

1, H) =
1

2
U3. (A-22)

Surface-Lateral-Left/Surface-Lateral-Right

u1(x1,−
√
L2 − x2

1, x3) = u1(x1,
√
L2 − x2

1, x3) =
x1

2L
U1,

u2(x1,−
√
L2 − x2

1, x3)− u2(x1,
√
L2 − x2

1, x3) = −
√
L2 − x2

1

L
U2,

u3(x1,−
√
L2 − x2

1, x3)− u3(x1,
√
L2 − x2

1, x3) = 0. (A-23)
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Edge-Bottom-Left/Edge-Bottom-Right

u1(x1,−
√
L2 − x2

1, 0) = u1(x1,
√
L2 − x2

1, 0) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, 0) = ±
√
L2 − x2

1

2L
U2,

u3(x1,±
√
L2 − x2

1, 0) = 0. (A-24)

Edge-Bottom-Middle

u2(x1, 0, 0) = 0,

u3(x1, 0, 0) = 0. (A-25)

Surface-Bottom-Left/Surface-Bottom-Right

u1(x1,−x2, 0)− u1(x1, x2, 0) = 0,

u2(x1,−x2, 0) + u2(x1, x2, 0) = 0,

u3(x1,−x2, 0) + u3(x1, x2, 0) = 0. (A-26)

Edge-Back-Middle

u1(−L, 0, x3) = −1

2
U1. (A-27)

Surface-Front

u1(0, x2, x3) = 0. (A-28)

Remark 1: The absolute values of U1 = U2, Ut, and U3 have no effect on ultimate stress components
insofar as the corresponding plastic strains in the unit cell are significantly larger than the elastic strains
(see [37] for further details). Stated other way, the value of all displacement components can be taken
arbitrarily but enough care has to be taken in that none of the U1 = U2, Ut, and U3 values should be
comparable to the cell dimensions or the analysis will diverge (since nonlinear geometry has been turned
off). A proper choice will then be to take, at every time, the maximum of all three as 0.01, i.e. max{U1 =
U2, Ut, U3} = 0.01.

Remark 2: As regards the sole objective to define the critical stresses at the onset of void coalescence,
U1 and U2 are taken to be zero in all the calculations. Therefore, stress distribution at coalescence is
governed by the Rsh input.

Remark 3: For each (χ,W ) pair, 18 different displacement ratios were imposed, obeying the relation
Rr or Rsh = k/2, where k = 0, 2, 3, ..., 10, 20, 30, 40, 80, 120, 160, 200. A larger ratio induces a smaller
Σ33 value in comparison to the other two stress components, and vice versa (Note: Σ31 = 0 for Ut/U3 = 0).
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Abstract
A new multi-surface model incorporating diffuse and localized plasticity is developed as a yield

criterion for path-dependent failure of porous ductile materials with random distribution of voids. In
extension to a recent work where the only effective microstructural entity was porosity, the present work
broadens the scope of a similar model into examination of intervoid distance as well as void shape ef-
fects via the two independent microstructural parameters: the ligament parameter χ̄ and the void aspect
ratio w. Through a random distribution of voids in a plastically isotropic matrix, the multi-surface model
hinges on an isotropic behavior of the material with respect to all possible directions where yielding
can occur. The effective surface represents an extension to the GLD model accounting for intervoid
distance (via the introduction of porosity f ) and void-shape (w) effects in diffuse plasticity, in conjunc-
tion with a recent model for post-localization plasticity under combined tension and shear. Projections
of the effective yield surface (representing equivalent Mises stress) were plotted on the deviatoric and
meridian planes, compared to existing FEM results, where close coincidence was found. Similar plots
then depicted comparison between the surfaces described by the void growth and coalescence models
under internal necking with/without conjunction with internal shearing. Finally, the effective plastic
strain at the onset of coalescence was expressed in terms of the Lode angle as well as stress triaxiality as
a simplistic measure of failure. This function begins with a maximum value and exhibits an asymptotic
behavior after the triaxiality of about 2.

Key Words: Ductile fracture; Porous plasticity; Path dependence; Stress triaxiality; Lode parameter.

1 Introduction

Failure of ductile materials is often preceded by the localization of plastic flow, such as diffuse necking
or shear banding, followed by crack nucleation and growth in the region of localized plastic flow [1]. In
metallic alloys, ductile cracks nucleate and propagate by the growth and coalescence of voids originating
from material defects at the micro scale, such as second-phase particles and inclusions, as inferred from
fractography and in situ X-ray tomography studies [1–3]. The onset of plastic instability and the nucleation
of localization bands follow the loss of ellipticity within the rate-form equilibrium equations, the criterion
that functions dependent on the material’s tangent stiffness [4, 5]. Therefore, predictive modeling of ductile
fracture requires accurate plasticity models with the capability of capturing the commonly complicated flow
behavior of materials under large deformation mechanisms, as well as damage models that can predict the
nucleation and growth of voids throughout the failure process. The two are essentially coupled inasmuch as
individual voids grow due to plastic deformation of the surrounding matrix which, in turn, is affected by the
presence of voids in the material.
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It has long been established that the strain to failure in ductile materials is strongly dependent upon the
loading path [6,7]. In a stress space, the loading path can be characterized by two parameters that depend on
the ratios amongst the stress tensor invariants for a statistically isotropic material: stress triaxiality T , which
denotes the ratio of the mean to von Mises effective stress, and the Lode parameter, L, proportional to the
third invariant of the deviatoric stress, J3. Under proportional stressing, characterized by constant values
of T and L throughout the loading history, ductility (as mainly denoted by equivalent plastic strain εpeq)
is known to decrease exponentially with increasing stress triaxiality, as determined experimentally [7] and
from theoretical analyses [8, 9] under predominantly axisymmetric loading conditions. This fundamental
observation underpins several widely used models of ductile failure, such as those introduced in [8, 10] and
the Gurson-Tvergaard-Needleman (GTN) model [11, 12]. However, the limitation of the foregoing models
in predicting failure under shearing has been apparent all along, as they predict zero damage growth and
infinite ductility under pure shear loading.

The issue has been brought into focus by more recent experimental studies [13, 14] aimed specifically
at understanding ductile failure under shear-dominated loadings characterized with low triaxiality, typical
of metal forming operations in the automotive industry. These studies demonstrate a non-monotonic trend
of ductility as a function of T , with a bifurcation in strain to failure at small triaxialities that lowers strain
to failure under low triaxialities (typically T < 1/3) that signify shear dominated loadings (as compared to
axisymmetric loadings at higher triaxialities). However, these reported trends are not universal and possibly
also material dependent, as revealed by more recent experiments that do not exhibit similar trends [7, 15].
The issue gets further complicated by the very fact that truly proportional loading is difficult to achieve
experimentally, and non-radial loading paths could bear more elaborate effects on the observed experimental
trends. Nevertheless, these studies all implicate an important role of the Lode parameter L, or its counterpart
J3, which had been neglected in most existing models.

Cell model analysis of a quasi-periodic two-dimensional porous unit cell subjected to axisymmetric
proportional loading has previously been used to analyze the effect of stress triaxiality on failure of voided
materials at the meso scale [9, 16], and the results have been invoked to calibrate theoretical models such
as [11]. Remarkably, these studies helped elucidate the yielding mechanism of void growth followed by
void coalescence, where adjacent voids link up by plastic collapse of their interconnecting ligament. Under
axisymmetric loadings, however, negligible void growth occurs at low triaxialities, i.e. T ≤ 1/3, and
failure by void coalescence (most prominently by internal necking) is never captured in the simulations.
Hence, alternative yielding mechanisms such as the formation of micro shear bands between voids has been
hypothesized to justify the low ductility of metals under shear dominated loadings.

Motivated by most recent experimental findings, extensive research work has been conducted on cell
model analysis of porous unit cells under general three-dimensional proportional stress histories to investi-
gate the effect of the Lode parameter on ductile failure [17–22]. By definition, the Lode parameter falls in
the [−1,+1] interval, with it close to zero denoting shear-dominated loading, as opposed to axisymmetric
loadings for which L = ±1. These studies, which tend to simulate the above void-sheeting mode of coales-
cence, indicate that the strain to the onset of coalescence has a clear dependence on L, being maximum for
axisymmetric loadings (|L| = 1) and minimum for intense shearing states neighboring L = 0. Further, the
simulations also evince strong deformation-induced anisotropy due to void-shape evolution at low triaxiali-
ties. For instance, under simple shear loading, initially spherical voids evolve into penny-shaped cracks and
rotate to align with the major stress direction [19].

Homogenized constitutive models that extend the isotropic [11] model to capture the effects of void-
shape evolution have been developed to increasing levels of sophistication, from the early 90’s to date
[23–29]. By way of contrast, rigorous micromechanics-based models for void coalescence have only been
derived quite recently [30–32], extending Thomason’s [33] pioneering heuristic model of void coalescence
via internal necking. In particular, Torki et al. were the first to propound an analytical yield criterion [31],
later on developed into a more rigorous upper-bound [34], for void coalescence under combined internal

311



necking and void-sheeting modes, following early approximate models of [35] and [20]. Recently, Ker-
alavarma and Chockalingam [32] have enhanced the coalescence model of [31] to account for more realistic
microscopic deformation fields as well as a Hill-type plastic anisotropy within the matrix [36], though the
resulting analysis would not preserve the rigorous upper bound character [37].

Multi-surface plasticity models that independently account for the various possible modes of deforma-
tion observed in cell-model simulations at the scale of the voids (i.e. void growth by diffuse plasticity vs.
void coalescence by strain localization dispersed through the inter-void ligaments), have been proposed as
a possible approach to mimic ductile fracture by void growth to coalescence [35, 38, 39]. Recently, such a
multi-surface approach has been exploited by [40] to develop an isotropic plasticity model by combining
the [11] criterion with the coalescence model of [32]. Isotropic yield loci predicted by the resulting model
were shown to be in much better coincidence with numerically determined quasi-exact yield loci than the
Gurson model, esp. for large values of the porosity (∼ O(0.01) and larger) typical of highly damaged ma-
terials at zones close to a ductile crack tip. However, the isotropic multi-surface model of [40] did not retain
any information related to the void shape. The impending need for the above effect becomes potentially
remarkable for fracture at low triaxialities due to void shape evolution as well in materials where initial void
shapes are non-spherical due to the elongated shape of the void-nucleating inclusions.

The objective of the present paper is then to develop a hybrid plasticity model and associated state
evolution equations for a nominally isotropic material containing a random distribution of non-spherical
voids. To this end, the void growth model developed by Keralavarma et al. [27] was combined with the
void coalescence model derived by Torki et al. [31], by means of a similar multi-surface scheme as in
the above-referenced works. Effective isotropic peers of the individual yield criteria in [27] and [31], that
preserve information about a void shape common to all voids at a macro scale, yet averaged over all possible
void orientations, are developed using a two-level homogenization procedure proposed by Gologanu et
al. [23]. The resulting yield criterion will be assessed by comparison with quasi-exact yield loci predicted
by numerical limit analysis of porous unit cells at the meso scale, using the same perspective as in [28, 29].
The state evolution equations will be then integrated under proportional loading paths to obtain the predicted
evolution of strain to failure as a function of normalized loading parameters (triaxiality T and the Lode
parameter L). It will be deduced that the Lode parameter has a significant influence on the predicted strain
to failure under low triaxialities, being consistent with the most recent cell model simulation outcomes.
Further, the effect of the average void shape on ductility will as well be illustrated using the new model.

2 Problem Statement

The underlying assumption for the forthcoming formulation is that the material is isotropic and voids are
distributed randomly at least at a vicinity around a specific point in space, within a distance which is about
of the same order as the voids’ spacing range 1. The relative positioning of a void and its surrounding
matrix can be described with the aid of a representative volume element (RVE), that tends to mimic the
geometric as well as the loading conditions in meso scale. In the interest of convenience in the derivation
of a closed-form yield function, a RVE may be, in general, intrinsic to the model and not space-filling. In
effect, a multi-surface yield criterion for a porous plasticity problem takes in a competition between a model
accounting for void growth and the one predicting void coalescence, whichever occurs sooner. The former
is derived on the basis of diffuse plasticity disbursed throughout the material, and the latter considers plastic
deformation as confined within an intervoid ligament. The following subsections expound on the models
utilized to describe void growth and coalescence within the context of this work.

1In general, voids at a meso-scale distance are neither periodically nor randomly distributed, but rather distributed in clustered
form. That is, one can find a vicinity at a point in space where voids are placed quasi-periodically distributed within a small distance
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(a) (b) (c)

Figure 1: (a) RVE utilized in the model developed by Keralavarma et al. [27], (b) schematic distribution of
non-spherical voids with random orientations and their circumscribing cells at early plastic deformation stages, (c)
schematic random void distribution at a given orientation denoted with normal n.

2.1 Diffuse plasticity

2.1.1 Meso-scale model

Void growth is described with the model developed by Keralavarma et al. [27] (referred to henceforth as
the K–B model) assuming a microstructure consisting of a plastically anisotropic matrix containing aligned
spheroidal voids. A unit vector along the axis of the spheroidal void is denoted by n3, as shown in Fig. 1a for
both prolate and oblate voids. The model reduces to the Gologanu-Leblond-Devaux (GLD) model [23, 41]
for the special case of spheroidal voids in an isotropic matrix.

The yield function developed by Keralavarma et al. (2010) for the special case of an isotropic matrix
can be written in the form [27]:

FH(σ,n, f, w) =
3

2
C
σ : H : σ

σ̄2
+ 2(g + 1)(g + f) cosh

(
κ
σ : X

σ̄

)
− (g + 1)2 − (g + f)2 (1)

where σ̄ is the yield stress of the matrix material and the fourth order tensor H is an effective anisotropy
tensor for the porous material. f andw are the two microstructural scalar variables denoting the void volume
fraction (i.e. porosity) and the void aspect ratiow = a/b, defined as the ratio of the axial and transverse radii
of the spheroidal void. For the case of aligned spheroidal voids in a Von Mises matrix, H can be written in
the form

H = J + η (X⊗Q + Q⊗X) (2)

where X and Q are second order tensors coaxial with the void, given by

X = (1− 3α2)n⊗ n + α2I, Q =
3

2
n⊗ n− 1

2
I (3)

J = I− 1
3I⊗ I denotes the deviatoric projection tensor and I and I are, respectively, the second and fourth

order identity tensors. The parameters in the model, such as C, η, α2 and g above are functions of f and w.
Detailed expressions for all the parameters in the above criterion are provided in Appendix A.

2.1.2 Macro-scale model

With reference to the rationale provided in [23], one can assume that, at a meso (cell) level, all the randomly-
distributed voids have approximately equal volume fractions f and shapes w, but random orientations.
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This premise can only hold up to intermediate values of plastic strains in that, at very large strains, plastic
deformation is usually biased locally and thus the voids at a macro scale are oriented towards a certain
direction. That is, a complete theory of porous materials tending to simulate void-shape effects due to non-
spherical voids with initially random orientations should be equipped with the progressive development of
a so-called damage texture. The distribution of non-spherical voids at the meso and macro scales at early
stages of plastic deformation is schematized in Fig. 1b. A schematic section of a subset of voids being
passed through by a plane with given normal n is shown in Fig. 1c.

According to the K–B yield criterion, Eq.(1), the domain of admissible stresses at the meso-scale of a
unit cell satisfies the following inequality

3

2
C
σ : H : σ

σ̄2
≤ (g + 1)2 + (g + f)2 − 2(g + 1)(g + f) cosh

(
κ
σ : X

σ̄

)
(4)

where the void orientation n and therefore the tensors X, Q and H vary from cell to cell in a random fashion.
Performing an average over all constituent unit cells in the macro-scale RVE depicted in Fig. 1b leads to an
approximate macroscopic yield criterion for the RVE. Assuming that meso-scale voids (and therefore unit
cells) have equal volumes, the volume average can be replaced with an ensemble average over all possible
void orientations, yielding

<3

2
C
σ : H : σ

σ̄2 > ≤ <(g + 1)2 + (g + f)2 − 2(g + 1)(g + f) cosh

(
κ
σ : X

σ̄

)

> (5)

where the notation 〈·〉 denotes average over all possible void orientations n. Since the scalar parameters in
the model such as C, η, α2 and g depend only on the void volume fraction and shape and are independent
of the void orientation, the above further simplified to

3

2
C
〈σ : H : σ〉

σ̄2
≤ (g+1)2 + (g + f)2 − 2(g + 1)(g + f)

〈
cosh

(
κ
σ : X

σ̄

)〉
(6)

Since the hyperbolic cosine is a convex function function: < coshx> ≥ cosh <x>, which leads further to:

3

2
C
〈σ : H : σ〉

σ̄2
≤ (g + 1)2 + (g + f)2 − 2(g + 1)(g + f) cosh

(
κ
〈σ : X〉

σ̄

)
(7)

Unfortunately, the above averaged quantities can only be determined in an approximate sense, since the
variation of the mesoscopic stress tensor σ from cell to cell as a function of the change in local void orien-
tation cannot be estimated analytically. Instead, we resort to the same Reuss-type approximation employed
in [23] by neglecting the above dependence of σ on n and equate the meso- and macro-scale stress tensors;
i.e. σ = Σ. With this admittedly crude approximation, the previous inequality simplifies to

3

2
C

Σ : 〈H〉 : Σ

σ̄2
≤ (g + 1)2 + (g + f)2 − 2(g + 1)(g + f) cosh

(
κ

Σ : 〈X〉
σ̄

)
(8)

It is shown in appendix B that orientation averages of the tensors X and H evaluate to

〈X〉 =
1

3
I, 〈H〉 =

[
1 +

2

5
η(1− 3α2)

]
J (9)

Substituting the above in inequality (8) and rearranging, we obtain the following approximate macro-scale
yield criterion accounting for void growth in presence of a random distribution of voids:

F̄H(Σ, f, w) = C̄

(
Σeq

σ̄

)2

+ 2(g + 1)(g + f) cosh

(
κ

Σm

σ̄

)
− (g + 1)2 − (g + f)2 ≤ 0 (10)
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(a) (b) (c)

Figure 2: (a) RVE utilized in the model proposed for post-localized plasticity regime by Torki et al. [31], (b) schematic
distribution of non-spherical voids (idealized with cylinders) with random orientations and their circumscribing cells
at early plastic deformation stages, (c) idealized subset of equivalent cylindrical voids being passed through by the
same plane with normal n wherein strains are taken to be localized up to a finite height.

where Σm = 1
3Σkk and Σeq =

√
3
2Σ

′
: Σ

′
are the macroscopic mean and Mises equivalent stresses respec-

tively, and C̄ = C
[
1 + 2

5η(1− 3α2)
]
. Note that the ensemble averaging process described in appendix B

leads to an isotropic yield criterion, due to the random distribution of the void orientations.

2.2 Localized plasticity

2.2.1 Meso-scale model

After the onset of void coalescence, plastic deformation inside a meso-scale unit cell is assumed to localize
into a ligament separating two neighboring voids, and the rest of the cell undergoes elastic unloading and can
be assumed to be rigid to the first approximation [30]. The orientation of the localization band is uniquely
defined by a unit normal to the plane transverse to the ligament, as schematically shown in Fig. 2a. The
latter is here termed a possible plane of localization.

Remark: In presence of randomly-distributed voids, voids can interconnect in any direction, and thus
the localization plane can be any arbitrary plane within the Euclidean space. Upon periodic or clustered void
distribution, however, this interconnection can occur only along certain directions. This makes the planes
of localization only a discrete set. The post-localization microstructure would then be generally affected by
the normal n to the localization plane.

The yield function assuming localized yielding of the inter-void ligament is obtained by homogenization
of a hollow cylindrical RVE containing a coaxial cylindrical void, as shown in Fig. 2a. The model derived
by [31] (referred to in the following as the T-B-L model) is the first analytical criterion that accounts for
combined internal necking and shear strain localization in the inter-void ligaments, extending the earlier
models of [20, 33, 38]. The effective yield function derived by [31] can be written in the form

F I(σ, χ, w) =

(
|σn| − σsurf(χ,w)

σvol(χ)

)2

H(|σn| − σsurf) +

(
τn

τ(χ)

)2

− 1 (11)

where F I denotes the yield criterion representing inhomogeneous (localized) deformation, which depends
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on the void aspect ratio w = h/R and the so called ligament size ratio χ = R/L (see Fig. 2a) in addition
to the stress σ. H(x) is the Heaviside step function, equaling 1 if x > 0 and 0 if x < 0. σn = n.σn , τn =
|σn− σnn| are, respectively, the normal and shear tractions on the plane of localization, and

σvol(χ) =
σ̄√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

σsurf(χ,w) =
σ̄

3
√

3

χ3 − 3χ+ 2

χw

τ(χ) =
1− χ2

√
3

σ̄

(12)

are scalar parameters that depend on the microstructure variables χ and w. Note that the geometry of the
RVE in Fig. 2a may be completely defined by three non-dimensional parameters; χ, w and the aspect ratio of
the unit cell λ = h/H . However, the void coalescence criterion depends only on χ andw and is independent
of λ. The model, as is, predicts a close upper bound to the limit load for a wide range of χ andw. It, however,
overpredicts the stresses associated with the onset of coalescence mainly in the limit of penny-shaped cracks
(w −→ 0) and minorly for overly elongated cavities (w >> 1). Therefore, a calibrated counterpart of (12),
as introduced in [34], has been exploited in the present context.

2.2.2 Macro-scale model

At the macroscopic scale of an RVE containing a large number of identical randomly oriented voids, shown
in Fig. 1b, void coalescence would correspond to the localization of plasticity to a ligament interconnecting
voids, whose width may be expected to scale with the size of the voids. The coalescence mechanism can
be perceived only by virtue of the normal and shear tractions resolved on the same plane of localization
of normal n. This plane, however, is subject to variation in space, plus the fact that the subset of voids
being passed through by this plane are themselves randomly oriented. This creates a controversy in the
applicability of Eq. (11) in the present context. Nevertheless, one can assume the voids are sufficiently
far apart such that the void aspect ratio w can affect the localization band thickness 2h. In this case, one
can roughly estimate the ligament thickness 2h as determined by a void oriented along normal n, which
implies that the effective void aspect ratio can be taken equal to the main one, i.e. w̄ ≈ w in (11). Note
that, in principle, w̄ should scale with w with a factor of 2/3 to keep the void volumes equal. It was,
however, figured through comparison to numerical results presented in Sec. 4.1, that a better coincidence
with benchmark results would be envisaged by considering w̄ ≈ w. The 2/3 coefficient will, therefore, be
skipped throughout. One can further exploit the approximate unity of all equivalent cell aspect ratios λ̄ = 1,
which is characteristic of random void distribution. The above-mentioned effective parameters are related
to the overall porosity via the following relation:

f =
χ̄3w̄

λ̄
(13)

where we have χ̄ is the effective relative void spacing, that can be appreciated as a measure of porosity
at fixed other parameters w̄ and λ̄. After large plastic deformation at high triaxialities (representing near-
hydrostatic stress states), however, the average center-to-center spacing between neighboring voids would
be the same in all directions, so that one can simply consider w̄ ≈ 1

Recall the meso-scale yield criterion for each equivalent cylindrical RVE inside the localization band as

F I(σ, χ̄, w̄) =

(
|σn| − Σsurf

Σvol

)2

H(|σn| − Σsurf) +

(
τn

T

)2

− 1 (14)
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where Σvol = σvol(χ̄), Σsurf = σsurf(χ̄, w̄) and T = τ(χ̄). In order for σ to belong to a meso-scale domain
of reversibility [37], the following condition should be satisfied,

(
|σn| − Σsurf

Σvol

)
H(|σn| − Σsurf) ≤

√
1−

(
τn

T

)2

(15)

where σn and τn are the normal and shear stresses on the transverse plane of the RVE with normal n, given
by σn = n · σn and τn = |σn − σnn| respectively. The macroscopic yield criterion is obtained from
(15) by averaging both sides of the inequality over all cylindrical RVEs contained in the coalescence band,
which will be denoted by 〈·〉. Note that this averaging procedure is different from the one used to derive
the effective pre-coalescence yield function in section 2.1, since the orientations of the voids and all the
equivalent cylindrical voids are assumed to be aligned normal to n.

Let Σ = 〈σ〉 denote the average stress in the coalescence band, whose normal and shear components
on the band are given by Σn = n · Σn and Σsh = |Σn − Σnn| respectively. Using the properties of the
Heaviside function, it is straightforward to verify the following inequality

(|σn| − Σsurf)H(|Σn| − Σsurf) ≤ (|σn| − Σsurf)H(|σn| − Σsurf) (16)

Combining (15) and (16), we have
(
|σn| − Σsurf

Σvol

)
H(|Σn| − Σsurf) ≤

√
1−

(
τn

T

)2

(17)

Averaging both sides of the above inequality over all meso-scale RVEs contained in the localization band,
we get (

〈|σn|〉 − Σsurf

Σvol

)
H(|Σn| − Σsurf) ≤

〈√
1−

(
τn

T

)2
〉

(18)

Since
√

1− x2 is a concave function of x, we have 〈
√

1− x2〉 ≤
√

1− 〈x〉2. Also, we have 〈|x|〉 ≥ |〈x〉|.
Using the above two results in (18), we get

(
|〈σn〉| − Σsurf

Σvol

)
H(|Σn| − Σsurf) ≤

√
1−

(〈τn〉
T

)2

(19)

Using the definition of Σ, we can show that 〈σn〉 = Σn while 〈τn〉 ≥ Σsh. Substituting in (19) yields
(
|Σn| − Σsurf

Σvol

)
H(|Σn| − Σsurf) ≤

√
1−

(
Σsh

T

)2

(20)

The macroscopic yield criterion for localized plasticity in an arbitrarily oriented coalescence band of voids
is obtained by rearranging (20) to write

F̄ I(Σ, χ̄, w̄) =

(
|Σn| − Σsurf

Σvol

)2

H(|Σn| − Σsurf) +

(
Σsh

T

)2

− 1 ≤ 0 (21)

In case the modified T-B-L model is used, the corresponding macroscopic version will be of the follow-
ing form

F̄ I(Σ, χ̄, w̄) =

(
|Σn| − t(χ̄, w̄)Σsurf

bΣvol

)2

H(|Σn| − Σsurf) +

(
Σsh

l(χ̄, w̄)T

)2

− 1 ≤ 0 (22)

where the expressions for the parameters t, b and l are given in [34].
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2.3 Tri-surface model

The effective macroscopic yield criterion derived in section 2.1, assuming diffuse plastic flow in the matrix,
is isotropic due to the random orientations of the spheroidal voids at the meso-scale; see Fig. 1b. In contrast,
the coalescence criterion derived in section 2.2 is anisotropic, since it is a function of the orientation of the
coalescence band defined by the unit vector n. In a statistically isotropic microstructure, where the average
void spacing is equal in all spatial directions, the orientation of the coalescence band is determined solely
by the applies state of stress. In this case, an effective isotropic coalescence criterion can be obtained using
a multi-surface approach by assuming that the effective yield domain is the region in stress space that lies at
the intersection of all the yield domains corresponding to all possible orientations of the localization band
n [35, 40]. For the sake of simplicity, the effective parameters χ̄ and w̄ will be represented by χ and w in
the sequel.

The effective isotropic coalescence function, F Iiso(Σ), is then the maximum of F̄ I(Σn,Σsh) over all
possible orientations of the unit vector n; i.e.

F Iiso(Σ) = max
n
{F I(Σn,Σsh)} s.t. g(n) = nini − 1 = 0 sum on i (23)

where Σn and Σsh are functions of Σ and n via

Σn(Σ,n) = n ·Σn, Σsh(Σ,n) =

√
n ·Σ2n− (n ·Σn)2, Σ2 = Σ ·Σ (24)

Performing the maximization in Eq.(23) over the space of all possible unit vectors n, at fixed Σ, leads
to the following optimality condition

∂F I

∂n
= (Σ2 − Σ̃Σ)n = 2βn (25)

where the scalar Σ̃ is given by

Σ̃(Σ,n) = 2Σn − 2η(Σn − sgn(Σn)Σsurf)H(|Σn| − Σsurf), η ≡ T 2

Σvol2
(26)

and β is a Lagrange multiplier. In other words, the normal to the localization plane n that maximizes the
value of the coalescence function must be an eigenvector of the tensor Σ2 − Σ̃Σ. Since tensors Σ2 and
Σ are coaxial, the above condition is satisfied if n is an eigenvector of Σ. In this case, the shear stress
Σsh vanishes, and coalescence occurs by internal necking of the ligaments connecting an array of voids
transverse to a principal direction of Σ. Assuming Σ1 ≤ Σ2 ≤ Σ3 to be the principal stresses corresponding
to principal directions n1,n2,n3, the resulting three yield functions can be written in the form

F In(Σi) =
(|Σi| − Σsurf)2

Σvol2
H(|Σi| − Σsurf)− 1 (27)

where Σi (i = 1..3) are the principal stresses. The above result in fact generalizes the criteria proposed by
Benzerga and Leblond [30] and Thomason [33] to the case of a random array of voids inside a coalescence
band.

In addition to the above criteria for coalescence by pure internal necking, Keralavarma [40] had shown
that the optimality condition of Eq.(25) can also be satisfied if n is a linear combination of two eigenvectors
(say n1 and n2) corresponding to unequal values of the principal stresses (Σ1 < Σ2), provided that the
corresponding n satisfies the following condition

Σ̃(Σ,n) = Σ1 + Σ2 (28)
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In this case, void coalescence occurs inside the localization band under a combination of normal and shear
stresses on the localization plane. Given the form (26) for Σ̃, the above represents a linear equation in Σn,
which has either no solution or a unique solution in the domain (Σ1,Σ2) of admissible values of Σn. The
solution for Σn reads

Σn =





|Σ1 + Σ2| − 2ηΣsurf

2(1− η)
sgn (Σ1 + Σ2) if |Σ1 + Σ2| > 2Σsurf

Σ1 + Σ2

2
if |Σ1 + Σ2| ≤ 2Σsurf

(29)

Note that Σn has the same sign as Σ1 + Σ2, since the parameter η defined in (26)2 is smaller than unity
for any value of χ. It is emphasized that the above solution for Σn is only valid under the condition that
Σ1 < Σn < Σ2. Substituting (29) in the above inequality and further simplification leads to the condition

D(Σ1,Σ2) ≡ η

(1− η)

|Σ1 + Σ2| − 2Σsurf

|Σ2 − Σ1|
< 1 (30)

Hence, coalescence under combined tension and shear on a plane with normal n falling on the n1–n2 plane
is possible only if the discriminant D(Σ1,Σ2) defined in (30) is smaller than unity.

The shear stress on the optimal plane n corresponding to the normal stress Σn can be found from the
equation [

Σn −
(

Σ1 + Σ2

2

)]2

+ Σ2
sh =

(
Σ1 − Σ2

2

)2

(31)

Substituting Σn and Σsh from (29) and (31) in Eq.(21) and simplifying leads to the following criterion for
coalescence within a band of normal n lying on the n1–n2 plane.

F Ish(Σ1,Σ2) =

(
|Σ1 + Σ2| − 2Σsurf

)2

4(Σvol2 − T 2)
H(|Σ1 + Σ2| − 2Σsurf) +

(
Σ1 − Σ2

2T

)2

− 1, if D(Σ1,Σ2) < 1

(32)
Two similar criteria for the vector n lying on the remaining two principal planes can be obtained by cyclic
permutation of the indices (1, 2, 3) in Eq.(32).

It has been shown by Keralavarma [40] that the optimality condition of Eq.(23) can only be satisfied
if the vector n lies on one of the principal planes of Σ, and therefore the six criteria defined by Eqs.(27)
and (32) represent the general solution for the optimization problem. The effective isotropic coalescence
function F Iiso(Σ) in (23) then becomes

F Iiso(Σ) = max
{
F In(Σ1),F In(Σ2),F In(Σ3),F Ish(Σ1,Σ2),F Ish(Σ2,Σ3),F Ish(Σ1,Σ3)

}
(33)

In addition to the isotropic coalescence criterion (33), yielding is also possible by diffuse plastic flow, the
criterion for which is given by Eq.(10). Combining the two criteria using the multi-surface approach, the
effective yield criterion for a statistically isotropic material, accounting for both diffuse and localized plastic
flow within a meso-scale RVE, can be written in the following explicit form

F iso = max
{
F̄H(Σ),F Iiso(Σ)

}
(34)

where the individual yield surfaces in (34) are given by equations (10) and (33).
In essence, the effective yield surface comes by way of comparison among the surfaces corresponding to

homogeneous yielding, internal necking, and combined internal necking–shearing, thus its name tri-surface.
Among the latter two, however, the second is always met first and is, hence, prevalent. Yet, juxtaposing the
yield surfaces with and without shear would be a proper exposition on the large differences between the two
sets of surfaces that, per se, warrants the incorporation of shear stresses in the formulation.
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3 Evolution of Porosity and Void Shape

With the elastic deformations being infinitesimal and use of the Jaumann objective rate of stress, the overall
deformation rate can be decomposed into an elastic and a plastic part reading

D = De + Dp, De = C−1 :
∇
Σ (35)

with De and Dp being, respectively, the elastic and plastic rates of deformation, C the fourth-order elastic

stiffness tensor, and
∇
Σ denotes the Jaumann stress rate. The plastic deformation rate Dp stems from the

yield function through the normality rule which, following the fundamental Hill-Mandel lemma [42, 43],
has proven valid at the macro-scale for a porous material provided it holds for the matrix at the micro-scale.
Hence,

Dp = Λ̇N, N =
∂F
∂Σ

(36)

where Λ̇ is the plastic multiplier and N is the plastic flow direction tensor normal to the yield surface in
stress space. For the present yield functions, one can write:

N =





3C̄
Σ

′

σ̄2
+

2

3
(g + 1)(g + f)

κ

σ̄
sinh

(
κ

Σm

σ̄

)
I, F = FH

2

(Σvol)2
(Σn − sgn (Σn) Σsurf)Hn⊗ n +

1

T 2
[n⊗Σn + Σn⊗ n− 2Σnn⊗ n], F = F I(n)

(37)
where H has been defined in advance. For the growth yield locus, the direction of plastic flow N depends
only on the stress Σ, while N for the coalescence locus depends also on the normal to the localization
plane n. Hence, if non-unique solutions exist for n, the direction of plastic flow is ill-defined and the
corresponding stress state corresponds to a vertex on the yield surface. Reference to Eq’s (27) and (29)
delivers the following solutions for n:

• One set of n comprises unit vectors along the principal directions of Σ; i.e. n = êi, where the unit
vector êi (i = 1..3) is an eigenvector of Σ.

• Another set of solutions to n comprises linear combinations of any two of the three eigenvectors of
Σ, say ê1 and ê2. I.e. n = n1ê1 + n2ê2, where

n2
1 = 1− n2

2 =





1

2(Σ1 − Σ2)(1− η)

[
Σ1 + (2η − 1)Σ2 − 2ηΣsurfsgn (Σ1 + Σ2)

]
if |Σ1 + Σ2| > 2Σsurf

1

2
if |Σ1 + Σ2| ≤ 2Σsurf

(38)
Two more possible solutions can be obtained by considering other pairs of principal stresses and
directions in the above.

The effective surface would be determined from the innermost of all coalescence surfaces obtained using
the above normals. Using the corresponding solution for n in (37)2 yields the flow direction tensor N.

In the isotropic representation of the present yield functions at the macroscopic scale, the main mi-
crostructural parameters varying as function of the matrix equivalent plastic strain, ε̄, are the porosity f and
the void aspect ratio w. To this end, the unknown plastic multiplier Λ̇ need be eliminated in some manner.
Using the equality of the plastic work rate at the macro and micro-scales leads to the following condition:

Σ : Dp = (1− f)σ̄ ˙̄ε (39)
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which yields

Λ̇ = (1− f)
σ̄ ˙̄ε

Σ : N
(40)

The evolution equation for porosity is a consequence of the hydrostatic part of the plastic deformation
rate Dp, since matrix plastic deformation is isochoric; that is

ḟ

1− f = tr(Dp) = Λ̇Nkk (41)

Note that, due to the presence of the effect of n in the coalescence criterion, the porosity rate in practice
depends only on the normal stress on the localization plane. This implies that, unlike the growth model,
damage growth is possible even at zero triaxiality in the multi-surface model.

Further, the average evolution rate of S = lnw in early stages of plastic deformation (that conforms
with the ensemble averaging scheme) is function of the dilatant part of plastic rate of deformation [23]:

Ṡ =

(
1− 3α1

f
+ 3α2 − 1

)
Dp
kk (42)

The above result is consistent with the observed fact that both elongated and flattened voids evolve towards
spheres in the early stages of plastic deformation. The effective stress σ̄ is taken to depend on the effective
plastic strain ε̄ through a power law of the form

σ̄ = σ0(1 + ε̄/ε0)N (43)

is used.
The set of equations (35)–(42) can be integrated in simultaneity until the onset of void coalescence to

obtain the evolution of ε̄ vs. the Lode angle θ at a specified triaxiality T or vs. triaxiality for a specified Lode
angle. The corresponding rate of change in porosity and void shape with respect to ε̄ will then be expressible
as

∂f

∂ε̄
= (1− f)2 Nkk

Σ
σ̄

: N

∂S

∂ε̄
= (1− f)

(
1− 3α1

f
+ 3α2 − 1

)
Nkk

Σ
σ̄

: N

(44)

4 Results and Discussion

Cross-sections of the multi-surface yield locus in Haigh-Westergaard stress space are examined in this sec-
tion. This space can be characterized by three variables (Σm, ρ, θ) via the following relations:

Σ1 = Σm +

√
2

3
ρ cos (θ)

Σ2 = Σm +

√
2

3
ρ cos

(
θ − 2π

3

)

Σ3 = Σm +

√
2

3
ρ cos

(
θ +

2π

3

)
(45)

where Σm is the mean normal stress, θ is the well-known Lode angle, and ρ is proportional to the equivalent

stress, i.e. ρ =
√

2
3Σeq. Planes perpendicular to the hydrostatic axis (identified with a perpendicular distance
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from the origin equal to Σm) are known as octahedral planes, while planes cutting through the surface at a
specified Lode angle (θ = cste) are called meridian planes. The octahedral plane with Σm = 0 is termed
the π plane.

Alternatively, the hydrostatic stress can be replaced with stress triaxiality T = Σm/Σeq. That is, in lieu
of Σm, stress triaxiality T = Σm/Σeq can be the parameter to be prescribed; in which case Σm = TΣeq.
Correspondingly, (45) is recast as follows:

Σ1 =

√
3

2
ρ
[
T + cos (θ)

]

Σ2 =

√
3

2
ρ

[
T + cos

(
θ − 2π

3

)]

Σ3 =

√
3

2
ρ

[
T + cos

(
θ +

2π

3

)]
(46)

4.1 Model assessment

The accuracy of the present model is first examined by comparison between the predicted yield loci and nu-
merically computed yield loci using a finite elements based limit analysis approach. A periodically voided
material is subjected to stress controlled loading with specified values of the triaxiality and the Lode param-
eter, by loading a unit cell along its principal directions. The values of T and L are controlled by altering the
ratios of the three normal remote stresses. In order to facilitate the imposition of periodic boundary condi-
tions as well as have well-behaved meshing, cubic cells embedding coaxial cubic voids have been adopted.
The homogeneous model would then reduce to Gurson. See [40] for further discussion upon results for
equiaxed voids. Clearly, the only effective microstructural parameter in this respect is porosity f or, alter-
natively, χ. The FEM results are outcomes to single-step limit analysis calculations, originally introduced
by [28, 29] 2. This method involves the application of large axial and lateral displacements over a porous
RVE, with the matrix material admitting an elastic-perfectly plastic von Mises behavior, such that each ratio
between the axial and lateral displacements delivers a specific stress state and, correspondingly, a specific
pair of triaxiality T and Lode parameter L, i.e. a specific (Σm, θ). The Lode angle θ and the Lode parameter
L are related by:

L = −27

2

det(Σ
′
)

Σ3
eq

= − cos 3θ (47)

Since every calculation is carried out in one single step, with the geometric nonlinearity deactivated, the
initial and ultimate microstructural variables are the same. The reader is referred to [20, 34, 40] for more
explanation regarding this class of FEM calculations.

The curves in Fig. 3 show the yield loci for materials with moderate to large values of the porosity:
f = 0.01 and f = 0.05. The loading path is represented with intermediate (T = 1) as well as large (T = 4)
triaxiality, the former denoting the zone inside a diffuse neck or a notched bar and the latter representative
of the plastic zone ahead of a blunt crack tip [7]. Note that the plotted radii equal ρ =

√
2/3Σeq/σ̄.

Next, Fig. 4 shows comparison of meridian cross sections for the same porosities on meridian planes
corresponding to axisymmetric loading (L = ±1) and pure shear with superposed hydrostatic stress (L = 0).

2The same strategy was applied in [34] for comparison between the inhomogeneous model predictions and FEM results.
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(a) (b)

Figure 3: Octahedral plane projections of the yield surface (with the plotted radii being ρ =
√

2/3Σeq/σ̄) with
constant-triaxiality stress states for f = (0.01, 0.05) and (a) T = 1, (b) T = 4.

(a) (b)

(c) (d)

Figure 4: Meridian cross sections of the effective yield surface representing: (a,b) axisymmetric and (c,d) purely
deviatoric loading for various porosities, compared with numerical limit analysis results.
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The reader should note, according to Fig’s 3a and 4, that the use of the T-B-L model, with or without
calibration (see [31,34]), loses the upper-bound character at the limit of zero hydrostatic stresses (i.e. purely
deviatoric loading) under axisymmetric loading, i.e. θ = nπ/2,|L| = 1. This limitation can partly be at-
tributed to the use of different RVE shapes in the analytical and numerical models. This further corroborates
the findings of Morin et al. [44], who have found the effect of void and cell shape on the yield surface to be
minimal for a given microstructural state. The same observation, however, does not necessarily hold in an
evolution-based problem, which consists of the entire deformation process from void nucleation to ultimate
failure. See [45] for details.

It is also clear that, at low porosities, the FEM yield surface, as well as its effective (tri-surface) counter-
part, becomes closer to diffuse yielding whereas, at higher porosities, they tend closer to combined internal
necking–shearing. Further details in this respect are explained in [40]. Moreover, the effective analytical
surface is not an upper bound. This is due, in part, to the approximation employed in the formulation of
the effective yield criterion at the limit of isotropic materials. In particular, the closer-to-real effective yield
surface is a combination of both FH and F I.

The comparisons exhibited in Fig. 4 are promising in the sense that the numerical values are closer to the
tri-surface curve than to the homogeneous yield surface. More importantly, due to the additional heuristic
parameters in the T-B-L model, the yield stress under purely hydrostatic loading is not overestimated unlike
in Fig. 7 of [40]. Yet, the heuristic calibration, though not significant, loses the upper-bound character for
small porosities. A more consequential observation that can be made in the other limit case of pure shearing,
i.e. Σm = 0 at L = 0, is the dominance of inhomogeneous yielding, reflected through the effective (tri-
surface) locus, over homogeneous yielding. Apart from being an observed fact corroborated by numerical
findings [17, 19], it can be clearly deduced from the comparison between the shear stresses from FH and
F I at this limit, i.e. τ = (1 − f)τ̄ and τ = (1 − fb)τ̄ , respectively. Here, τ̄ = σ̄/

√
3 is the matrix shear

strength and fb = χ2 is the porosity within the band, which is always larger than the overall porosity f . For
other loading combinations, there exist ranges of mean stress with homogeneous yielding being dominant.

The sequel exhibits the effects induced by each one of the two independent microstructural parameters
(χ,w) (while λ is ideally 1 when the voids are randomly distributed) on the yield surface projection onto the
deviatoric planes (with constant Σm or T ) and onto the meridian planes (representing either axisymmetric
loading L = ±1 or pure shear with superposed hydrostatic stress L = 0). χ̄ and w̄ have been denoted with
χ and w, respectively, for the sake of simplicity. The same type of effects is examined concerning the strain
at the onset of coalescence evolving in terms of the Lode angle as well as triaxiality, each with the other kept
constant. Since, at coalescence, two localization mechanisms, i.e. internal necking and combined necking-
shearing, can be conceived of for plastic deformation, the surfaces resulting from each induced mechanism
will be compared in Appendix C.

4.2 Projection onto deviatoric planes

Figure 5 depicts the influence of χ on the yield surface projection onto the deviatoric planes with constant
T (with T = 0 denoting Σm = 0 or, equivalently, the π plane). Figure 6 depicts the same kind of influence
induced by the void aspect ratio w.

Note that, with varying values of χ, w and λ are both kept equal to 1, thereby the porosity equaling
f = χ3. The ligament parameters of 0.1, 0.3, and 0.7 would then correspond to porosity values of 0.1,
2.7, and 34.3 %, respectively. In practice, the real porosities within engineering materials are normally
much smaller than the upper bound considered herein. Yet, a rather wide range of porosities well serves the
purpose of elucidating the potential effect induced by porosity.
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(a) (b)

(c) (d)

Figure 5: Effect of the ligament parameter χ on the effective yield surface projection onto the deviatoric planes with
constant triaxiality.

Considering the effect of porosity, reflected through the ligament parameter χ, the homogeneous yield
surface shrinks whereas the combined necking-shearing surface shrinks faster along with increasing χ.
Namely, the effective yielding mechanism tends from diffuse plasticity at χ −→ 0 towards a combined
necking-shearing localized nature with increasing χ. The two surfaces, however, become closer at larger por-
tions of hydrostatic stress, i.e. with increasing triaxiality, exemplified with T = 3. At this limit, the effective
yield mechanism is combined internal necking–shearing at the limit of L = 0 admitting θ = (2n + 1)π/6,
which signifies pure shearing with superposed hydrostatic stress. However, the hydrostatic effect prevails
over that of shear, and thus the equivalent stresses would be minimally apart. This further corroborates the
discussion below Fig. 3, and occurs regardless of the porosity level. More specifically, so long as there is
nonzero porosity, be it small or large, plastic deformation is localized under pure shear.
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(a) (b)

(c) (d)

Figure 6: Effect of the void aspect ratio w on the effective yield surface projection onto the deviatoric planes with
constant triaxiality.

Apropos of the effect of w, Fig. 6 demonstrates combined necking–shearing as the effective yield
surface, with a shrinking effective surface for larger values of w, especially for w > 1. This has been
adduced by former results, as reported in [31] for instance, that the coalescence limit load decreases, even
more notably so for w > 1, with increasing w. It is also observed in consonance with Fig. 5 that, except at
high stress triaxialities (represented by T = 3 here) representing large portions of hydrostatic stress, the pure
shear limit (θ = (2n + 1)π/6) is subdued by the combined internal necking–shearing mechanism. On the
other hand, for small to medium triaxialities, the effective yielding mechanism for materials with flat voids
(w < 1) proves to be of a homogeneous yielding type at stress states close to the axisymmetric limit (θ =
nπ/3). For large triaxialities, however, the effective mechanism generally moves towards homogeneous
while it still varies from case to case. For flat voids (w = 0.1), the effective mechanism is homogeneous
under all stress states, just as in the case of axisymmetric loading with smaller triaxialities, whereas it is
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inhomogeneous for w ≥ 1 even at this range of large triaxialities. Within periodic void arrays, however,
a different trend has been explored wherein the coalescence of flat voids (w < 1) could occur at early
stages, even so under uniaxial loading (T = 1/3) [46]. With randomly distributed voids, both the dilute
material limit (χ −→ 0) and materials containing flat (penny-shaped) cavities yield homogeneously under
axisymmetric stress states.

4.3 Projection onto meridian planes

(a) (b)

Figure 7: Effect of the ligament parameter χ on the effective and homogeneous (Gurson-like) yield surface projections
onto meridian planes denoting (a) axisymmetric loading and (b) pure shear with superposed hydrostatic stress.

(a) (b)

Figure 8: Effect of the void aspect ratio w on the effective and homogeneous (Gurson-like) yield surface projections
onto meridian planes denoting (a) axisymmetric loading and (b) pure shear with superposed hydrostatic stress.
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The continuing set of figures illustrate the same kind of trends but in the yield surface projection onto the
meridian planes denoting axisymmetric loading (L = ±1) and pure shear with superposed hydrostatic stress
(L = 0). First, Fig. 7 depicts the influence of χ on the yield surface projection of interest. Figure 8 depicts
the same kind of influence induced by the void aspect ratio w.

Upon a similar trend to that observed with the variation of porosity in Sec. 4.1, the inhomogeneous
yield surface prevails over the homogeneous at the vicinity of Σm −→ 0 under pure shearing superposed
with hydrostatic loading, say L = 0, as shown in Fig. 7b. With increasing χ, further difference between
the effective and homogeneous surfaces is detected at higher hydrostatic stresses. Thereupon, the difference
becomes more pronounced when χ decreases. Nevertheless, the effective mechanism tends towards ho-
mogeneous yielding at sufficiently low hydrostatic stresses and low–level porosities approaching the dilute
limit, here represented by χ = 0.1, when the stress state is axysimmetric, Fig. 7a. Yet, larger hydrostatic
stresses or, equivalently, larger triaxialities, would turn the mechanism towards inhomogeneous yielding as
indicated by the large difference between the effective and homogeneous yield surfaces.

Figure 8a demonstrates that the effective yielding mechanism for materials with flat voids is homoge-
neous for almost the whole range of hydrostatic stresses under axisymmetric loading conditions whereas
it is inhomogeneous for all medium to large void aspect ratios. In contrast, under pure shearing with su-
perposed hydrostatic loading (Fig. 8a), the effective mechanism is homogeneous only for sufficiently large
hydrostatic stresses (or triaxialities). In particular, the small temper associated with axisymmetric loading
(at θ = nπ/3) shown in Fig. 6c can be envisaged more clearly in Fig. 8 implicating combined internal
necking–shearing as the effective mechanism. Throughout the range of Lode parameters, especially under
both unit and zero values, the effective yield mechanism for prolate voids (w > 1) is homogeneous plasticity
in the maximal hydrostatic stress zone (or highest triaxiality levels) whereas the localized mode is dominant
for (nearly) spherical (w ≈ 1) voids throughout the hydrostatic range, and for oblate (w < 1) voids provided
the hydrostatic stress is not significantly large.

Altogether, an isotropic porous material characterized by random dispersion of voids can yield (almost)
homogeneously under high triaxialities, i.e. dominant hydrostatic stresses, when either porosity f or the
void aspect ratio w becomes vanishingly small [47, 48]. The former is representative of the dilute limit of
the material, and the latter is reminiscent of penny-shaped cracks.

Incidentally, the effective yield surface, unlike its homogeneous counterpart, admits symmetry with
respect to the Σ2 − Σ1 only at L = ±1 (denoting axisymmetric loading) inasmuch as the principal stresses
have equal absolute values on the two principal planes regardless of the hydrostatic portion. This generally
not the case, however, under shear dominance in that the hydrostatic stress level alters both the plane and
magnitude of principal stresses.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Example half and complete 3D surfaces for a frozen microstructure denoted by the (χ,w, λ) = (0.4, 1, 1)
trio exhibiting the surfaces corresponding to: (a,b) the effective criterion, (c,d) the homogeneous model, and (e,f) the
inhomogeneous model under the internal necking (note that the surface corresponding to combined necking-shearing
is itself the effective surface).
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4.4 Sample 3D surface

It may be appealing to observe a complete yield surface in the Haigh-Westergaard stress space incorporating
the effect of the Lode parameter/angle. Examples of a half and complete 3D surfaces for a frozen microstruc-
ture are shown here, including the surfaces corresponding to the effective criterion, the homogeneous model,
and the inhomogeneous model under the internal necking or combined necking-shearing mechanism. Figure
9 depicts this example. Note that all surfaces are endowed with point symmetry at the origin of the stress
space. Among all, the homogeneous and combined inhomogeneous yield surfaces admit planar symmetry
whereas the internal-necking yield surface is merely point-symmetric (with respect to the origin). Upon
implication, one can deduce that shifting the sign of the Lode parameter, realized with a π/3 rotation on the
θ deviatoric plane, equal equivalent stresses will be predicted in accordance with the inhomogeneous model.
This observation can be true only at the isotropic limit, i.e. with randomly distributed voids. Under periodic
void arrays, however, where changing the places of the major and minor normal stresses negates the Lode
parameter, plastic deformation would localize in two different planes perpendicular to each other.

4.5 Strain to failure vs. Lode parameter/triaxiality

It is worthy of note that an effective ligament parameter of χ = 0.7 corresponds to a porosity level around
30 %, which is seldom observed in engineering materials. The foregoing results were shown for such a wide
variety of χ’s for the sake of better illustrative capability. The study of strain to failure, as per this subsection,
will be presented for a tighter range of χ. The maximum porosity would then pertain to χ = 0.4, equaling
6.4 %.

Notwithstanding the existence of significant plastic deformation at the post-coalescence regime, the
matrix effective plastic strain ε̄ at the onset of coalescence is normally regarded as the strain to failure ε̄f for
the material. Apart from being intrinsically indicative of failure, this measure proves efficacious since the
de facto damage mechanism after the onset of coalescence depends on different extrinsic factors such as the
specimen geometry and matrix texture.

This subsection addresses the evolution of ε̄f as implicit function of the Lode parameter L, so as stress
triaxiality T , which is consequence of explicit integration of (44) exploiting the single-step Runge-Kutta
solution scheme. To set the reference more globally, the following auxiliary parameter is defined as function
of θ when −π/6 ≤ θ ≤ π/6:

θ̄ = 1− θ

π/6
... − 1 ≤ θ̄ ≤ 1 (48)

Figure 10 demonstrates the effect induced by the ligament parameter χ̄ on the evolution of ε̄ in terms of
the Lode angle θ or its normalized equivalent θ̄ at various triaxialities ranging from a uniaxial T = 1/3 to
a near-hydrostatic T = 3 stress state. Similarly, Figure 11 illustrates the effect induced by the void aspect
ratio w.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Effect of the ligament parameter χ̄ on the evolution of ε̄f as function of the Lode angle θ (a,c,e) or its
normalized equivalent θ̄ (b,d,f) (noting that −1 ≤ θ̄ ≤ 1) at various triaxialities.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Effect of the void aspect ratio w on the evolution of ε̄f as function of the Lode angle θ (a,c,e) or its
normalized equivalent θ̄ (b,d,f) (noting that −1 ≤ θ̄ ≤ 1) at various triaxialities.

Upon examination of Fig’s 10 and 11, ε̄f is predicted close to zero under stress states close to pure
shear (θ = (2n + 1)π/6) emanating from the inhomogeneous yield criterion F I = 0 happening at early
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stages of plastic deformation. Accordingly, the Lode angles resulting in L −→ 0 in this neighborhood
are excluded from the plots. In extension to Ref. [40], which has investigated this effect only for small to
moderate porosities, the present study goes so far as to incorporate both χ and w from small to large values,
demonstrating that the above-mentioned observation is refuted at very small porosities (e.g. with χ = 0.1)
as well as large void aspect ratios (w > 1) under highly triaxial loadings (e.g. T = 3). In the former special
case, the large hydrostatic portion of loading deters void coalescence in small porosities from happening
from the outset, whence ε̄f is clearly nonzero. With increasing χ, however, F I = 0 soon predominates
almost from the outset, and thus ε̄f drops close to zero under pure shearing with superposed hydrostatic
loading. All the same, one can notice that, for χ > 0.2 under high triaxiality values (here T = 3), ε̄f
literally vanishes for θ = 2nπ/3 (with n inclusive of 0) which declares axisymmetric loading with the
axial loading prevalent. Existing work in the literature ratifies this finding in that void coalescence takes
place soon after plastic deformation begins [46]. At θ = (2n+ 1)π/3, however, indicative of axisymmetric
loading with the lateral loading dominant, coalescence in layers normal to n is delayed due to the axial
stress being moderate. In actual fact, the voids tend to coalesce in columns, i.e. along plastic plugs parallel
to n [49], which is not accommodated by the presently invoked F I.

The latter special case (w > 1), on the other hand, corresponds to the case where an elongated void
undergoes highly triaxial loading. As such, the plastically deformable intervoid ligament traverses towards
the whole unit cell, and thus the effective yielding mechanism at early stages is homogeneous whereby the
strains to failure predicted at equivalent stress states inducing equal principal stresses (θ = (nπ/3, (2n +
1)π/6)) become almost non-distinguishable. However, the predicted ε̄f for w > 1 is prohibitively large in
that the void is obliged to tend towards a sphere so that χ can increase up to the level whereby F I = 0 can
be realized. In practice, however, the overall material response would cease to remain isotropic if, at all,
such immense strains are attainable. The more realistic mechanism of coalescence in columns would then
deliver a much smaller strain to failure.

Next, Fig. 12 illustrates the effects of alteration in microstructural parameters on the evolution of ε̄f
as function of stress triaxiality T at the example Lode parameters equaling L = ±1 (corresponding to
axisymmetric loading) and L = ±

√
2/2 (denoting some intermediate combined axisymmetric and shear

loading). The value of ε̄f at θ = π/6 (corresponding to L = 0) is mostly near-zero (except for large w’s or
small χ’s under large triaxialities). To the reader’s better insight into the evolution of ε̄f vs. the Lode angle
in simultaneity with stress triaxiality, Fig. 13 is provided for (χ0, w0, λ0) = (0.3, 1, 1).

Besides with small values of χ0 or large values of w0 (i.e. χ0 < 0.2 or w0 > 1), the strain to failure
almost vanishes for T > 2. Namely, under axisymmetric loading with normal dominance, the strain to fail-
ure becomes diminutive under large lateral stresses since voids under large lateral loads can easily impinge
laterally by internal necking. Likewise, under axisymmetric loading with lateral load dominance, the strain
to failure reduces with increasing the normal stress. Both of these response changes are reflected via the
same subfigures, Fig’s 12(a) and (c). All the same, under combined axisymmetric and shear stress states, as
exemplified by L = ±

√
2/2 in Fig’s 12(b) and (d), ε̄f for χ << 1 and w > 1 are orders of magnitude larger

than those for other ranges of χ and w. Note that such large values of ε̄f for w > 1 are non-physical. This
further affirms that the real yielding mechanism for elongated voids under such high triaxialities deviates
from internal necking or shearing, and warrants accounting for other mechanisms such as coalescence in
columns [49].

Moreover, as earlier revealed by Fig’s 5 and 6, the effective yielding mechanism is homogeneous for
small χ’s and w’s under triaxialities ranging up to around T = 1, and is inhomogeneous for the rest of χ’s
andw’s as well as under higher triaxialities. This shift in the effective mechanism, indeed, gives rise to slope
changes within ε̄f for the cases of w0 = 0.1 in Fig. 12c and χ0 = 0.1 in Fig. 12b. Similar slope changes can
be envisaged also under other loading combinations. The reader can consult [40] for more example cases.

Remark 1: Note that, for intermediate to large porosities, here represented by χ0 > 0.1, ductility is
underestimated in the shear-dominant regime, i.e. T < 1 and |L| < 1, which results in the local maximum
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(a) (b)

(c) (d)

Figure 12: Effect of alteration in microstructural parameters on the evolution of ε̄f as function of stress triaxiality T
under load combinations represented by example Lode parameters L = ±1 and L = ±

√
2/2: (a,b) effect of χ0, (c,d)

effect of w0.

Figure 13: Representative 3D surface of ε̄ evolution as function of Lode angle and stress triaxiality for (χ0, w0, λ0) =
(0.3, 1, 1).
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envisaged in the curve belonging to χ0 = 0.2 in Fig. 12b. So is the case due to the limitation of equating εf
to εc, which disregards the significant plastic deformation undergone past the onset of localized deformation.
On the other hand, there being a Gurson-like criterion as FH effects the propensity of overestimating the
ductility corresponding to axisymmetric loading paths, viz. |L| = 1. It so occurs due to the observed
underestimation of damage growth rates with the use of originally-derived Gurson-like models. The latter
is normally resolved by the introduction of heuristic parameters [9, 16].

Remark 2: The singular limit within ε̄f at the limit of triaxiality approaching zero (which can be best
exemplified by a state of shear-dominated loading) is non-physical inasmuch as failure under shear in a
material with finite porosity is substantive regardless of void distribution. This calls for more considerate
accounting for induced anisotropies emanating from void rotation and/or elongation. By way of conse-
quence, the strain to failure at the T = 0 limit would potentially be a large but finite value. This trend
has been observed in some recent simple torsion experiments [15]. All the same, a periodic microstructure
under proportional loading can exhibit varieties of different ductilities under various load combinations. As
schematized as in Fig. 14, ε̄f for a state of combined axial and shear loading is shown to be unbounded at
the limit of T = 1/3, and the shear-dominated low-triaxiality region (T < 1/3) is driven by the loading
path. A recent investigation by the authors demonstrates the existence of a minimum in the case of a unit
cell loaded under combined axial and shear loading.

Figure 14: Schematic representation of ε̄f evolution as function of stress triaxiality for a unit cell under arbitrary
loading with a periodic void distribution and various loading paths.

5 Concluding Remarks

This paper addresses an extension to a recent effort [40] investigating through the development of a new
multi-surface failure model, incorporating void growth (homogeneous yielding) and coalescence (inhomo-
geneous yielding), in porous ductile materials with isotropic response on account of random distribution of
voids. The present work extends the realm of that investigation by accounting for two distinctive parameters
that dictate the microstructural geometry: the ligament parameter χ (indicative of porosity) and the void
aspect ratios w (while admitting the existence of a third parameter being the cell aspect ratio, approximated
as unity by virtue of random void distribution) upon similar homogeneous and inhomogeneous yield criteria
that incorporate the aforementioned parameters. To this end, a hybrid criterion encompassing the intersec-
tion of one homogeneous and two inhomogeneous yield surfaces, after Ref’s [27] and [31], respectively.
The homogeneous yield criterion accounts for diffuse plasticity at the cell level, and the inhomogeneous
criterion is a combination of two terms functioning based on normal and shear tractions over an arbitrary
plane, representative of internal necking or combined internal necking and shearing.

The effective yield surface, in comparison to the homogeneous and inhomogeneous (internal necking

335



alone or combined internal necking and shearing), was plotted 3D as well as projected on deviatoric and
meridian planes in the Haigh–Westergaard stress space. On an arbitrary deviatoric plane (e.g. the π plane or
any parallel plane thereof), the difference between the effective and homogeneous yield surfaces enlarged
along with decreasing χ (or decreasing porosity accordingly) or increasing w. Nevertheless, this difference
diminishes at higher triaxialities. Under such circumstances, as opposed to that upon periodic void position-
ing, both the dilute material limit (χ −→ 0) and a material containing flat (penny-shaped) cavities (w −→ 0)
encounter homogeneous yielding under axisymmetric stress states. Otherwise, the effective mechanism is
inhomogeneous, by combined internal necking and shearing, which itself tends towards homogeneous yield-
ing with increasing stress triaxiality or, equivalently, with increasing hydrostatic stress.

Acknowledging the effective plastic strain at the onset of coalescence as a crude measure of strain to
failure ε̄f , the former was plotted as function of the Lode angle as well as stress triaxiality T , encompassing a
complete range of stress states from axisymmetric loading (L = ±1) to pure shear superposed by hydrostatic
loadings L = 0 and from pure shearing (T = 0) up to nearly hydrostatic loading (T = 3). Under large
triaxialities as well as for materials with χ > 0.2 or w ≤ 1 would deliver vanishingly small ε̄f in the
whole range of triaxialities. For materials with elongated (needle-like) voids, however, ε̄f is significantly
overestimated since coalescence in layers (by internal necking or shearing) is the only failure mechanism
taken into account in the present context. The more factual failure mechanism for the latter case that can
be incorporated in future investigations is void coalescence along plugs of material normal to the plane on
which stresses are resolved (also termed coalescence in columns). Meanwhile, ε̄f resembles a declining
exponential function with respect to T , that admits an asymptotic value at large triaxialities (T > 2) and
grows dramatically at the limit of T = 0. Yet, the latter is characteristic of isotropic material behavior as the
underlying premise within the present context, which does not generally hold for non-random distribution
of voids.
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Appendix A K–B/GLD Model Parameters

The parameters embedded in (1) are the building blocks of the void shape effect. They are mainly functions
of porosity f and void aspect ratio w (as well as a Hill-type anisotropy tensor H in the case of anisotropy
within the matrix). Note thatw in the equations below is the spheroidal aspect ratiows, writtenw for brevity.
g, known as secondary porosity is defined as:

g = 0 (p); g =
e3

2√
1− e2

2

= f
e3

1√
1− e2

1

= f
(1− w2)

3
2

w
(o) (A-1)

where (p) and (o) stand for “prolate” (w > 1) and “oblate” (w < 1), respectively. By definition, g is non-
zero for oblate voids only. e1 and e2 are, respectively, the eccentricities of the void and the outer boundary
of the spheroidal RVE (shown in Fig. 1a). The latter is an implicit function of f and w.
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In addition,
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where
gf ≡

g

g + f
, g1 ≡
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g + 1
(A-4)

Next,
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η = − 2
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where H∗ ≡ 2
√
hq(α1 − α2), Q∗ ≡

√
hq(1 − f) and hq is 1 for an isotropic matrix (see [27] for hq

corresponding to anisotropic matrices). α1 is itself given by
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Note that α2 and α1 are identical to those introduced in [24] for isotropic materials. Finally:
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Appendix B Rationale for Eq. (9)

In order to establish the results of Eq.(9), consider the second order tensor

A = n⊗ n (A-9)

where n is the void orientation vector. For the random distribution of void orientations in Fig. 1b, it is
straightforward to show that

〈A〉 =
1

3
I (A-10)

Considering ensemble averages of the tensors X and Q over all void orientations, and using the above result
in (3), we have

〈X〉 =
1

3
I, 〈Q〉 = 0 (A-11)

Hence, the term Σ : 〈X〉 reduced to the mean macroscopic stress Σm.
Next, consider the orientation average of the tensor H in Eq.(2)

〈H〉 = J + η〈X⊗Q + Q⊗X〉 (A-12)

Using the second order tensor A defined in (A-9) and the results of Eq.(A-11), the second term in the above
equation evaluates to

〈X⊗Q + Q⊗X〉 = (1− 3α2)

[
3〈A⊗A〉 − 1

3
I⊗ I

]
(A-13)

It can be shown that the fourth order tensor 〈A⊗A〉 evaluates to

〈A⊗A〉 =
2

15
J +

1

9
I⊗ I (A-14)

Substituting (A-13) and (A-14) in (A-12) leads to the final result (9)2.

Appendix C Comparison of Localization Mechanisms

The appendix reveals the effect of the induced localization mechanism, either internal necking or combined
internal necking and shearing. The former always predicts much larger stresses at the yield instance. On
the other hand, the effective yield surface is mostly coincident with that resulting from combined necking-
shearing. Figure A-1 depicts the influence of χ and w on the yield surface projection onto the π plane.

338



(a) (b)

(c) (d)

Figure A-1: (a,b) Effect of the ligament parameter χ, (c,d) effect of the void aspect ratio w, on the yield surface
projection induced by internal necking or combined necking-shearing onto the deviatoric plane with T = 0, i.e. π
plane.

Next, Fig. A-2 depicts the influence of χ on the yield surface projection onto the meridian planes with
constant Lode parameters L = (±1, 0).
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(a) (b)

(c) (d)

Figure A-2: Effect of the ligament parameter χ on the yield surface projection induced by internal necking or com-
bined necking-shearing onto the meridian planes: (a,b) L = ±1, (c,d) L = 0.

Figure A-3 depicts the same type of influence induced by w.
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(a) (b)

(c) (d)

Figure A-3: Effect of the void aspect ratio w on the yield surface projection induced by internal necking or combined
necking-shearing onto the meridian planes: (a,b) L = ±1, (c,d) L = 0.
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[26] K. Danas and P. Ponte Castañeda. A finite-strain model for anisotropic viscoplastic porous media:
I–Theory. European Journal of Mechanics, 28:387–401, 2009.

[27] S. M. Keralavarma and A. A. Benzerga. A constitutive model for plastically anisotropic solids with
non-spherical voids. Journal of the Mechanics and Physics of Solids, 58:874–901, 2010.

[28] K. Madou and J.-B. Leblond. A Gurson-type criterion for porous ductile solids containing arbitrary
ellipsoidal voids – I: Limit-analysis of some representative cell. Journal of the Mechanics and Physics
of Solids, 60:1020–1036, 2012.

[29] K. Madou and J.-B. Leblond. A Gurson-type criterion for porous ductile solids containing arbitrary
ellipsoidal voids – II: Determination of yield criterion parameters. Journal of the Mechanics and
Physics of Solids, 60:1037–1058, 2012.

[30] A. A. Benzerga and J.-B. Leblond. Effective Yield Criterion Accounting for Microvoid Coalescence.
Journal of Applied Mechanics, 81:031009, 2014.

[31] M. E. Torki, A. A. Benzerga, and J.-B. Leblond. On Void Coalescence under Combined Tension and
Shear. Journal of Applied Mechanics, 82(7):071005, 2015.

[32] S. M. Keralavarma and S. Chockalingam. A Criterion for Void Coalescence in Anisotropic Ductile
Materials. International Journal of Plasticity, 82:159–176, 2016.

[33] P. F. Thomason. Three–dimensional models for the plastic limit–loads at incipient failure of the inter-
void matrix in ductile porous solids. Acta Metallurgica, 33:1079–1085, 1985.

[34] ME Torki, C. Tekoglu, J-B Leblond, and AA Benzerga. Theoretical and numerical analysis of void co-
alescence in porous ductile solids under arbitrary loadings. International Journal of Plasticity, 91:160–
181, 2017.

[35] Jean-Baptiste Leblond and Mihai Gologanu. External estimate of the yield surface of an arbitrary
ellipsoid containing a confocal void. Comptes Rendus Mecanique, 336:813–819, 2008.

[36] R. Hill. A theory of yielding and plastic flow of anisotropic solids. Proceedings of the Royal Society
of London A, 193:281–297, 1948.

[37] A. A. Benzerga and J.-B. Leblond. Ductile fracture by void growth to coalescence. Advances in
Applied Mechanics, 44:169–305, 2010.

[38] A. A. Benzerga. Micromechanics of Coalescence in Ductile Fracture. Journal of the Mechanics and
Physics of Solids, 50:1331–1362, 2002.

343



[39] F. Scheyvaerts, P. R. Onck, C. Tekog̃lu, and T. Pardoen. The growth and coalescence of ellipsoidal
voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of
Solids, 59:373–397, 2011.

[40] S. M. Keralavarma. A multi-surface plasticity model for ductile fracture simulations. Journal of the
Mechanics and Physics of Solids, 103:100–120, 2017.

[41] M. Gologanu, J.-B. Leblond, and J. Devaux. Approximate Models for Ductile Metals Containing
Non–spherical Voids — Case of Axisymmetric Oblate Ellipsoidal Cavities. Journal of Engineering
Materials and Technology, 116:290–297, 1994.

[42] R. Hill. The essential structure of constitutive laws for metal composites and polycrystals. Journal of
the Mechanics and Physics of Solids, 15:79–95, 1967.
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P5 A MECHANISM OF FAILURE IN SHEAR BANDS

This chapter is reprinted with permission from A Mechanism of Failure in Shear Bands by M.

E. Torki and A. A. Benzerga (2018). Extreme Mechanics Letters 23: 67–71, Copyright 2018 by

Elsevier Ltd.
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Abstract
We have carried out dilatant plasticity simulations to investigate the process of void-mediated failure

inside a shear band. The constitutive model accounts for possibly inhomogeneous flow within the band,
void rotation and void elongation. We found that the material in the band may soften with no increase
in the void volume fraction. For a given matrix hardening capacity, the rate of softening was found to
depend strongly on the ratio of shear band width to in-plane void spacing. The emergent softening led
to complete loss of load bearing capacity thereby providing a physical mechanism of failure in shear
bands. The mechanism is consistent with essential features of shear-fractured specimens in terms of
surface roughness, porosity and dimple shape.

1 Introduction

Failure by shear banding is ubiquitous and occurs in complex fluids [1], granular materials [2, 3], rocks [4]
polycrystals [5, 6], polymers [7] and metallic glasses [8, 9]. However, mechanisms of material separation
inside shear bands have remained elusive. Elucidating a possible mechanism will not only potentially retard
shear fractures, if desired, but also impact other applications where failure occurs under shear dominated
loadings, as would arise metalworking, ballistic penetration, etc. The stress state in shear bands is generally
complex depending on the loading path prior to the onset of strain localization [10]. Correspondingly, shear
bands are generally dilational. While arbitrarily large tension-to-shear ratios may be encountered inside
shear bands, here we focus on situations of vanishingly small tension-to-shear ratios and aim to present a
physical model of complete material separation.

Voids are the main defects mediating ductile fracture [11, 12]. The plastic enlargement of these defects
dominates at moderate to high ratios of tension-to-shear stress (tension-dominated loading), Fig. 1a. Voids
are also believed to play an important role at low tension-to-shear ratios (shear-dominated loading), Fig. 1b.
However, a specific mechanism by which failure occurs is still lacking. Void nucleation is material specific
and will not be addressed here.

Well-established micromechanical models of void growth and coalescence [13, 14] predict infinite duc-
tility under shear loading. This is due to two idealizations: (i) that the void volume fraction, f , is the sole
internal parameter representing the defects; and (ii) that void coalescence occurs upon attainment of a critical
value of f . Since the rate of growth of f is completely determined by the dilational part of the macroscopic
plastic strain rate, which is nil in shear, no growth is predicted, hence no failure. An attempt to remedy this
consists of amending the void growth law with a shear-dependent term [15]. This proposal is attractive but
presents two shortcomings. Not only does it violate the principle of mass conservation underlying the void
growth law but it also presumes that a void-growth-like behavior is required for failure in shear. On the other
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hand, a much earlier mechanism-based model limited to isolated voids [16] did highlight the essential role
of void rotation and possible linkage of neighboring voids by mere impingement.

More recent direct numerical simulations [17, 18, 19] revealed the existence of a maximum in the shear
load response and exhibited three essential microscopic features: (i) void-induced strain localization at the
sub-cell level; (ii) void rotation; and (iii) void elongation in the rotated state. However, such calculations
are extremely challenging, and thus cannot be pursued much beyond the maximum load. Furthermore, they
are not scalable so that a coarse-grained continuum model that mimics the behavior gleaned from these
simulations is lacking [20].

Quite recently, Morin et al. [21] proposed mechanism-based modeling of failure under shear-dominated
loadings. Their model accounts for void rotation and void shape change, but fails to account for the void-
induced strain localization that may occur from the outset in shear. It also employs an ad hoc coalescence
criterion, reminiscent of the critical void volume criterion used in conjunction with the Gurson model [14].
In this Letter, we present a parameter-free model of failure under shear-dominated loading, which accounts
for sub-cell strain localization, void rotation and void shape change. We lay emphasis on qualitative aspects
of the phenomenon and discuss the model’s capabilities to simulate complete loss of stress carrying capacity
in shear.

Figure 1: Typical fracture surfaces of metals failing in (a) tension, and (b) shear [12].

2 Formulation

When voids are at the micron scale and above, void-mediated fracture in the shear band may be described
by continuum mechanics. The shear band is assumed to be acted upon by a shear stress, τ , and a normal
tensile stress, σ, Fig. 2a. Voids are assumed to have nucleated, in some way, inside the band. A regular
doubly-periodic array of voids is assumed for simplicity so that analysis of a single tetragonal cell, Fig. 2b,
is sufficient. The aspect ratio of the cell, λ ≡ H/L, represents the current ratio of shear band thickness
to in-plane void spacing. Other cell parameters include the void volume fraction, f , the void aspect ratio,
w ≡ a/R, along with two unit vectors: n(3) for the orientation of the void, modeled as a spheroid when
it deforms, Fig. 2c, and n for the orientation of the localization plane, Fig. 3. Multiple possibilities for n
may be chosen depending on the underlying spatial arrangement of voids. Here, only one such orientation
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is considered, which is normal to the shear band. Initial values of all internal parameters are indicated with
subscript 0.

(a) (b) (c)

Figure 2: Problem formulation: (a) doubly periodic row of voids inside the shear band; (b) geometry of undeformed
elementary cell; (c) homogeneous deformation of the cell involving void rotation.

To investigate failure in shear, we carried out numerical simulations using a continuum micromechan-
ics framework for dilatant plasticity that captures the essential features of sub-cell deformation sketched in
Fig. 3. Contrary to the direct numerical simulations in [17, 18, 19], we do not model the void explicitly,

(a) (b)

Figure 3: Essential features captured by the coarse-grained model: (a) void-induced strain localization; (b) void
rotation; (c) void elongation.

but through the coarse-grained model. The effective elasticity domain is represented by the intersection of
two convex domains. Its boundary is therefore determined by the intersection of two surfaces in stress space
ΦH(σ; f, w,n(3)) = 0 and ΦI(σ; f, w, λ,n(3),n) = 0 where yield functions ΦH and ΦI correspond to ho-
mogeneous (Fig. 2c) and inhomogeneous (Fig. 3b) deformation of the cell, respectively. The plastic portion
of the symmetric part of the velocity gradient, ∇v ≡ L, is obtained by normality to the effective yield
surface. For generally tensile stress states σ, there is competition between the two yielding mechanisms
[22, 23] with ΦH = 0 prevailing in the early stages of any triaxial stressing process. For combined tension
and shear, as in Fig. 2b, it is the σ/τ ratio that determines which yielding mechanism would dominate. Yield
functions derived from first principles of micromechanics are used for ΦH [24] and ΦI [25, 26]. Evolution
equations for the internal parameters in ΦH were derived in [24]; also see [27] for computational details.
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For sufficiently low σ/τ (shear-dominated loading) inhomogeneous yielding dominates from the outset so
that all subsequent deformation history is governed by ΦI. Details about the two-surface formulation may
be found as Supplemental Material. Here, it suffices to exhibit the governing equations for inhomogeneous
yielding:

ΦI =





( |σ| − S(χ̄, w̄)

V(χ̄)

)2

+
τ2

(1− χ̄2)τ̄2
− 1 for |σ| ≥ S

τ2

(1− χ̄2)τ̄2
− 1 for |σ| ≤ S

(1)

with

V/τ̄ = 2−
√

1 + 3χ̄4 + ln
1 +

√
1 + 3χ̄4

3χ̄2
(2)

S/τ̄ =
χ̄3 − 3χ̄+ 2

3χ̄w̄
(3)

where the effective ligament parameter, χ̄, and effective void aspect ratio, w̄, correspond to an equivalent
cylindrical void with axis n, obtained by a volume-preserving projection of the rotating spheroidal void
onto the localization plane. The exact shape, spheroidal versus cylindrical, has little incidence on yielding
[28]. However, since equations (1) were derived for cylindrical voids [26], this choice is made here (see
Supplemental Material). Also, τ̄ is the flow stress in shear of the material without voids, taken as a power
law in the effective plastic strain τ̄ = τ0(1 + Eγ̄/3τ0)

N with τ0 the initial yield strength, E Young’s
modulus, and N the hardening exponent. Implicit dependence upon the void axis n(3) in (1) is through w
and dependence upon the localization plane normal is through χ̄, w̄ as well as σ = n · σn and τ = m · σn
with m a unit vector along the applied shear.

Upon continued plastic loading, the structure evolves according to (with C = n(3) ·n, S = n(3) ·m and
c3 = C3(fw2)/λ2):

ḟ = (1− f)Dp
kk = (1− f)Λ

∂ΦI

∂σ
(4)

ẇ

w
=

1

2

(
3C2

c
− 1

f

)
n ·Dpn +

3CS

c
m ·Dpn (5)

ṅ(3) = (Ωv + Ωl)n(3) (6)

Ωl =


 ċ
c
− 1

3


 ḟ
f

+ 2

(
ẇ

w
− λ̇

λ

)





(
n⊗ n− C2

S2
m⊗m

)
(7)

ċ = (1− c)D33 (8)

λ

λ0
=

1√
J
(
n · FFTn

) 3
4 (9)

n =
F−Tn(0)

|F−Tn(0)|
(10)
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Eqn. (4) expresses plastic incompressibility of the matrix [13] and Eqns. (5) and (6) are for the constrained
motion of the top and bottom void boundaries due to elastic unloading above and below the void (see
Supplemental Material for derivations.) Also, Λ in (4) is the plastic multiplier, Dp ≡ symLp, Ωv in (6)
represents the deviation from the continuum spin due to the eigen-rotation of the void, calculated using
Eshelby concentration tensors [29] after [30, 27], Ωl is the shear-induced rotation that comes from mere
distortion of void boundaries (dominant here), and F is the deformation gradient used to update the band
orientation n. Relations (5)–(8) are straightfroward generalizations of the evolution equations of Benzerga
[22] in the absence of shear, whereas (9) is taken from [31]. The effective plastic strain is evolved using
Gurson’s identity:

σ : Lp = (1− f)τ̄ ˙̄γ (11)

The above plastic relations were augmented with hypoelasticity within an objective co-rotational finite de-
formation framework. The nonlinear constitutive relations were integrated using an implicit time integration
scheme similar to [27].

3 Results

(a) (b)

(c) (d)

Figure 4: Typical results for vanishingly small tension-to-shear ratio, σ/τ . Against the shear angle, ψ, are plotted
the (a) shear stress, τ , in units of τ0; (b) void orientation, π

2 − θ (◦), measured from n; (c) void aspect ratio, w;
and (d) effective ligament parameter, χ̄. Simulation parameters are: f0 = 0.0005, w0 = 1.1, λ0 = 2, N = 0.2,√

3τ0/E = 0.002.
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(a) (b)

Figure 5: Predicted failure mechanism in shear and its connection to the fracture surface of Fig. 1b: (a) few neigh-
boring cells near the ultimate state χ̄ = 1; (b) side and top views of cut-out from (a) after material separation.

When failure is predicted, the typical shear stress versus shear angle response, Fig. 4a, results from compet-
ing effects of matrix hardening (set by N ) and microstructural softening induced by void rotation, Fig. 4b,
and elongation in the rotated state, Fig. 4c. The angle θ is such that cos θ = n(3) · n. As a result, the
area of the void projected onto the plane of localization increases monotonically, as captured through the
effective ligament parameter, χ̄, Fig. 4d. When χ̄ approaches unity all stress carrying capacity vanishes by
virtue of (1). This occurs while the void volume fraction f remains constant (not shown). In actuality, some
decrease in f is expected. To capture this detail would require a three-dimensional void model [21] and
would have little effect on essential behavior (see Supplemental Material for further details).

To link the above findings with salient features of sheared fracture surfaces, Fig. 1b, consider few neigh-
boring cells at about the ultimate state χ̄ = 1 (dashed in Fig. 5a). We assume that final linkup would occur
by some finer-scale microshear process, Fig. 5b. Alternatively, one may invoke that actual void distributions
are not periodic so that it is likely that when the elongated void reaches the lateral boundaries, it will link
up with a neighboring void. Details aside, a top view of the so-simulated fracture surface, Fig. 5c, provides
a rationale for three key experimental observations: (i) parabolic dimples; (ii) low surface roughness; and
(iii) low local porosity, relative to tensile fracture surfaces, Fig. 1a. Both roughness and porosity are related
to the dimple height, which is set by the amount of rotation prior to failure. In the example shown (Fig. 4b)
the rotation is actually much more than depicted in Fig. 5.

At fixed hardening capacity of the matrix material and fixed void volume fraction f0, the strain to failure
is dependent upon the ratio λ0 of initial band thickness to in-plane void spacing, Fig. 6a. The rotation of the
void, Fig. 6b, and its aspect ratio (Fig. 6c) are also sensitive to λ0. For fixed porosity of initially spherical
voids (w0 ≈ 1), varying λ0 amounts to varying χ̄0 = R0/L0 (Fig. 6d), which has a direct effect on the strain
to failure.
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(a) (b)

(c) (d)

Figure 6: Effect of the ratio, λ0, of shear-band width to in-plane void spacing for f0 = 0.01, w0 = 1.1, N = 0.2,√
3τ0/E = 0.002.

To investigate this effect further, the initial ligament parameter χ̄0 was varied over four decades, Fig. 7.
The results illustrate three possible scenarios: (i) failure is predicted; (ii) weakening is predicted without

(a) (b)

Figure 7: (a) Shear response and (b) evolution of ligament parameter for various values of the initial ligament param-
eter χ̄0 ≡ R0/L0 using w0 = 1.1, λ0 = 2, N = 0.2, and

√
3τ0/E = 0.002.
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failure; (iii) neither weakening nor failure are predicted.
Failure is predicted if the rotating void touches the cell boundaries (i.e. χ̄ → 1). This occurs for

sufficiently large values of χ̄0. Recall that χ̄0 represents the initial size of voids that nucleate inside the
shear band, relative to their in-plane spacing.

On the other hand, if the void is sufficiently small (the χ̄0 = 10−4 case in Fig. 7) the evolution of χ̄
exhibits a maximum after which it decreases, Fig. 7b. Physically, this situation corresponds to void closure
in an asymptotic sense. Indeed, as the void takes on extremely elongated shapes (see e.g. Fig. 6c) the aspect
ratio of the surrogate void vanishes (w̄ → 0) as shown in Supplemental Material. We take this extreme
”flattening” as an indication of void closure. The closed void, which is in the limit a microcrack, deforms
as a material line so that if closure has occured before the void touches the cell boundaries, failure is not
predicted. In this case, the effective flow stress of the material cannot be distinguished from that of the
matrix, also shown in Fig. 7a, because χ̄� 1 at all stages.

An intermediate situation is when the void closes before it touches the boundaries, but now has a rel-
atively large value of current effective void size to spacing ratio, i.e. χ̄ ∼ 1. For the set of simulation
parameters used in Fig. 7, this scenario arises for χ̄0 = 10−3. In this case χ̄ reaches a maximum slightly
above 0.5 (Fig. 7b) at a shear strain in excess of 2. Because the effective yield stress in shear scales with
1 − χ̄2 (see Eq. (1)) there is a noticeable reduction in the flow stress, hence weakening of the material,
although failure is not predicted (χ̄ may not reach unity). The weakening effect predicted for χ̄0 = 10−3

is probably exaggerated and may be due to the idealization of the void shape used in deriving the post-
localization evolution equations. It is, however, physically consistent with the 1 − χ̄2 scaling of the flow
stress provided some evolution of the effective ligament parameter occurs in simple shear; see Supplemental
Material for further elaboration.

4 Concluding remarks

The paper set out to elucidate one possible mechanism of failure under shear dominant-loading, as would
prevail inside shear bands. The mechanism involves strain localization at the scale of individual voids,
extreme void rotation and elongation. It provides a rationale for observed fracture surfaces in sheared
specimens. When failure is predicted for sufficiently large initial void sizes relative to their spacing, a
wide range of strains to complete loss of load bearing capacity emerge. The predicted wide range of values
is consistent with experimental reports in thin-walled torsion tubes for various materials [32, 33].

Our results suggest that materials in which small voids are able to nucleate inside the shear band, such
as metallic glasses [34], would have a lower fracture surface roughness. This is due to the vanishingly small
dimple height, as the voids would have almost completely rotated.

Our results illustrate for the first time a possible mechanism of failure inside shear bands. They also
show that a micromechanical dilatant plasticity framework can provide new insights into aspects of material
behavior heretofore not explained using either continuum or atomistic approaches. The predictions connect
macroscopic behavior with detailed microscopic information about observables (the voids) and measurable
attributes thereof. Once the model is implemented to solve boundary-value problems, further contact with
experiments can be made.
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P6 MICROMECHANICS-BASED CONSTITUTIVE RELATIONS FOR

POST-LOCALIZATION ANALYSIS

This chapter is reprinted with permission from Micromechanics-based Constitutive Relations

for Post-Localization Analysis by M. E. Torki and A. A. Benzerga (2018). MethodsX 5: 1431–

1439, Copyright 2018 by Elsevier Ltd.
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Abstract
Micromechanics-based constitutive relations for post-localization analysis are obtained to be used

in a multi-surface representation of porous metal plasticity. Each yield surface involves a number of
internal parameters. Hence, the constitutive relations must be closed with evolution equations for the
internal parameters. The latter are essential to describing the gradual loss of load bearing capacity in
shear. We also briefly discuss potential void closure due to void rotation and elongation in shear and
show additional details regarding the simulations reported in the Letter.

1 Two-surface formulation

The natural framework to describe elastic deformation is lagrangian. On the other hand, the natural frame-
work to describe plastic flow is eulerian. Formulations of elasto-plastic constitutive relations commonly
adopt an additive decomposition of the total velocity gradient within an eulerian setting [1, 2]:

L = Le +Lp (1)

so that a weak form of elasticity (hypoelasticity) is employed for Le. In this Supplemental Material, we de-
scribe how we formulateLp in the context of a two-surface representation of dilatant plasticity. Background
on the two-surface formulation may be found in [3, 4]; also see [5, 6] for recent perspectives. The effective
yield surface is the intersection of two surfaces. The first, expressed in the form ΦH(σ; f, w,n(3)) = 0,
represents homogeneous plastic flow, at an appropriate scale of description, and involves three internal pa-
rameters: void volume fraction, f , void aspect ratio, w, and void orientation, n(3). It is used to describe void
growth, and encompasses the famous Gurson model [7] for spherical voids under the constraint of no shape
change. In our implementation, we used the model developed in [8]. The second yield surface, written as
ΦI(σ; f, w, λ,n(3),n) = 0, corresponds to inhomogeneous plastic flow and involves two additional internal
parameters: the orientation of the localized band, n, and the relative void spacing1, λ, associated with n. It

1In the Letter, λ physically represents the ratio of shear band thickness to the in-plane void spacing.
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is used to describe void coalescence, and encompasses the recently developed models of void coalescence
in tension [9] and under combined tension and shear [10].

The two-surface formulation, also known as the hybrid model, was discussed in a recent review [6].
Since the plastic portion of the velocity gradient, Lp, is obtained by normality to the effective yield surface,
the hybrid model presents the disadvantage of an ill-defined direction of plastic flow if the current loading
point lies on a vertex of the yield surface. This problem arises because yield functions ΦH and ΦI were
actually obtained independently for two elementary cells using micromechanics. To remedy this problem,
a unified model has recently been developed [11]. The resulting yield surface exhibits regions of extreme
curvature near the vertices of the hybrid model, but is fully smooth. This shortcoming of the hyrbid model
has no consequences on the results presented in this Letter for a simple reason: under near simple shear,
plastic flow is inhomogeneous from the outset. In other words, the current loading point is too far from any
vertex.

2 Surrogate microstructure

The surrogate microstructure defined in the main text involves replacing the rotating void with an upright
cylinder of axis n, having the same volume and porosity, Fig. 1. This identification is needed for applicability

Figure 1: Concept of surrogate or intermediate configuration.

of yield function ΦI; see Eqn (1) in the Letter. It implies introducing an effective void aspect ratio, w̄ ≡ h̄/R̄,
and an effective ligament parameter, χ̄ ≡ R̄/L̄, related to the internal parameters of the actual microstructure
through:

w̄ = w

(
wS +

1

C

)−3

(2)

and

χ̄ =

(
fλ̄

w̄

) 1
3

(3)
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where use has been separately made of equality in void volumes and cell volumes. Here, C and S are short-
hand notation for C = n(3) · n ≡ cos θ and S = n(3) ·m. Also, λ̄ denotes the aspect ratio of the surrogate
cell and is obtained from:

λ̄ =
λ

(1 + γmn)3
(4)

where γmn = 2m ·En and E =
∫
Ddt.

The concept of a surrogate microstructure is key to the predictions discussed in the Letter. In simple
shear, the void rotates “faster” than the material so that χ̄would evolve, unlike the actual ligament parameter
χ ≡ R/L. It is worth noting that an elementary estimation of the limit load in simple shear for the inclined
cylinder of Fig. 1a delivers τ = (1−χ2)τ̄ irrespective of the void inclination, with χ, not χ̄, appearing in the
equation. This simple estimate is contrary to the projection-guided estimate of Eqn. (1) in the Letter. One
cannot emphasize enough, however, that the elementary estimate is obtained using Gurson’s shear field, also
used in [10]. Presumably, this field becomes increasingly poor for inclined voids and large values of χ. An
indication of that may be inferred from three-dimensional calculations for elongated voids reported in [12].
A qualitative theoretical argument supporting this is as follows. Let n(1) be the unit vector perpendicular
to n(3) lying in the shearing plane, i.e. n–m plane (Fig. 2). The lateral void boundaries (having n(1) as a
normal) are traction free, hence:

n(1) · σn(1) = n(3) · σn(1) = 0. (5)

The latter equation implies no shear plastic strain accumulation on those surfaces

n(3) ·Dpn(1) = 0, (6)

where use has been made of the flow rule associated with the von Mises yield criterion tacitly assumed
in deriving the overall response. However, for large inclinations of the void, vectors n(1) and n(3) nearly
coincide with −n and m. It follows that the no-shearing condition above becomes

n ·Dpm ≈ 0, (7)

This condition is obviously violated by Gurson’s shear velocity field, which leads to a uniform deviatoric
strain rate and in particular to a uniform and non-zero value of n ·Dpm.

The above argument means that Gurson’s shear field becomes increasingldy inadequate in those parts of
the intervoid ligament that are close to the boundary of the inclined void. Furthermore, for inclined voids,
this ligament is wide (in the direction of vector n(3)) and thin (in the direction of vector n(1)), see Fig. 5a
of the Letter. Therefore, most of the intervoid ligament lies close to the boundary of the void, making the
inadequacy of Gurson’s field more pronounced. In summary, the proposed heuristics is based on the so-
justified assumption that for an inclined cylinder, the limit load in shear would depend not only on χ but also
on the void orientation relative to the cell’s. This is precisely what surrogate parameter χ̄ captures, albeit
approximately.

3 Evolution equations

Differential equations describing the evolution of internal variables in ΦH were part of the developments in
Ref. [8]. However, those associated with ΦI were not developed in Ref. [10]. They were listed in the main
text as equations (4)–(10). In particular, those pertaining to void shape and orientation, equations (5)–(8),
are original and thus require special attention.

Consistent with the void geometry considered in deriving ΦI in [10], we consider a deformed configura-
tion under shear deformation, Fig. 2. Only the ligament region, of height 2h, is shown for clarity. Recall that
elastically unloaded zones lie above and below the void, as sketched in Fig. 3b of the Letter. For simplicity,
these zones are modeled as rigid in what follows.
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Figure 2: Inclined cylindrical void inside a deformed ligament under the effect of shear τ along m and normal stress
σ along n.

3.1 Evolution of void shape

To obtain the differential equation for void aspect ratio w, we first express that the top and bottom void
boundaries are attached to the rigid zones. Due to symmetry, we focus on motion of the top boundary. Thus,
the tangential and normal velocities of point A (Fig. 2) are given by:

v
(A)
1 = 2h

D31

c
= 2HD31 , v

(A)
3 = h

D33

c
= HD33 (8)

where the x1 and x3 axes are identified with the directions of shear, m, and normal to the band, n, re-
spectively. Accordingly, D31 and D33 are the relevant (non-zero) components of the plastic strain rate
(superscript “p” dropped for convenience and elastic strain rates neglected). Also, c ≡ h/H denotes the
current ligament volume fraction.

Denoting the length of the inclined cylinder and its radius by 2a and 2R, respectively (see Fig. 2), the
time rate of a is obtained at fixed void orientation θ as:

ȧ = v
(A)
1 S + v

(A)
3 C = H(2D31S +D33C) (9)

Hence, using the identity H/a = C/c one gets

ȧ

a
=
C

c
(2D31S +D33C) (10)

The ligament volume fraction, c, is given by:

c3 = C3 fw
2

λ2
(11)

Next, the rate of change of R may be obtained (in terms of that of a) from plastic incompressibility of
the matrix material as

Ṙ

R
=

1

2

[(
L

R

)2 H

a
D33 −

ȧ

a

]
=

1

2

(
D33

f
− ȧ

a

)
(12)

Combining (10) and (12) leads to the following evolution equation for the void aspect ratio:

ẇ

w
=
ȧ

a
− Ṙ

R
=

1

2

(
3C2

c
− 1

f

)
n ·Dpn +

3CS

c
m ·Dpn (13)
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3.2 Evolution of void orientation

In general, the rate of rotation of the (immaterial) principal axes of the void may be directly obtained from
the (material) rotation and strain rates of the void [13, 14], denoted by Ωv and Dv, respectively. Here, we
obtain Ωv as in [13,14] but specialized to the ligaments only. However, the contribution to the rotation rate of
the axes that comes from mere void distortion (i.e. that tied toDv) is rederived from first principles. Madou
and Leblond [14] have shown that the general form initiated in [13, 15] requires significant amendments
due to strong nonlinear effects. They did so by introducing heuristic coefficients calibrated using a large
number of finite-element based limit analyses. Here we obtain simpler, parameter-free and probably more
accurate equations by considering the constrained kinematics pertaining to post-localization. Namely, this
involves plastic incompressibility of the intervoid ligament and the fact that the top and bottom boundaries
of the void move rigidly with the above and bottom material layers. Such equations are obviously valid only
for post-localization. Thus, the rate of change of the void axis is given by equation (6) of the main text,
rewritten here for completeness:

ṅ(3) = ωn(3), ω = Ωv + Ωl (14)

where the rotation tensor ω accounts for the void spin, Ωv, which is determined as in [13]. It is related to
the continuum spin tensor Ω via:

Ωv = Ω− 1

c
C : Dp (15)

where C is the fourth order spin concentration tensor given by

C = −(1− f)P : A, A = [I− (1− f)S]−1 (16)

with A the strain concentration tensor and P and S the Eshelby tensors [16] for a spheroidal inclusion of
zero stiffness in an incompressible linear viscous matrix. Note that a 1/c term appears in (15) to represent
the plastic rate of deformation inside the ligament.

Also, in (14) Ωl is an additional contribution to the effective void rotation that comes from mere distor-
tion of void boundaries under the combined effect of tension and shear. With reference to (11), the time rate
of c reads

3
ċ

c
= 3

Ċ

C
+
ḟ

f
+ 2

(
ẇ

w
− λ̇

λ

)
(17)

The rates of internal parameters entering the right-hand side of this equation are all known, except the void
orientation, which enters through C. The left-hand side can be determined by neglecting the volume change
of the elastically unloaded zones. Thus,

ċ

c
=
ḣ

h
− Ḣ

H
=
D33

c
−D33 =

1− c
c

n ·Dpn (18)

Also,
λ̇

λ
=
Ḣ

H
− L̇

L
= n ·Dpn− 1

2
(m ·Dpm + p ·Dpp) (19)

where p = n × m completes the triad of local base vectors. Therefore, equation (17) may be used to
determine Ċ/C.

Furthermore, in the corotational formulation, where the material is taken stationary and thus n delivers
no time rate, one simply has

Ċ = ṅ(3) · n (20)
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The component of ṅ(3) along m can be derived considering that n(3) is a unit vector, which entails
(
n(3) ·m

)2
+
(
n(3) · p

)2
+
(
n(3) · n

)2
= 1 =⇒ ṅ(3) ·m = −C

S
ṅ(3) · n (21)

Note that component n(3) ·p does not deliver a time rate since no shear is exerted along p. Then, the identity
ṅ(3) = Ωln(3) requires that Ωl be expressed in the following format:

Ωl =
ṅ(3) ·m

S
m⊗m +

ṅ(3) · n
C

n⊗ n (22)

which, along with (17), leads to the following equivalent form:

Ωl =

(
ċ

c
− 1

3

[
ḟ

f
+ 2

(
ẇ

w
− λ̇

λ

)])(
n⊗ n− C2

S2
m⊗m

)
(23)

where all terms and rates have been defined. Note that in the case of simple shear, treated in the Letter, this
equation simplifies considerably since:

ċ = 0 , ḟ = 0 , λ̇ = 0

In summary, evolution equations (13) and (14) with due account of (23) are those labeled (5), (6) and
(7) in the Letter. They were here derived for a rotating cylindrical void whose motion is constrained by
the elastically unloaded zones above and below it. In the Letter, we heuristically use them for spheroidal
voids. Similar equations can also be developed for rotating spheroidal voids. However, the geometry leads
to more complex equations that would take away from the simplicity of the present treatment. Furthermore,
when dealing with the special case of initially spherical voids (w0 = 1) the void axis is arbitrarily defined.
Under such circumstances, the principal stretch is used to resolve any indeterminacy upon deformation, as
explained elsewhere [2]. In order to avoid this unnecessary complication, in the Letter we have used a void
with a slight initial eccentricity (w0 = 1.1) so that its axis n(3) is well defined from the outset.

4 Void closure

(a) (b)

Figure 3: Void flattening in the surrogate microstructure by evolution of the effective void aspect ratio, w̄ in (a) the
case shown in Fig. 4 of the Letter using σ/τ = 0.01, f0 = 0.0005, w0 = 1.1, λ0 = 2, N = 0.2,

√
3τ0/E = 0.002;

and (b) the cases shown in Fig. 6 of the Letter using σ/τ = 0.01, f0 = 0.01, w0 = 1.1, N = 0.2,
√

3τ0/E = 0.002.
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In exact finite element simulations of void growth in a shear field [17–19], the void volume fraction may
slowly decrease if the tension-to-shear ratio is sufficiently low. By way of consequence, the void closes
into a crack. Various ways of avoiding details pertaining to handling contact were explored by Tvergaard
[17–19]. In our simulations, the void volume fraction f remains constant. As mentioned in the text, this
is an approximation with no consequence on essential behavior, because f is not an essential internal state
variable in simple shear. Since f is predicted to remain constant, void closure never occurs per se. However,
it does in an asymptotic sense. To illustrate this, Fig. 3 shows the evolution of the effective void aspect
ratio, w̄, introduced in equation (2) for various cases reported in the Letter. As the void rotates, its projected
length onto the localization plane increases. Thus, to maintain equality of volumes between the actual void
and the surrogate void, the latter must go increasingly flat, i.e. w̄ → 0. This is illustrated in the surrogate
microstrutcure of Fig. 1. The faster the rotation the more severe the flattening in the surrogate cell.
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Abstract
A hybrid micromechanics-based model is developed and numerically implemented to simulate duc-

tile failure under combined shear and tension. The constitutive framework accounts for homogeneous
and localized deformation processes. Earlier outcomes indicate that the shear-dominated deformation
process is an intermediate state between a fully homogeneous and an ideally localized one with plastic-
ity confined within intervoid ligaments. The deformation mechanism is closer to being homogeneous at
early stages and would approach the ideal localized state towards the end. Existing evolution equations of
void elongation and rotation are invoked during nearly-homogeneous yielding, and are derived for post-
localized deformation under combined loading. While nearly-homogeneous yielding is governed by the
current void configuration, the localized yield criterion acts upon a surrogate microstructure aligned with
the normal to a possible plane of localization. The original form of the hybrid model predicts premature
failure under shear-dominated loading notwithstanding the failure mechanism fully conforms to physics.
Both the nearly-homogeneous and localized yield functions are, therefore, modified in accordance with
existing numerical results with simple adjustable parameters. As opposed to failure under triaxial load-
ing governed by evolution of porosity, failure under combined tension and shear is driven by the effective
parameter dictated by the initial relative void spacing and evolved until its maximum value is achieved.
The study was further specified to a state of near-simple shearing with a vanishingly small normal stress.
The effects of initial porosity, those of the void and cell aspect ratios, and that of void misalignment with
the principal loading directions were accounted for. Furthermore, the strain to failure was evaluated in
terms of stress triaxiality for a complete scope of stress triaxialities upon the loading path constituted by
combined normal and shear stresses. Finally, the same framework was utilized to simulate an example
state of near-pure shearing under the plane-strain condition.

Key Words: Ductile fracture; Void coalescence; Combined tension and shear; Failure in shear; Porous
plasticity.

1 Introduction

Ductile failure under combined tension and shear can be witnessed in abundant undesirable and desirable
failure processes such as crack propagation under ductile-to-brittle transition (DBT), e.g. in welded struc-
tures [1], ballistic penetration [2], etc as well as engineering processes such as cutting and trimming [3], etc.
Experimental observation of ductile fracture has been conveyed in the literature by such works as that of
Johnson et al. [4, 5], who measured the torsional ductility in varieties of engineering metal alloys. Therein,
one could observe up to 3 orders of magnitude of difference in γf from the lower to the upper limit. A com-
pelling explanation regarding these remarkable differences in the measured ductilities still remains elusive.
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Later on, Barsoum and Faleskog [6] conducted similar experiments by the introduction of notches to hollow
tubes for illustrating the effect of triaxiality. They characterized the stress state in terms of stress triaxiality
T and the Lode parameter L [7]. Haltom et al. [8] have recently conducted torsion experiments with the
test specimen revisited. Unlike earlier torsion experiments on aluminum alloys and steels [9, 10], Haltom
et al.’s experiments showed increasing ductility under stress states near simple shearing [8]. Altogether,
experiments, though being revealing, are hard to conduct, especially in presence of shear, and may lead to
conflicting results.

The present work tacitly assumes the preexistence of voids inside a material regardless of the mech-
anism that underlies the nucleation of voids. Nevertheless, micromechanical void nucleation analyses of
the kind pioneered by Needleman [11] are still not available for such loadings. Except when mediated by
limited void growth in presence of penny-shaped cracks, the indispensable stages to ductile fracture under
triaxial loadings are void growth and void coalescence, which is conducive to ultimate fracture. The two
stages are distinguishable from plastic deformation being homogeneous and inhomogeneous at the cell level,
respectively. To date, the failure mechanism subsequent to void coalescence that is best understood is by
internal necking (see [7] and references therein) has been motivated by the pioneering computational work
of Koplik and Needleman [12]. On the other hand, microscale localization by so–called internal shearing
has also been noticed on the basis of cell model calculations [6, 13–15]. As such, plastic deformation under
shear at the micro scale is inhomogeneous from the outset. In particular, both void growth and coalescence
under shear are accommodated by plastic deformation confined to the vicinity of inter-void ligaments. The
inhomogeneous identity of deformation under such conditions has been witnessed from early ages [16]. In
a weakly rate–sensitive material, void coalescence by internal necking or shearing manifests by the onset of
elastic unloading in layers above and below the void [12,15,17]. Another prominent indication of failure in
shear is shear failure, i.e. failure by shear banding as an instability phenomenon [18]. However, the mech-
anism of material separation under shear–dominated loadings as well as inside shear bands has remained
elusive by far.

A tentative understanding on the effect of loading condition on ductile fracture is carried through macro-
scopic nondimensional descriptors expressed in terms of stress invariants or some equivalent invariant of the
stress deviator at the cell level. The Lode parameter L is particularly used to apparently reflect the effect
of shear. The latter is function of the Lode angle or, equivalently, the third invariant of the stress deviator,
J3 [19, 20]. However, isotropic scalar–valued parameters cannot reveal the essential features of shearing
effects at the micro scale. Meanwhile, there has been remarkable attempt exerted on modeling ductile frac-
ture under shearing effects at the cell level. Some researchers, including Tvergaard and coworkers [14, 21]
have simulated this phenomenon by high–throughput FEM–based cell–model calculations under various
conditions including near-simple shearing with plane strain or 3D cells [14, 21] as well as near-pure shear-
ing [22]. In a sense, these sets of calculations can serve as benchmark for model assessment purposes. The
technical challenges, however, clearly demonstrate that numerical cell–model studies, let alone structural
calculations, of porous plasticity under combined loading are not only cumbersome, but also unfeasible at
times, e.g. in the case of extreme shearing over 3D unit cells [14]. Micromechanics–based modeling would,
in effect, eliminate the need for lengthy cell–model calculations. Deformation–induced anisotropies, how-
ever, constitute the essence of the damage mechanics of shear–dominated ductile fracture. This anisotropy
is of two types: that related to the voids themselves (changes in void shape and orientation as well as their
spatial arrangement) [21], and that related to the matrix, normally known as plastic anisotropy [23]. Thus,
analyses of ductile fracture under shear–dominated loading and interpretation of currently available exper-
iments rely, to a large extent, on accounting for the induced, and eventually initial anisotropies. In actual
fact, the constitutive framework demands a paradigm shift in approaching ductile fracture in combined shear
and tension, particularly at low stress triaxialities even if the anisotropy of the material is disregarded. More
importantly, the post-localized constitutive behavior of porous materials is still at premature stage. Rather
than merely on heuristics, plasticity models predicting void growth and coalescence under combined tension
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and shear should be derived with a deeper insight into the physics of this process. Apropos of void coales-
cence, analytical physics–based models accounting for void coalescence under combined loading have been
recently developed from first principles by the present author [24, 25]. Yet, the predictive capacity of these
models in evolution-based simulation of ductile fracture remains to be evaluated. Moreover, a set of equa-
tions accounting for the evolution of effective parameters governing the post–coalescence microstructure is
far from established. The only way to explore this problem without the present controversies is by adopt-
ing a mechanism–based approach. The present work is thus a step forward to the development of a more
comprehensive constitutive theory for modeling ductile fracture under combined tension and shear, with
particular focus on shear–dominated loadings. Without this step forward, the link between the real failure
mechanism and the simulated process would still be missing. The micromechanical basis for an understand-
ing of low–triaxiality fracture has been available since the early nineties [26,27] and has been used to model
fracture in engineering materials, e.g. [28, 29]. Yet, the use of such equations has been restricted mostly
to triaxial loading. The constitutive model expanded in the present context will be in part supplemented
with the same models regarding void rotation and elongation prior to void coalescence. The counterparts
of these equations, however, are lacking for the post-localized regime. Torki and Benzerga [30] derived
evolution equations governing post-localized void elongation and rotation for cylindrical voids. The time
integration of those equations, along with the associated flow rule based on the localized yield criterion
in [24], was reflected through the results in [31], which elucidated a physics-based failure mechanism under
shear dominant-loading, as would provide a rationale for observed fracture surfaces in sheared specimens.
Failure under shear was proven to involve strain localization within inter-void ligaments, and was mediated
by extreme void rotation and elongation. The framework provided therein was entitled to its own limitations.
Firstly, it would deliver overconstrained responses due to the employed void idealization in that a cylindrical
void should be pinned to the ligament ends throughout its bases. To move away from the resulting premature
failure, added to better consistency with real microvoids, we were motivated to consider voids as spheroidal.
To this end, post–localized evolution equations accounting for the rotation and elongation of voids under
combined tension and shear will be derived from first principles for spheroidal voids, and the corresponding
evolution of state will be compared to that emanating from its simpler counterpart for cylindrical voids [31].
The equations for pheroidal voids bare more complexity than their counterparts for cylindrical voids. Yet,
the resulting framework can capture the salient features of shear–induced failure for the complete range of
void shapes, viz. for elongated, flat, and nearly-spherical voids as well as for a complete range of initial void
orientations. The outcomes are suggestive of different conducts for flat and elongated voids, as well as for
voids variously oriented initially, under the same shear field whereas a cylindrical void under a shear field
behaves all alike regardless of its shape and initial orientation. The elongation and rotation of spherical voids
had earlier attracted McClintock et al. [32], who developed much simpler such equations for linearly viscous
materials by considering the shear deformation as homogeneous rather than localized. Interestingly, the de-
rived evolution equations for rotating voids can conveniently retrieve their simpler precursors developed by
Benzerga [33] in absence of shear.

Alongside, the localized yield function developed from first principles by Torki et al. [24] will be invoked
in competition to the homogeneous model after Keralavarma and Benzerga [34]. In this case, the two
yield criteria are derived on the basis of different cell geometries, and thus the resulting two–surface model
is termed hybrid. Contrary to the direct numerical simulations in [14, 21, 35], the void is not modeled
explicitly, but through a the notion of an elementary cell. However, the latter numerical analyses can be
considered as benchmark to assess the present hybrid model at the material cell level. The comparison
between the complete model predictions with their cell-model counterparts from Ref’s [14, 21] warrants
some simple calibration to the model in both homogeneous and inhomogeneous yield criteria. Without
a constitutive framework developed in terms of measurable and observable parameters, no such clear and
simple calibration functions could have been introduced.

With the calibrated model at hand, the parametric studies will extend into the states of near–simple and
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near–pure shearing. The effect of initial porosity will be conveyed through the initial ligament parameter
χ0. Further, the effect of void and cell sizes will be expressed in terms of the void and cell aspect ratios, w0

and λ0, respectively. A significant potential impact of the present work is the strain to failure evaluated in
terms of stress triaxiality for a complete scope of stress triaxialities, especially for T < 1/3, upon imparting
combined normal and shear stresses.

2 Evolution of State

This section addresses the body of requisite equations for the evolution of the material state in explicit
or rate form. The first set of forthcoming equations are generic, and the evolution of void aspect ratio w
and orientation n(3) are intrinsic to the mechanism. Differential equations describing the evolution of w
and n(3) associated with ΦH are part of the developments in Ref. [27, 34, 36]. Those associated with ΦI,
however, have not been developed except for triaxial stress states [33]. In a recent work by the authors [30],
evolution equations have been proposed for the localized deformation mode mainly for cylindrical voids. In
the present work, the counterparts of equations in [30] are propounded for spheroidal voids in the sequel.
They key feature to take into account in this respect is the rigid-like behavior of the matrix above and below
the void induced by elastic unloading [12]. So too has been corroborated for combined tension and shear
via cell-model calculations [25].

2.1 Base vectors and plane normals

Let the principal loading directions be denoted by a global basis such as (e1, e2, e3). The initial state of this
basis, as well as the void lattice directors (d1,d2,d3), are taken to rotate with the material. That is

em = Re(0)
m , dn = Rd(0)

n

F = RU
(1)

where R and U emanate from the polar decomposition of the deformation gradient tensor F at every step
of the process, with R being the rotation part. m = (L,T,S) stands for the principal orthotropy axes, and
n = 1, 2, 3 constitutes the void lattice directors. The current deformation gradient can be derived on the
basis of its incremental value at every time step, that is [37]

F(i) =

i∏

j=0

F(j) (2)

where F(j) is the deformation gradient between the j − 1’st and j’th time steps constituted by the incre-
mental displacements at the j’th step, where j = 1, 2, ..., i. Note that many commercial codes, such as
ABAQUS, calculate F internally, and it thus need not be programmed when the constitutive model is coded
in conjunction with those commercial software.

Upon invoking underlying microstructure, one can identify a discrete set of initial planes which could
configure the post-localized inter-void ligaments. Each plane set is uniquely defined by a normal n. Un-
less stated otherwise, a normal is convected through the transformation law for a directed area with unit
magnitude. Therefore:

n =
F−Tn(0)

∣∣F−Tn(0)
∣∣ (3)

with |.| denoting a vector magnitude.
Within a plane with normal n, two additional base vectors m and p can be defined in the interest of well-

defined directions along and perpendicular to in-plane shear tractions. The latter two can be determined, at
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every current step, directly from the resolved shear traction on the current plane with normal n and a cross
product carried out on n and m, respectively. That is

m =
τn

|τn|
p = n×m

(4)

where the shear traction τn will be used in Eq. (33). In case, however, the shear traction vanishes, Eq. (4)
would be ill-defined. In this case, m and p would stay constant, equal to their previous values (or to their
initial values in case the loading is shearless throughout).

For the single cell undergoing normal and lateral as well as shear displacement, F(j) reads:

F(j) =


1 +

δu
(j)
m

L


m⊗m +


1 +

δu
(j)
p

L


p⊗ p +


1 +

δu
(j)
n

H


n⊗ n +

δu
(j)
t

H
m⊗ n (5)

where the constituents
(
δu

(j)
m , δu

(j)
p , δu

(j)
n , δu

(j)
t

)
are the incremental displacements at the j’th step, where

j = 1, 2, ..., i. Here, δu(j)
m , δu(j)

p , and δu(j)
n are the tensile displacement increments along directions m, p,

and n, respectively, and δu(j)
t is the tangential displacement increment over the top chord of the cell. Note

that all these displacement increments are modified as to preserve the ratios among the stresses. Moreover,

L = L0 exp

(
εmm + εpp

2

)
, H = H0 exp εnn (6)

with εmm, εpp, and εnn are the normal strains resolved along the m, p and n directions, respectively. Upon
consideration of the single cell, n (denoting normal to the invoked localization plane) initially directed along
e3 would stay constant thanks to the imposed deformation gradient F. Accordingly, m, p and n coincide
with the global base vectors e1, e2 and e3, respectively.

Remark: The present solution framework is expanded based on a co-rotational formulation, i.e. the
equations are expanded within the rotated material configuration. Therefore, Eq. (1) is implicit in the
formulation.

2.2 Ligament volume fraction

c ≡ h/H denotes the current ligament volume fraction, which can be expressed in correlation with (f, w, λ, θ)
by writing

c =
` cosβ

H
=
`

b

cosβ

w

a

H
(7)

But f can be expressed in the following form

f =
1

3γw2

(
a

L

)2 a

H
=

1

3γw2λ

(
a

L

)3

∴ a

H
=

1

λ

a

L
=

(
3γw2f

λ2

)3

(8)

where γ denotes the void shape factor, equaling 1/2 for a spheroid.
Therefore, (7), in combination with (8) and (A-12), gives

c =

(
3γf

wλ2

)1/3
√

T 2 + w2

T 2 + 1
(9)

where T = S/C, with S and C denoting, respectively, sin θ and cos θ, with θ being a directional angle
originated along n and ending at n(3) with the sign convention as shown in Fig. 1.
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Remark: The ligament volume fraction, according to (9), for the special case of an upright void with
respect to normal n (T = 0) simplifies into

c =

(
3γfw2

λ2

)1/3

=
χw

λ
≡ a

H

noting that f = cχ2/3γ. By the same token, for a void after extreme shearing in a shear-dominated field
(T −→∞), it delivers

c ≈
(

3γf

wλ2

)1/3

=
χ

λ
≡ b

H

2.3 Void aspect ratio

The evolving void aspect ratio can be more concisely and conveniently expressed in the form of its natural
logarithm s ≡ lnw, thus its rate ṡ as follows.

– During nearly-homogeneous deformation:
The evolution equation for the void aspect ratio during nearly-homogeneous deformation is that pro-
posed by Gologanu et al. [36], also adopted in [29]:

Ṡ = Q : Dv (10)

where

Dv = kDp + 3

(
1

f
Xv −X

)
Dp

m (11)

and Q, Xv and X obey (32). The heuristic function k (following [36]) writes

k = 1 + kwkfkT

kw(w) =
9

2

α1 − αGar
1

1− 3α1

kf (f) = (1−
√
f)2

kT (T, ε) =





1− T 2 + T 4

9
for ε = +1

1− T 2 + T 4

18
for ε = −1

, ε ≡ sgn(σmσ
′
33)

(12)

and

T =
σkk/3√
3
2σ
′ : σ′

(13)

where T is the stress triaxiality and ε is related to the third stress invariant; see [23].

– During localized deformation:

The challenge to the post-localized evolution of void aspect ratio and orientation resides in the kine-
matic cell boundary conditions during localized yielding. In particular, it amounts to intercepting the
rigid-like zones (see Fig. 1b) with specific tangential points that depart from the void poles with the
void being rotated. See Fig. 1.
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(a) (b) (c)

Figure 1: (a) Schematized post–localized deformation mechanism, and (b,c) the angles driving the evolved geometry
for a spheroidal void under a shear field: (b) a prolate void (w > 1), (c) an oblate void (w < 1).

To obtain the post-localized differential equation for void aspect ratio w, the time rate of ` (shown in
Fig. 1) should be developed on the account that the top and bottom void boundaries are attached to
the rigid zones. The reader can refer to Eq’s (A-10)–(A-15) as basics and Appendix C for derivation
details. In essence, one can write:

ṡ = (w2+T 2)2

(w4+T 2)(1+T 2)

[
2−3

T 2(2w2−w4+T 2)

(w4+T 2)(w2+T 2)

]
[(

3
c −

(w4+T 2)(1+T 2)
f(w2+T 2)2

)
Dnn + 6

c
(w2−1)T
w2+T 2 Dnm

]

(14)
for prolate voids (w > 1), and

ṡ = (w2+T 2)2

(w4+T 2)(1+T 2)

[
1−T 2(−2w2+w4−T 2)

(w4+T 2)(w2+T 2)

]
[(
−3
c + (w4+T 2)(1+T 2)

f(w2+T 2)2

)
Dnn − 6

c
(w2−1)T
w2+T 2 Dnm

]

(15)
for oblate voids (w < 1). Here,

Dnn = n ·Dpn

Dmn = m ·Dpn

with the elastic strains neglected.

Note, for the special case of an upright void, that Eq. (14) simplifies into Eq. (12) of [33]. See
Appendix C for more details and special cases.

2.4 Cell aspect ratio

A judicious method that enables to update the cell aspect ratio as function of the normal to the ligament n
is that proposed by Leblond and Mottet [38], originally derived for a cubic initial unit cell. This method
delivers the following relation for an initially orthorhombic cell:

λ(n) =
λ0(n)√
J
(
n · (FFT)n

) 3
4 (16)

where F is the total deformation gradient, with its associated determinant J := det F. See Appendix D for
justification.
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Remark 1: Under combined tensile and shear loadings, λ should never fall below its initial value λ0.
Hence, λ is replaced with λ0 in case λ ≤ λ0.

Remark 2: The gauge functions ΦH and ΦI operate with spheroidally and cylindrically idealized voids,
respectively, which cannot distinguish between the void and cell aspect ratios within the m–n and p–n planes.
Yet, it is possible to evaluate the separate values of void and cell aspect ratios as well as the void axes
within the two planes, as post-processed parameters. See Appendix F for more details. A recent work by
Morin et al. reports internal state variables predicted from numerical implementation of the model proposed
by Madou and Leblond [39], developed for an ellipsoidal void which directly operates as function of the
separate void aspect ratios [40]. Nevertheless, the post-localized process therein is modeled heuristically
with the aid of an accelerated porosity, which is not the aim of the present work.

2.5 Porosity

Throughout the plastic deformation process, f is governed by the plastic incompressibility law such that:

ḟ = (1− f)Dp
kk = (1− f) Λ̇

∂Φ

∂σm
(17)

with Λ̇ being the plastic multiplier in rate form.

2.6 Void orientation

In general, the rate of rotation of the (immaterial) principal axes of the void may be directly obtained from
the (material) rotation and strain rates of the void [41, 42], denoted by Ωv and Dv, respectively. Thus, the
rate of change of the void axis is given by the following

ṅ(3) = ωn(3), ω = Ωv + Ωl (18)

where the rotation tensor ω is the total spin tensor that consists of the void spin, Ωv, superposed by the
void rotation with respect to the material, Ωl. Here, we exploit Ωv as derived in [41, 42] during the nearly-
homogeneous deformation process, and confine it to the plastic ligament at the post-localized deformation.
Namely:

– During nearly-homogeneous deformation:

Ωv = Ω− C : Dp (19)

– During the post-localized deformation:

Ωv = Ω− 1

c
C : Dp (20)

where C is the fourth order spin concentration tensor given by

C = −(1− f)P : A, A = [I− (1− f)S]−1 (21)

with A the strain concentration tensor and P and S the Eshelby tensors [43] for a spheroidal inclusion of
zero stiffness in an incompressible linear viscous matrix. Note that a 1/c term appears in (20) to represent
the plastic rate of deformation inside the ligament.

Also, in (18) Ωl is an additional contribution to the effective void rotation that comes from mere distor-
tion of void boundaries under the combined effect of tension and shear.
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– During nearly-homogeneous deformation:
By defining the plastic spin tensor as Ωp = Ω − ω, one can write, during the nearly-homogeneous
deformation:

Ωl =
1

2

∑

i 6=j, wi 6=wj

w2
i + w2

j

w2
i − w2

j

[
(ni ⊗ nj + nj ⊗ ni) : A : Dp

]
ni ⊗ nj (22)

Then, by combining Eq’s (19), (22), and (18), and by adopting the notation w1 = w2 = w and
w3 = 1, one can evaluate the components of ω with respect to a laboratory frame. The case w = 1,
however, requires a careful treatment; see [34].

– During localized deformation:
The post-localized Ωl should be rederived from first principles. Madou and Leblond [42] have shown
that the general form initiated in [27, 41] requires significant amendments due to strong nonlinear
effects. They did so by introducing heuristic coefficients calibrated using a large number of finite-
element based limit analyses. Here we obtain simpler, parameter-free and probably more accurate
equations by considering the constrained kinematics pertaining to post-localization. Namely, this in-
volves plastic incompressibility of the intervoid ligament and the fact that the top and bottom bound-
aries of the void move rigidly with the above and bottom material layers. Upon the steps clarified in
Appendix E, the post-localized Ωl reads:

Ωl =
Ṡ

S
m⊗m +

Ċ

C
n⊗ n =

Ṫ

T

(
C2m⊗m− S2n⊗ n

)
(23)

where Ṫ obeys the following equation

Ṫ =
(T 2 + w2)(1 + T 2)

T (1− w2)


 ċ
c
− 1

3

(
ḟ

f
− 2

λ̇

λ

)
+

(
1

3
− w2

T 2 + w2

)
ṡ


 (24)

where

ċ

c
=

1− c
c

n ·Dpn

ḟ

f
=

(
1

f
− 1

)
Dp
kk

λ̇

λ
= Dnn −

1

2

(
Dmm +Dpp

)

(25)

with
Dnn = n ·Dpn , Dmm = m ·Dpm , Dpp = p ·Dpp

and p = n×m completes the triad of local base vectors.

Remark: Ṫ , according to (A-33), for the special case of an upright void with respect to normal n
(T = 0) simplifies into

Ṫ = −2

3

w2

T (1− w2)
ṡ

which, considering ṡ > 0 for a prolate void (see Eq. (A-23)) and ṡ < 0 for an oblate void (see Eq.
(A-27)), delivers Ṫ > 0 for a prolate void and Ṫ < 0 for an oblate void under a positively directed
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(rightward) shear field. By the same token, for a void after extreme shearing in a shear-dominated
field (T −→∞), it delivers

Ṫ ≈ −1 + T 2

T

(
1

3
− w

)
ṡ

for a prolate void (at the w −→∞ limit), and

Ṫ ≈ T

3
(1 + T 2)ṡ

for an oblate void (at the w −→ 0 limit), which are both positive limits. Therefore, it can be realized
that, as schematized in Fig. 1, both prolate and oblate voids under a positively directed shear field
reach a steady state rightward orientation. The transient rate of orientation, however, differs in the
sense that a prolate void rotates rightward throughout the process whereas an oblate void rotates
leftward transiently until it starts rotating rightward and continues until failure.

2.7 Equivalent plastic strain

The evolution of equivalent plastic strain ε̄ is obtained through the formation of plastic work equivalence
between the macroscopic material and the sole matrix, written as

σ : Dp = (1− f)σ̄ ˙̄ε (26)

where σ̄ correlates with ε̄ through (28). Within the adopted solution scheme, Eq. (26 is utilized for cal-
culating the residual associated with ε̄, as pointed out in Sec. 4. It is noteworthy that, at the post-localized
regime, Eq. (26) can be exploited to update the plastic multiplier Λ̇ explicitly by rearranging in the following
format:

Λ̇ = (1− f)
σ̄ ˙̄ε

σ : N
, N =

∂ΦI

∂σ
(27)

3 Hybrid Model of Ductile Fracture

Preparatory to the definition of a hybrid fracture model, we shall conceptualize homogeneous vs. inho-
mogeneous yielding. The distinction between homogeneous and inhomogeneous yielding pertains to plastic
deformation at the unit cell level. If a unit cell of arbitrary geometry deforms uniformly inside, and thus over
its boundary, the plastic deformation is here named ”homogeneous”, otherwise termed ”inhomogeneous”. A
popular case of inhomogeneous yielding arises from elastic unloading [12], whereafter strain rates become
localized inside an inner-void ligament with finite thickness. This must, however, be clearly dissociated
from Rice’s theory of plastic localization [18], whereby strain rates can localize inside a band with vanish-
ing thickness. This distinction is of utmost importance in porous material plasticity particularly where voids
can act as initial heterogeneity. Among the featured homogeneous and inhomogeneous yielding processes
are void growth and void coalescence, respectively. Nevertheless, the present-invoked terminology is more
inclusive than the given examples. Consequent to tension superposed with shear, for instance, voids may
grow or shrink down to void closure while plastic deformation is homogeneous at the cell level (depending
on the ratio between normal and shear stresses). By the same token, yielding is inhomogeneous (almost)
from the outset (see [31] for clear illustration) in that plasticity is majorly confined to a close vicinity of the
void. Yet, void coalescence and failure might never be realized when the void volume fraction approaches
zero (the limit to a dilute matrix). Example cases will be observed in the sequel.

The initial state in the numerical simulation of ductile fracture can be typically characterized with an
underlying microstructure. A typical underlying microstructure with periodic or clustered arrays of voids is
schematically shown in Fig. 2.
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(a) (b)

Figure 2: (a) Relative positioning of voids in a latticed distribution, accompanied by its equivalent orthorhombic unit
cell (RVE) associated with normal n with geometric properties averaged over the tributary volume around the central
void. (b) unit cell deformed under the effect of combined tension and shear.

The microstrucrural geometry can then be described with the aid of a representative volume element
(RVE) constituted from the tributary volume surrounding the central void, as schematized in Fig. 2a. The
same underlying microstructure can accommodate localized deformation inside several possible planes.
These planes would give rise to the notion of ”localization systems” describing the manner by which voids
lying within a plane can interconnect. Each adopted plane of localization and, accordingly, the resulting
RVE would then be identified with a normal vector n corresponding to the tributary plane. In the simplest
case, the cell can be regarded initially orthorhombic which, after shearing, transforms (approximately) into
monoclinic, as shown in Fig. 2b. Even upon this simplification, the macroscopic response of this cell is not
solvable, be the yielding mechanism homogeneous or inhomogeneous. Rather, it is attainable through ide-
alized elementary cells that can be utilized in the derivation of both the yield function and its corresponding
evolution equations.

By definition, a hybrid model is founded on the microstructural state as idealized via different repre-
sentative volume elements (RVE’s) during various yielding mechanisms, here exemplified by homogeneous
and inhomogeneous processes. The building blocks of the present hybrid model are two yield surfaces in the
stress space expressed basically as ΦH(σ; f, w,n(3)) = 0 and ΦI(σ; f, w, λ,n(3),n) = 0, where the yield
functions ΦH and ΦI correspond to homogeneous and inhomogeneous deformation of the cell, respectively.
f is defined as the void volume fraction (porosity), w is the void aspect ratio, n(3) is the void orientation
determined by its main axis direction, and n is the plane in which plastic strains can localize and voids can
impinge.

In the present context, ΦH follows the model derived by Keralavarma and Benzerga [34], and ΦI is
the model after Torki et al. [24]. The assumptions underlying the mathematical modeling of homogeneous
yielding allow for arbitrary orientation of voids whereas inhomogeneous yielding is only warranted within
localization planes. For the sake of simplicity, the presently derived inhomogeneous yield conditions have
been developed with the void being codirectional with the normal to the localization plane n. To remedy
this constraint, the real microstructure is mapped into a surrogate one, identified with a surrogate void
aligned with n. Upon reliance on an underlying microstructure, inhomogeneous deformation can be realized
over more than one possible localization plane n. Considering the notion of a multi-surface model, the
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effective flow rule is normally expressed as a linear combination of all potentially involved flow potentials
that include, herein, ΦH and several feasible ΦI’s in a concurrent manner. Rather, the model at the present
stage accounts for a consecutive advancement of mechanisms. That is, the most favorable mechanism is
triggered at every time step by considering the Φ = 0 that is met first. The prime objective within this
paper is to predict the constitutive behavior of a porous material at a single cell level regarded as a single
point in space. Only one localization mode, out of all, has therefore been involved in the formulation. Yet,
the normal to the only localization plane n is generally subjected to change as function of the deformation
gradient tensor F, which will be reflected in Eq. (3). It is worthy of note that the Kuhn-Tucker condition [44]
is trivially satisfied in the present context owing to the lack of elastic unloading at the macro scale.

Both yield functions are expressed in terms of the stress space normalized by the matrix effective stress
σ̄. The latter is normally taken to depend on some effective plastic strain ε̄ as its conjugate strain. Here, the
two are related through a power law of the form:

σ̄ = σ0

(
1 +

ε̄

ε0

)N
(28)

with σ0 the initial yield strength and N the hardening exponent.
Remark: As schematized in Fig. 3 and suggested by direct FEM modeling [21, 35], the de facto

mechanism within the RVE under combined tension and shear as well as under shear dominance (Fig. 3c) is
an intermediate mechanism between the fully homogeneous (Fig. 3a) and fully localized (Fig. 3b) extremes.
As such, it is closer to the former at early stages and it approaches the latter end with further advancement
of shearing. Therefore, both ΦH and ΦI are subject to some modification in order for the hybrid model be
accountable for a thoroughly reliable simulation.

(a) (b) (c)

Figure 3: Predicted deformation mechanisms under near-simple shearing: (a) totally homogeneous extreme, (b)
totally localized extreme (a) de facto inhomogeneous mechanism.

The following subsections thus present both models in modified form.

3.1 Nearly-homogeneous yielding

The geometric framework associated with nearly-homogeneous yielding, is that for a porous plastic solid
composed of a plastically anisotropic matrix containing aligned spheroidal voids with arbitrary initial orien-
tations [34]. Within this framework, the voids are taken as spheroidal, with two equal lateral radii (denoted
with b) and a third mismatching radius (known as a) considered as the main semiaxis, as schematized in Fig.
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1a. Correspondingly, n(3) denotes the void axis along the main radius a, and n(1) and n(2) are orthogonal
base vectors arbitrarily chosen in the transverse plane. This model incorporates the combined effects due to
void shape and interaction, as well as that of matrix anisotropy, as being disregarded in this context. With
matrix anisotropy disregarded, however, this criterion almost reduces to the GLD model [26] with minimal
difference lying in the incorporation of void shape effects. The model can be generally expressed in the
following form:

ΦH(σ; f, w,n(3)) = C
σ2

eq

σ̄2
+ 2(g + 1)(g + qf) cosh

(
κ
σ : X

σ̄

)
− (g + 1)2 − (g + qf)2 (29)

with f = ω/Ω and w = a/b denoting void volume fraction (porosity) and aspect ratio, respectively. Here, a
and b denote, respectively, the spheroidal void’s major and minor semi-axes. Every spheroid can be uniquely
identified by a main radius a that defines the void orientation n(3) and two equal radii b1 = b2 = b arbitrarily
defined along perpendicular directions in the plane normal to n(3), identified with n(1) and n(2). w > 1,
w < 1 and w = 1 would then signify, respectively, a prolate, an oblate, and a spherical void. The porosity
f within ΦH is multiplied by a q factor which enables ΦH to capture stress states near simple shearing,
which should be above 4/3 [45, 46]. In the present context, the value proposed by Perrin and Leblond [47],
q = 4/e ≈ 1.47 is used. Also, σeq is the von-Mises equivalent stress as function of a Hill-type anisotropy
tensor [48] which, for an isotropic matrix material, can be stated as

σ2
eq =

3

2
σ : K : σ (30)

where K is related to Hill’s tensor p, reducing to J for an isotropic matrix, through

K ≡ J + η(X⊗Q + Q⊗X), J ≡ I− 1

3
I⊗ I (31)

with Q and X written as

Q =− 1

2
(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + n(3) ⊗ n(3)

Xv =α1(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α1)n(3) ⊗ n(3) , α1 = α̂1(w)

X =α2(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α2)n(3) ⊗ n(3) , α2 = α̂2(f)

(32)

and, as formerly stated, n(3) is the void axis and n(1) and n(2) are orthogonal base vectors arbitrarily chosen
in the transverse (perpendicular) plane. Xv is a counterpart of X that will be later utilized in the evolution
equations for w and n(3), in Eq. (10) for instance. σ̄ is the isotropic matrix yield strength. Moreover,
the expressions of C, g and κ in (29) as well as η in (31) and α2, as functions of f , w, and/or K are
provided in Appendix A. J denotes the deviatoric projection operator, Jijkl = 1

2(δikδjl + δilδjk)− 1
3δijδkl

componentwise.

3.2 Inhomogeneous yielding

The yield function accounting for inhomongeneous yielding (including void coalescence) is the resultant of
a localized homogenization of plastic dissipation over a cylindrical matrix embedding a coaxial cylindrical
void. With full appreciation of all well-motivated models (examples of which could be found in [24, 25,
33, 49]), this model, in its base form, is the first analytical model describing void coalescence under a
combination of internal necking and shearing, which has been proposed by Torki et al. [24]. Known as the
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T–B–L model, it can be written in the form below:

ΦI(σ; f, w, λ,n(3),n) =





( |σn| − t(χ̄, w̄)S
bV

)2

+

(
τn

T

)2

− 1 for |σn| ≥ tS

(
τn

T

)2

− 1 for |σn| ≤ tS

(33)

where σn = n.σn , τn = |σn− σnn| are, respectively, the normal and shear tractions on the selected plane
of localization (see Sec. 2.1 for further details), and

V
τ̄

= 2−
√

1 + 3χ̄4 + ln
1 +

√
1 + 3χ̄4

3χ̄2

S
τ̄

=
1

3

χ̄3 − 3χ̄+ 2

χ̄w̄
T
τ̄

= 1− (qχχ̄)2

(34)

with qχ = 1 in its basic form. The effective ligament parameter, χ̄, and effective void aspect ratio, w̄,
correspond to a surrogate cylindrical void with axis n. The exact shape, spheroidal versus cylindrical, has
been seen to have minimal incidence on yielding [50]. However, equations (33) were derived for cylindrical
voids [24], thus the choice made here.

Figure 4: Surrogate configuration of a cell under combined tension and shear.

With reference to the surrogate RVE shown in Fig. 4, the surrogate parameters read

χ̄(n) =
R̄(n)

L̄(n)

w̄(n) =
h(n)

R̄(n)

λ̄(n) =
H(n)

L̄(n)

(35)
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where the third parameter does not enter into ΦI though being indirectly influential.
The modification factors (t, b) are chosen so as to extend the capability of the model into the limits of

penny-shaped cracks (w −→ 0). With reference to [24], they read:

t(χ̄, w̄) =
(t0 + t1

√
χ̄)w̄

1 + (t0 + t1
√
χ̄)w̄

b = b0

l(χ̄, w̄) = 1 +
(
l0 + l1

√
χ̄
)
w̄

(36)

where t0 and t1 are adjustable parameters to be determined in conformity with numerical data, which could
be taken as (t0, t1, b0, l0, l1) = (−0.84, 12.9, 0.9,−0.15, 0.035) for the time being [24]. Note (l0, l1) =
(0, 0) for χ̄ ≤ 0.2.

The qχ factor does not exist in [24] but is hereby introduced since the shear stress response based on the
present ΦI is overconstrained despite being physically descriptive (see Appendix I). This overconstraint is
partly due to plasticity ideally confined to the inter-void ligament and partly to the notion of χ̄ via the surro-
gate cell. The latter is revealed by recent cell-level calculations [21] where, at a state of shear domination,
plastic deformation is inhomogeneous throughout, yet initially more diffuse than being confined inside the
ligament, though it being more significant within a cubic cell region around the void (see Fig. 5c). The latter
is also revealed by Appendix I. This overconstraint is strongly suggestive of a calibration to ΦI whereby
the effect of χ̄ in the shear term T or the corresponding evolution of void orientation is retarded based on
physics. The following simple form is proposed for qχ in the present context:

qχ =

(
q0 +

q∞ − q0

q0/κ2 + 1

)
(1 + ψ) (37)

with q∞ = 1 (pertaining to the absence of shear) and q0 being function of boundary conditions and void
geometry. To the best of the authors’ knowledge, q0 = 1/3 and q0 = 1/4 can deliver the most reasonable
conformity with FEM values, respectively, for spheroidal and cylindrical voids under axisymmetric and
plane stress conditions. The above values increase to q0 = 1/2 and q0 = 1/3 in plane strain. Focus in the
present context, however, is placed on spheroidal voids in plane stress. Also, κ ≡ σn/τn is the ratio between
the normal and shear tractions on the plane of localization, and ψ = tan−1 γmn is the shear angle in the
m–n plane.

The concept of a surrogate microstructure is key to the prediction of the onset of inhomogeneous de-
formation and the microstrucrural evolution thereof. It involves replacing the rotating void with an upright
cylinder of axis n, having the same volume and porosity, Fig. 4. This identification is needed for applica-
bility of yield function ΦI. It implies introducing an effective void aspect ratio, w̄ ≡ h̄/R̄, and an effective
ligament parameter, χ̄ ≡ R̄/L̄, related to the internal parameters of the actual microstructure through the
following steps. The effective void aspect ratio, w̄, can be obtained according to Eq. (A-13), considering
R̄ = `′ cosβ′, by writing

cos2 β′ =
1

1 + tan2 β′
=

(1 + T 2w2)2

(1 + T 2)(1 + T 2w4)
(38)

Also, volume preservation between the main and surrogate microstructures requires

2π

3γ
b2a = 2πR̄2h̄ ∴ h̄ =

1

3γ

(
b

R̄

)2

a =⇒ w̄ =
1

3γw2

(
a

R̄

)3

(39)

However, since
a

R̄
=

1
`′
a cosβ′
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then, (A-15) and (39) deliver

w̄ =
w

3γ

(
1 + T 2

1 + T 2w2

) 3
2

(40)

Remark: w̄, according to (40), for the special case of an upright void with respect to normal n (T = 0)
simplifies into

w̄ =
w

3γ
=

2

3
w

All the same, for an elongated void (w −→∞), even when shearing is not extreme:

w̄ ≈ 1

3γT 3w2
≈ 0

which is obviously also zero after extreme shearing (T −→ ∞). By the same token, for a disk-like void
(w −→ 0), even when shearing is not extreme:

w̄ ≈ w

3γ
(1 + T 2)

3
2 ≈ 0

which is obviously also zero after extreme shearing (T −→ 0).
Indeed, thanks to the volume-preserving mapping between the main and surrogate microstructures,

porosity f is common to all localization systems. The ligament parameter χ̄ can then correlate with f ,
w̄, and λ̄. It can be easily verified, from separate equality in void volumes and cell volumes, that

χ̄ =

(
fλ̄

w̄

) 1
3

(41)

where λ̄ denotes the aspect ratio of the surrogate cell (as shown in Fig. 4) and is obtained from:

λ̄ =
λ

(1 + γmn)3 (42)

where γmn = 2m ·En, E =
∫

D dt, and λ is evolved using (A-32).
Remark 1: Since, for a spheroidal void, the void poles can never reach the cell corners, the following

counterpart of (42) is recommended to avoid computational errors at extreme shearing:

λ̄ =
λ

(1 + ηγmn)3 (43)

with 0.9 ≤ η < 1. In the present context, η has been considered 0.9 throughout.
Remark 2: In simple shear, the void rotates faster than the material so that χ̄ would increase, unlike

the actual ligament parameter χ ≡ R/L that decreases with shearing. It is worth noting that an elementary
estimation of the limit load in simple shear for the inclined void shown in Fig. 4a delivers τ = (1 −
χ2)τ̄ irrespective of the void inclination, with χ, not χ̄, appearing in the equation. This simple estimate
is contrary to the projection-guided estimate of Eq. (33), and would trigger a monotonically increasing
stress response that can never exhibit failure. Admittedly, this simplistic Gurson-like shear field performs
poorly for inclined voids, especially at large values of χ. An indication of that may be inferred from three-
dimensional calculations for elongated voids reported in [25].
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4 Time Integration of Constitutive Equations

4.1 Constitutive framework

Following the additivity premise, the total rate of deformation tensor D is decomposed in the following
format [44]:

D = De + Dp, (44)

where the elastic part is given by:
De = L−1 :

∇
σ (45)

with L the isotropic tensor of elastic moduli which can be expressed, for an isotropic material, as

L = 2µJ +KI⊗ I (46)

where K = E/3(1 − 2ν) and µ = E/2(1 + ν) are, respectively, the shear and bulk moduli, I is the
second-order identity tensor, and J has been defined in advance.

Further,
∇
σ denotes the Jaumann objective stress rate defined by:

∇
σ= σ̇ + σΩ−Ωσ, (47)

where Ω is the skew symmetric part of the velocity gradient.
All the same, the plastic part of D originates from normality to a yield surface represented by a flow

potential Φ = 0 via the following relation:

Dp = Λ̇
∂Φeff

∂σ
(48)

where Λ is the plastic multiplier associated with the plastic strain tensor, and Φeff is the effective yield
function, emanating from the innermost surface between those corresponding to ΦH and ΦI in the adopted
consecutive approach.

The hybrid model presented in the foregoing sections is formulated within a corotational framework.
That is, the constitutive relations are expressed in an intermediate configuration, which is rotated from
the current one by the instantaneous rotation tensor R that results from the polar decomposition of the
incremental deformation gradient as:

∆F = RU (49)

Constitutive laws, therefore, need be written in the rotated configuration, with quantities indicated by the
tilde (∼) symbol. The so-derived equations relate merely with the stretch part of deformations, and the
rotation part is admitted by rotating quantities to the intermediate configuration. The objective rate of stress
∇
σ in (47) will be then replaced with σ̇, and the spin tensor Ω will vanish from the void orientation evolution
(see Sec. 2.6), all thanks to the corotational formulation. Further details can be observed in [29].

Due to the existence of high geometric nonlinearity within the problems of porous plasticity, the implicit
method of plasticity has been adopted to solve for state variables. Accordingly, the following state variables
will be updated via the implicit method during nearly-homogeneous and post-localized deformation pro-
cesses:

– During nearly-homogeneous deformation:

V =
[
σ′, σm, f, ε̄, dΛ, S

]T (50)
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– During inhomogeneous deformation:

V =





[
σ′, σm, f, ε̄, s

]T for |σn| ≥ S

[
σ′, ε̄, s

]T for |σn| ≤ S
(51)

with S defined after Eq. (33).

dΛ is the increment in plastic multiplier, and the rest of variables have been defined in the context. In the
singular portion of the yield surface associated with |σn| ≤ tS, Dp and N ≡ ∂Φ/∂σ will be traceless, and
thus (σm, f ) would stay constant. Note that Eq. (46) has been so expressed for the sake of better congruence
with the separate consideration of σ′ and σm, as witnessed in Eq’s (50) and (51).

The main portion within the flow rule (48) to derive the evolution equations of porosity f , void aspect
ratiow, and equivalent plastic strain ε̄, is the first derivative of the flow potential Φ. Its relation corresponding
to nearly-homogeneous and localized processes, following Eqs. (29,33), can be written as

ÑH ≡ ∂ΦH

∂σ̃
= 3C

H̃ : σ̃

σ̄2
+ 2(g + 1)(g + f)κ sinh

(
κ
σ̃ : X̃

σ̄

)
X̃

σ̄
(52)

and

ÑI ≡ ∂ΦI

∂σ̃
=

2

V2

(
σn − tsgn(σn)S

)
ñ⊗ ñH(|σn| − tS) + 2

τ̃n ⊗ ñ

T 2
(53)

withH(x) being the Heaviside step function, defined as 1 for x > 0 and zero otherwise. Accordingly:

∂Φ

∂σ̃′
= J :

∂Φ

∂σ̃
∴ ∂Φ

∂σkk
≡ 1

3

∂Φ

∂σm
= I :

∂Φ

∂σ̃

D̃p = Λ̇
∂Φ

∂σ̃
∴ Dp

kk ≡ 3Dp
m = Λ̇

∂Φ

∂σkk

(54)

With the above foreword, the following steps towards the time integration of constitutive equations will
be elaborated on below. Note that, within the confines of this article, the algebraic details of derivations
are only given for the post-localization regime. The reader will be well-advised to follow [29] for steps to
implementation of the K–B model in (29).

4.2 Newton-Raphson method

With similar procedure as that described in [29], a semi-implicit integration algorithm was employed to
integrate the post-localized constitutive equations, with the state variables as assembled in (51). By the
nonlinear nature of the problem, there is normally a nonzero difference between the left and right-hand
terms in the evolution equations, e.g. in (48), (10), and (26). Therefore, one could define the residual with
respect to every state variable, for instance, at the post-localized process, as

[R] =

[
Rσ̃′ , Rσ̃m , Rf , Rε̄, Rs

]T
(55)
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with their expressions written, in expanded form, as follows:

Rσ̃′ =
1

2µ

(
σ̃′ − σ̃′0

∆t

)
+ Λ̇

∂Φ

∂σ̃′
− D̃′

Rσ̃m =
1

K∆t

(
σm − σm (0)

)
+ Λ̇

1

3

∂Φ

∂σm
− D̃kk

Rf =
f − f0

∆t
− (1− f)Λ̇

∂Φ

∂σkk

Rε̄ =
ε̄− ε̄0

∆t
− Λ̇

(1− f)

(
σ

σ̄
:
∂Φ

∂σ̃

)

(56)

where K and µ are the shear and bulk moduli, respectively. The derivatives of the post-localization flow
potential ΦI refer to (53). V0 and V, respectively, denote the state variables at the beginning and the end
of the time increment. The residual associated with s ≡ lnw is explicated distinctively in that it demands
original derivation at the post-localized process.

– During nearly-homogeneous deformation:
Following [36], the time rate of the logarithmic void aspect ratio reads:

Rs =
s− s0

∆t
− Λ̇Q̃ :

[
kNH +

(
1

f
X̃v − X̃

)
∂ΦH

∂σm

]
(57)

with the parameters identified in (11) and (12).

– During inhomogeneous deformation:
We can firstly define intermediate parameters q1 and q2, following Eq’s (14) and (15), secluding the
normal and shear parts of ṡ. Namely:

q1 =





6
c

T (w2−1)(T 2+w2)
(T 2+w4)(T 2+1)

2− 3 T 2(2w2−w4+T 2)
(T 2+w4)(T 2+w2)

forw ≥ 1

−6
c

T (w2−1)(T 2+w2)
(T 2+w4)(T 2+1)

1− T 2(−2w2+w4−T 2)
(T 2+w4)(T 2+w2)

forw < 1

(58)

and

q2 =





(T 2+w2)2

(T 2+w4)(T 2+1)

[
3
c −

(T 2+w4)(T 2+1)
f(T 2+w2)2

]

2− 3 T 2(2w2−w4+T 2)
(T 2+w4)(T 2+w2)

forw ≥ 1

(T 2+w2)2

(T 2+w4)(T 2+1)

[
−3
c + (T 2+w4)(T 2+1)

f(T 2+w2)2

]

1− T 2(−2w2+w4−T 2)
(T 2+w4)(T 2+w2)

forw < 1

(59)

, one can further define

q = q1m + q2n

M = n⊗ q
(60)

which can supply the residual associated with s as follows:

Rs =
s− s0

∆t
− Λ̇M : NI (61)
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The Newton-Raphson procedure is then employed iteratively to solve the [R]T = 0 equation system at
every time step:

[V]i+1 = [V]i −
[
∂[R]

∂[V]i

]−1

[R] (62)

where the Jacobian matrix ∂[R]/∂[V] can be evaluated at every iteration within the time step or kept equal
to the value at the beginning of the time step, and subscript i denotes the iteration number. Since, however,
the number of iterations to convergence is more or less the same whether the initial or updated Jacobian
is utilized. Therefore, ∂[R]/∂[V](0), i.e. the Jacobian at the beginning of every time step, has been used
throughout the iteration process due to the fact that convergence is better guaranteed with the initial Jacobian
unless the latter is singular1.

Finally, the consistent tangent matrix (mainly developed for global equilibrium, as in a finite element-
based analysis), denoted by Ltan (e.g. DDSDDE in ABAQUS) is written as

Ltan =
1

∆t

(
∂σ̃′

∂D̃
+ I⊗ ∂σ̃m

∂D̃

)
(63)

which involves the following constituents:

[
∂V

∂D̃

]
= −

[
∂[R]

∂[V]

]−1[∂R

∂D̃

]
(64)

where use has been made of the same Jacobian as introduced in (62), and

[
∂V

∂D̃

]
=

[
∂σ̃′

∂D̃
,
∂σ̃m

∂D̃
,
∂f

∂D̃
,
∂ε̄

∂D̃
,
∂s

∂D̃

]T

[
∂R

∂D̃

]
=

[
∂Rσ̃′

∂D̃
,
∂Rσ̃m
∂D̃

,
∂Rf

∂D̃
,
∂Rε̄

∂D̃
,
∂Rs

∂D̃

]T (65)

To the reader’s insight, the Jacobian components corresponding to the post-localized deformation process
have been provided in Appendix G. For the nearly-homogeneous deformation regime, the reader can consult
[29] regarding the Jacobian components.

5 Results

This section comprises the calculated results of microstructural variables from integration of constitutive
laws for one single unit cell. Correspondingly, there exists only one localization plane with the normal
being e3 throughout whereas the void is allowed to rotate under the effect of combined tension and shear.
The voids’ lattice is colinear with the global coordinate system, and the void, except stated otherwise,
initially directs along e3. Due to it being neglected in the localized yield criterion, matrix anisotropy has
been neglected throughout. Each set of results is extended into further subsets to demonstrate the evolution
of various microstructural variables throughout the process. The ratios among the remote normal, lateral,
and shear stresses remain constant throughout. Accordingly, stress triaxiality T and the Lode parameter L
are constant.

The model is firstly assessed under triaxial loading, i.e. in absence of shear, in Appendix H for fixed
stress triaxialities and prescribed initial void aspect ratios. The main set of results presented in the sequel
represent combined tension and shear, with specific focus on shear-dominated loading. For the sake of

1In a single-variable problem, the initial slope in the Newton-Raphson method guarantees convergence unless the initial slope
is infinite.
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simplicity, lateral stresses are eliminated, and the axial-to-shear stress ratio κ = σ/τ varies from zero
(representing simple shear) to infinity (signifying uniaxial loading).

Note that, in some plots comprising several sets of curves, only one line color has been itemized in the
line legend to represent the line type rather than the depicted color.

5.1 Model assessment

This section presents the hybrid model predictions in comparison against the existing FEM-based cell-model
calculations under combined tension and shear on the same RVE. To this end, the analyses carried out by
Tvergaard and coworkers for plane-strain [21, 35] and 3D cells [14] under near-simple shear loading, with
κ = σ/τ fixed at every analysis and varied from case to case, are considered as comparator. Within their
observations, plastic deformation was viewed as initially scattered throughout the cell up to a prescribed
maximum void aspect ratio, and then confined to a zone containing the inter-void ligament. From this point
onward, the loading was applied onto the void interior. It is worthy of note that a FEM-based state of
absolute simple shear, with κ = 0, is too computationally expensive for 3D cells and is, thus, not available
in the literature except under the plane-strain condition. The cell sketches and a deformed configuration of
the plane-strain cell are shown in Fig. 5.

(a) (b) (c)

Figure 5: Schematic outline of periodic cells under combined tension and shear considered by Tvergaard and cowork-
ers: (a) plane–strain [21], (b) 3D [14], (c) staged deformed configurations of the plane-strain cell in [21] under simple
shear, i.e. κ = 0.

The initial microstructure in all references [14, 21, 35] is introduced based on the (χ0 = R0/L0, w0 =
h0/R0, λ0 = H0/L0) triad (see Fig. 5), with χ0 varying between 0.15 and 0.5, and (w0, λ0) = (1, 4)
remaining fixed. In the plane–strain cell, the out–of–plane dimension in both the void and the cell is consid-
ered unit and, hence, χ0, w0, λ0 are all defined within the x1–x3 plane. In the 3D cell, however, the lateral
dimensions are considered equal. Correspondingly, the initial porosity reads

f0 =
π

4

w0χ
2
0

λ0

in the plane-strain cell, and

f0 =
π

6

w0χ
3
0

λ0

in the 3D cell. For the sake of better coincidence between analytical and numerical results, model predictions
are compared to FEM counterparts for the same initial porosity [40], with the initial microstructure and
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hardening identified by (χ0, w0, λ0) = (0.25, 1, 4). Note that the material constants are defined as

σ0

E
= 0.002 , E = 200 GPa , ε0 = 0.002 (66)

Furthermore, the hardening exponent is taken as N = 0.1 for the plane-strain and N = 0.2 for the 3D cell.
In all FEM-based studies, the analyses have been carried out by considering a maximum void aspect ratio,
beyond which the loading is applied onto the void faces rather than onto the cell upper and lower boundaries.
Herein, the results pertaining to a maximum void aspect ratio of wmax = 10 are considered as comparator.

Figure 6a shows the present hybrid model predicted normalized shear stress vs. shear angle in compari-
son to FEM outcomes from [35] and [21] for κ = 0.6 and κ = 0, respectively 1.

(a) (b)

Figure 6: Comparison between the present model predictions vs. cell overall shear angle ψ with FEM cell-model
outcomes of Tvergaard [21,35] for an initially circular void inside a plane-strain unit cell under simple shear (κ = 0):
(a) normalized shear stress, (b) normalized effective ligament parameter.

The normalized effective ligament parameter χ̄/χ0 for FEM-based results stems from the graphical
deformed configurations showcased in [35] and [21] for selective shear angles. Note that χ̄ is normalized
in the interest of a sound comparison inasmuch as χ0 differs for a cylindrical and a spherical void with an
identical porosity.

Figure 6b demonstrates that the effective ligament parameter χ̄ within the FEM framework reduces
until the point of transition into inhomogeneous deformation whence it starts increasing. The former is
characteristic of the void moving towards closure, which can be realized by virtue of ΦH according to (29).
This further corroborates that the cell behavior under simple shearing is initially closer to being nearly-
homogeneous than localized.

Other comparisons are shown in Fig’s 7 for a 3D cell with initial ligament parameters χ0 = {0.3, 0.5}
and N = 0.2.

One can envisage, in Fig. 7a that, for rather large porosity levels, when there is significant normal stress
portion (for κ = 1.25 herein), the stress (spuriously) goes slightly up after the onset of inhomogeneous
deformation due to the effect of normality slightly taking over before the stress continues to reduce steeply
until failure. Further, Fig. 7d demonstrates that the overall trend of porosity evolution, inclining or declining,
is common between analytical and numerical results with the difference lying in the dilatancy level in FEM
values reflected by the more remarkable slope of evolution, especially at larger normal stress portions, i.e.

1The case of simple shear is represented by κ = 0.02 in the present analyses. This lies in the adopted displacement-controlled
algorithm wherein the incremental strain ratios δEmn/δEnn and δEmm/δEnn are manipulated in terms of a prescribed axial
displacement increment δun so as to control the remote stress ratios
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparison between the present model predicted variables with FEM outcomes of Nielsen et al. [14] for an
initially spherical void inside a square-prismatic cell under combined axial and shear loading (with the ratio denoted
with κ) and χ0 = {0.3, 0.5}: (a,b) normalized shear stress, (c) void angle with respect to the horizontal direction, (d)
normalized porosity, (e,f) normalized major and minor void semi-axes.
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larger κ’s. Yet, the observed clear distinction between the FEM and analytical porosity values does not bare
significant changes in the stress response (as shown in Fig. 7a) inasmuch as the failure mechanism is mainly
influenced by χ̄ rather than porosity. For large shear stress portions (κ = 0.25), the analytical porosity
ceases to evolve further at the inhomogeneous deformation process since yielding is governed by the shear
part of ΦI which conveys a traceless plastic rate of deformation, i.e. Dp

kk = 0.
Note that the analytical evolution of 90 − θ is founded on the initial void orientation directed towards

e3 since w0 = 1.1 has been taken slightly above unity to forestall the singular behavior of void orientation
laws at the limit of a spherical void, and therefore, the initial orientation is well-defined. Within the nu-
merical model, however, the orientation of a strictly spherical void is ill-defined. Upon convention, the void
orientation in this case is considered along the principal stretch, which is close to that considered in [14,21].
Accordingly, the jumps in the numerical evolution of orientation is an artifact employed to extract the major
void axis. There is also merit in recognizing that there may exist a stagnation in the void orientation with
θ0 = 0 especially at small time increments. To forestall this, n

(3)
0 was slightly perturbed from n = e3 such

that θ0 −→ 0+. A clearer elaboration on this issue will be provided in Section 5.5.
Finally, as depicted in Fig’s 7(e) and (f), with an initial state associated with w0 ≥ 1, the major void

semi-axis a elongates for all combinations of axial and shear stresses (devoid of lateral stresses), whereas
the minor semi-axis b is shortened. In order for the latter also to elongate, sufficient lateral stresses should
be applied.

A more extensive investigation on the various state variables under combined axial and shear stresses,
upon the calibrated hybrid model, is presented next.

5.2 Effect of loading

This section addresses, through Fig. 8, the effect of loading, quantified via the κ ≡ σn/τn ratio, on the
microstructural state variables with the same cell as considered in Sec. 5.1 and χ0 = 0.3. A complete scope
of κ ranging from infinity (uniaxial loading) down to (near) zero (simple shearing) can best be exhibited in
terms of ε̄ as the axial so as the shear strain each becomes vanishingly small at either of the two extremes.

It can be seen, through Fig’s 8(a,b), that strain to the onset of localized deformation εc, as well as strain
to failure εf , from infinity at κ −→∞ (corresponding to T = 1/3), decreases and then increases again with
decreasing κ (increasing shear). As further investigated in Sec. 5.7, the minimum strain to failure occurs
approximately at κ = S/T , which is nothing but the point of transition between the curved and planar
parts of ΦI (see [24] for more details). Furthermore, the difference between εc and εf becomes smaller with
larger κ’s since a larger portion of the normal stress superposed by shear accelerates rotation, as revealed
by Fig. 8d, and thus hastens the increase of χ̄, as demonstrated by Fig. 8b. The latter also shows that, for
sufficiently large κ’s (i.e. κ >> S/T ), χ̄ increases during both nearly-homogeneous and inhomogeneous
processes whereas, for smaller κ’s, it decreases during the nearly-homogeneous process. This alludes to
the fact that, with larger normal stress portions, the void can rotate faster than the cell during the nearly-
homogeneous process whilst, at shear-dominated processes, the cell moves faster during this process. During
the inhomogeneous process, however, the void always rotates faster since plastic deformation is (ideally)
confined to the ligament intercepted by void poles.

Moreover, one can assert, from Fig. 8c, that porosity increases, with its increase accelerated after the
onset of localization, for κ > S/T , i.e. normally-dominated fields. All the same, for κ < S/T , i.e.
shear-dominated fields, porosity decreases during the nearly-homogeneous process and stays constant after
localized deformation begins. This lies in the traceless nature of Dp according to ΦI for this range of κ. The
s1 and s2 void aspect ratios shown in Fig. 8e denote, respectively, a/b1 and a/b2. Under all combinations
of (tensile) axial and shear stresses, in absence of sufficient lateral loads, s as well as s1 and s2 increase,
with their increase accelerated after localization begins. Throughout the process, s1 > s2 and the difference
between the two increases with deformation advancement. At the end of the inhomogeneous process, the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Predicted microstructural parameters upon the calibrated hybrid model, plotted against equivalent plastic
strain ε̄ for the same initial microstructure as considered in Sec. 5.1 and χ0 = 0.3, under a full range of κ: (a) shear
response, (b) effective ligament parameter, (c) normalized porosity, (d) void angle with the horizontal direction, (e)
logarithmic void aspect ratio, (f) void semi-axes, (g) normalized cell aspect ratio, (h) ligament volume fraction.
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void aspect ratio increases with its slope approaching infinity. This stage signifies the vertical movement
of void poles after extreme shearing, as shown in Fig. 5c. Correspondingly, as depicted in Fig. 8f, the
major and minor void semi-axes increase and decrease, respectively, with shearing, and the trend slope
accelerates after the onset of localization. The out-of-plane axis also decreases slightly but stays almost
constant throughout the process due to the loading being devoid of lateral stresses. The cell aspect ratio, as
shown in Fig. 5g, increases only when there is a nonzero portion of axial stress, and it stays constant under
simple shear (κ −→ 0). Similar to that of the void, λ1 and λ2 denote, respectively, H/L1 and H/L2, with
the former evolving clearly faster under the effect of axial loading. The increasing trend of λ, as well as that
of λ1 and λ2, retards at the post-localized regime due to axial deformation confined within the ligament.
The ligament volume fraction c, as plotted in Fig. 5h, behaves somewhat similar to λ, increasing only when
there is some normal stress present, and a retarded increasing trend after localization begins. The trend of
increasing c is convex at normally-dominated loads (κ > S/T ) that points to a slower increasing trend in
the ligament volume fraction towards failure. Under shear-dominant fields, however (κ < S/T ), the trend
is concave, meaning the ligament enlarges faster at the beginning of plasticity but reaches its maximum soon
afterwards. Under simple shearing, the ligament stays at its height.

In the forthcoming subsections, the results are limited to near-simple shearing (here denoted with κ =
0.02).

5.3 Effect of void spacing

(a) (b)

(c) (d)

Figure 9: Predicted microstructural parameters for the same cell subjected to κ = 0.02 for various values of χ0.

392



The effect of void spacing can be reflected through the notion of initial ligament parameter χ0. Figure 9
presents selective state variables under near-simple shearing (κ = 0.02) with various values of χ0, ranging
from zero (pertaining to the limit of a dilute matrix) up to rather large values, e.g. 0.5. Figure 9a reveals
that the stress curve (and the tangential stiffness accordingly) up to the point of transition (εc) is almost
insensitive to void spacing provided the other (initial) microstructural parameters stay constant. However,
εc and εf are closely related to χ0. In particular, for very small values of χ0, towards the limit of a dilute
material, the onset of localized deformation, as well as failure, gets significantly delayed. At this limit,
according to Fig. 9c, void closure (associated with porosity approaching zero) could be envisaged sooner
than failure could occur. This mechanism corroborates that predicted solely from ΦI as discussed in Fig.
7 of Ref. [30]. During nearly-homogeneous yielding, as shown in Fig. 9b, χ̄ decreases at the early stages
of deformation, but it admits a minimum which sets the precursor for the onset of localized deformation.
Namely, the cell rotates faster than the void at early stages of deformation while, at some point, the void
rotation outpaces that of the cell. The localized deformation process begins after the minimum point in the
χ̄ evolution curve. The void aspect ratio also, according to Fig. 9d, increases with a decreasing inclination
slope. The largest slope of increasing s corresponds to the onset of localization, and void elongation slows
down further towards failure.

5.4 Effect of cell aspect ratio

(a) (b)

(c) (d)

Figure 10: Predicted microstructural parameters for the same cell with (f0, w0) = (0.01, 1.1) subjected to κ = 0.02
for various values of λ0: (a) normalized shear response, (b) effective ligament parameter, (c) void angle with the
horizontal direction, (d) logarithmic void aspect ratio.
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The effect of initial cell aspect ratio is considered for investigation next. Other parameters, including initial
porosity f0 and void aspect ratio w0, as well as the hardening exponent N = 0.2, are taken as fixed, upon
selective values of (f0, w0) = (0.01, 1.1). Figure 10 illustrates this effect. Due to the load representing
simple shear (κ = 0.02), λ remains almost constant throughout, and thus is not shown.

At a fixed porosity level, the void spacing χ0 is smaller in a shorter cell, and thus the void, even after
deformation is localized, has to elongate and rotate more to reach the cell boundaries. The strains to local-
ization and failure are hence larger with shorter cells, as seen in Fig. 10a. Correspondingly, the projection of
a rotating-elongating void on a shorter intervoid distance (at a larger λ) evolves faster than that on a longer
distance (at a smaller λ). The slope of χ̄ evolution, therefore, is smaller for a shorter cell, and vice versa
(see Fig. 10b). The void would, accordingly, rotate (Fig. 10c) and elongate (Fig. 10d) more slowly at the
post-localized deformation process, in a shorter cell and vice versa.

5.5 Effect of void shape

The effect of void shape is studied under two circumstances. The first set of figures show the effect of void
aspect ratio, ranging from 1/4 to 4, on the microstructural behavior under simple shear, at fixed porosity
level f0 = 0.01 and cell aspect ratio λ0 = 4, with the same hardening exponent N = 0.2.

Remark: In order to avert the rotation locking at the limit of θ −→ 0, we must perturb the initial
orientation from θ = 0. The perturbation direction, however, differs for prolate and oblate voids. For a
prolate void, θ0 is slightly posited and, for an oblate void, it is slightly negated with respect to the positive
counterclockwise orientation of θ. Figure 11 illustrates the effect of initial void aspect ratio w0.

Figure 11f substantiates the mechanism shown in Fig. A-4b and schematized in Fig. 1b. Prolate and
oblate voids rotate in opposite directions so that the larger axis moves towards aligning with the direction
of the principal stretch, here initially lying close to 45◦ from the vertical direction and lying further down
during the deformation process. Therefore, a prolate void rotates along with the shearing and an oblate
rotates opposite thereto. There is, however, a maximum point within the angle curve pertaining to the oblate
void which corresponds to a back-turn in rotation. The latter was also observed earlier with the difference
being that, within the modified hybrid model, this instant takes place at the onset of localized deformation.
This point further corresponds to the instant when the void closes, i.e. a −→ 0, w −→ 0 and f −→ 0
as indicated by Fig’s 11 (b–d). At this point, deformation abruptly turns localized where, immediately
afterwards, χ̄ starts ascending precipitously until failure. More appealingly, the third void semi-axis b2
remains constant after this point, main axis a approaches zero (entailing void closure), and the in-plane
minor semi-axis b1 abruptly elongates. This observation signifies crack propagation for flat voids under
limited void growth. Further, Fig. 11a shows the highest ductility as well as limit load for an initially
spherical void. Meanwhile, an oblate void with w = 1/x is more ductile than its prolate counterpart with
w = x (x > 1 implied) under a shear field.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Predicted microstructural parameters for the same cell geometry with (f0, λ0) = (0.01, 4) subjected to
near-simple shearing (κ = 0.02) for various initially upright voids (θ0 = 0) with aspect ratios w0 ranging from 1/4 to
4: (a) normalized shear response, (b) logarithmic void aspect ratio, (c) major and minor void semiaxes, (d) normalized
porosity, (e) effective ligament parameter, (f) void angle with the horizontal direction.
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(a) (b)

(c) (d)

Figure 12: Predicted microstructural parameters for the same cell with (f0, λ0) = (0.01, 4) and an initially upright
oblate void (with w0 = 1/4) under various combinations of axial and shear loading, identified with κ ranging from 4
to 0.02.

More insight into the behavior of oblate voids in shear fields can be acquired by considering the behav-
ior of an oblate void under various load combinations (denoted with different κ’s ranging from normally-
dominated to shear-dominated loads). Figure 12 illustrates this effect. Figure 12a shows that no failure can
be predicted for an initially upright oblate void under combined tension and shear with a dominant normal
stress. This lies in the faster rotation of the cell with respect to the void towards the end of the deformation
process shown in Fig. 12b, which comes effective after the maximum point in the χ̄ curve. Up to this point,
as observed in Fig. 12c, the void tends towards a sphere and, thereafter, it starts flattening again, though at
a slower rate. Under such a condition, the void axes evolve (more or less) in harmony as shown in Fig. 12d.
For a shear-dominant loading, however, in conformity with Fig. 11, the void evolves towards closure, and
its axes evolve with opposite trends, as clearly witnessed in Fig. 12d.

At fixed void shape, voids oriented along different directions with respect to the principal loading direc-
tions can bare significantly different shear responses. See Section 5.6 for elaboration.

5.6 Misaligned voids under simple shearing

In this section, the evolution of microstructural parameters is specified to prolate and oblate voids with
various initial void orientations (with θ0 ranging from −30◦ to 30◦) under almost simple shearing, i.e.
κ = 0.02. Figures 13 and 14 present, respectively, the effect of initial orientation on a prolate (w0 = 4) and
an oblate void (w0 = 1/4).
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It may appeal to the reader that, in this class of results, there is a numerical propensity of void stagnation
when θ changes from negative to positive (see Section 5.5 for reasoning). The latter can be bypassed by
stopping and restarting the analysis at the limit of θ −→ 0− for a prolate void and θ −→ 0+ for an oblate
void.

(a) (b)

(c) (d)

Figure 13: Predicted microstructural parameters for the same cell geometry with (f0, λ0) = (0.01, 4) subjected to
near-simple shearing (κ = 0.02) for a prolate void (w0 = 4) initially placed at various orientations.

One can envisage, for a prolate void, the remarkable difference in strains to failure ranging from about
2.6 at θ0 = −30◦ to the range of 0.5 at θ0 > 0, as shown in Fig. 13a. This significant difference lies in
antithetical trends in s = lnw when θ0 is below or above zero, as depicted in Fig. 13b. In the former, the
void is suppressed towards a sphere whereas, in the latter, it further elongates until failure. In the former,
the cell rotates much faster than the void and makes the ligament volume shrink, and thus porosity increases
unlike the case of θ0 ≥ 0, as seen in Fig. 13c. Further, the void begins to rotate along with the cell (as seen
in Fig. 13d) after it closes, with porosity becoming nil. From this point onward, the closed void elongates
fast within the ligament (as shown in Fig. 13b) until ultimate failure to occur.
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(a) (b)

(c) (d)

Figure 14: Predicted microstructural parameters for the same cell geometry with (f0, λ0) = (0.01, 4) subjected to
near-simple shearing (κ = 0.02) for an oblate void (w0 = 1/4) initially placed at various orientations.

All the same, as revealed by Fig. 14b, an oblate void initially oriented colinear to the shear direction
(θ0 > 0) is slightly suppressed towards a sphere until the moment when it aligns with the vertical direction
θ = 0, whereafter its aspect ratio starts decreasing again. This sets an inflection point in the orientation
curve, Fig. 14d, whence the void rotates in the same direction but rather more slowly until its orientation
reaches a plateau after void closure occurs f −→ 0, and thus failure would never happen due to void
stagnation. For initial orientations opposite to the shear direction (θ0 < 0), however, the void behaves
similar to an oblate void initially oriented vertical to shear (θ0 = 0). That is, the void reaches a state of
closure with an (almost) abrupt loss of stress-bearing capacity.

Moreover, a state of near-pure shearing has been simulated with the same constitutive framework em-
ployed. The latter is distinguishable from near-simple shearing by its loading path and thus boundary con-
ditions. See Appendix J for illustration.

5.7 Strain to failure vs. triaxiality

The last section presents the effective plastic strain at the onset of localized deformation εc as well as
strain to failure εf in terms of stress triaxiality. εf , in particular, is an efficacious measure of intrinsic
failure under combined normal and shear stresses on an arbitrary plane with normal n. In some references,
including [51], εc is normally regarded as the strain to failure for the material since the plastic deformation
prior to this point is considerably larger than that after this onset. This section, however, reports both strains
as function of triaxiality. The benchmark for this evolution is the same unit cell as shown in Fig. 5a,
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with (w0, λ0) = (1.1, 4), hardening exponent N = 0.2 and various initial ligament parameters χ0, under
combined normal and shear stresses. The two parameters of interest are consequences of Runge-Kutta
integration of the following equations stating the time rate of (f, w,n(3)) as function of ε̄. To this end, Eq.
(1) can be coupled with Eq’s (17), (10) or (14) (for w ≥ 1) or (15) (for w < 1), and (18). Therefore, with
the ”H” and ”I” superscripts denoting nearly-homogeneous and inhomogeneous deformation processes, one
can write:
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(68)
with reference to Eq’s (11), (19) and (20), (22) and (A-38), as well as (A-33) and (A-35). One can exploit the
single-step Runge-Kutta scheme in the integration process. Note that the effect of n has been disregarded in
the above equation set because, at the current cell level, it remains constantly vertical.

One can notice, through Fig. 15, that εc is close to εf at the shear-dominant range of triaxialities. Yet,
the difference therein cannot be neglected in a significant range of triaxial loads, especially in an interval
of 0.5 < T < 2 where void coalescence is accelerated due to the existence of lateral loads but significant
stress-bearing capacity still remains after coalescence, before χ̄ can reach its critical value where the stresses
vanish.

More importantly, in the shear-dominated region (0 < T < 1/3), both εc and εf admit their minimum
values not at the simple-shear limit but somewhere between the two limits. Within a reasonable accuracy, it
can be deduced that the minimum to εc and εf occurs almost at κ = S/T , which corresponds to

T (εfmin) =
1

3

S√
S2 + 3T 2

(69)

for a combined normal-shear loading, with S and T defined in (33).
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Figure 15: Predicted strain to onset of localization εc as well as strain to failure εf as function of stress triaxiality
T for the same cell as shown in Fig. 5a, with (w0, λ0) = (1.1, 4), hardening exponent N = 0.2 and various initial
ligament parameters χ0, upon a wide range of axial and shear loading combinations, identified with T ranging from 0
to 1/3, denoting combined normal and shear loading, and 1/3 to 3, representing triaxial loading.

6 Discussion

The constitutive framework developed in the present context provides a scheme for the simulation of ductile
fracture in porous materials under arbitrary stress states, with specific capability of failure prediction under
shear-dominated loading. The predicted failure process is characterized by the evolution of measurable
and/or observable microstrucrural parameters including the relative void spacing, void aspect ratio, and
void orientation. The first and foremost virtue within such a physics-based framework is clarity in the
predicted mechanism. That is, whether or not this predicted mechanism can capture the essential features
of failure under combined loading can be subjected to examination based on established circumstances
whereby the model lends itself credibility or exposes its own shortcomings. Secondly, any modification
or calibration that comes inevitable can be exerted on the most effective parameters and can be expressed
in terms of the existing measurable and/or observable parameters. The present constitutive framework can
then predict the fracture process under variegated initial conditions following a simple modification. In
particular, the predicted process is well-behaved and progressive up to the failure instant (if any) whereas
existing numerical analyses [14, 21, 22] have terminated soon after the onset of localized deformation let
alone the lack of sufficient tools for resembling analyses for general 3D cells under extreme shearing. It can
further provide grounds to vindicate the wide range of observable ductilities under shear loading for various
metals [4,5]. The enormous change in the failure strain reflected through Fig. 9 reveals the reason being the
effect of initial relative void spacing χ0 carried through by the effective ligament parameter χ̄ until ultimate
failure.

Furthermore, the differences lying in the observed microscopic fracture surfaces can be rationalized by
virtue of the evolving physical parameters affecting the simulated response. Fracture in ductile materials
is always mediated by the existence of voids [52, 53]. However, fracture may be triggered by different
mechanisms under different load combinations. The distinction between failure mechanisms can best be
envisaged through fractography. Notably, fracture surfaces in ductile materials exhibit dimples under triax-
ial and shear-dominated stress states. The former, however, comprises deep elliptic-like dimples whereas
the latter reveal parabolic dimples [53]. A graphically illustrative explanation on the correlation between
observed and predicted fracture surfaces with the corresponding effective microstrucrure has been provided
in [31].

As formerly pointed out in the introduction, the present work simulates ductile fracture with preexisting
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void. Nevertheless, void nucleation under predominant shearing involves complex void–particle interactions
[54] per se. This line of work has been investigated primarily by Needleman [11], and later work considered
particle locking effects [55, 56]. Micromechanical void nucleation analyses of this caliber are still not
available for shear-dominated loading. Whether or not these nucleation conditions fundamentally differ
from those under tension remains to be investigated.

Void enlargement at medium to high triaxialities, as well as void shrinking at the limit of low triaxialities,
are usually accompanied with void shape changes and distortion. Yet, the latter is more prominent at re-
markable shear stresses characteristic of low stress triaxialities. In this regime, void distortion is a key origin
to failure. Void distortion can be influenced by several factors, including the presence of shear stresses and
void–particle interactions [55, 57]. Void locking and formation of penny–shaped cracks under limited void
growth are among the clear examples [56,58,59]. Notwithstanding the existence of sophisticated cell-model
numerical work [1, 14, 21], a major drawback within the established caliber of work on the effects induced
by shear is a missing constitutive framework that takes into account the effective internal state variables that
are both measurable and observable. These variables pertain mainly to the rotation and distortion of the
microstructure under the effect of shear. Therefore, the major challenges to this task are primarily related to
the void–mediated microstructural evolution mainly associated with void rotation and distortion under the
effect of combined tension and shear.

A pivotal feature of ductile failure under shear is a void that moves faster than the cell, which is only
characteristic of inhomogeneous deformation by plastic deformation localized within the inter-void ligament
or a neighborhood thereof. Unless such a mechanism is incorporated into the constitutive model, failure
under shear cannot be predicted. With the notion of a critical parameter, e.g. (f + g)c, as adopted in [40],
can prove efficacious in modeling procedures, yet cannot rationalize the physical process that accounts for
the differences in void rotation and elongation rates.

Note that a state of simple shear is normally characterized by shear strains (shearing) with normal strains
vanishing whereas pure shear is categorized by vanishing shear stresses. Within a dilute material, with no
voids present, normal stresses are indispensable in the realization of simple shear, and normal strains are
essential to pure shear [60]. For a porous material, however, the two can approximately coincide, even at
low porosity levels, but upon similar loading paths. Namely, the normal strain can become vanishingly
small at the limit of κ ≡ σ/τ −→ 0, which can be revealed by λ and c remaining almost constant at this
limit (see Fig. 8). If, however, the loading path changes, the responses can bare utmost differences even at
equivalent stress states. The clear distinction between the results presented in Section 5.2 and Appendix J
testifies this difference albeit the stress states being equivalent at κ = 0 in the cell shown in Fig. 5b and
ρ ≡ σ1/σ3 = −1 in Fig. A-5. See Appendix J for more details.

Another prominent finding in failure under shear is void closure, mainly observed in oblate voids with
w < 1 even though the possibility of it happening in prolate voids (w > 1) cannot be excluded at the limit
of dilute material (χ0 −→ 0). It should be highlighted that when an oblate void closes, the void has turned
so flat that it can trigger failure by impinging its neighboring voids under limited void growth, which is
indicative of penny-shaped crack propagation. All the same, a prolate closing void turns into a needle-like
figure that simply acts like a material line. No failure can thus be expected under such a condition.

It is also noteworthy that, at the limit of isotropic yielding, which occurs by virtue of a random distribu-
tion of voids, the εf vs. T curve is absolutely declining even for the T < 1/3 range. This distinction lies
in the equivalence between a state of pure shear with a biaxial tension-compression loading with equal load
magnitudes, which corresponds to infinite εc as well as εf . In other terms, the isotropic limit of a porous
material at an arbitrary material point is independent of the loading path inasmuch as the material response
is the same in all directions. The reader can consult Ref. [51] in regards to isotropic failure in ductile porous
media. A recent work by the authors also presents the counterpart of this curve by incorporating the void
shape effect for the isotropic limit of failure.
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7 Conclusions

A micromechanics-based hybrid model describing a ductile fracture process under combined tension and
shear up to ultimate failure was implemented with a bipartite yield criterion comprising nearly-homogeneous
and inhomogeneous deformation processes. Upon a triaxial loading condition, nearly-homogeneous and in-
homogeneous processes can best be represented by void growth and void coalescence, respectively. Under
combined tension and shear with intermediate or extreme shearing, however, voids may grow or shrink at
the nearly-homogeneous process (depending on the ratio between normal and shear stresses) and the inho-
mogeneous process can represent, in general, failure in shear by internal necking combined with internal
shearing [14, 31]. Alongside, evolution equations were utilized for nearly-homogeneous deformation, and
originally derived for inhomogeneous deformation under combined tension and shear. The microstructural
state was described by a set of internal state variables, part of which were evolved implicitly using the
Newton-Raphson iterative scheme, and the rest were evolved explicitly in terms of the independent (implic-
itly evolved) parameters. The post-localized evolution equations were derived for spheroidal voids both to
relax the overconstraint induced by the cylindrical idealization and to capture the salient features of shear-
induced deformation for elongated (needle-like) and flat (disk-like) as well as for spherical voids. The
inhomogeneous yield criterion accounting for post-localized deformation appears as function of a surrogate
microstructure aligned with the normal to a possible plane of localization.

With the hybrid model employed in its original form, the inhomogeneous yield criterion prevails under
shear-dominated loading and, with the derived constitutive framework, can mimic the physics of failure
in shear. Nonetheless, it cannot capture the quantitative aspect of the process in conformity with numeri-
cal findings. Both the nearly-homogeneous and inhomogeneous yield criteria were modified with simple
adjustable parameters such that the failure mechanism was quantitatively retrieved for all combinations of
normal and shear stresses. Some of featured outcomes are listed as follows:

• The implementation was assessed in reference to existing numerical results presented by Pardoen and
Hutchinson [17] for triaxial loading as well as Tvergaard and coworkers [14,21] for combined tension
and shear as well as a state of near-simple shearing. The latter was ground for the simple adjustment
of the model. Stress triaxiality T , initial void aspect ratio w0, and the normal-to-shear remote stress
ratio κ were considered as comparator.

• Effects induced by the loading combination (represented by the normal-to-shear stress ratio) were
investigated for an initially spherical void by examining various state variables under effect including,
but not limited to, effective ligament parameter, porosity, void aspect ratio, and void orientation. The
effective ligament parameter χ̄ defined over the above-mentioned surrogate cell is the main factor
of influence that accounts for failure under combined tension and shear. It is itself a function in
direct proportion to the current porosity as well as the cell aspect ratio, and scales inversely with the
surrogate void aspect ratio. The latter starts with a finite value and evolves towards zero until failure.

• The effect of initial porosity, reflected through the initial ligament parameter χ0 for an initially spher-
ical void, was investigated under near-simple shearing. The onset of localized deformation as well
as ultimate failure were delayed with a smaller χ0. The limit of a dilute material (χ0 −→ 0) would
exhibit no failure under shear.

• A shorter cell, characterized by a smaller cell aspect ratio λ, would have a larger strain to the onset of
localization εc, as well as a larger strain to failure εf under near-simple shearing. The latter is rooted
in the fact that unlike a larger-than-cubic cell (with λ > 1), a shorter-than-cubic cell (λ < 1) initially
rotates faster than the void does. Besides, at a fixed porosity, a void within a shorter cell is more
distant from the cell boundaries than its counterpart in a taller cell.
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• Under near-simple shearing (κ ≈ 0), an oblate void (w < 1), contrary to a prolate void (w > 1),
rotates transiently opposite to the shearing direction. Yet, there is a turning point in the middle of
the process, which normally occurs at the point of transition into the localized deformation mode,
where the void starts moving back towards the shearing direction. Failure for an oblate void occurs in
the form of penny-shaped crack propagation that is realized after void closure (characterized by the
porosity f approaching zero). Altogether, for both prolate and oblate voids, the larger void axis tends
to align with the direction of the principal stretch.

• The strain to the onset of localization εc, as well as strain to failure εf was plotted in terms of stress
triaxiality for the whole scope of stress triaxialities ranging from zero to 1/3 (shear-dominated interval)
and from 1/3 to 3 (normal-dominated interval) by numerical integration of the differential equations
expressing porosity, void aspect ratio, and void orientation in terms of the equivalent plastic strain ε̄.
Within the shear-dominant interval, εf admits a minimum that can be roughly expressed in terms of
the microstructural parameters within the inhomogeneous yield criterion.
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Appendix A K–B Model Parameters

The parameters embedded in (29) are functions of porosity f , void aspect ratio w and the Hill tensor K. g,
known as secondary porosity is defined as:

g = 0 (p); g =
e3
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where (p) and (o) stand for “prolate” (w > 1) and “oblate” (w < 1), respectively. By definition, g is non-
zero for oblate voids only. e1 and e2 are, respectively, the eccentricities of the void and the outer boundary
of the spheroidal RVE (shown in Fig. 2). The latter is an implicit function of f and w.
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Next,
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where K∗ ≡ 2(α1 − α2).
α2 and α1 are identical to those introduced in [36] for isotropic materials, that read
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Finally:
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Appendix B Basic Equations governing post-localized state evolution

The tangency between the void poles and the rigid-like matrix is key to these derivations. For cylindrical
voids, the void poles are connected to the matrix over the entire upper and lower circular cross sections, as
depicted in Fig. 1a. Therefore, the distortion of voids under the effect of shearing will be all alike. The
inhomogeneous microstructural evolution would then admit simple geometric relations. See [30] for details.
All the same, a spheroidal void intercepts with the matrix at two single points of tangency, denoted with A
and A′ in Fig. 1. Correspondingly, prolate (w > 1) and oblate (w < 1) voids would deform in different
manners. That is, prolate voids rotate along with shearing while oblate voids rotate backwards. Both voids,
however, deform such that their larger axes incline towards the direction of principal stretch, which proves
close to 45◦ under near–simple shearing. Both deformation modes were schematized in Fig. 1a. Altogether,
the inhomogeneous microstructural evolution in presence of spheroidal voids can be described by means of
the normal and tangential motions of the generatrix AA′, as separately schematized for prolate and oblate
voids in Fig. A-1 with more details on some intermediately defined angles. The angles identified according
to Fig. A-1 are directional as stipulated by the figure, with the origin taken as the starting point.

(a) (b)

Figure A-1: Schematic outline of a spheroidal void under combined tension and shear: (a) a prolate void (w > 1),
(b) an oblate void (w < 1).

θ is formed between the normal n (taken as origin) and the void axis n(3). β forms between the same
origin and line l passing through the tangency point A while β′ originates at m towards line l′ passing
through the vertical tangency point B. Moreover, α and α′ extends from the minor semiaxis n(1) (taken as
origin) to lines l and l′, respectively. Nevertheless, not all of these angles are independent. In fact, all angles
can be expressed in terms of θ as seen in the sequel. The genetratrices (`, `′) have a key role in the geometric
description of the post-localized microstructure. To begin with, one can recourse to the ellipse equation in
the X1 – X3 coordinate system:

F =

(
CX1 − SX3

b

)2

+

(
SX1 + CX3

a

)2
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Here, C and S are short-hand notation for C = n(3) · n ≡ cos θ and S = n(3) ·m.
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At point A:
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where T = S/C = tan θ. On the other hand, one can write
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Moreover, the ellipse equation delivers the following expression for the tangential length `:
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All the same, at point B:
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On the other hand, one can write
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Finally, similar to (A-12), the ellipse equation delivers the following expression for the tangential length `′:
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With the set of equations (A-10 – A-15) at hand, one has enough tools to calculate some pre and post-
localized parameters of interest (as in Eq. (9)) plus the post-localized surrogate microstructural parameters
in Sec. 3.2. The post-localization evolution equations as well as the surrogate microstructure for usage in
ΦI can be conveniently derived based on Eq’s (A-10)–(A-15).

Appendix C Derivation of Post-localized ẇ

The time rate of `, as schematized in Fig. A-1, governs the post-localized evolution of the void aspect ratio.
Due to symmetry, we focus on motion of the top boundary. Thus, the tangential and normal velocities

of point A are given by:

v
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1 = 2h

Dmn

c
= 2HDmn

v
(A)
3 = h

Dnn

c
= HDnn

(A-16)

where the x1 and x3 axes are identified with the directions of shear, m, and normal to the band, n, respec-
tively. Accordingly,

Dnn = n ·Dpn

Dmn = m ·Dpn
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with elastic strain rates neglected. Referring back to Eq. (A-16), one can write
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exploiting the H/` = C/c identity. The time rate of s ≡ lnw can be developed based on a relationship
established among ȧ, ḃ, and ˙̀ according to the following steps.

• Prolate voids (w ≥ 1): From Eq. (A-12):
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T 2(2w2 − w4 + T 2)

(w4 + T 2)(w2 + T 2)
ṡ (A-18)

Also, from incompressibility within the ligament:

d

dt

(
πL2(2h)− 2π

3γ
b2a

)
= 0 =⇒ L2ḣ =

ab2

3γ

(
2
ḃ

b
+
ȧ

a

)
∴ ḃ

b
=

1

2

[
3γ

(
L

b

)2 H

a
Dnn −

ȧ

a

]

(A-19)
noting that L̇ = 0 and ḣ = Ḣ after the onset of coalescence, and γ is the void shape factor, equaling
1/3 for a spheroidal and 1/2 for a cylindrical void. The porosity, however, can be expressed as

f =

2π
3γb

2a

πL2(2h)
=

1

3γ

(
b

L

)2 a

H

Therefore,
ḃ

b
=

1

2

(
Dnn

f
− ȧ

a

)
(A-20)

which, together with (A-19), gives:

ṡ =
ȧ

a
− ḃ

b
=

3

2

ȧ

a
− 1

2

Dnn

f
(A-21)

The combination of (A-21) and (A-18), exploiting the following identities:

cos2 β =
1

1 + tan2 β

sin 2β =
2 tanβ

1 + tan2 β

delivers, with reference to (A-10):
[

2− 3
T 2(2w2 − w4 + T 2)

(w4 + T 2)(w2 + T 2)

]
ṡ =

(
3

cos2 β

c
− 1

f

)
Dnn + 3

sin 2β

c
Dnm

∴ ṡ =
(w2 + T 2)2

(w4 + T 2)(1 + T 2)
[
2− 3 T 2(2w2−w4+T 2)

(w4+T 2)(w2+T 2)

]



(

3

c
− (w4 + T 2)(1 + T 2)

f(w2 + T 2)2

)
Dnn +

6

c

(w2 − 1)T

w2 + T 2
Dnm




(A-22)

For the special case of an upright void, where T = 0:

ṡ =
3

2

(
1

c
− 1

3f

)
Dnn =

9

4c

(
1− γ

χ2

)
Deq (A-23)
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where use has been made of the expressions f = cχ2/3γ and Deq = 2/3Dnn. Note that (A-23)
retrieves Eq. (12) of [33], which yields ṡ ≥ 0 as long as χ ≤ √γ, and vice versa.

All the same, in the special case of a void after extreme shearing (T −→ ∞ and w −→ ∞) under
(near-) simple shear (Dnn ≈ 0):

ṡ =
6

c

w2 + T 2

w2T
(

2 + 3 T 2

w2+T 2

)Dnm (A-24)

which is positive upon Dnm being positive.

• Oblate voids (w < 1): From Eq. (A-12):

ḃ

b
=

˙̀

`
−
(

2w4

T 2 + w4
− w2

T 2 + w2

)
ṡ (A-25)

Also, (A-21) can be recast as function of ḃ/b as follows

ṡ = −3
ḃ

b
+
Dnn

f

which, together with (A-25), delivers the following rate of void shape for an oblate void:
[

1− T 2(−2w2 + w4 −T 2)

(w4 + T 2)(w2 + T 2)

]
ṡ =

(
−3

cos2 β

c
+

1

f

)
Dnn − 3

sin 2β

c
Dnm

∴ ṡ =
(w2 + T 2)2

(w4 + T 2)(1 + T 2)
[
1− T 2(−2w2+w4−T 2)

(w4+T 2)(w2+T 2)

]



(
−3

c
+

(w4 + T 2)(1 + T 2)

f(w2 + T 2)2

)
Dnn −

6

c

(w2 − 1)T

w2 + T 2
Dnm




(A-26)

For the special case of an upright void, where T = 0:

ṡ =

(
−3

c
+

1

f

)
Dnn =

9

2c

(
−1 +

γ

χ2

)
Deq (A-27)

which has been simplified resembling (A-23). Note that (A-27) yields ṡ ≤ 0 as long as χ ≤ √γ, and
vice versa.

All the same, in the special case of a void after extreme shearing (T −→ 0− and w −→ 0) under
(near-)simple shear (Dnn ≈ 0), one can conveniently verify that ṡ < 0 upon Dnm being positive.

Appendix D Current Cell Aspect Ratio

The algebraic steps to the derivation of Eq. (16) are addressed in extension to Eq. (21) of Ref. [38] for
initially cubic cells. To this end, one could firstly write:

λ(n) =
H(n)

L(n)
=
H0(n)

L0(n)

H(n)/H0(n)

L(n)/L0(n)
(A-28)

where the 0 subscripts denote the initial state, and

H0(n)

L0(n)
= λ0(n)
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Moreover, V0 and V (initial and current cell volumes) are related via

V = J V0

which implies
H(n)

H0(n)
= J A0(n)

A(n)
(A-29)

The average cell length L and ligament area A correlate through

L(n)

L0(n)
=

√
A(n)

A0(n)
(A-30)

On the other hand, a continuum relationship between A0 and A reads

An = JF−TA0n0

which can be recast, by exploiting a dot product, into the following

(A0n0) · (A0n0) =
1

J 2
(FTAn) · (FTAn) =

1

J 2
A2n · FFTn ∴ A0

A
=

1

J
√

n · FFTn (A-31)

Finally, the combination of (A-29 – A-31) yields

λ(n) = λ0(n)J
(
A0(n)

A(n)

) 3
2

=
λ0(n)√
J
(
n.(FFT).n

) 3
4 (A-32)

Appendix E Derivation of Post-localized Ωl

With reference to (9), the time rate of c reads

3
ċ

c
=
ḟ

f
−
(
ẇ

w
+ 2

λ̇

λ

)
+ 3

(
T Ṫ + wẇ

T 2 + w2
− T Ṫ

1 + T 2

)

Ṫ =
(T 2 + w2)(1 + T 2)

T (1− w2)


 ċ
c
− 1

3

(
ḟ

f
− 2

λ̇

λ

)
+

(
1

3
− w2

T 2 + w2

)
ṡ




(A-33)

The rates of internal parameters entering the right-hand side of this equation are all known, except the
void orientation, which enters through Ṫ . ċ/c can be determined by neglecting the volume change of the
elastically unloaded zones. Thus,

ċ

c
=
ḣ

h
− Ḣ

H
=
D33

c
−D33 =

1− c
c

n ·Dpn (A-34)

Also,

ḟ

f
=

(
1

f
− 1

)
Dp
kk

λ̇

λ
=
Ḣ

H
− L̇

L
= Dnn −

1

2

(
Dmm +Dpp

)
(A-35)
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where
Dnn = n ·Dpn , Dmm = m ·Dpm , Dpp = p ·Dpp

and p = n×m completes the triad of local base vectors. Since, however, ΦI does not deliver lateral strain
rates, (A-35)2 can be simplified through

λ̇

λ
= Dnn

at the post-localization regime.
Furthermore, in the corotational formulation, where the material is taken stationary and thus n delivers

no time rate, one simply has

T =
S

C
=

n(3) ·m
n(3) · n ∴ Ṫ

T
=
Ṡ

S
− Ċ

C
(A-36)

where
Ṡ = ṅ(3) ·m , Ċ = ṅ(3) · n

The component of ṅ(3) along m can be derived considering that n(3) is a unit vector, which entails

(
n(3) ·m

)2
+
(
n(3) · p

)2
+
(
n(3) · n

)2
= 1 =⇒ ṅ(3) · n = −T ṅ(3) ·m ∴ Ṡ

S
=

1

1 + T 2

Ṫ

T
(A-37)

Note that component n(3) · p does not deliver a time rate since no shear is exerted along p. Finally, Ωl can
be recast in the following form:

Ωl =
Ṡ

S
m⊗m +

Ċ

C
n⊗ n =

Ṫ

T

(
C2m⊗m− S2n⊗ n

)
(A-38)

where Ṫ is taken from (A-33).

Appendix F Separate Void Axes, Void and Cell Aspect Ratios

Under combined tension and shear, the void and cell deform unequally along the sheared direction m and
the perpendicular one p. The sequel provides details to obtain separate void and cell aspect ratios as well as
void axes normalized by their initial values. Upon convention, the subscripts 1 and 2 pertain to the quantities
within the n–m and n–p planes, respectively.

• During nearly-homogeneous deformation:
Due to Dv, from Eq. (11), signifying the rate of deformation within the void:

ḃ1
b1

= n(1) ·Dvn(1)

ḃ2
b2

= n(2) ·Dvn(2)

ȧ

a
= n(3) ·Dvn(3)

(A-39)

Equations (A-39) can be integrated with respect to time so that the values of a/a0, b1/b10 and b2/b20

are updated at every time step.
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• During inhomogeneous deformation:
The time rate of normalized major semi-axis a/a0 is a superposition of the values influenced by Dnn

and Dnm, declared with superscripts (n) and (sh), respectively. To this end, one can first refer to
(A-18), (A-17), and (A-22) or (A-26) which deliver, respectively:

(
ȧ

a

)(n)

=

(
˙̀

`

)(n)

+
T 2(2w2 − w4 + T 2)

(T 2 + w4)(T 2 + w2)
ṡ(n)

(
˙̀

`

)(n)

=
cos2 β

c
Dnn =

(T 2 + w2)2

c(T 2 + w4)(T 2 + 1)
Dnn

(A-40)

where

ṡ(n) =





(T 2+w2)2

(T 2+w4)(T 2+1)

[
3
c −

(T 2+w4)(T 2+1)
f(T 2+w2)2

]

2− 3 T 2(2w2−w4+T 2)
(T 2+w4)(T 2+w2)

Dnn forw ≥ 1

(T 2+w2)2

(T 2+w4)(T 2+1)

[
−3
c + (T 2+w4)(T 2+1)

f(T 2+w2)2

]

1− T 2(−2w2+w4−T 2)
(T 2+w4)(T 2+w2)

Dnn forw < 1

(A-41)

And, all the same

(
ȧ

a

)(sh)

=

(
˙̀

`

)(sh)

+
T 2(2w2 − w4 + T 2)

(T 2 + w4)(T 2 + w2)
ṡ(sh)

(
˙̀

`

)(sh)

=
sin 2β

c
Dnm =

2T (w2 − 1)(T 2 + w2)

c(T 2 + w4)(T 2 + 1)
Dnm

(A-42)

where

ṡ(sh) =





6
c

T (w2−1)(T 2+w2)
(T 2+w4)(T 2+1)

2− 3 T 2(2w2−w4+T 2)
(T 2+w4)(T 2+w2)

Dnm forw ≥ 1

−6
c

T (w2−1)(T 2+w2)
(T 2+w4)(T 2+1)

1− T 2(−2w2+w4−T 2)
(T 2+w4)(T 2+w2)

Dnm forw < 1

(A-43)

In other terms, one could simply write

ṡ(sh) = q1Dnm , ṡ(n) = q2Dnn (A-44)

with q1 and q2 defined in (58) and (59), respectively.

The normalized minor semi-axes b1/b10 and b2/b20 correlate through incompressibility within the
ligament stated with distinct b1 and b2 as

d

dt

(
πL2(2h)− 2π

3γ
b1b2a

)
= 0 =⇒ L2ḣ =

ab2

3γ

(
ḃ1
b1

+
ḃ2
b2

+
ȧ

a

)
∴ ḃ1

b1
+
ḃ2
b2

=
Dnn

f
− ȧ

a

(A-45)
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where (A-20) has been utilized, and implicit is b2 = b1b2. The effect induced by Dnn on the minor
semi-axes is equal time rate in the two, and that of Dnm is zero time rate on b2. Accordingly, with
reference to (A-45):

(
ḃ1
b1

)(n)

=

(
ḃ2
b2

)(n)

=
1

2

[
Dnn

f
−
(
ȧ

a

)(n)
]

(
ḃ2
b2

)(sh)

= 0 ,

(
ḃ1
b1

)(sh)

= −
(
ȧ

a

)(sh)

ḃ1
b1

=

(
ḃ1
b1

)(n)

+

(
ḃ1
b1

)(sh)

,
ḃ2
b2

=

(
ḃ2
b2

)(n)

+

(
ḃ2
b2

)(sh)

(A-46)

and
ȧ

a
=

(
ȧ

a

)(n)

+

(
ȧ

a

)(sh)

(A-47)

with the constituents
(
ȧ/a
)(n)

,
(
ȧ/a
)(sh) are obtained, respectively, from (A-40) and (A-42), and(

ḃ1/b1

)(n)
,
(
ḃ2/b2

)(n)
originate from (A-46). Equations (A-46) and (A-47) are then integrated with

respect to time steps so that the values of a/a0, b1/b10 and b2/b20 are updated at every time step.

Once the above values are calculated, one can express the separate void aspect ratios in the following
format:

w1 =
a

b1
=

a

a0

a0

b01

b01

b1
= w10

a/a0

b1/b01

w2 =
a

b2
=

a

a0

a0

b02

b02

b2
= w20

a/a0

b2/b02

(A-48)

And, finally, the separate cell aspect ratios, in rate form, read

λ1 =
H

L1
∴ λ̇1

λ1
=
Ḣ

H
− L̇1

L1
= Dnn −Dmm

λ2 =
H

L2
∴ λ̇2

λ2
=
Ḣ

H
− L̇2

L2
= Dnn −Dpp

(A-49)

Appendix G Post-localized Jacobian Components

The Jacobian matrix components are provided here for more clarity, with RA,B ≡ ∂RA
∂B and 0 being the

second-order zero tensor. The major constituents of Jacobians are the second derivative of the flow poten-
tial with respect to the stress tensor, and the derivatives of NI, as expanded in (53), with respect to the
microstructural variables.

In general, the following identities will be used in the sequel:

∂2ΦI

∂σ̃′∂σ̃′
= J :

∂2ΦI

∂σ̃∂σ̃
: J ,

∂

∂σkk

(
∂ΦI

∂σ̃′

)
= J :

∂2ΦI

∂σ̃∂σ̃
: I ,

∂2ΦI

∂σkk∂σkk
= I :

∂2ΦI

∂σ̃∂σ̃
: I (A-50)

where, at the post-localization regime:

∂2ΦI

∂σ̃∂σ̃
=

2

(V)2
(ñ⊗ ñ)⊗ (ñ⊗ ñ) H(|σn| − tS) +

2

T 2

[
B− (ñ⊗ ñ)⊗ (ñ⊗ ñ)

]
(A-51)
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where, in the reduced 9×9 notation, with σ reduced to [σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32, σ33]T , B writes:

BT =




n2
1 n1n2 n1n3 n1n2 0 0 n1n3 0 0

n1n2 n2
2 n2n3 n2

2 0 0 n2n3 0 0
n1n3 n2n3 n2

3 n2n3 0 0 n2
3 0 0

0 n2
1 0 n2

1 n1n2 n1n3 0 n1n3 0
0 n1n2 0 n1n2 n2

2 n2n3 0 n2n3 0
0 n1n3 0 n1n3 n2n3 n2

3 0 n2
3 0

0 0 n2
1 0 0 n1n2 n2

1 n1n2 n1n3

0 0 n1n2 0 0 n2
2 n1n2 n2

2 n2n3

0 0 n1n3 0 0 n2n3 n1n3 n2n3 n2
3




(A-52)

Also,

∂ΦI

∂f
= −2

∂χ̄

∂f

[
1

(bV)3

(
σn − sgn(σn)tS

) [
bVsgn(σn)(tS),χ̄ +

(
σn − sgn(σn)tS

)
bV,χ̄

]
H(|σn| − tS) +

τ2
n

(lT )3
T,χ̄
]

∂NI

∂f
= −4

∂χ̄

∂f

[
1

(bV)3

[
1

2
bVsgn(σn)(tS),χ̄ +

(
σn − sgn(σn)tS

)
bV,χ̄

]
(ñ⊗ ñ)H(|σn| − tS) +

τn ⊗ n

T 3
T,χ̄
]

∂ΦI

∂σ̄
=
−2

σ̄

[
σn
(
σn − sgn(σn)tS

)

(bV)2
H(|σn| − tS) +

(
τn
lT

)2
]

∂NI

∂σ̄
= −4

[
1

(bV)2

(
σn
σ̄
− 1

2
sgn(σn)

tS
σ̄

)
(ñ⊗ ñ)H(|σn| − tS) +

τn
σ̄ ⊗ n

T 2

]

∂ΦI

∂s
=
−2

(bV)3

(
σn − sgn(σn)tS

) [
bVsgn(σn)(tS),s +

(
σn − sgn(σn)tS

)
bV,s

]
H(|σn| − tS)− 2

τ2
n

T 3
T,s

∂NI

∂s
= −4ww̄,w

(
1

(bV)3

[
1

2
bVsgn(σn)(tS),s +

(
σn − sgn(σn)tS

)
(bV),s

]
(ñ⊗ ñ)H(|σn| − tS) +

τn ⊗ n

T 3
T,s
)

(A-53)
where the calibrated derivatives with respect to χ̄ and w̄ are, respectively, as follows:





(bV),χ̄ = −b σ̄
χ̄

√
χ̄2 +

1

3

(tS),χ̄ = − t0
2χ̄[w̄(t0 + t1

√
χ̄) + 1]2

S + t
σ̄

2
√

3χ̄

χ̄− 1

w̄

T,χ̄ = −l σ̄√
3





(tS),w̄ =
−t2S
w̄

T,w̄ = 0

w̄,w = 1−2T 2w2

1+T 2w2
w̄
w

(A-54)
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Then:




Rσ̃′,σ̃′ = 1
2µ

1
∆tJ+ Λ̇

∂2ΦI

∂σ̃′∂σ̃′

Rσ̃′,σm = Λ̇
∂

∂σkk

(
∂ΦI

∂σ̃′

)

Rσ̃′,f = Λ̇J : ∂N
I

∂f

Rσ̃′,ε̄ = Λ̇∂σ̄
∂ε̄ J : ∂N

I

∂σ̄

Rσ̃′,s = Λ̇J : ∂N
I

∂s

where ∂σ
∂ε̄ = σSN

ε0

(
1 + ε̄

ε0

)N−1





Rσm,σ̃′ = Λ̇

[
∂2ΦI

∂σ̃′∂σ̃′

]T

Rσm,σm = 1
K∆t + Λ̇

∂2ΦI

∂σkk∂σkk
Rσm,f = Λ̇ I : ∂N

I

∂f

Rσm,ε̄ = Λ̇ ∂σ̄
∂ε̄ I : ∂N

I

∂σ̄

Rσm,s = Λ̇ I : ∂N
I

∂s





Rf,σ̃′ = −Λ̇(1− f)
[
∂NI

∂σkk

]T

Rf,σm = −Λ̇(1− f)
∂2ΦI

∂σkk∂σkk

Rf,f =
1

∆t
+ Λ̇ I :

[
∂ΦI

∂σ̃ − (1− f)∂N
I

∂f

]

Rf,ε̄ = −Λ̇(1− f) ∂σ̄
∂ε̄ I : ∂N

I

∂σ̄

Rf,s = −Λ̇(1− f)I : ∂N
I

∂s





Rε̄,σ̃′ = − Λ̇

σ̄(1− f)

(
NI + σ̃ :

∂2ΦI

∂σ̃∂σ̃

)
: J

Rε̄,σm = − Λ̇

σ̄(1− f)

(
NI + σ̃ :

∂2ΦI

∂σ̃∂σ̃

)
: I

Rε̄,f = − Λ̇

σ̄(1− f)2
σ̃ :
[
NI + (1− f)∂N

I

∂f

]

Rε̄,ε̄ =
1

∆t
− ∂σ̄

∂ε̄

Λ̇

σ̄2(1− f)
σ̃ :
[
−NI + σ̄ ∂N

I

∂σ̄

]

Rε̄,s = − Λ̇

σ̄(1− f)
σ̃ : ∂N
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Appendix H Results under Triaxial loading

The authenticity of the hybrid model with respect to triaxial loading is assessed upon comparison with the
results of Pardoen and Hutchinson [17]. The results herein are compared to those extracted from their mi-
crostructural model and those obtained from cell-model calculations. The following constants are common
among all results:

f0 = 10−2 , λ0 = 1 , N = 0.1 ,
σ0

E
= 0.002 , E = 210 GPa , ε0 = 0.002 (A-56)

where σ0 is the initial matrix yield strength and ε0 is the conjugate strain thereof. E is the Young modulus,
and the rest of parameters have been defined in due course. The values of initial void aspect ratio w0 and
stress triaxiality T , however, are varied. The comparison among the stress-strain results, corresponding to
the unit cell schematized in Fig. A-2a, is shown in Fig. A-2.
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(a) (b)

(c) (d)

Figure A-2: Comparison of the present model predictions in absence of shear (solid curves), with the results ex-
tracted from Pardoen and Hutchinson’s extended model (dashed curves), as well with those obtained from cell-model
calculations (dotted curves) in [17] for several values of stress triaxiality and initial void aspect ratio.

It can be observed that the difference between present predictions and numerical and/or micromechanical
results is more pronounced for w0 = 6. This can be attributed to the rather exaggerated porosity growth
predicted from the K–B model (as shown in Fig. A-3b) as well as the decreasing trend within s = lnw,
which would increase the stress level but reduce the strain to coalescence and strain to failure.

The evolution of the rest of microstructural variables for the specific case of T = 1 and different values
of w0 is shown in the next set of subfigures. The zero lateral strain rate at the post-coalescence process is
corroborated by Fig. A-3f.

The predicted logarithmic void aspect ratio s is closely tied to its FEM counterpart during void growth
except for large w0’s, where both analytical and numerical curves tend towards level but the former predicts
a decreasing w. Moreover, the numerical curve declines after the onset of coalescence for a broader range of
w0’s while the analytical s levels off at the post-coalescence process. Fig. A-3e, however, reveals that both
major and minor void semiaxes a and b increase even after the onset of coalescence notwithstanding their
ratio w decreases after this onset. Next, Fig. A-3c shows that the slope of increasing χ̄ ranges from convex
to concave from an initially oblate to an initially prolate void. Accordingly, an initially flat void at a very
low porosity level would be likely to never experience coalescence since χ̄ could reach a maximum before
coalescence could occur. Moreover, the slope of variation in λ is almost equal for all w0 values during void
growth. After void coalescence, however, a cell with a larger w elongates faster than the same cell with
smaller w’s.
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(a) (b)

(c) (d)

(e) (f)

Figure A-3: Present model predictions under triaxial loading with a T = 1 stress triaxiality: (a,b) normalized porosity
and logarithmic void aspect ratio, compared to FEM results in [17], (c,d) effective ligament parameter and normalized
cell aspect ratio, (e,f) normalized void major and minor semiaxes, and lateral strains, respectively.
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Appendix I Shear Failure Mechanism

The first set of results is aimed at realization of the mechanism by which failure occurs under combined
tension and shear. For sufficiently low κ’s, which signify shear-dominated loadings, the inhomogeneous
yield criterion computationally overcomes from the outset, and all the subsequent deformation mechanism
can be described by ΦI along with the evolution equations tied to it. Nevertheless, as seen in the sequel, this
deformation mechanism, though being fully commensurate with the physics of deformation, is quantitatively
erroneous. This error can be attributed to the underlying premises within ΦI which ideally confines plastic
deformation within the ligament intercepting void poles [24].

The results are hereby presented for spheroidal voids, in comparison with their counterparts for cylin-
drical voids for a unit cell under κ = 0.02 with the initial simulation parameters given in the caption 1. It
should be remarked that, since a cylindrical void is tied to the upper and lower matrix materials over a whole
surface rather than a single point, the whole range of void aspect ratios (below or above 1) behave similarly
as far as void rotation is concerned. Nevertheless, a spheroidal void under the effect of shear behaves in
different fashions when it is prolate (w ≥ 1) or oblate (w < 1). Figure A-4 shows the comparison between
microstructural parameters for spheroidal and cylindrical voids embedded in the same cell. All parameters
are presented against the shear strain γ31.

Figure A-4 is, by all means, indicative of premature failure rooted in the overconstrained nature of the
inhomogeneous constitutive framework. This overconstraint can be ascribed, in part, to plasticity being
neglected outside the inter-void ligament and, in part, to the notion of a surrogate cell where χ̄ dramatically
accelerates rotation, elongation, and hence failure. This feature is suggestive of the qχχ̄ calibration imparted
to ΦI in Section 3.2.

The largest distinction between the results pertaining to spheroidal and cylindrical voids can be envis-
aged for w0 < 1 due to an opposite orientation evolution as plotted in Fig. A-4 b, and the smallest difference
occurs for w0 > 1 for the synergistic behavior of elongated cylindrical and spheroidal voids. The orientation
evolution schematized in Fig. 1 can be realized for both prolate and oblate voids by examining Fig. A-4 b.
It can be clearly seen that, soon after the beginning of the deformation process, the oblate void would stop
rotating opposite to the shearing direction and begins to rotate along with shearing. Altogether, the overall
rotation of an oblate void under shear is small in comparison to its prolate counterpart of the same porosity
level.

Moreover, Fig’s A-4 (e,f) reveal that, in both spheroidal void types, prolate and oblate, the larger of the
two semi-axes enlarges under the effect of shear. Correspondingly, a in a prolate void and b in an oblate void
enlarge while the other semi-axis acts in reverse manner. Accordingly, the void aspect ratio w, as plotted in
Fig. A-4d, would decrease in an oblate void under shear and it increases for its prolate counterpart. For a
cylindrical void, however, w increases regardless of its being below or above 1.

In all cases, failure is triggered by χ̄ reaching 1. Yet, χ̄ exhibits different evolution trends in different
void shapes or aspect ratios before it reaches 1. With a cylindrical void, the trend for χ̄ is convex, and
thus, the material may not encounter failure if the initial void volume fraction is smaller than a certain
value (see [30] for details). For a spheroidal void, however, a convex trend (admitting the possibility that
the material may not fail) can be envisaged only with a void being oblate. Otherwise, χ̄ increases with a
concave evolution, and failure under shear is thus guaranteed.

Appendix J Near-pure Shearing Simulation

A pure shearing state is normally differentiated from simple shearing by its differing boundary condition,
and thus its different deformation gradient. In a sense, pure shearing is regarded as shear loading with

1Details about the shear-dominated failure mechanism based on cylindrical voids may be found in [30].
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(a) (b)

(c) (d)

(e) (f)

Figure A-4: Comparison of the predicted failure mechanisms based on the T–B–L criterion, for a cell under κ =
0.02, between a spheroidal and a cylindrical void of the same porosity with the simulation parameters identified as
f0 = 0.0005, w0 = 1.1, λ0 = 2, N = 0.2,

√
3τ0/E = 0.002: (a) normalized shear stress, (b) void angle with the

vertical direction, (c) effective ligament parameter, (d) logarithmic void aspect ratio s = lnw, (e,f) void major and
along-shear minor semi-axes.
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vanishing normal stresses. This notion overlaps with simple shearing as examined in the spirit of Sections
5.2–5.5 for a porous ductile solid. In another sense, however, pure shearing admits an equivalent biaxial
stress state with equal and opposite normal stresses. Yet, the ductile material exhibits clearly different
responses under the two equivalent stress states: the one with a predominant shear stress and that under
equivalent biaxial loading. In the former, failure is observable by plastic flow localization at the vicinity of
inter-void ligaments. In the latter, however, no failure is predicted, and the void undergoes limited or no
rotation [22].

Tvergaard [22] was the first to propose an elementary voided cell to realize pure shearing equivalent to
biaxial loading. He deduced that a parallelepiped RVE, as shown in Fig. A-5a, could capture the salient
features of a ductile material deforming under this loading condition.

(a) (b)

Figure A-5: (a) Elementary cell proposed by Tvergaard [22] to analyze a periodic array of voids under a state of
near-pure shearing equivalent to biaxial loading under principal remote loads σ1 and σ3, (b) equivalent cell presently
considered for simulation, under an equivalent state of combined tension and shear resulting from the resolution of σ1
and σ3 along the horizontal and vertical directions.

To this end, the unit cell in Fig. A-5a was subjected to a combination of two remote normal stresses
σ1 and σ3 by Tvergaard [22] under a plane-strain boundary condition. The results mainly center around
different load combinations identified by the ratio ρ = σ1/σ3 which should obviously be nonpositive in
order that a near-pure shearing stress state is realized. Accordingly, ρ = −1 signifies pure shearing. The
cell inclination angle ψ0 = 30◦ and the B0/A0 = 0.5 ratio are the common geometric features among the
analyses carried out by Tvergaard [22]. The former was chosen with reference to the outcomes in [61] to be
near the most critical angle for shear-band formation along the voids’ row.
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(a) (b)

(c) (d)

(e) (f)

Figure A-6: Predicted stress response and microstructural state variables vs. normal strain for the unit cell schema-
tized in Fig. A-5b under principal remote loads σ1 and σ3 with various values of the σ1/σ3 ratio and the initial
microstructure denoted with ψ0 = 30◦, B0/A0 = 0.5 and R0/D0 = 0.175: (a,b) normalized principal stresses (with
solid and dashed lines representing σ1 and σ3, respectively), and void angle with the x1–x2 plane, in comparison to
the result counterparts from Tvergaard [22] on account of the unit cell in Fig. A-5a, (c) cell base angle with the the
x1–x2 plane in Fig. A-5a, (d) void aspect ratio, (e) normalized porosity, (f) surrogate ligament parameter.

Figure A-6 showcases the stress response and selected microstrucrural parameters for several ρ values
and R0/D0 = 0.175. The material constants are identical to those prescribed in Eq. (66). Results are
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plotted against the average normal strain defined below, with the lower cell end held stationary [22]:

Eav
2 = ln

(
1 +

u3

2B0

)
(A-57)

, which is almost equal to E33 in the equivalent cell in Fig. A-5b.
Figure A-6a reaffirms the observable lack of failure under the allocated load combinations, alluding to

the yielding mechanism as being nearly-homogeneous throughout, admitting Φ = ΦH. To be more specific,
one can envisage through Fig. A-6b that the void remains stationary past a transient rotation stage since
the increasing effect of the resolved shear τn will be neutralized by the decreasing effect of the resolved
normal stress σn in Fig. A-5b. Moreover, as indicated by Fig. A-6f, the relative inter-void distance only
slightly declines due to the void being stagnant and the cell angle increasing rather linearly with the normal
strain (Fig. A-6c) in such a way that the decrease in the void minor axis almost equals the decrease in the
lateral cell dimension. An analogous effect can be envisaged in the evolution of porosity (Fig. A-6e) so
that porosity exhibits some increase under uniaxial loading (ρ = 0) while it remains almost constant with
a comparable lateral pressure (σ3) superposed. Nevertheless, the void elongates under the collective effects
of a positive σ1 and a negative σ3, as shown in Fig. (Fig. A-6d. Yet, void elongation is seen larger under
uniaxial loading (ρ = 0) under the same strain level, not because of the void further elongating, rather
because of the normal strain E33 being larger at the same level of void elongation due to the Poisson effect.
Namely, the cell elongates faster than the void in presence of a biaxial stress state with lateral pressure.
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[58] L. Babout, Y. Bréchet, E. Maire, and R. Fougères. On the competition between particle fracture and
particle decohesion in metal matrix composites. Acta Materialia, 52:4517–4525, 2004.

[59] L. Babout, E. Maire, and R. Fougeres. Damage initiation in model metallic materials: X-ray tomogra-
phy and modelling. Acta Materialia, 52(8):2475–2487, 2004.

424



[60] M. Destrade, J. G. Murphy, and G. Saccomandi. Simple shear is not so simple. International Journal
of Non-Linear Mechanics, 47(2):210–214, 2012.

[61] V. Tvergaard. Numerical study of localization in a void-sheet. International Journal of Solids and
Structures, 25(10):1143–1156, 1989.

425



P8 DUCTILE FRACTURE IN ANISOTROPIC SOLIDS UNDER COMBINED

TENSION AND SHEAR

426



Ductile Fracture in Anisotropic Solids under Combined Tension
and Shear

M. E. Torki1, A. A. Benzerga1,2,3

1 Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
2 Center for intelligent Multifunctional Materials and Structures, TEES, College Station, TX 77843, USA

3 Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract
A hybrid micromechanics-based model is developed and numerically implemented to simulate duc-

tile fracture until failure under combined tension and shear considering Hill-type matrix anisotropy. The
shear-dominated deformation process is an intermediate state between a completely homogeneous and an
ideally localized one with plasticity fully confined within intervoid ligaments. The deformation mecha-
nism is closer to being homogeneous at early stages and would approach the ideal localized state towards
the end. Existing evolution equations of void elongation and rotation are invoked from earlier models
during nearly-homogeneous yielding, and from a recent work by the authors for post-localized deforma-
tion under combined loading. By the very nature of its model, localized yielding acts upon a surrogate
microstructure aligned with the normal to a possible plane of localization. The original form of the hybrid
model predicts premature failure under shear-dominated loading notwithstanding the failure mechanism
fully conforms to physics. Both the nearly-homogeneous and localized yield functions are, accordingly,
modified in reference to existing numerical results with simple adjustable parameters. Rather than by
the evolution of porosity, failure under combined tension and shear is driven by the effective parameter
dictated by the initial relative void spacing and evolved until a maximum value is achieved. The study is
further specified to a state of near-simple shearing with a vanishingly small normal stress in proportion
to a significant shear. The parametric studies account for the effects due to varying normal and shear
anisotropy parameters within the orthotropy local coordinate system. In particular, the material with
weak planes in shear is subjected to combined tension and shear as well as near-simple shearing with the
plane of weakness being variously oriented with respect to the principal loading frame. Results are re-
flected through measurable and/or observable parameters including but not limited to porosity, effective
relative void spacing, void aspect ratio and orientation, as well as the material stress response in terms
of the normal or shear strain.

Key Words: Ductile fracture; Void coalescence; Combined tension and shear; Matrix anisotropy; Hill-
type anisotropy.

1 Introduction

Ductile fracture is inherently amenable to various heterogeneities at the macro scale regardless of the under-
lying microscopic process. Apart from those emanating from material gradients [1,2], deformation-induced
anisotropies can constitute an essential part of damage mechanics in porous materials, particularly in ductile
fracture under combined loading. To the best of reported observations, this anisotropy can be professed
as two types: that related to the voids themselves (changes in void shape and orientation as well as their

427



spatial arrangement) [3], and that related to the matrix, known as plastic anisotropy [4]. Thus, analyses
of ductile fracture under combined tensile and shear loading, and the interpretation of currently available
experiments rely, to a large extent, on accounting for the induced, and eventually initial anisotropies. At this
stage, the material response is strictly sensitive towards the loading path, initial microstructure, and void
distribution [5].

Experimental observation of shear-dominated fracture has been conveyed in the literature by the land-
mark work of Johnson et al. [6, 7], who measured the torsional ductility in varieties of engineering metal
alloys. Therein, one could observe significant difference, up to 3 orders of magnitude, in the shear strain to
failure γf . A compelling explanation regarding these remarkable differences in the measured ductilities has
remained elusive until a recent work by the present authors [8]. Barsoum and Faleskog [9] also conducted
similar experiments by the introduction of notches to hollow tubes for illustrating the effect of triaxiality.
They characterized the stress state in terms of stress triaxiality T and the Lode parameter L [10]. Haltom et
al. [11] have recently conducted torsion experiments with the test specimen revisited. Unlike earlier torsion
experiments on aluminum alloys and steels [12, 13], their experiments showed increasing ductility under
stress states near simple shearing [11]. Altogether, experiments, though being revealing, are hard to con-
duct, especially in presence of shear, and may lead to conflicting results. Yet, they can serve as benchmark
for verification purposes within computational simulations.

A special line of work tends to set forth a tentative interpretation of the loading effects by means of
macroscopic nondimensional descriptors expressed in terms of stress invariants or some equivalent invariant
of the stress deviator. As such, stress triaxiality T , defined as the ratio between the hydrostatic stress and
the von Mises equivalent stress, is the most widely used parameter in absence of shear [14–18], and the
Lode parameter L is particularly utilized to reflect the apparent effect of shear. The latter is function of the
Lode angle or, equivalently, the third invariant of the stress deviator, J3 [9, 19–21]. These isotropic scalar-
valued parameters may be revealing in some sense. Yet, they cannot portray the salient features of fracture
at the micro scale. To this end, fracture processes can, at best, be rationalized at the cell level, i.e. at the
limit of a representative volume element (RVE). Thereupon, the microstructural effects can be described by
parameters that are measurable and/or observable. Provided this RVE is chosen judiciously (see [22] for
methodology), plastic deformation can be well regarded as homogeneous or localized at the cell level. In
the former, plasticity is diffuse throughout the cell. In a weakly rate–sensitive material, the latter manifests
by the onset of elastic unloading in layers above and below the void [23–25] or by occasional concentration
of plasticity within columns [26]. The former is known in the literature as coalescence in layers and the
former has been termed coalescence in columns (necklace coalescence) [27]. While homogeneous yielding
can drive the process at early stages, localized deformation is indispensable for failure to occur [3, 23]. In
other terms, localized plasticity is the necessary condition for failure to occur. Nevertheless, it may not be
sufficient therefor, especially under shearing effects [28].

Micromechanics-based modeling of ductile fracture can be traced back to the early work reported by
McClintock [14], Rice and Tracey [15], Fleck and Hutchinson [29] (the latter accounting for the effect of
shear) and the like. Intrinsic limitations, including consideration of isolated voids and parametric rather than
closed form expression, prompted more advanced work. The first closed-form analytical gauge function in
this respect is known after Gurson [16], which sets a yield criterion for a porous material containing spherical
or cylindrical voids at the macro scale, and correlates with an evolution law for a single microstructural
variable, the void volume fraction (porosity) f . Within the deformation process, however, anisotropies
associated with matrix deformation and void shape would emerge as earlier noticed. Several extensions of
the Gurson model have been developed over the past decades to account for these anisotropies. Assuming
homogeneous yielding, Gurson’s model and its extensions have set the caliber for decades. The Gurson–
Tvergaard–Needleman (GTN) model, for instance, follows Tvergaard’s and Needleman’s modifications to
Gurson’s model to encompass the effects due to void interaction and void nucleation [30–32]. In passing,
the Gologanu–Leblond–Devaux (GLD) model [33] extended Gurson’s for non-spherical voids. This line of
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models was further extended into incorporation of plastic anisotropy in [34, 35]. In the meantime, ductile
damage models have been proposed, partly based on continuum thermomechanics [17, 18, 36] and partly
based on homogenization [37–40], which have bee further implemented in simulations of damage evolution
and forming processes in metals [41, 42].

A considerable fraction of work on shear-dominated ductile failure prediction in porous materials ad-
dresses supplementing existing Gurson-type yield criteria with damage models. Nahshon and Hutchin-
son [20], for instance, proposed a modified damage parameter (denoting porosity in absence of shear)
through the addition of a heuristic function of J3. This damage parameter, while remaining of a heuristic
nature, could not preserve the identity of a physical parameter such as porosity. Morgeneyer and Besson [43]
introduced a modified strain rate as function of the Lode parameter based on a Gurson-type yield criterion
in order to simulate the transition from flat to shear-induced crack propagation. The work of the like rely,
to a large extent, on heuristic modifications with the physical processes behind failure remaining elusive.
Meanwhile, there has been remarkable attempt exerted on direct modeling of ductile fracture under shearing
effects at the cell level. The pioneering work of Tvergaard and coworkers [3, 44–46] by high–throughput
FEM–based cell–model calculations has set the standard for the past decade. They have analyzed FEM cells
under various boundary conditions including near-simple shearing over plane-strain [3, 44] or 3D cells [45]
as well as near-pure shearing [46] over plane-strain cells. These outcomes have provided a valuable cache
for model assessment purposes. The technical challenges, however, clearly demonstrate that numerical cell–
model studies, let alone structural calculations, under combined loading are not only cumbersome, but also
unfeasible at times [45]. Micromechanics–based modeling would, in effect, eliminate the need for such
lengthy calculations.

Any physics-based simulation of shear-induced failure would be mainly perceptible by the microstruc-
tural effects that trigger failure in shear that are, themselves, directly influenced by localized deformation.
Work in this respect is meager in regards to both modeling and numerical implementation. A model account-
ing for localized deformation under combined tension and shear was recently developed by Keralavarma and
Chockalingam for plastically anisotropic materials with Hill-type plastic anisotropy [47]. Preparatory to this
model being developed, Kweon et al. [48] had simulated the ductile fracture process from the implicit nu-
merical integration of a complete constitutive framework in rate form. They accounted for a complete range
of void shape and orientation effects as well as Hill-type matrix plastic anisotropy in accordance with the
homogeneous yield criterion proposed by Keralavarma and Benzerga [35]. Due to the lack of an equiva-
lent inhomogeneous yield criterion admitting localized plasticity, they had clearly disregarded the localized
regime at the time, and thus no failure was predicted therein. Yet another recent work by the present au-
thors on the numerical implementation of the entire fracture process under combined tension and shear [8],
though well-motivated and extensive, does not account for the effect of plastic anisotropy. This warrants the
impending need to a more comprehensive investigation on the effect of matrix plastic anisotropy on ductile
fracture under combined tension and shear. To this challenge, the yield criterion derived by Keralavarma and
Benzerga [35], here denoted with the ”K–B” model, is supplemented with that introduced by Keralavarma
and Chockalingam [47], here briefly termed the ”K–C” model. On account of the two yield surfaces being
modeled by different RVE’s, the resulting two-surface model is termed hybrid.

In actual fact, plastic deformation under shear domination at the micro scale is inhomogeneous from
the outset [3, 44, 49]. However, the pristine forms of the two models are each one of the two extremes.
As such, the exact shear deformation process is close to a modified version of K–B at early stages until
K–C becomes dominant. In order to capture the quantitative aspect of the de facto shearing process, the
K–B model should be utilized in modified form according to the simple modification proposed for stress
states close to simple shearing [50, 51]. Besides, the surrogate microstructure exploited in the K–B model
bares clear overconstraints in the response, which calls for another modification with a simple adjustable
parameter. The benchmark results from [3, 44, 45] are considered as comparator for this purpose.

Moreover, the numerical simulation framework would not be complete unless the yield criteria are sup-
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plemented to appropriate evolution laws. Accordingly, a set of equations accounting for the evolution of
effective parameters governing the pre- and post–localized microstructural state are needed. More specif-
ically, the main body of equations for the evolution of void shape and orientation incorporated with the
K–B line of models has been available since the early nineties [33, 52] and has been used to model frac-
ture in engineering materials [48, 53]. The counterparts to these equations have been recently developed by
the present authors for cylindrical [54] and spheroidal voids [8]. The latter will be invoked in the present
context both for the sake of better consistency with their former counterparts and capturing the essential fea-
tures of shear–induced failure for a complete range of void shapes (elongated, flattened, and nearly-spherical
voids). The utilized evolution equations for rotating voids can conveniently retrieve their simpler precursors
developed by Benzerga [55] in absence of shear.

With the established model at hand, the parametric studies will begin under triaxial loading and would
further extend into the states of combined normal and shear as well as near–simple shearing. The combined
effects induced by matrix anisotropy will be assessed in a complete range of normal-to-shear stress ratios.

2 Hybrid Model of Ductile Fracture

The notion of homogeneous vs. inhomogeneous yielding was earlier conceptualized in Section 1. The
distinction between homogeneous and inhomogeneous yielding pertains to plastic deformation at the ele-
mentary cell level. If a cell of arbitrary geometry deforms uniformly inside, and thus over its boundary,
plastic deformation is known as homogeneous, otherwise inhomogeneous. In porous plasticity, inhomo-
geneous yielding is mainly characterized by localized plasticity 1. To the best of the reported knowledge,
plastic strains in porous metals can localize more prevalently at the vicinity of the inter-void ligaments
(which arises from elastic unloading [23]) and more sporadically along inter-void columns. Provided the
voids can impinge at either case, localized plasticity is associated with void coalescence. Correspondingly,
void coalescence of the former and latter types is known as coalescence in layers and coalescence in columns
(necklace coalescence), respectively. Except within plump cells or for very long voids, the former proves
more ubiquitous, and is thus taken as the driving failure mechanism in the present context.

With reference to an underlying microstructure, as schematized in Fig. 1a, the mictostructural geometry
can be locally described with the aid of a representative volume element (RVE), Fig. 1b (see [8] for more
illustration). Note that, in general, the underlying microstructure can accommodate localized deformation
along several possible planes. Only one possible plane has been shown in Fig. 1b which is truly the
governing plane upon consideration of one single cell regarded as a single point in space.

1Strain localization in this case occurs inside an inner-void ligament with finite thickness. This must be clearly dissociated from
Rice’s theory of plastic localization [56], whereby strain rates can localize inside a band with vanishing thickness. This distinction
is of utmost importance in porous material plasticity particularly where voids can act as initial heterogeneity.
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(a) (b)

Figure 1: (a) Relative positioning of voids with local periodic distribution inside a plastically anisotropic matrix with
orthotropy directors (eL, eT, eS); (b) equivalent RVE after deformation under combined tension and shear.

Even with the use of such a simplified cell in Fig. 1b, the macroscopic response of this cell is not
solvable, be the yielding mechanism homogeneous or inhomogeneous. Rather, it is attainable through
idealized elementary cells that have been utilized in the derivation the yield criteria pointed out in the
following subsections. The two yield surfaces are expressed basically as ΦH(p;σ; f, w,n(3)) = 0 and
ΦI(p;σ; f, w, λ,n(3),n) = 0, where the yield functions ΦH and ΦI correspond to homogeneous and inho-
mogeneous deformation of the cell, respectively. f is defined as the void volume fraction (porosity), w is
the void aspect ratio, n(3) is the void orientation determined by its main axis direction, and n is the plane
in which plastic strains can localize and voids can impinge. Moreover, p is Hill’s tensor defined in Section
2.1. Rather than considering a concurrent effect of the two surfaces (through a linear combination), the
model at the present stage accounts for a consecutive advancement of the two mechanisms. Namely, the
most favorable mechanism is triggered at every time step by considering the Φ = 0 that is met first.

Both yield functions are expressed in terms of the stress space normalized by the matrix effective stress
σ̄. The latter is normally taken to depend on some effective plastic strain ε̄ as its conjugate strain. Here, the
two are related through a power law of the form:

σ̄ = σ0

(
1 +

ε̄

ε0

)N
(1)

with σ0 the initial yield strength and N the hardening exponent.
Remark: Upon observation [3, 44], the de facto mechanism within the RVE under combined tension

and shear as well as under shear dominance is an intermediate mechanism between the fully homogeneous
and fully localized extremes. As such, it is closer to the former at early stages and it approaches the latter
end with further advancement of shearing. Therefore, both ΦH and ΦI are subject to some modification in
order for the hybrid model be accountable for a thoroughly reliable simulation. The following subsections
present both models in modified form.

2.1 Nearly-homogeneous yielding

The geometric framework associated with nearly-homogeneous yielding, is that for a porous plastic solid
composed of a plastically anisotropic matrix containing aligned spheroidal voids with arbitrary initial orien-
tations [35]. Within this framework, the voids are taken as spheroidal, with two equal lateral radii (denoted
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with b) and a third mismatching radius (known as a) considered as the main semiaxis. Correspondingly,
n(3) denotes the void axis along the main radius a, and n(1) and n(2) are orthogonal base vectors arbitrarily
chosen in the transverse plane. Following the work of Keralavarma and Benzerga [35], ΦI can be expressed
in the following form:

ΦH(p;σ; f, w,n(3)) = C
σ2

eq

σ̄2
+ 2(g + 1)(g + qf) cosh

(
κ
σ : X

σ̄

)
− (g + 1)2 − (g + qf)2 (2)

with f = ω/Ω and w = a/b denoting void volume fraction (porosity) and aspect ratio, respectively. Here,
a and b denote, respectively, the spheroidal void’s major and minor semi-axes. Every spheroid can be
uniquely identified by a main radius a that defines the void orientation n(3) and two equal radii b1 = b2 = b
arbitrarily defined along perpendicular directions in the plane normal to n(3), identified with n(1) and n(2).
Correspondingly, w > 1, w < 1 and w = 1 signify, respectively, a prolate, an oblate, and a spherical void.
The q factor enables ΦH to capture stress states near simple shearing, which should be above 4/3 [50,57]. In
the present context, the value proposed by Perrin and Leblond [51], q = 4/e ≈ 1.47 is utilized. Also, σeq is
the von-Mises equivalent stress as function of a Hill-type anisotropy tensor [58] which can be stated as

σ2
eq =

3

2
σ : H : σ (3)

where H is related to Hill’s tensor p ( that reduces to the deviatoric projection operator J for an isotropic
matrix defined below) through

H ≡ p+ η(X⊗Q + Q⊗X), p ≡ J : h : J, J ≡ I− 1

3
I⊗ I (4)

with Q and X written as

Q =− 1

2
(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + n(3) ⊗ n(3)

Xv =α1(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α1)n(3) ⊗ n(3) , α1 = α̂1(w)

X =α2(n(1) ⊗ n(1) + n(2) ⊗ n(2)) + (1− 2α2)n(3) ⊗ n(3) , α2 = α̂2(f)

(5)

Xv is a counterpart of X that will be later utilized in the evolution equations for w and n(3), in Eq. (20)
for instance. σ̄ is the isotropic matrix yield strength. Upon convention, σ̄ is adopted the yield strength in
one principal direction of orthotropy, and the components of the anisotropy tensor p are scaled accordingly.
Moreover, the expressions of C, g and κ in (2) as well as η in (4) and α2, as functions of f , w, and/or H are
provided in Appendix A. h is defined as the anisotropy tensor in the deviatoric stress sub-space.

In the (eL, eT, eS) frame (Fig. 1a), the six Hill coefficients are termed hL, hT, hS, hTS, hSL and hLT

which, for an isotropic matrix would all simplify to unity, i.e. hL = hT = hS = hTS = hSL = hLT = 1.
In general, the principal loading directions, here denoted with (m,p,n), are not aligned with either the
principal axes of orthotropy (eL, eT , eS) or the void-tied basis (n(1),n(2),n(3)). Further details can be
found in [35, 48].

2.2 Localized yielding

For the sake of simplicity, ΦI has been developed with the void being codirectional with the normal to the
localization plane n, as shown in Fig. 1b. To remedy this constraint, the real microstructure is mapped
into a surrogate one, identified with a surrogate void aligned with n, with the void and cell volumes being
preserved as the key feature. See Fig. 2.
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With reference to the surrogate RVE shown in Fig. 2, the surrogate parameters read

χ̄(n) =
R̄(n)

L̄(n)

w̄(n) =
h(n)

R̄(n)

λ̄(n) =
H(n)

L̄(n)

(6)

where the third parameter does not enter into ΦI though being indirectly influential. Note that the entire
surrogate mictostructure is fortunately expressible in terms of the main microstructure. See Sec. 3.1.

Figure 2: Surrogate configuration of a cell under combined tension and shear.

After Keralavarma and Chockalingam [47], ΦI reads

ΦI =
1

2

σsh : p : σsh

τ̄2
+ 2qχfb cosh

(
σ

σc
ln

1

qχfb

)
−
[
1 + (qχfb)2

]
(7)

where σsh = τ(n⊗m + m⊗ n) is the auxiliary shear stress tensor, and

σc

τ̄
= 3b

√
2

5
ĥq


ln bu


1 +

√
1 +

1

(bu)2


−

√
1 +

1

(bu)2




1/fb

u=1

3b2 =
ĥt

ĥq
+

5α

8W2

ĥa

3ĥq
, α =

1

12

[
1 + qχfb − 5(qχfb)2 + 3(qχfb)3

]
(8)

with qχ = 1 in the basic form, and the parameters ĥq, ĥt, and ĥa being scalar anisotropy factors defined
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in [35, 47], expressed as

ĥq =
1

6

[
ĥ11 + ĥ22 + 2ĥ12 + 4(ĥ33 − ĥ23 − ĥ31)

]

ĥt =
1

4

[
ĥ11 + ĥ22 + 2(ĥ66 − ĥ12)

]

ĥa =
ĥ44 + ĥ55

2

(9)

where ĥij denotes the ij-th component of tensor ĥ, as the formal inverse of h (such that ĥ : h = h : ĥ = J),
expressed in Voigt–Mandel reduced form. Note that the special case of an isotropic J2 matrix corresponds
to ĥij = δij (with δ denoting the Kronecker delta) such that ĥq = ĥt = ĥa = 1. It is also worthy of
note that p is to be calculated within the principal loading frame, that is initially taken coincident with the
global coordinate system herein. Note also that, unlike those associated with ΦH (where ĥij components are
expressed in the void-tied basis), ĥij’s corresponding to ΦI are expressed in the basis tied to the surrogate
void.

The concept of introducing qχ into (8) follows the same rationale as set forth in [8], to capture the
quantitative aspect of combined tension and shear as well as simple shearing. Interestingly, qχ can be taken
identical to that introduced in Eq. (37) in [8], with slight difference in the adjustable parameters. As such,
one can write

qχ =

(
q0 +

q∞ − q0

q0/κ2 + 1

)
(1 + ψ) (10)

with q∞ = 1 (pertaining to the absence of shear) and q0 suggested as q0 = 1/3.
Finally,W is a function of fb = χ̄2 and w̄ that is calibrated modulo numerical results, that reads

W =





qχfbw̄
2

4W0
+W0 for

√
qχfbw̄ < 2W0

χ̄w̄ for
√
qχfbw̄ ≥ W0

(11)

whereW0 is an adjustable parameter with the preferable value of 0.1 (see [47]).
Remark: The close interaction between voids and matrix anisotropy can be witnessed in the appearance

of porosity f and void aspect ratio w during nearly-homogeneous deformation and their counterparts fb

and w̄ during localized deformation. More specifically, this correlation is taken into account by the κ and
Q parameters during nearly-homogeneous deformation, and its counterpart at inhomogeneous yielding is
envisaged through the notion of σc in Eq. (8).

3 Evolution of State Variables

This section addresses the body of requisite equations for the evolution of the material state in explicit or
rate form. Except for the void aspect ratio w and orientation n(3), the evolution of which are intrinsic to
the mechanism, the rest of the equations are generic. The equations describing the evolution of w and n(3)

associated with ΦH are part of the developments in [35, 52, 59], and those associated with ΦI are borrowed
from the recent work by the authors [8]. They key feature to take into account in the latter respect is the
rigid-like behavior of the matrix above and below the void induced by elastic unloading [60] above and
below the void.
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3.1 Surrogate parameters

The concept of a surrogate microstructure is key to the prediction of the onset of localized deformation and
the microstrucrural evolution thereof. It involves replacing the rotating void with an upright cylinder of axis
n, having the same volume and porosity, Fig. 2. Figure 3 shows a closer schematic view of the post-localized
deformation process under remote shearing as well as the geometric parametrization for surrogate and post-
localized microstructural evolution. With regards to the surrogate microstrucrures, the vertical tangent atA′,
and appropos of the post-localized evolution of void shape and orientation, the horizontal tangent at point A
should be accounted for.

(a) (b) (c)

Figure 3: (a) Schematized post–localized deformation mechanism, and (b,c) the angles driving the evolved geometry
for a spheroidal void under a shear field: (b) a prolate void (w > 1), (c) an oblate void (w < 1).

With reference to the algebraic details provided in [8], one can express the surrogate parameters in terms
of the main microstructural state variables as follows:

w̄ =
w

3γ

(
1 + T 2

1 + T 2w2

) 3
2

λ̄ =
λ

(1 + ηγmn)3

χ̄ =

(
fλ̄

w̄

) 1
3

(12)

where T = S/C, with S and C denoting, respectively, sin θ and cos θ, with θ being a directional angle
originated along n and ending at n(3) with the sign convention as shown in Fig. 2. Also, γmn = 2m · En,
E =

∫
D dt, and λ is the main cell aspect ratio, that is evolved using (26). γ denotes the void shape factor,

equaling 1/2 for a spheroid. Finally, η is originally 1, but heuristically recommended to avoid computational
errors at extreme shearing, with 0.9 ≤ η < 1. In the present context, η = 0.9 has been granted throughout.

3.2 Base vectors and plane normals

The principal laboratory frame denoted by a global basis such as (e1, e2, e3) as well as the principal or-
thotropy directors (eL, eT , eS) are taken to rotate with the material. That is

em = Re(0)
m , F = RU (13)

where em denotes both laboratory and orthotropy base vectors (m = (L,T,S) stands for the principal or-
thotropy axes, and n = 1, 2, 3 constitutes the void lattice directors). Also, R and U emanate from the polar
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decomposition of the deformation gradient tensor F at every step of the process, with R being the rotation
part. The current deformation gradient can be derived on the basis of its incremental value at every time
step, that is [61]

F(i) =
i∏

j=0

F(j) (14)

where F(j) is the deformation gradient between the j − 1’st and j’th time steps constituted by the incre-
mental displacements at the j’th step, where j = 1, 2, ..., i. Note that many commercial codes, such as
ABAQUS, calculate F internally, and it thus need not be programmed when the constitutive model is coded
in conjunction with those commercial software.

Upon invoking underlying microstructure, one can identify a discrete set of initial planes which could
configure the post-localized inter-void ligaments. Each plane set is uniquely defined by a normal n. Un-
less stated otherwise, a normal is convected through the transformation law for a directed area with unit
magnitude. Therefore:

n =
F−Tn(0)

∣∣F−Tn(0)
∣∣ (15)

with |.| denoting a vector magnitude.
Within a plane with normal n, two additional base vectors m and p can be defined in the interest of well-

defined directions along and perpendicular to in-plane shear tractions. The latter two can be determined, at
every current step, directly from the resolved shear traction on the current plane with normal n and a cross
product carried out on n and m, respectively. That is

m =
τn

|τn|
p = n×m

(16)

where the shear traction τn will be used in Eq. (7). In case, however, the shear traction vanishes, Eq. (16)
would be ill-defined. In this case, m and p would stay constant, equal to their previous values (or to their
initial values in case the loading is shearless throughout).

For the single cell undergoing normal and lateral as well as shear displacement (see Fig. 1b), F(j) reads:

F(j) =


1 +

δu
(j)
m

L


m⊗m +


1 +

δu
(j)
p

L


p⊗ p +


1 +

δu
(j)
n

H


n⊗ n +

δu
(j)
t

H
m⊗ n (17)

where the constituents
(
δu

(j)
m , δu

(j)
p , δu

(j)
n , δu

(j)
t

)
are the incremental displacements at the j’th step, where

j = 1, 2, ..., i. Here, δu(j)
m , δu(j)

p , and δu(j)
n are the tensile displacement increments along directions m, p,

and n, respectively, and δu(j)
t is the tangential displacement increment over the top chord of the cell. Note

that all these displacement increments are modified as to preserve the ratios among the stresses. Moreover,

L = L0 exp

(
εmm + εpp

2

)
, H = H0 exp εnn (18)

with εmm, εpp, and εnn are the normal strains resolved along the m, p and n directions, respectively. Upon
consideration of the single cell, n (denoting normal to the invoked localization plane) initially directed
along e3 would stay constant thanks to the imposed deformation gradient F. Accordingly, m, p and n
coincide with the global base vectors e1, e2 and e3, respectively. Note that the present solution framework
is expanded based on a co-rotational formulation, i.e. the equations are expanded within the rotated material
configuration. Therefore, Eq. (13) is tacitly assumed in the formulation.
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3.3 Ligament volume fraction

c ≡ h/H (see Fig’s 2 and 3 for geometric details) denotes the current ligament volume fraction, which can
be expressed in correlation with (f, w, λ, θ) as

c =

(
3γf

wλ2

)1/3
√

T 2 + w2

T 2 + 1
(19)

with T defined in advance.

3.4 Void aspect ratio

The evolving void aspect ratio can be more concisely and conveniently expressed in the form of its natural
logarithm s ≡ lnw, thus its rate ṡ as follows.

– During nearly-homogeneous deformation:
The evolution equation for the void aspect ratio during nearly-homogeneous deformation is that pro-
posed by Gologanu et al. [59], also adopted in [48]:

ṡ = Q : Dv (20)

where

Dv = kDp + 3

(
1

f
Xv −X

)
Dp

m (21)

and Q, Xv and X obey (5). The heuristic function k (following [59]) writes

k = 1 + kwkfkT

kw(w) =
9

2

α1 − αGar
1

1− 3α1

kf (f) = (1−
√
f)2

kT (T, ε) =





1− T 2 + T 4

9
for ε = +1

1− T 2 + T 4

18
for ε = −1

, ε ≡ sgn(σmσ
′
33)

(22)

and

T =
σkk/3√
3
2σ
′ : σ′

(23)

where T is the stress triaxiality and ε is related to the third stress invariant; see [4].

– During localized deformation:

In view of the horizontal tangent at point A in Fig. 3 and, with reference to the algebraic details
provided in [8], one can write

ṡ = (w2+T 2)2

(w4+T 2)(1+T 2)

[
2−3

T 2(2w2−w4+T 2)

(w4+T 2)(w2+T 2)

]
[(

3
c −

(w4+T 2)(1+T 2)
f(w2+T 2)2

)
Dnn + 6

c
(w2−1)T
w2+T 2 Dnm

]

(24)
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for prolate voids (w > 1), and

ṡ = (w2+T 2)2

(w4+T 2)(1+T 2)

[
1−T 2(−2w2+w4−T 2)

(w4+T 2)(w2+T 2)

]
[(
−3
c + (w4+T 2)(1+T 2)

f(w2+T 2)2

)
Dnn − 6

c
(w2−1)T
w2+T 2 Dnm

]

(25)
for oblate voids (w < 1). Here,

Dnn = n ·Dpn

Dmn = m ·Dpn

with the elastic strains neglected.

Note, for the special case of an upright void, that Eq. (24) simplifies into Eq. (12) of [55]. See [8] for
more details and special cases.

3.5 Cell aspect ratio

A judicious method that enables to update the cell aspect ratio as function of the normal to the ligament n
is that proposed by Leblond and Mottet [62], originally derived for an initially cubic unit cell. This method
was extended into the more general case of an initially orthorhombic cell in [8], which delivers the following
relation:

λ(n) =
λ0(n)√
J
(
n · (FFT)n

) 3
4 (26)

where F is the total deformation gradient, with its associated determinant J := det F. See [8] for justi-
fication. It should be noted, however, that, under combined tensile and shear loadings, λ should never fall
below its initial value λ0. Hence, λ is replaced with λ0 in case λ ≤ λ0 [62].

3.6 Porosity

Generically throughout the plastic process, f is governed by plastic incompressibility such that:

ḟ = (1− f)Dp
kk = (1− f) Λ̇

∂Φ

∂σm
(27)

with Λ̇ being the plastic multiplier in rate form.

3.7 Void orientation

In general, the rate of orientation of the (immaterial) principal axes of the void may be directly obtained
from the (material) rotation and strain rates of the void [63, 64], denoted by Ωv and Dv, respectively. Thus,
the rate of change of the void axis is given by the following

ṅ(3) = ωn(3), ω = Ωv + Ωl (28)

where the rotation tensor ω is the total spin tensor that consists of the void spin, Ωv, superposed by the
void rotation with respect to the material, Ωl. Here, we exploit Ωv as derived in [63, 64] during the nearly
nearly-homogeneous part of deformation, and confine it to the plastic ligament at the post-localized regime.
Hence:

– During nearly-homogeneous deformation:

Ωv = Ω− C : Dp (29)
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– During the post-localized deformation:

Ωv = Ω− 1

c
C : Dp (30)

where C is the fourth order spin concentration tensor given by

C = −(1− f)P : A, A = [I− (1− f)S]−1 (31)

with A the strain concentration tensor and P and S the Eshelby tensors [65] for a spheroidal inclusion of
zero stiffness in an incompressible linear viscous matrix. Note that a 1/c term appears in (30) to represent
the plastic rate of deformation inside the ligament.

Also, in (28) Ωl is an additional contribution to the effective void rotation that comes from mere distor-
tion of void boundaries under the combined effect of tension and shear.

– During nearly-homogeneous deformation:
By defining the plastic spin tensor as Ωp = Ω − ω, one can write, during the nearly-homogeneous
deformation:

Ωl =
1

2

∑

i 6=j, wi 6=wj

w2
i + w2

j

w2
i − w2

j

[
(ni ⊗ nj + nj ⊗ ni) : A : Dp

]
ni ⊗ nj (32)

Then, by combining Eq’s (29), (32), and (28), and by adopting the notation w1 = w2 = w and
w3 = 1, one can evaluate the components of ω with respect to a laboratory frame. The case w = 1,
however, requires a careful treatment; see [35].

– During localized deformation:
The post-localized Ωl was derived from first principles in [8]. Upon the steps clarified therein, the
post-localized Ωl reads:

Ωl =
Ṡ

S
m⊗m +

Ċ

C
n⊗ n =

Ṫ

T

(
C2m⊗m− S2n⊗ n

)
(33)

where Ṫ obeys the following equation

Ṫ =
(T 2 + w2)(1 + T 2)

T (1− w2)


 ċ
c
− 1

3

(
ḟ

f
− 2

λ̇

λ

)
+

(
1

3
− w2

T 2 + w2

)
ṡ


 (34)

where

ċ

c
=

1− c
c

n ·Dpn

ḟ

f
=

(
1

f
− 1

)
Dp
kk

λ̇

λ
= Dnn −

1

2

(
Dmm +Dpp

)

(35)

with
Dnn = n ·Dpn , Dmm = m ·Dpm , Dpp = p ·Dpp

and p = n×m completes the triad of local base vectors.
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Remark: Thanks to the involvement of ṡ according to (24) and (25), prolate and oblate voids exhibit
different rotation conducts under shearing, as schematized in Fig. 3a. As such, both prolate and oblate
voids under a positively directed shear field reach a steady state rightward orientation. The transient
rate of orientation, however, differs in the sense that a prolate void rotates rightward throughout the
process whereas an oblate void rotates leftward transiently until it starts rotating rightward and con-
tinues until failure. See [8] for further details.

3.8 Equivalent plastic strain

The evolution of equivalent plastic strain ε̄ is obtained through the formation of plastic work equivalence
between the macroscopic material and the excluded matrix, written as

σ : Dp = (1− f)σ̄ ˙̄ε (36)

where σ̄ correlates with ε̄ through (1). Within the adopted solution scheme, Eq. (36 can utilized for
calculating the residual associated with ε̄, as declared in Section 4. Alternatively, it can be exploited to
update the plastic multiplier Λ̇ explicitly by rearranging in the following format:

Λ̇ = (1− f)
σ̄ ˙̄ε

σ : N
, N =

∂Φ

∂σ
(37)

Note that Λ̇ has been taken to evolve, in [48], in accordance with the implicit evolution of dΛ using the
instantaneous value of Φ at the beginning of every time step.

4 Time Integration of Constitutive Equations

The elements of time integration follow an implicit integration scheme expounded in detail in [8, 48]. The
quintessential points will be outlined herein.

Following the additivity premise, the total rate of deformation tensor D is decomposed in the following
format [66]:

D = De + Dp (38)

where the elastic part is given by:
De = L−1 :

∇
σ (39)

with L the isotropic tensor of elastic moduli, and
∇
σ denotes the Jaumann objective stress rate defined by:

∇
σ= σ̇ + σΩ−Ωσ (40)

where Ω is the skew symmetric part of the velocity gradient.
All the same, the plastic part of D originates from normality to a yield surface represented by a flow

potential Φ = 0 via the following relation:

Dp = Λ̇
∂Φeff

∂σ
(41)

where Λ is the plastic multiplier associated with the plastic strain tensor, and Φeff is the effective yield
function, emanating from the innermost surface between those corresponding to ΦH and ΦI in the adopted
consecutive approach.

The hybrid model presented in the foregoing sections is formulated within a corotational framework.
That is, the constitutive relations are expressed in an intermediate configuration, which is rotated from
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the current one by the instantaneous rotation tensor R that results from the polar decomposition of the
incremental deformation gradient [48]. Constitutive laws, therefore, need be written accordingly in the
rotated configuration, with quantities indicated by the tilde (∼) symbol. The so-derived equations relate
merely with the stretch part of deformations, and the rotation part is admitted by rotating quantities to the
intermediate configuration. The objective rate of stress

∇
σ in (40) will be thus replaced with σ̇, and the

spin tensor Ω will vanish from the void orientation evolution (see Sec. 3.7), all thanks to the corotational
formulation. Further details can be observed in [48].

Due to the existence of high geometric nonlinearity within the problems of porous plasticity, the im-
plicit method of plasticity has been adopted to solve for current state variables. Accordingly, the following
independent state variables will be updated via the implicit method:

V =
[
σ′, σm, f, ε̄, s

]T (42)

while the rest, including dΛ, σ̄, λ as well as the surrogate parameters in (12) are explicitly evolved as
function of the above independent variables with reference to Section 3. The main portion within the flow
rule (41) to derive the evolution of the independent state variables is the first derivative of the flow potential
Φ with respect to the stress tensor, here denoted with N. Within the implicit time integration invoking the
Newton-Raphson solution scheme, N is primarily used in the calculation of residuals (denoted with [R]),
and ∂N/∂σ is mainly utilized in the Jacobian components (∂[R]/∂[V]) associated with the state variables
in (42).

Following Eqs. (2) and (7), one can write

ÑH ≡ ∂ΦH

∂σ̃
= 3C

H̃ : σ̃

σ̄2
+ 2(g + 1)(g + f)κ sinh

(
κ
σ̃ : X̃

σ̄

)
X̃

σ̄
(43)

and

ÑI ≡ ∂ΦI

∂σ̃
= 3

∂σsh

∂σ
: p :

σsh

σ̄2
+ 2

fb

σc
ln

1

fb
sinh

(
σn

σc
ln

1

fb

)
n⊗ n (44)

where use has been made of the following derivatives

τn = σn− σnn ∴ ∂τni

∂σkl
= (δik − nink)nl

∴
[
∂σsh

∂σ

]

ijkl

≡ ∂[σsh]ij
∂σkl

= (δik − nink)njnl + (δjl − njnl)nink
(45)

where use has been made of the basic formulation of (7). For computation purposes, fb obviously should
be replaced by qχfb.

With the above derivations at hand, the Newton-Raphson procedure is employed iteratively to solve the
[R]T = 0 equation system at every time step:

[V]i+1 = [V]i −
[
∂[R]

∂[V]i

]−1

[R] (46)

where the Jacobian matrix ∂[R]/∂[V] can be evaluated at every iteration within the time step or kept equal
to the value at the beginning of the time step, and subscript i denotes the iteration number. Appendix
B provides the Jacobian components pertaining to ΦI, and those associated with ΦH have been provided
in [48].
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5 Results

This section presents the calculated results of internal state variables from integration of the afore-mentioned
constitutive framework for one single unit cell. Correspondingly, there exists only one localization plane
with the normal being e3 throughout whereas the void is allowed to rotate under combined loading. The
stress state is represented by a normal, two perpendicular lateral and a shear traction exerted on the upper and
lower faces of the cell. Matrix anisotropy has been neglected throughout. Each set of results is extended into
further subsets to demonstrate the evolution of various microstructural variables on the material response.
The ratios among the remote normal, lateral, and shear stresses remain constant throughout. Accordingly,
stress triaxiality T and the Lode parameter L are constant.

The model is firstly assessed against existing results under triaxial loading, i.e. in absence of shear, for
fixed stress triaxialities and prescribed initial void aspect ratios. The next set of results presented in the
sequel represent combined tension and shear, with specific focus on shear-dominated loading. To this end,
the predicted results are first compared to cell-model calculations under combined normal and shear as well
as near-simple shearing states. In the latter case, lateral stresses are eliminated for the sake of simplicity, and
the axial-to-shear stress ratio κ = σ/τ varies from zero (representing simple shear) to infinity (signifying
uniaxial loading).

Note that, in some plots comprising several sets of curves, only one line color has been itemized in the
line legend to represent the line type rather than the depicted color.

5.1 Results under triaxial loading

5.1.1 Model assessment

This section presents the hybrid model predictions in comparison against the existing FEM-based cell-model
calculations under triaxial loading. To this end, the analyses carried out by Pardoen and Hutchinson [24] (for
isotropic matrices) and those calculated by Legarth and Tvergaard [67] (for Hill-type orthotropic matrices)
are considered as comparator. The results herein are compared to their FEM outcomes obtained from cell-
model calculations. The following constants are common among all results:

f0 = 10−2 , λ0 = 1 , N = 0.1 ,
σ0

E
= 0.002 (47)

and the remaining ones are intrinsic to the material. In the isotropic matrix material [24],

E = 210 GPa (48)

and in the orthotropic matrix [67],
E = 70 GPa (49)

where σ0 is the initial matrix yield strength and ε0 is its conjugate strain. E is the Young modulus, and the
rest of parameters have been defined in due course.

In the isotropic-matrix study [24], the values of initial void aspect ratio w0 and stress triaxiality T are
varied from case to case. Within the anisotropic case [67], however, the fixed values of initial void aspect
ratio w0 = 1 and stress triaxiality T = 2 have been utilized for comparison.

In the case of a Hill-type matrix, the FEM results were parametrized directly based on the basic Hill
coefficients according to the primitive form of the Hill criterion [58] for the matrix material, reading as the
following normalized form:

F (σTT − σSS)2 +G(σLL − σSS)2 +H(σLL − σTT)2 + 2
(
Lσ2

TS +Mσ2
SL +Nσ2

LT

)
= σ̄2 (50)
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where the stress components are written in the material orthotropy frame, and σ̄ is the matrix yield stress
in one arbitrary direction, whereby the Hill coefficients must be scaled accordingly. In [67], σ̄ was taken
along the ”L” direction. The present-invoked Hill coefficients are then expressible in terms of their primitive
counterparts according to the following identities [68]:





h1 = −F + 2(H +G)

h2 = −G+ 2(H + F )

h3 = −H + 2(F +G)





h4 = L

h5 = M

h6 = N

(51)

Correspondingly, the p tensor expressed in reduced form can be written as

p =




G+H −H −G 0 0 0
−H H + F −F 0 0 0
−G −F F +G 0 0 0
0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N




(52)

in the material orthotropy frame so long as the stress space is recast in the form σ = [σ11 σ22 σ33 σ23 σ31 σ12]T.
Legarth and Tvergaard had considered the following anisotropy cases [67]:

Aniso (II):





F = 0.4

G = 7.33

H = 1

Aniso (IV):





F = 2.5

G = 0.3

H = 1

(53)

with L = M = N = 9.6.
It is noteworthy that, unlike from Eq. (37), the plastic multiplier follows a power representation as

function of the yield function as well as the material yield stress:

Λ̇ = ˙̄ε

(
Φ + 1

σ̄

)1/m

(54)

which affects the evolution of ε̄ accordingly. Here, σ̄ follows the power law in (1), and use has been made of
the present ΦH and ΦI in lieu of the Hill potential in (50). Moreover, m = 0.01 has been used in reference
to [67].

Figures 4 and 5 compare selective state variables with the results from Pardoen and Hutchinson (P-
H) [24] and Legarth and Tvergaard (L-T) [67], respectively.
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(a) (b)

(c) (d)

Figure 4: Comparison of the present model predictions in absence of shear (solid curves) with the results extracted
from Pardoen and Hutchinson’s cell-model calculations (dotted curves) [24] as well as those obtained from the hybrid
model in [8] for T = 1 and various values of w0: (a) schematic unit cell, (b) normal stress response, (c) normalized
porosity, (d) logarithmic void aspect ratio s ≡ lnw.

(a) (b)

Figure 5: Comparison of the present model predictions in absence of shear (solid curves) with the cell-model calcu-
lations from Legarth and Tvergaard (dashed curves) [67] for the triaxiality of T = 2 and initial void aspect ratio of
w0 = 1 and various matrix anisotropy occurrences including the isotropic matrix as well as anisotropy (II) and (IV):
(a) normal stress response, (b) normalized porosity.
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The comparison among the stress-strain results, corresponding to the unit cell schematized in Fig. 4a, is
shown in Fig. 4 for the typical triaxiality of T = 1. To gain better insight into the distinctive behaviors of
different models, the present results are further compared to those from the alternative hybrid model devised
by the present authors in [8] for plastically isotropic materials. The model therein consisted of the same
K–B model as ΦH (simplified for isotropic matrices) but a piecewise-continuous ΦI known as T–B–L after
Torki et al. [69]. The calculations are terminated when χ̄ exceeds

√
2/2 ≈ 0.707 [55].

Figure 4a shows that the the KB–KC hybrid model predicts the onset of void coalescence later than the
KB–TBL and mostly sooner than FEM analysis (except for highly elongated voids w0 >> 1). The former is
due to the coalescence stress being slightly above that from TBL as demonstrated by comparisons [47]. Note
also that, with increasing w0, the predicted post-localized ductility (and strain to failure εf accordingly) is
higher from KC than from TBL due to the coalescence-induced stress being higher in the former.

Further, Fig. 4c reveals a convex evolution of porosity at larger values of w0. Indeed, the slow stress-
bearing decrease at this limit changes the predicted concavity of f such that, for w0 >> 1, there is an
apparent asymptotic limit thereto, which retards failure by void coalescence in layers. A similar retardation
can be envisaged within FEM and TBL curves by the reducing porosity slopes with increasing w0 whereas
the observed slope decrease is more exaggerative by the KC model. More extensive investigation has is that
the de facto yield mechanism for such long voids is closer to coalescence in columns (necklace coalescence)
[27].

Moreover, the slope of the s = lnw curve during void growth declines with increasing void aspect
ratios until it changes from a positive into a negative slope signifying a moderately decreasing w for w0 =
6 whereas the FEM-based w still increases, though moderately so, for this case. This calls for further
modification in the evolution law for s by (20). Furthermore, the decreasing post-localized slope within s
is seen as the largest for nearly spherical initial voids (w0 ≈ 1), and it decreases for both prolate and oblate
voids.

Last but not least, in view of Fig. 5, the difference between the onset of homogeneous softening for
the isotropic and Aniso (IV) cases lies in the difference in the evolution curves for porosity f . That is, the
sharper slope of f evolution according to the KB-KC hybrid model for the isotropic material gives rise to the
maximum stress response reached sooner (i.e. at a smaller cumulative strain), and vice versa for Aniso (IV).
This may warrant some modification to the ḟ formulation that accounts for the effect of plastic anisotropy.

The results are hereby extended as to incorporate plastic anisotropy next for several stress triaxialities
in combination with materials with various anisotropy (Hill) coefficients. Among all, there are three exten-
sional and three shear orthotropy coefficients. In view of Fig. 1a, eS is conventionally directed along the
axis of transverse isotropy, which presently coincides with the direction of principal normal loading Σ33,
and the other two are oriented according to the right-hand convention. Accordingly, the studies are subject
to variation of hL = hT and hS. The hij components above and below unity represent materials that are,
respectively, weaker and stronger than an isotropic material in response to Σij . The varying scenarios are
schematized in Fig. 6.
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(a) (b)

Figure 6: Coincident and rotated planes of transverse isotropy with respect to the principal loading directions: (a)
eS = n, (b) eS = sinβm + cosβn.

5.1.2 Effect of translational Hill coefficients

Figure 7 shows the variation of stress response under various triaxialities for materials with various hL = hT

values. The effect of varying hS bares similar influence.
Note that, notwithstanding zero lateral loading at T = 1/3, there exist lateral strains due to the Poisson

effect, and thus hL = hT is significantly effective in the normal stress response. In this regard, a weak
L–T plane generates a smaller normal limit load along eS, and vice versa. Further, the effect of extensional
Hill coefficients intensifies with increasing lateral loads or, equivalently, increasing triaxiality. Thereupon,
smaller Hill coefficients bare a confining effect reflected through a higher limit load concurrent with a lower
strain to coalescence as well as strain to failure, and vice versa. However, the strain to coalescence and
failure are more significantly driven by triaxiality than the Poisson effect so that the latter two are almost
equal for various Hill coefficients whereas the limit load is still remarkably affected by them.

The evolution of stress response and the rest of microstructural variables for the specific case of T = 1
and various values of hL = hT and hS is shown in the next set of subfigures.
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(a) (b)

(c)

Figure 7: Present model predictions under triaxial loading with various stress triaxiality values and varying hL Hill
coefficients, based on the initial microstructure denoted with Eq. (47): (a) T = 1/3, (b) T = 1, (c) T = 3.

One can clearly observe similar effects induced by varying hL = hT and hS coefficients. With the same
values of coefficients, the limit load, strain to coalescence and failure are very close for an intermediate
triaxiality level. There is only slight softening associated with stronger matrices in the L–S plane (hL = 0.5)
after the maximum stress response occurring at a lower strain level. One could expect more significant
effects induced by hL and hT with large triaxialities (T > 2) and, all the same, more remarkable effects of
hS at lower triaxialities.

Moreover, the convexity of χ̄ during the post-localized deformation process is larger than that of porosity
due to the smaller bounds thereto (χ0 ≤ χ̄ < 1) whereas porosity reaches at least one order of magnitude as
much as its initial value f0. Note that the post-localized lateral growth of the void, reflected by the decrease
in s = lnw, is more remarkable for a lower hS, i.e. for a material stronger along the loading direction, being
perpendicular to the transverse isotropy plane. Namely, the porosity increase level being almost equal, a void
grows faster laterally past the coalescence limit when the material is stronger along the principal (normal)
loading.

5.1.3 Effect of transverse isotropy plane misalignment

The next set of figures demonstrate the effect of misalignment within the transverse isotropy plane with
respect to the principal loading direction n = e3 for the material with hL = hT = 2, representative of a
material with weaker bonds within the m–p plane. The comparator among the cases is taken as the initial
transverse isotropy plane misalignment angle denoted with β0, as schematized in Fig. 6b.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Present model predictions under triaxial loading with a T = 1 stress triaxiality and various values of
hL = hT and hS, based on the initial microstructure denoted with Eq. (47): (a,b) normal stress response, (c,d)
normalized porosity, (e,f) effective ligament parameter, (g,h) logarithmic void aspect ratio.
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(a) (b)

(c) (d)

Figure 9: Present model predictions under triaxial loading with a T = 1 stress triaxiality, hS = 2 axial Hill coefficient,
and transverse isotropy planes with varying misalignment angles denoted with β0, based on the initial microstructure
denoted with Eq. (47): (a) normal stress response, (b) normalized porosity, (c) effective ligament parameter, (d)
logarithmic void aspect ratio.

It can be observed, from Fig. 9, that a rotated plane of weakness against extension induces a higher
limit load and less ductility since the microscopic bonds are mainly weak against the normal loading inside
the plane, which proves smaller by virtue of projection. β0 = 0 and β0 = 90, however, bare close stress
responses and ductilities (reflected by strain to failure εf ) since, at nonzero lateral portion of loading, the
Poisson effect would significantly affect the normal response which is, yet, less effective than the case when
the plane of weakness is directed towards the principal normal loading Σ33. In the latter case, corresponding
to β0 = 90, ductility is rather larger than for β0 = 0 mainly on account of the smaller Poisson effect.
In fact, a plane of weakness oriented at ◦90 virtually cuts the cell by smaller parallel cross sections with
the subcell heights remaining equal, which reduces the lateral deformation at the resultant assembly. The
resulting normal stress response would then be slightly higher, and the reduced lateral deformation mitigates
the increase rates of porosity and χ̄ that would, itself, delay the onset of void coalescence.

5.2 Results under combined loading

5.2.1 Model assessment

The model ought to be further appraised under combined loading. To this end, model predictions are hereby
compared against existing FEM-based cell-model calculations carried out by Nielsen and Tvergaard [45] for
3D cells under combined normal and shear loading. The loading effect is quantified by the κ = σ/τ ratio.
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It is worthy of note that a FEM-based state of absolute simple shear, with κ = 0, is too computationally
expensive for 3D cells and is, thus, not available in the literature except under the plane-strain condition.
The cell sketches and a deformed configuration of the plane-strain cell are shown in Fig. 10.

(a) (b)

Figure 10: Schematic outline of periodic cells under combined tension and shear considered by Nielsen et al. [45], (b)
staged deformed configurations of an example plane-strain cell ( after Tvergaard [3]) under simple shear, i.e. κ = 0.

The initial microstructure in [45] is introduced based on the (χ0 = R0/L0, w0 = h0/R0, λ0 = H0/L0)
triad (see Fig. 10a), with χ0 varying between 0.3 and 0.5, and (w0, λ0) = (1, 4) remaining fixed. The lateral
dimensions are also considered equal. For the sake of better coincidence between analytical and numerical
results, model predictions are compared to FEM counterparts for the same initial porosity [70], which reads

f0 =
π

6

w0χ
3
0

λ0

with the initial microstructure and hardening identified by (w0, λ0) = (1, 4) and χ0 = {0.3, 0.5}. Further,
the material constants are defined as

σ0

E
= 0.002 , E = 200 GPa , ε0 = 0.002 (55)

and the hardening exponent is taken as N = 0.2. Note that a maximum void aspect ratio is a key considera-
tion in Nielsen et al.’s analyses (see [3] for further clarification). Herein, the results pertaining towmax = 10
are considered as comparator.

Figure 11 shows the comparison between selected state variable predicted from the present model and
FEM values. Note that the analytical evolution of 90 − θ is founded on the initial void orientation directed
towards e3 since w0 = 1.1 has been taken slightly above unity to forestall the singular behavior of void
orientation laws at the limit of a spherical void, and therefore, the initial orientation is well-defined. Within
the numerical model, however, the orientation of a strictly spherical void is ill-defined. Upon convention,
the void orientation in this case is considered along the principal stretch, which is close to that considered
in [3,45]. Accordingly, the jumps in the numerical evolution of orientation is an artifact employed to extract
the major void axis. There is also merit in recognizing that there exists a stagnation in the void orientation
with θ0 = 0 especially at small time increments. To forestall this, n

(3)
0 was slightly perturbed from n = e3

such that θ0 −→ 0+. The reader can consult [8] for more details.
The points of analysis termination in Fig. 11 (a,b) pertain to the vanishing of stress-bearing capacity

(realized when qχfb −→ 1) or the void rotating by ◦90 (i.e. θ −→ 90). whichever happens sooner. For the
selected microstructure, the former occurs sooner for intermediate shearing (κ = 1.25) and the latter prevails

450



(a) (b)

(c) (d)

Figure 11: Comparison between the present model predicted variables with FEM outcomes of Nielsen et al. [45] for
an initially spherical void inside a square-prismatic cell under combined axial and shear loading (with the ratio denoted
with κ) and χ0 = {0.3, 0.5}: (a,b) normalized shear stress, (c) normalized porosity, (d) void angle with respect to the
vertical direction.
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at intense shearing (κ = 0.25). In case the void rotates by ◦90, the void ceases to rotate any further, and thus
the predicted stress response would not fall below the minimum stress at this point. Note that, thanks to the
involvement of both normal and shear tractions in (7), the post-localized dropping of the stress response
occurs rather gradually except under significant normal loading (at κ = 1.25), which accelerates void
rotation past the localization onset. By way of contrast, the T–B–L model [69] is independent of the normal
traction at intense shearing, thereby predicting more abrupt stress drop. The stress dropping slopes would,
however, be rather sharp via both K–C and T–B–L at the limit of near-simple shearing, i.e. under κ −→ 0.
See [8] for illustrations. Moreover, the modified ΦH would still underestimate dilatation in presence of
remarkable normal loading, as revealed by the FEM-based evolution of porosity being significantly larger at
κ = 1.25. This calls for a more advanced model that can better capture the quantitative aspect of dilatation
under combined tension and shear.

The following subsection extends the range of κ into near-simple shearing following the same hybrid
model.

5.2.2 Effect of loading

Figure 12 demonstrates the effect of tensile-shear load combination represented by the value of κ from
infinity (uniaxial loading) down to near zero (simple shearing). The predicted state, here plotted against
shear strain γ31, is compared to that resulting from the KB–TBL hybrid model introduced in [8].

The TBL model exploits the qχ coefficient only in the range of shear predominance whereas the KC
model invokes it everywhere as multiplied by fb ≡ χ̄2 (rather than by χ̄ within TBL; see [8]) as the latter
ΦI is a single-piece function devoid of separate terms regarding the effect of shear. Therefore, the transition
from the nearly-homogeneous to the localized mode is observed rather later in the KB-KC model in presence
of significant normal loading, and is rather sooner in near-simple shearing due to qχ being multiplied by χ̄2

rather than by χ̄. Nevertheless, the two models, the former with qχ being multiple of χ̄ and the latter with
it being multiplied by χ̄2, predict close points of transition. Nevertheless, failure points are further apart,
especially at shear-dominant stress states well beyond simple shearing, here exemplified by κ = 0.25. The
latter lies in slower evolution of χ̄ (Fig. 12c), itself triggered by slower variation of the void aspect ratio, as
indicated by Fig. 12d. As further denoted in Fig’s 12 (e,f), the in-plane void minor semi-axis b1 saturates
at κ = 0.25 while the major semi-axis a keeps increasing. There is, however, little physical evidence that
can corroborate γf proving significantly larger for this range of κ. This warrants further endeavor in more
advanced deformation-based yield functions under shear dominance. Moreover, the post-localized void
dilatation, as shown in Fig. 12b, is remarkably higher with the use of the present ΦI (KC) in comparison
to that according to the TBL ΦI. The reason is larger derivative values in presence of the hyperbolic cosine
in relation to parabolic terms in TBL. The KC-induced porosity evolution is, however, better commensurate
with numerical findings, as indicated by Fig. 11c. Yet, porosity remains almost constant according to KC
at the limit of near-simple shearing just as it does according to TBL (with the only difference being that the
latter admits absolutely zero porosity evolution).

The following subsections demonstrate the various effects germane to plastic anisotropy at the limit of
near-simple shearing represented by κ = 0.02.

5.2.3 Effect of shear Hill coefficients

The effect of matrix plastic anisotropy is hereby studied under near-simple shearing with an initially spher-
ical void embedded in the same cell as considered in Section 5.2.2, with (w0, χ0, λ0) = (1.1, 0.5, 4) with a
hardening exponent of N = 0.2. Focus is placed on shear Hill coefficients in the local coordinate system
tied to the orthotropy directors, as tabulated in Table 1, with the material notation taken from [35].
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Predicted state variable evolution for the same microstructure considered in Section 5.2.1 under varieties
of normal-shear loading combinations represented by the κ ratio: (a) normalized shear stress, (b) normalized porosity,
(c) effective ligament parameter, (d) logarithmic void aspect ratio, (e,f) void major and along-shear minor semi-axes.
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Table 1: Matrix anisotropy coefficients, hi expressed in the basis of material orthotropy (eL, eT, eS).

Matrix hL hT hS hTS hSL hLT

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
MAT1 1.000 1.000 1.000 2.333 2.333 1.000
MAT2 1.000 1.000 1.000 0.500 0.500 1.000

All the three materials have the same Hill coefficients along the three principal directions, i.e. hL, hT

and hS. Note once again that a large Hill coefficient in a given direction signifies the weakness/softness of
the material in that direction. MAT1 and MAT2 are, therefore, softer and stiffer under shear in comparison
to the isotropic material, respectively.

Figure 13 illustrates the effect of material variation on the internal state for the selected materials in
Table 1 under near–simple shearing characterized by κ = 0.02.

(a) (b)

(c) (d)

Figure 13: Predicted state variable evolution for the same microstructure considered in Section 5.2.1 with matrix
materials according to Table 1 under near-simple shearing (characterized by κ = 0.02): (a) normalized shear stress,
(b) normalized porosity, (c) effective ligament parameter, (d) logarithmic void aspect ratio.

Figure 13a reaffirms the stronger and weaker nature of MAT2 and MAT1 in comparison to the isotropic
material, respectively. More appealingly, MAT2 is more ductile against shearing in addition to being stiffer.
Accordingly, ductility and strength can coincide upon regular orthotropy against shear while the same feature
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cannot be acquired under triaxial loading. It can also be observed, through Fig’s 13 (c,d), that the rates of
void elongation and effective ligament parameter are only slightly affected by matrix anisotropy when the
material orthotropy directors are aligned with the main loading directions. Nevertheless, the values of these
parameters become more distinctively apart with matrix shear anisotropy during localized deformation. A
similar feature can be observed for void orientation, that has not been depicted for the sake of brevity.

The increased stress level for MAT2 can be ascribed to the sharper decrease in porosity f during nearly-
homogeneous yielding, Fig. 13b which, itself, may be attributed to the faster void elongation depicted in
Fig.13d. The latter takes place on account of faster squeezing of the rotating void by the stronger matrix
owing to its stronger shear strength (hTS and hSL), that withstands material slippage along the shearing
direction. That is, for the same shearing (γ31) level, the void ought to distort more and close sooner for the
stronger matrix against shear. A similar comparison has earlier been observed under triaxial loading [48]. In
general, porosity evolution, be the void growing or shrinking, is faster for the material stronger in shear [48].

As seen farther, transformation of the (eL, eT, eS) basis with respect to (e1, e2, e3) for the same anisotropic
material with respect to shear can induce minimal to significant changes in the elongation (and rotation)
rate(s).

5.2.4 Effect of orthotropy basis change

This subsection addresses the internal state variation with a flip or rotation over the material orthotropy
directors with respect to the principal loading plane identified by the (e1, e2, e3) basis. To this end, the
plane of transverse isotropy (normal to eS) is subjected to flip or rotation, as sketched schematically in Fig.
14, with the latter planes denoted with grated lattices.

(a) (b) (c) (d)

Figure 14: Flipped and rotated planes of transverse isotropy at the cell level, with the shear and normal tractions
applied along m and n, respectively: (a) eL = m, i.e. L = 1, (b) eL = p, i.e. L = 2, (c) eL = n, i.e. L = 3, (d)
eL = cosβm + sinβn.

Note that the right-permutation rule holds for all transformation scenarios. For the case of L = 2, for
instance, eT = n and eS = m, i.e. (T, S) = (3, 1). The corresponding transformation tensor between
the Cartesian and orthotropy frames, R∗, obeys the following forms, as tabulated in Table 2, for the above–
mentioned cases:
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Table 2: R∗ transformation tensors for the transverse isotropy planes schematized in Fig. 14.

Case eL = m eL = p eL = n eL = cosβm + sinβn

R∗




1 0 0
0 1 0
0 0 1







0 0 1
1 0 0
0 1 0







0 1 0
0 0 1
1 0 0







cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ




R∗ is exploited in the calculation of h and p in the global coordinate system. To this end, the global
Cartesian Hill tensor, here named hG, should be first evaluated following

hG = (R∗T ⊗R∗T) : hLTS : (R∗ ⊗R∗) (56)

with hLTS denoting the anisotropy tensor expressed in the orthotropy frame which, in reduced (e.g. Voigt)
form, only comprises diagonal terms.

With (56) at hand, p in the global frame reads

pG = J : hG : J (57)

which, after rotation invoking the instantaneous rotation tensor R, is expressed as

p = (RT ⊗RT) : pG : (R⊗R) (58)

where R turns out as identity if the constitutive laws are integrated for a single point in space. Hence,
p = pG in this case.

Figure 15 shows the shear stress evolution for MAT1 and MAT2 with eL directed along e1, e2, and e3,
briefly noted with the ”L” index taking on values of 1, 2, and 3, respectively. See Fig. 1a.

(a) (b)

Figure 15: Normalized shear stress evolution: (a) for MAT1 and (b) for MAT2 (upon properties given in Ta-
ble 1) under near–simple shearing characterized with κ = 0.02 for the same cell considered in Section 5.2.1 with
(w0, χ0, λ0) = (1.1, 0.5, 4), with L = 1, 2, 3, denoting eL directed along e1, e2, and e3, respectively.

Figure 15a implies negligible difference in the softer material response under shear with flipping the
weak macro-scale slip planes horizontally or vertically, with the ductility slightly higher for eL = e1.
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This happens due to the perspicuous coupling between shearing in the x1 − x3 and x2 − x3 by which one
weak/strong plane enfeebles/stiffens the other response vs. shear and vice versa, thereby eL = e1 and
eL = e3 exhibit close behaviors.

(a) (b)

(c)

Figure 16: Additional selective state variables provided for MAT2 with the stress response shown in Fig. 15b: (a)
effective ligament parameter, (b) void angle with respect to the horizontal axis, and (c) natural logarithmic void aspect
ratio.

Note that, for both materials with varying shear Hill coefficients, the responses for L = 1 and L = 3
lie close to one other. This can be vindicated by the negligible Poisson effect under near-simple shearing
such that both material configurations would constitute smaller parallel cross sections with the effective
subcell heights remaining equal. In both scenarios, reflected by Fig’s 14 (a) and (c), parallel planes operate
almost independently under shearing for the weak material MAT1, and they would both act parallel plus
an additional constraint caused by the strong orthotropy planes in MAT2. Meanwhile, the shear stresses
act effectively equivalent in the x1 − x3 and x2 − x3 as earlier declared. This observation is antithetical
to that under triaxial loading, where there is clear distinction between the outcomes upon variation of eL

(see [48] for details). Nevertheless, within the L = 2 case, reflected by Fig. 14b, subcells function almost
consecutively, i.e. in series, as being subjected to the shown shear traction τ . On this further occasion,
the weak material MAT1 responds close to the other two cases due to being almost devoid of additional
inter-planar shear constraints whereby the shear stress is distributed over smaller subcell cross sections. For
the stronger material MAT2, however, L = 1 and L = 3 exhibit clear difference from L = 2. A closer
examination of Fig. 14 can be indicative of this difference. That is, in the (a) and (c) subfigures, the inter-
planar shear constraint is induced by the entire orthotropy planes being sheared whereas, in subfigure (b),
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this constraint is caused by mere rotation of these planes against shear deformation. The former would
clearly bare higher stress-bearing capacity and ductility, as demonstrated by Fig. 15b.

In order to gain more insight into this effect, other influential state variables are collected in Fig. 16 for
MAT2. Note that the shear constraint within the rotating orthotropy planes, characterized by the L = 2 case
and as schematized in Fig. 15b, fairly impedes void elongation, thus the corresponding void aspect ratio
being smaller at the same shear strain level (Fig. 16c). Higher stresses are, however, demanded for the same
strain level at the L = 1 and L = 3 cases considering the foregoing discussion.

The effect of rotating the plane of orthotropy on the state evolution under simple shearing comes next.
The results will be presented for the weaker material in shear, MAT1 due to the targeted effect being more
significant therefor. Fig. 17 illustrates the effect of rotating the plane of transverse isotropy around the eT

axis on the internal state evolution for MAT1 upon properties provided in Table 1. The corresponding initial
rotation angle β0 (as shown in Fig. 14d) assumes negative, zero, and positive values.

A remarkable difference happens to the material conduct with β0 changing sign. This large difference
can be accredited to the equivalent stress state in the orthotropy frame. That is, β0 < 0 imparts a pressure
on the void, and thus delays failure in shear whereas β0 > 0 increases tension which, in conjunction with
shear, accelerates rotation and elongation, as demonstrated in Fig’s 17 (b,e,f), respectively. As such, the
porosity increase, indicated by Fig. 17c, would further expedite failure. Accordingly, the effective ligament
parameter χ̄ would fast get to increase (Fig. 17d) and the void would dramatically elongate (Fig’s 17 (e,f)),
thereby failure being soon triggered by the void touching the cell boundaries. There being, as seen in Fig.
17a, failure triggered soon after the elastic limit, a weak plane of transverse isotropy (with respect to shear),
rotated positively relative to the plane of loading, is reminiscent of a crack. Note that the predicted stress
response is based on the heuristic modification employed in accordance with Eq. (10), and is thus amenable
to further modification in prospect. More precise results may exhibit larger ductility for the β0 > 0 case.

All the same, as formerly pointed out above, a negatively rotated transverse isotropy plane would induce
confinement on the void axis, and suppresses the void against both rotation, as seen in Fig. 17b. Yet,
due to the large lateral confinement induced onto the void, void elongation proves faster in this case, as
demonstrated by Fig’s 17 (e,f). Namely, the void would sooner squeeze and tend towards a needle when
embedded in a negatively rotated plane of transverse isotropy.

6 Discussion

The hybrid model introduced in the present context exploits modified forms of the KB and KC models,
according to (2) and (7), so as to accommodate a quantitatively sound sequence of deformation mechanisms
that can mimic the entirely inhomogeneous damage process under combined tension and shear. The main
terms subject to modification factors comprise porosity f and the surrogate ligament porosity fb within
KB and KC, respectively, constituting qf and qχfb, respectively. The q factor, taken equal to that after
Perrin and Leblond [51], was deemed essential by Ponte Castaneda [50, 57] such that this line of models
(KB and the like) can mimic near-simple shearing stress states. All the same, qχ was introduced by Torki
and Benzerga [8] to cater for the point of transition from the process being closer to homogeneous into
a localized one approaching that with plasticity confined to the intervoid ligaments and the rest behaving
rigid-like. Note also that the evolution equations for internal state variables are invoked in their originally-
derived forms (with the only exception being the k factor in (22), which has been proposed in terms of the
microstructure and macroscopic stress state, regardless of the mechanism which plays a more remarkable
rule in failure under shear). Notwithstanding the model at hand can capture the salient features of ductile
fracture under combined loading, the heuristic nature of q and qχ, albeit simple, is suggestive of more
sophisticated models with regards to both the yield function Φ and the evolution equations. With respect to
the former, the key feature to note is the existence of a yield criterion based on a more realistic mechanism-
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Selective internal state variables subjected to a rotated plane of transverse isotropy around the eT axis
for MAT1 (upon properties given in Table 1) under near–simple shearing characterized by κ = 0.02 for the same cell
considered in Section 5.2.1 with (w0, χ0, λ0) = (1.1, 0.5, 4): (a) normalized shear stress, (b) void angle with respect
to the horizontal axis, (c) normalized porosity, (d) effective ligament parameter, (e) natural logarithmic void aspect
ratio, (f) major and minor void semiaxes.
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based shear velocity field that departs well from the simplistic Gurson-like field utilized in TBL and KC
models. In the same respect, the general distinction between void and cell orientations should be accounted
for. Except for the work of Madou and Leblond [71], no outstanding attempt has been made in this regard.
Yet, the latter relies on FEM-based heurism, and is not indicative of mechanism-induced effects, especially
those under shearing effects.

Apropos of evolution equations, the evolution equations for void aspect ratio and orientation play a
pivotal role. For the state of nearly-homogeneous yielding, efforts have been made to make ṡ and ṅ(3)

accountable for a wider range of loading conditions. Examples include the k factor in (22), after Gologanu
et al. [59] and the modifications applied to ṡ and ṅ(3) under various triaxialities by Madou et al. [64].
Both endeavors, though well-motivated, have proposed their calibrations based on macroscopic loading
descriptors, thereby being negligent of mechanisms true to the spirit of deformation, including that under
shear. In particular, the post-localized ṅ(3), which itself directly affects ṡ, calls for further sophistication. An
alternatively simple method to capture the quantitative aspects of fracture under combined loading would
then be to equip the post-localized Ωl, according to (33), with some simple modification in terms of the
κ = σ/τ ratio, which remains to be investigated.

As far as the numerical calculation cost is concerned, the TBL model is more cost-effective under shear-
dominated loading, i.e. under κ −→ 0, thanks to ΦI being merely a quadratic function of the shear traction τ .
This would further create zero time rates for f and σm, and thus reduces the number of involved internal state
variables within the iterative solution scheme (see [8] for details). Therefore, TBL would be computationally
advantageous over KC in absence of plastic anisotropy, particularly at the limit of simple shear. On the other
hand, the predicted εf upon KC appears to be spuriously high under medium shearing, i.e. under κ centering
around 1, while it sounds to be nearly minimum at this limit (see [8]). Therefore, the transition strain (i.e.
the strain to the onset of localization) can be considered as a crude measure of εf in this range of κ’s.

Among the most notable implications of plastic anisotropy, in correlation with the induced anisotropies
stemming from void elongation and/or rotation, is the manageable nature of the material response, with
focus here placed on shear response. In other terms, ductility against combined loading can be engineered
just as under triaxial loading by manipulating proper Hill coefficients or the placement of orthotropy planes,
and examining the predictable response from the developed numerical framework such as that of the present
model. The Hill coefficients mainly influence the portion of the response driven by hardening which, due to
its interaction with the microstructure, affects the whole state evolution. Under triaxial loading, macroscopic
ductility can be engineered by manipulating the translational Hill coefficients hL, hT, and hS. Due to the
Poisson effect, varying hL and hT would impart a similar effect to that observed from variation in hS. Yet,
higher ductility (here denoted with strain to failure εf ) and larger strength (here denoted with the maximum
stress response) cannot be attained simultaneously in absence of shear (here denoted with triaxial loading).
By way of contrast, the two can coexist under shear-dominated loading, even for a material with weak
planes of orthotropy against shear. One instance upon the presently-observed results is to place the plane of
transverse isotropy either parallel to the plane of localization or normal thereto such that the shear traction
is parallel to the plane. Alternatively, the plane of transverse isotropy can be rotated clockwise with respect
to shearing, with the rotation axis being parallel to the in-plane base vector p (see Fig. 14d).

Moreover, according to the post-localized shear responses belonging to the various materials with dif-
ferent shear Hill coefficients (here represented by the isotropic matrix, MAT1 and MAT2) in Fig. 13, the
effective ligament parameter χ̄ evolves towards saturation at lower values of hSL = hTS such that, below
a certain limit, failure is never predicted under simple shearing. Accordingly, shear Hill coefficients can be
engineered such that, at a specific initial porosity level, failure under shear never occurs. A similar trend
can be witnessed upon rotation within planes of transverse isotropy with fixed hSL = hTS coefficients, Fig.
17. A negatively (clockwise) rotated plane of transverse isotropy can engender a χ̄ that saturates to a value
below 1/

√
qχ (corresponding to the void touching the cell boundaries). At frozen shear Hill coefficients,

the rotation angle of the plane of transverse isotropy can thus be engineered so as to obtain a material with
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infinite strain to failure under near-simple shearing.

7 Concluding Remarks

A hybrid micromechanics-based model was introduced and numerically implemented for Hill-type anisotropic
materials so as to simulate the entire ductile fracture process associated with void elongation and rotation
under combined tension and shear. The combined deformation process was envisaged as an intermediate
state between a completely homogeneous and an ideally localized one with plasticity fully confined within
intervoid ligaments and the rest acting rigid-like. In its essence, the hybrid model was a two-surface one
with its constitutive framework constructed by two modified yield criteria supplemented to a system of
evolution equations for the effective microstructural state variables. The yield criterion was driven by the
intersection of two yield surfaces upon their functions developed by Keralavarma and coworkers [35, 47],
employed with simple adjustable parameters to account for combined stress states. The two-surface model
was supplemented to existing equations accounting for the time rate of porosity and equivalent plastic strain
as well as those pertaining to void elongation and rotation. The latter two were borrowed from [59] and a
recent work by the present authors [8] for the nearly-homogeneous and localized parts of the deformation
process, respectively.

The microstructural evolution during the nearly-homogeneous part of deformation is governed by poros-
ity f , void aspect ratio w, and void orientation n(3). All the same, localized deformation acts upon a sur-
rogate microstructure aligned with the normal to a possible plane of localization (denoted with n), thereby
being driven by an effective ligament parameter χ̄ and an effective void aspect ratio w̄. The latter two are
functions of the main state variables including f , w, and the angle between n and n(3). The internal state
constitutive framework was numerically integrated using the Newton-Raphson solution scheme, and the re-
sults were parametrized based on various load combinations (through κ = σ/τ denoting the ratio between
the remote normal and shear tractions) as well as various Hill coefficients. The predictive capability of
the model was primarily assessed by comparison to their existing numerical counterparts from the work
of Pardoen and Hutchinson [24] and Nielsen et al. [45] under triaxial and combined loading conditions,
respectively. The combined effects of plastic anisotropy and stress state were evaluated by variation of
translational Hill coefficients (hL = hT and hS) in absence of shear and variation of shear Hill coefficients
(hSL = hTS) under the near-simple shearing state (here denoted with κ −→ 0). The axis of transverse
isotropy eS was taken initially parallel to the principal normal loading, and the remaining orthotropy direc-
tors eL and eT obey the right-hand law. The results were further extended by mere rotation of the plane of
transverse isotropy with fixed Hill coefficients. The key outcomes can be itemized as follows:

• Thanks to the Poisson effect, changing the in-plane translational Hill coefficients hL and hT would
impart an effect on the response close to that by changing the out-of-plane coefficient hS.

• The effect of extensional Hill coefficients intensifies with increasing the lateral portion of loading or,
equivalently, increasing triaxiality. Smaller Hill coefficients bare a confining effect that would give
rise to a higher limit load accompanied by a lower strain to coalescence as well as strain to failure,
and vice versa.

• A void is distorted, i.e. squeezes (via f decrease), elongates (via w increase), and rotates faster inside
a stronger matrix against shear (with hSL < 1 and hTS < 1). Such a matrix withstands material
slippage along the shearing direction. Hence, the void ought to distort more and close sooner at the
same shear strain level.

• Higher ductility cannot be accompanied by larger strength in absence of shear (here denoted with
triaxial loading). Yet, the two can coexist under shear-dominated loading. To this end, the plane
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of transverse isotropy can be placed either parallel or perpendicular to the plane of possible strain
localization or normal, the latter such that the shear traction is parallel to the plane. The plane of
transverse isotropy can alternatively be rotated clockwise with respect to shearing.

• Below a certain limit of hSL or hTS, or beyond a certain rotation angle within the plane of transverse
isotropy, failure is never predicted under near-simple shearing. Thereupon, shear Hill coefficients, or
the placement of orthotropy planes, can be engineered such that, at a specific initial porosity level,
failure under shear never occurs.
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Appendix A KB Model Parameters

The parameters embedded in (2) are functions of porosity f , void aspect ratio w and the Hill tensor H. g,
known as secondary porosity is defined as:

g = 0 (p); g =
e3

2√
1− e2

2

= f
e3

1√
1− e2

1

= f
(1− w2)

3
2

w
(o) (A-1)

where (p) and (o) stand for prolate (w > 1) and oblate (w < 1), respectively. By definition, g is non-zero
for oblate voids only. e1 and e2 are, respectively, the eccentricities of the spheroidal void and the spheroidal
RVE. The latter is an implicit function of f and w.
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Also,
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where
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Next,
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where K∗ ≡ 2(α1 − α2).
α2 and α1 are identical to those introduced in [59] for isotropic materials, that read

α1 =





[
e1 − (1− e2

1) tanh−1 e1

]
/(2e3

1) (p)[
−e1(1− e2

1) +
√

1− e2
1 sin−1 e1

]
/(2e3

1) (o)
(A-7)

Finally:
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Appendix B Jacobian Components for ΦI

The Jacobian components for ΦI according to (7) are hereby addressed for use in the Newton-Raphson
scheme declared in Eq. (46). Upon convention, RA,B ≡ ∂RA

∂B and 0 denotes the second-order zero tensor.
The major Jacobians constituents are constructed from the second-order derivative of the yield function with
respect to the stress tensor, and the derivatives of NI, as expanded in (44), with respect to the microstructural
variables.

In general, the following identities will be used in the sequel:

∂2ΦI

∂σ̃′∂σ̃′
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where, at the post-localization regime:
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with ∂σsh/∂σ following Eq. (45).
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where use has been made of the basic formulation of (7) for the sake of brevity. For computation purposes,
fb obviously should be replaced by qχfb.
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[37] M. Gărăjeu, JC. Michel, and P. Suquet. A micromechanical approach of damage in viscoplastic ma-
terials by evolution in size, shape and distribution of voids. Computer Methods in Applied Mechanics
and Engineering, 183(3-4):223–246, 2000.

[38] S. Hao, W. K. Liu, and C. T. Chang. Computer implementation of damage models by finite element
and meshfree methods. Computer Methods in Applied Mechanics and Engineering, 187(3-4):401–440,
2000.

467



[39] K. Danas and P. Ponte Castañeda. A finite-strain model for anisotropic viscoplastic porous media:
I–Theory. European Journal of Mechanics, 28:387–401, 2009.

[40] S. Ghosh, J. Bai, and D. Paquet. Homogenization-based continuum plasticity-damage model for duc-
tile failure of materials containing heterogeneities. Journal of the Mechanics and Physics of Solids,
57:1017–1044, 2009.

[41] S. Ganapathysubramanian and N. Zabaras. Computational design of deformation processes for mate-
rials with ductile damage. Computer Methods in Applied Mechanics and Engineering, 192(1-2):147–
183, 2003.

[42] K. Danas and N. Aravas. Numerical modeling of elasto-plastic porous materials with void shape effects
at finite deformations. Composites Part B: Engineering, 43:2544–2559, 2012.

[43] T. F. Morgeneyer and J. Besson. Flat to slant ductile fracture transition: Tomography examination and
simulations using shear-controlled void nucleation. Scripta Materialia, 65:1002–1005, 2011.

[44] V. Tvergaard. Shear deformation of voids with contact modeled by internal pressure. International
Journal of Mechanical Sciences, 50:1459–1465, 2008.

[45] K. L. Nielsen, J. Dahl, and V. Tvergaard. Collapse and coalescence of spherical voids subject to intense
shearing: studied in full 3D. International Journal of Fracture, 177:97–108, 2012.

[46] V. Tvergaard. Study of localization in a void-sheet under stress states near pure shear. International
Journal of Solids and Structures, 75:134–142, 2015.

[47] S. M. Keralavarma and S. Chockalingam. A Criterion for Void Coalescence in Anisotropic Ductile
Materials. International Journal of Plasticity, 82:159–176, 2016.

[48] S. Kweon, B. Sagsoy, and A. A. Benzerga. Constitutive relations and their time integration for
anisotropic elasto-plastic porous materials. Computer Methods in Applied Mechanics and Engineering,
310:495–534, 2016.

[49] D. C. Drucker. Continuum theory of plasticity on macroscale and microscale. Journal of Materials,
1(4):873, 1966.

[50] P. Ponte Castaneda. The effective mechanical properties of nonlinear composites. Journal of the
Mechanics and Physics of Solids, 39:45–71, 1991.

[51] G. Perrin and J.-B. Leblond. Analytical study of a hollow sphere made of plastic porous material and
subjected to hydrostatic tension— application to some problems in ductile fracture of metals. Int. J.
Plasticity, 6(6):677–699, 1990.
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Abstract
A micromechanics-based yield criterion is developed capable of modeling plastic damage by inter-

nal necking and/or internal shearing in solids with highly distorted microstructures with relatively high
levels of porosity. The microstructure is represented with a 3D cylindrical elementary cell with an el-
liptical cross section and a coaxial cylindrical void representing a 3D (ellipsoidal) cavity. The model is
derived from limit analysis on the cell subjected to combined tension and shear with plastic flow ideally
confined to the ligaments. With the feasible approximations employed, the model emerges as extension
to an existing model accounting for similar loading but for a cylindrical cell with a circular cross section.
The model is first derived for homothetic cells, characterized by equal normalized void spacing along
the major and minor axis directions, and is then generalized as to incorporate independent void spacing
ratios. The model predictions were assessed against finite-element based outcomes obtained for various
cell geometries estimating limit loads on the same cylindrical unit cell exploiting quasi-periodic bound-
ary conditions. Effects induced by void spacing ratios along the major and minor axes, void shape along
either axis, and a cell distortion parameter are investigated.

Key Words: Ductile fracture; Void coalescence; Low triaxiality; Internal necking; Combined tension
and shear.

1 Introduction

Ductile fracture in porous materials under combined loading conditions, esp. tensile and shear interactions,
is among the most desirable, yet controversial, subjects within the community of solid mechanics. Apart
from being computationally demanding, esp. in near-simple shearing processes, there are challenges asso-
ciated with it being analytically modeled. One major challenge is with regards to damage evolution under
shear-dominated loading. Within the body of existing models, damage is commonly identified by virtue
of the trace of the rate-of-deformation tensor, which either vanishes or is vanishingly small under intense
shear fields. Therefore, the majority of existing models, including Gurson [11] and all extensions thereof
[33, 14, 8, 9, 10, 13, 17, 20] predict no damage at the limit of simple shear. Even more recent advances,
such as that of Nahshon and Hutchinson [21] based on heuristic modification of the damage parameter f
as function of the third invariant of the stress deviator J3, the modified damage parameter loses its physical
denotation. Besides, the de facto physical process that triggers failure remains elusive.
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On the other hand, the independent state variables that govern the equations after the onset of coales-
cence differ from the parameters affecting void growth. This distinction encompasses both loading com-
ponents and geometric parameters. Void growth can be expressed in terms of the mean and von-Mises
equivalent stresses whereas void coalescence is mainly governed by the normal and shear resolved tractions
on a specific plane, termed localization plane [12]. Moreover, the parameters uniquely affecting void growth
are void volume fraction (also known as porosity), void aspect ratio, and void orientation [9, 13]. Void coa-
lescence, however, is mainly influenced by normalized void spacing and void aspect ratio. A second charge
in simulating ductile failure is then the difference in the constitutive frameworks prior to and after void
coalescence in the time integration process, as a consequence of fundamental differences in the boundary
conditions. This charge involves development of constitutive relations at a coalescence state to be further
supplemented to the pre-coalescence framework.

The context of reported work regarding ductile fracture under combined loading states can be catego-
rized into micromechanics-based and numerical works. A fraction of micro-mechanics-based models tend
to improve constitutive equations. Morgeneyer and Besson [19], for instance, introduced a modified strain
rate through a shear void nucleation term in terms of the Lode parameter in to simulate the transition from
flat to shear-induced slanted crack propagation based on a Gurson-type yield criterion. In another effort,
Cao et al. [6] have introduced an ad-hoc modification of an existing constitutive model to deliver better
accuracy for void growth at both low and high stress triaxialities with the basic form of the Gurson model.
Another subset of micromechanics-based work develop gauge functions as yield criteria. The mathematical
procedure is carried out through limit analysis, with the distinguishing character as plasticity being diffuse
(in void growth modeling) or localized (in void coalescence modeling). In this regard, models accounting
for void growth are well-established and sophisticated. Yet, the body of void coalescence models is still
nascent. Following the pioneering work of Thomason [27], Benzerga [2] remedied the singularity within
Thomason’s model with respect to penny-shaped cracks. This area of work had remained dormant before
Pardoen and Hutchinson [24] could propose a more advanced heuristic micro-mechanics-based void coa-
lescence model for triaxial loading. Over the past decade, Tekoglu et al. [26] extended the applicability of
Thomason’s and Benzerga’s models into combined tension and shear founded on a semi-analytical method
utilizing a simple shear-induced velocity profile. It further remained for Benzerga and Leblond [4], Torki
et al. [30, 31], and also Morin et al. to develop void coalescence models from first principles until [20]
introduced a model for void growth accompanied by void coalescence in a unified perspective. A recent
extension of this work has been carried out by Torki [28].

Another class of work, including [16, 25], examine failure mechanisms founded on finite-element-based
cell-model evolution problems. This class of work can be considered as comparator, yet are not well suited
for comprehensive parametric studies due to their high computational demand. Micro-mechanics-based
models are hence preferable in this respect.

There are multiple considerations that motivate the present work. One possible significance of the work
is to relax simplifying assumptions in the analysis of microstructures with initial 3D voids which may have
to undergo significant deformation before the voids can transform into spheroids that could be idealized with
cylindrical voids [30, 31]. Among the existing models, the model introduced by Madou and Leblond [17]
accounts for the growth of 3D voids represented with ellipsoids. A most proper counterpart thereof for void
coalescence is an extension to those of [30, 31], that were best suited to spheroidal voids, to idealize 3D
voids using elliptical cross sections. One simple and prevalent example of this phenomenon is a plane strain
condition, where the material, being constrained from one direction, accommodates a larger void dilatation
in the other direction [20]. Within the context of existing models, except for the Madou-Leblond model
for void growth, the constitutive framework operates based on the effective void shape and spacing coming
from the geometric average of those in the two directions which may lead to off-hand results at extreme
cases. This warrants the endeavor to develop yield criteria capable of describing independent void shapes
and spacing along the main directions perpendicular to the dominant loading.
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Another remarkable application is with regards to the effect of loading. Under combined tension and
shear and, in particular, under intense shear fields, a microstructure with voids even initially spheroidal will
soon evolve into a distorted one with voids turning into spheroids. Recent investigations with an effort to
simulate this phenomenon, though well-motivated, either rely on heuristic critical parameters [38, 36, 20],
without the physical grounds being known, or on high-throughput computations [34, 35, 23, 22, 22, 37, 15].
The present model, at best, can be supplemented with the Madou-Leblond model [17], altogether constitut-
ing a hybrid model capable of simulating ductile fracture in its entirety, from void growth to coalescence,
ensued by ultimate failure.

2 Model in Absence of Shear

2.1 Geometry and Loading

The outline of a porous microstructure under remotely applied loading is schematized in Fig. 1a. The exact
treatment of such a problem is complex if not impossible. The least level of complexity can be ascribed to the
coalescence limit load not being worked out analytically for an orthorhombic cell containing an ellipsoidal
void. Therefore, a surrogate cell is considered, as shown in Fig. 1b, which may not be space filling but is
amenable to mathematical treatment. This was the cornerstone behind the introduction of this sort of cell
(with a circular base) by Benzerga and Leblond [4].

(a) (b)

Figure 1: (a) Schematic outline of a porous microstructure under remotely applied loading; (b) geometry of a repre-
sentative cylindrical cell with elliptical base and void under combined tension and shear.

The elementary volume Ω is a cylindrical cell of height 2H and an elliptical base with major and
minor lengths L1 and L2, respectively, containing a coaxial cylindrical void ω of height 2h and ma-
jor and minor radii, R1 and R2, Fig. 1a. The local cylindrical basis (er, eθ, ez) and its global Carte-
sian counterpart (e1, e2, e3) are utilized in the derivations that follow. The imposed displacement bound-
ary conditions, as shown in Fig. 1b, give rise to a macroscopic stress state with a dominant axial stress,
Σ33 > Σ11 , Σ33 > Σ22, as well as shear stresses, Σ31 and Σ32. While the analyzed geometric frame-
work is not space filling, it sets a reasonable approximation of a periodic framework containing distorted
unit cells. In absence of shear, Σ11 = Σ22 identically if the prescribed boundary displacement are applied
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with axial symmetry. In presence of shear, however, the Σ11 = Σ22 assumption is an approximation. In
either case, however, both lateral stresses Σ11 and Σ22 are ineffective on void coalescence [4]. Upon the
same method expounded in [4, 30, 31], the cell is further subdivided into a central porous layer identifying
a ligament domain, Ωlig, attached to two dense matrices above and below. The height of the central region,
ideally set by the void height 2h [30], can represent the thickness of a shear band inside which failure is
induced by a combined state of tensile and shear loads, termed shear failure [29]. The matrix layers admit
dilatant plasticity during void growth (or any equivalent diffuse plastic deformation) [20] whereas they be-
have rigidly after the onset of void coalescence (or any equivalent localized plastic deformation) [14, 1, 7]
due to the unloading above and below the cavity. Upon the same convention as used in [4, 30, 31], the
interfaces between the ligament and matrices are denoted with Stop and Sbot , with Sint being the union
thereof. The microstructural geometry can be uniquely identified by means of the following dimensionless
parameters, only five of which are independent.

αv =
R1

R2
, αc =

L1

L2

χ1 =
R1

L1
, χ2 =

R2

L2

w1 =
h

R1
, w2 =

h

R2

λ1 =
H

L1
, λ2 =

H

L2

(1)

where αv and αc are, respectively, the void and cell in-plane aspect ratios. χi is the ligament parameters
along the cell axis xi (with i = 1, 2), and w1 and w2 are, respectively, the out-of-plane void aspect ratios in
the x1 − x3 and x2 − x3 planes. Finally, λ1 and λ2 are the cell aspect ratios in the corresponding planes.
Note that, in principle, αv and αc can take any positive value below or above 1. Without loss of generality,
however, one can consider the cell major axis along x1, i.e. αc ≥ 1 while 0 < αv < ∞. For the sake of
convenience, the parameters adopted for presenting results are αc, χ1, χ2, w1, λ1. λ1 and λ2 are ineffective
in the yield condition for void coalescence while they can influence the onset of coalescence through the
notion of porosity f [20].

2.2 Constitutive relations

The plastically-deformable ligament material is taken, at the micro scale, to obey the von-Mises yield cri-
terion with the associated flow rule (see [4] for more details). The rigid matrices would only affect the
displacement boundary conditions, as seen in the sequel. At the macro scale, however, the effective yield
criterion can be derived from a variational definition emanating from the fundamental inequality of limit
analysis that writes

∀D, Σ : D ≤ Π(D), Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω; (2)

where Π(D) is the effective plastic dissipation which, in the case of a discontinuous velocity field across the
interface S, should be added by an extra term

1

Ω

∫

S
sup
σ∗∈C

t∗i JviK dS (3)

〈·〉 stands for averaging over what comes in its subscript (be it a volume, surface or line), K(D) is the set of
kinematically admissible velocity fields v compatible with D, and inf and sup are short-hand notation for,
respectively, the infimum and supremum over a set. C is the microscopic reversibility domain bounded by
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the matrix yield surface (see [4] for more details), and t∗ denotes the traction acting on the interface with
the associated velocity jump JvK.

Upon the same methodology described in [4, 30, 31], the complete yield surface comprises two subsets
wherein the effective dissipation Π is differentiable and non-differentiable, that are manifested by curved and
planar parts, respectively. The former is synonymous to the parametric representation of the yield surface
written as

Σij =
∂Π

∂Dij
(D) (4)

where D is no longer arbitrary (despite that in (2)1) but a conjugate to Σ through the macroscopic flow
rule. The planar parts, however, can be derived only with reference to the primitive inequality stated in (2).
[30, 31] include sufficient details in this respect.

2.3 Reference velocity field

Even though the exact velocity field governing the cell motion is not analytically obtainable even under
triaxial loading, the choice of a trial field leads to an upper bound of the yield surface [3] evidently if
it is compatible with the boundary conditions. The presence of rigid blocks above and below the void,
considering equality between the lateral strain rates of different layers, entails D11 = D22 = 0 (also
D12 = 0 in presence of shearing in the x1 − −x2 plane). By the same token, the velocity jump across Sint

must be purely tangential. Following [4], the velocity field for a reference cylindrical cell with circular bases
ought to be consistent with the following constraints:





Vr(L, θ, z) = 0 , Vθ(L, θ, z) = 0 (−h ≤ z ≤ h; 0 ≤ θ ≤ 2π)

Vz(r, θ,±h) = ±D33H (0 ≤ r ≤ L; 0 ≤ θ ≤ 2π)

JVK.n = 0 ∀x ∈ Sint

(5)

with D33 and n being the prescribed axial strain rate and normal vector to the interface, ideally taken equal
to the normal to the localization plane denoted by e3. The capital notation for V alludes to the reference
cell. It goes without saying that the rigid zones (h ≤ |z| ≤ H) should admit a constant velocity. Following
Tracey [32], the conditions in (5) are satisfied with the following simplest field within the plastic ligament,
along with the incompressibility condition (tr d = div v = 0):

V(x) =

(
A

r
−Br

2

)
er +Bzez (6)

with A and B determined by boundary conditions as

A =
D33L

2

2c
, B =

D33

c

where c = h/H is the ligament volume fraction.

2.4 Elliptical velocity field

The velocity field for the cell with an elliptical cross section can be deduced from a contravariant coordinate
transformation [5]. In order that the extended velocity field can deliver a closed-form solution, the cell cross
section should be homothetic with the void, i.e. χ1 = χ2, as shown in Fig. 2. This renders the values of α
constant throughout the cell domain. The cell with arbitrary χ1 and χ2 will be discussed in Sec. 2.4.2.
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Let the contravariant and covariant coordinates for an ellipse be denoted via superscripts and subscripts,
respectively. Then, one can write

(
x1, x2, x3

)
= (r, θ, z) , (x1, x2, x3) = (x, y, z) (7)

Provided the area is kept common between the reference (circular) and current (elliptical) cross sections,
one can easily verify that R =

√
R1R2 and L =

√
L1L2. Correspondingly

χ =
√
χ1χ2 , w =

√
w1w2 (8)

The dual representation of the velocity field v is expressible as

v = vigi = vig
i (9)

where the first expression shows a contravariant and the second denotes a covariant representation. The
local basis denoted by gi is arbitrary and gi is its reciprocal basis. It can be easily verified that the Cartesian
coordinates in (7)2 can be expressed using the following format:

x =
√

α(r)r cos θ

y =
1√
α(r)

r sin θ
(10)

where

α(r) =
r1(r)

r2(r)

R1 ≤ r1 ≤ L1 , R2 ≤ r2 ≤ L2 ∴ αv ≤ α(r) ≤ αc

where αv and αc follow (1), and r =
√
r1r2 is implied. Equation (10) obviously admits an elliptical relation

through the elimination of θ from the first two rows. The transformation between cylindrical and Cartesian
coordinates could then be realized through the mapping function (x, y, z) = ẑ(r, θ, z) with the following
definition:

ẑ(x) =
√
α r cos θe1 +

r√
α

sin θe2 + ze3 (11)

Broadly, an infinite number of ellipses can pass through any point inside the cell domain. The values
of r1 and r2 are, therefore, indeterminate while their product r1r2 = r2 is determined. To forestall this
ambiguity, we first derive the yield criterion for the case αv = α(r) = αc, where the void is homothetic
with the cell, here termed the homothetic cell. The r1/r2 ratio is then well-defined, and can be named α

throughout the cell. Secondly, as further clarified in Section 2.4.2, α(r) for non-homothetic coaxial cells
can be arbitrated by means of an approximation based on volumetric averages of the parameters defined in
Eq. (20).

2.4.1 Homothetic cells

In case the outer ellipse is taken homothetic with the inner (void) one, then χ1 = χ2 = χ. This idealized
case is associated with α(r) = α. A homothetic cell cross section is schematized in Fig. 2.
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Figure 2: Reference circular cross section and its homothetic elliptical counterpart.

The local basis associated with (11) reads

gk = ∂xk ẑ(x) = ∂xk(
√
α r cos θ)e1 + ∂xk(

r√
α

sin θ)e2 + e3

∴ g1 =
√
α cos θe1 +

1√
α

sin θe2

g2 = −
√
α r sin θe1 +

r√
α

cos θe2

g3 = e3

(12)

The reciprocal of gk is derived from the reciprocity condition expressed as gk ·gl = δlk, with δ denoting the
Kronecker delta (where δlk ≡ δkl, so expressed for better harmony with the dot product):

gk = ∇ẑxk(ẑ) ∴ g1 =
1√
α

cos θe1 +
√
α sin θe2

g2 =
1

r

(
− 1√

α
sin θe1 +

√
α cos θe2

)

g3 = e3

(13)

The gradient operator is defined over the contravariant coordinates as follows:

∇ = gi∂xi ∴ ∇gk(x) =
∂gk
∂xm

⊗ gm(x) (14)

where summation is implied over i and m ranging form 1 to 3. With a few steps aside, the following
gradients are induced:

∇g1 =
1

r
g2 ⊗ g2

∇g2 =
1

r

(
g2 ⊗ g1 − g1 ⊗ g2

)

∇g3 = 0

(15)
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where 0 stands for a null tensor. Following the contravariant representation of v in (9), the gradient thereof
can be written in the following form:

∇v = vi∇gi + gi ⊗∇vi

= vi
∂gi
∂xm

⊗ gm + gi ⊗
(
∂vi

∂xm
gm

)

=
1

r

[
v1g2 ⊗ g2 + v2

(
g2 ⊗ g1 − g1 ⊗ g2

)]
+ vi,mgi ⊗ gm

(16)

where the chain rule has been exploited, and vi,m is short-hand notation for ∂vi/∂xm. Hence, the divergence
of the velocity field, identified as the trace of its gradient, will be obtained by transforming the tensor
products into dot products in (16). That is

divv = tr (∇v) =
1

r

∂

∂r
(rvr) +

∂vθ
∂θ

+
∂vz
∂z

(17)

which asserts that, with the given geometry, the divergence in the cylindrical cell with a homothetic elliptical
base is surprisingly identical to that in its reference (circular base) counterpart. Therefore, the same volume-
preserving velocity field for the reference cell in (6) can be utilized to construct that for the current cell.
That is, following (9):

v = vrg1 + vθg2 + vzg3 (18)

where v is distinguished from V to illustrate the distinction between the elliptical and the reference cell.
The local basis denoted with gi can be represented in polar coordinates using the rotation tensor:



g1

g2

g3


 =




√
α cos θ 1√

α
sin θ 0

−√αr sin θ 1√
α
r cos θ 0

0 0 1







cos θ − sin θ 0
sin θ cos θ 0

0 0 1







er
eθ
ez




=
1

2




(
√
α + 1√

α
) + (

√
α− 1√

α
) cos 2θ −(

√
α− 1√

α
) sin 2θ 0

−(
√
α− 1√

α
) sin 2θ r

(
(
√
α + 1√

α
)− (

√
α− 1√

α
) cos 2θ

)
0

0 0 1







er
eθ
ez




(19)

Therefore, the extended velocity field, subsequent to (6), is written as

v(x) =
D33

c


1

4

(
L2

r
− r
)
[
(A+ B cos 2θ)er − B sin 2θeθ

]
+ zez


 (20)

whereA =
√
α+1/

√
α and B =

√
α−1/

√
α on account of α ≥ 1. Unlike the velocity field corresponding

to a circular cylindrical cell, the velocity field at the present context is dependent upon θ in addition to r.
The plastic dissipation would then appear in the form of a coupled integral, which is too complicated to
calculate analytically. This warrants the use of some approximation that will be described in the following
subsection.

2.4.2 Arbitrary coaxial cells

A cylindrical cell with an arbitrary elliptical cross section can have a coaxial void with a R1/R2 ration
differing from L1/L2, as schematically shown in Fig. 3.
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Figure 3: Schematic cross sections of a cylindrical cell with arbitrary inner (void) ellipses coaxial with the same outer
(boundary) ellipse.

The steps to derive the coalescence criterion for coaxial cylindrical cells having elliptical bases with
arbitrary χ1 and χ2 are similar to those for homothetic cells, except for α varying with r which renders
the volumetric integral not analytically calculable. Out of the infinite number of ellipses passing through
every point lying in the cell domain, one can pick that emanating from a known A and B profile. As later
demonstrated in the results, an upper bound to the dissipation for this case can be evaluated by neglecting the
r–derivative of α and considering a simplified linear profile for the variation ofA and B with r. To this end,
let the subscripts ’v’ and ’c’ pertain to the inner ellipse (void boundary) and the outer ellipse (cell boundary),
respectively. Correspondingly, the outer ellipse can be identified with αc, which can be prescribed by the
user and is generally different from that of the void ellipse αv, the latter uniquely determined from known
values of χ1 and χ2. It can be easily verified that

αv =
χ1

χ2
αc (21)

Therefore, the corresponding values of A and B obey the following relations:

Av =

√
αvχ1

χ2
+

√
χ2

αvχ1
, Bv =

∣∣∣∣∣

√
αvχ1

χ2
−
√

χ2

αvχ1

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

(22)

where αc ≥ 1 is implied in the definition of Bc.
Remark: The yield load corresponding to the coalescence limit is majorly affected by the minimum

void spacing and minorly affected by its maximum value. Hence, as henceforth seen in Sec. 5, the yield
load in a non-homothetic cell proves smaller in comparison to its homothetic counterpart. Correspondingly,
an upper bound to the yield load will be obtained from χmax taken as the effective ligament parameter, and
a lower bound thereof will be a function of χmin involved in the equations. However, a more rigorous upper
bound to the yield load can be estimated via the following relation

αv =
χmin

χmax
αc
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which gives rise to the following modified counterpart of (22):

Av =

√
αvχmin

χmax
+

√
χmax

αvχmin
, Bv =

∣∣∣∣∣

√
αvχmin

χmax
−
√

χmax

αvχmin

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

(23)

where αc ≥ 1 is implied. The simplest profile that can be conceived is a linear function of dimensionless
variable r/L, which preserves the upper-bound character. Let

A(r) = Av + (Ac −Av)
r
L − χ
1− χ

B(r) = Bv + (Bc − Bv)
r
L − χ
1− χ

(24)

which can be alternatively expressed in terms of u = (L/r)2 formerly defined. No matter how simple the
linear functions are, the effective dissipation integral in (29) cannot be determined analytically. However,
theA and B therein can be replaced with their volumetric averages, here denoted with Ā and B̄. To this end,
the integral has been expanded below only for one case, and the other will be obtained likewise.

Ā =
1

1/χ2 − 1

∫ 1/χ2

1
A(u)du =

χ2

1− χ2

[(
Av − (Ac −Av)

χ

1− χ

)
u+ 2(Ac −Av)

√
u

1− χ

]1/χ2

1

Therefore

Ā =
Av + χAc

1 + χ

B̄ =
Bv + χBc

1 + χ

(25)

which clearly simplifies into Ā = A and B̄ = B in the case of a homothetic cell, identified byAv = Ac = A
and Bv = Bc = B. Once again, it should be highlighted that χ =

√
χ1χ2 is the geometric average of the

major and minor ligament parameters.

2.5 Effective yield criterion

With the velocity field at hand, one can calculate the effective plastic dissipation, whereby the stress subspace
at the yield limit can be derived. To this end, the equivalent microscopic strain rate should be evaluated. The
criterion will be firstly derived for homothetic cells, and it will then be extended into non-homothetic ones.
With reference to (20), one can write:

drr = vr,r = −D33

4c

(
L2

r2
+ 1

)
(A+ B cos 2θ)

drθ = dθr =
1

2

(
vr,θ − vθ

r
+ vθ,r

)
=
D33

4c
B sin 2θ

dθθ =
vr + vθ,θ

r
=
D33

4c

(
L2

r2
− 1

)
(A− B cos 2θ)

dzz = vz,z =
D33

c

(26)
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with the commas representing partial derivatives. The rest of d components equal zero. Therefore:

d : d = d2
rr + d2

θθ + d2
zz + 2d2

rθ

∴ d2
eq =

2

3
d : d =

1

12

(
D33

c

)2 [
(A2 + B2 cos2 2θ) u2 − 4(AB cos 2θ) u+ (A2 + B2 + 8)

] (27)

where u = (L/r)2 and c has been defined in advance. With reference to the details stated in [4], the
volumetric effective plastic dissipation reduces to the following expression:

Πvol = σ̄c(1− fb)〈 deq 〉Ωlig
(28)

with fb = χ2 being the porosity within the ligament. Note that, thanks to the cross section being homothetic,
χ1 = χ2 = χ. Due to deq being independent of z, Eq. (28) can be recast in the following form:

Πvol

σ̄
=

c

πL2

∫ L

R

∫ 2π

0
deqrdrdθ =

c

2π

∫ 1/χ2

1

∫ 2π

0

deq

u2
dudθ (29)

The exact integral will be too complex. However, following [30], the following approximation can be
exploited, which violates the upper-bound character but simplifies the expression significantly:

1

2π

∫ 2π

0
deqdθ ≈

√∫ 2π
0 d2

eqdθ

2π
∴ Πvol

σ̄
≈ c

∫ 1/χ2

1

√
1

2π

∫ 2π

0

d2
eq

u2
dθ du (30)

where the integral inside the square root should be evaluated term by term, following (27)2, which amounts
to

Πvol

σ̄
≈ |D33|

2
√

3

∫ 1/χ2

1

√√√√
[

1

2π

∫ 2π

0
(A2 + B2 cos2 2θ)dθ

]
u−2 − 4

[
1

2π

∫ 2π

0
(AB cos 2θ)dθ

]
u−3 +

[
1

2π

∫ 2π

0
(A2 + B2 + 8)dθ

]
u−4 du

=
|D33|
2
√

3

∫ 1/χ2

1

√
A2 + B2

2

u2
+
A2 + B2 + 8

u4
du

=
|D33|
2
√

3



√

2A2 + B2 ln


2u


(2A2 + B2) +

√
(2A2 + B2)

(
2(A2 + B2 + 8)

u2
+ 2A2 + B2

)



−

√
2(A2 + B2 + 8)

u2
+ 2A2 + B2




1/χ2

1

(31)
All the same, the surface dissipation stemming from the velocity jump, reading

JvrK = −vr (32)

(with the remaining components all being zero) simplifies to the following form (see [4] for further details):

Πsurf = σ̄c(1− fb)〈
∣∣JvK

∣∣
√

3
〉Ωlig

=
cσ̄

4πL2h

∫ L

R

∫ 2π

0

|vr|√
3
rdrdθ

∴ Πsurf

σ̄
=

|D33|
4πL2h

√
3

∫ L

R

∫ 2π

0
(L2 − r2)(A+ B cos 2θ)drdθ =

|D33| A
6
√

3


2
L

h
+
R

h

(
R2

L2
− 3

)


=
|D33| A

6
√

3

χ3 − 3χ+ 2

χw

(33)

where w is the effective void aspect ratio. To obtain w, for a specific w1 (see (1) for definitions), one can
write

w2

w1
=
R1

R2
=
R1

L1

L1

L2

L2

R2
=
χ1

χ2
α ∴ w2 = w1w2 =

χ1

χ2
αw2

1 (34)
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Both the primitive inequality of limit analysis in (2) and the parametric representation of the yield
function in (4) lead to the following effective yield criterion:

|Σ33| = Σvol + Σsurf (35)

where use has been made of the sgn(D33) = sgn(Σ33) identity (see [30] for proof), and

Σvol

σ̄
=

1

2
√

3



√
C1 ln


4u

√
C1

[
√
C1 +

√
C1 +

C2

u2

]
−

√
C1 +

C2

u2




1/χ2

1

Σsurf

σ̄
=
A

6
√

3

χ3 − 3χ+ 2

χw

(36)

where

C1 = A2 +
B2

2
, C2 = A2 + B2 + 8

Remark: Equation (35) retrieves Eq’s (23) and (26) of [4] for the special case of a cylindrical cell with
a circular cross section. Thereupon, it can be easily verified that

Σvol

σ̄
=

1√
3

(
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

)

Σsurf

σ̄
=

1

3
√

3

χ3 − 3χ+ 2

χw

(37)

With the approximation employed in Sec. 2.4.2, Σvol for a non-homothetic cell would have the same ex-
pression as stated in (36)1 except for introducing Ā and B̄ into the equation in lieu ofA and B, respectively.
The surface dissipation, however, can be calculated analytically. With reference to Eq. (24):

Πsurf

σ̄
=

|D33|
4πL2h

√
3

∫ L

R

∫ 2π

0
(L2 − r2)(A(r) + B(r) cos 2θ)drdθ

=
|D33|

24
√

3 χ(1− χ)w

[
3(1 + χ− 2χ2)(Ac −Av) + 4(χ3 − 3χ+ 2)(Av −Acχ)

]

Σsurf =
Πsurf

|D33|

(38)

which clearly simplifies into (36)2 in the case of a homothetic cell.

3 Model under Combined Tension and Shear

Following [30, 31], the velocity field in the reference cell corresponding to combined triaxial and shear
loadings should satisfy the following constraints:





vr(L, θ, z)er + vθ(L, θ, z)eθ = 2z
c (D31e1 +D32e2) (−h ≤ z ≤ h; 0 ≤ θ ≤ 2π)

vz(r, θ,±h) = ±D33H (0 ≤ r ≤ L; 0 ≤ θ ≤ 2π)

JvK.n = 0 ∀x ∈ Sint

(39)
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which, in its simplest form, along with the incompressibility condition (div v = 0), is fulfilled by the
following Gurson-like velocity only emanating from the shear field (in the ligaments only):

Vsh(x) =
2z

c
(D31e1 +D32e2) (40)

which should be supplemented to the expansion field in (6), and c has been defined in advance. The capital
notation in V denotes the reference cell. Since, however, (40) is directly expressed in terms of the covariant
(here Cartesian) coordinates (see (7)2), the same field can be employed in the cell with an elliptical cross
section. That is

vsh = Vsh

which can further be transformed into contravariant (cylindrical) coordinates as

vsh
r =

2z

c
(D31 cos θ +D32 sin θ)

vsh
θ =

2z

c
(−D31 sin θ +D32 cos θ)

(41)

which corresponds to the following strain-rate components, the rest proving zero:

dsh
rz = dsh

zr =
1

c
(D31 cos θ +D32 sin θ)

dsh
zθ = dsh

θz =
1

c
(−D31 sin θ +D32 cos θ)

(42)

The corresponding equivalent strain rate can be derived from the combined effect of expansion and shear
fields in the double contraction, expressed as follows:

d : d = de : de + 2de : dsh + dsh : dsh = de : de + dsh : dsh (43)

since the nonzero terms in dsh are only off-diagonal. Therefore, the steps to solve this problem are identical
to those in [30, 31], which lead to the following piecewise function

(
|Σ33| − Σsurf

Σvol

)2

H(|Σ33| − Σsurf) +
Σ2

31 + Σ2
32

T 2
− 1 = 0 (44)

whereH(x) is the Heaviside function, admitting a unit value when x > 0 and zero otherwise. T is the shear
stress at zero axial stress (i.e. the maximum shear stress), which obeys the following expression

T = (1− χ1χ2)τ̄ ≡ Slig

S
τ̄ (45)

where τ̄ = σ̄/
√

3 is the matrix shear strength, and Slig and S denote the cross sectional areas pertaining to
the ligament and the whole cross section, respectively. Noting that χ1χ2 = fb sets the porosity in the band,
Eq. (45) follows a simple linear rule of mixture between the yield stresses of the matrix and the void. The
shear field employed herein delivers sensible stresses at intermediate shear stresses. At intense shear fields,
however, it proves inadequate esp. for closer-by voids along the shear field, as later showcased in Sec. 6.2.

483



4 Model Synopsis

The yield criterion accounting for void coalescence under combined tension and shear in a microstructure
represented by a cylindrical unit cell with elliptical void and cell is hereby repeated for ease of reference:

Φ(Σ, χ1, χ2, w1, w2,αv,αc) =

(
|Σ33| − Σsurf

Σvol

)2

H(|Σ33| − Σsurf) +
Σ2

31 + Σ2
32

T 2
− 1 (46)

with H(x) being the Heaviside step function (with H(x) = 1 for x > 1, H(x) = 0 for x < 0, and
H(0) = 1/2), and

χi =
Ri
Li

, wi =
h

Ri

αv =
R1

R2
, αc =

L1

L2

with i taking in the values of 1 and 2. Among the geometric arguments, only four of them are independent
and need be prescribed. They are adopted to be (χ1, χ2, w1,αc) in the present context. The rest follow from
these independent parameters as

w2 =
χ1

χ2
αcw1

αv =
χmin

χmax
αc

and

w2 =
χ1

χ2
αcw

2
1

χ2 = χ1χ2

are the geometric average values that are inserted into the following microstructural functions:

Σvol

σ̄
=

1

2
√

3



√
C1 ln


4u

√
C1

[
√
C1 +

√
C1 +

C2

u2

]
−

√
C1 +

C2

u2




1/χ2

1

Σsurf

σ̄
=

1

24
√

3 χ(1− χ)w

[
3(1 + χ− 2χ2)(Ac −Av) + 4(χ3 − 3χ+ 2)(Av −Acχ)

]

T
σ̄

=
1− χ2

√
3

where

Av =

√
αvχmin

χmax
+

√
χmax

αvχmin
, Bv =

∣∣∣∣∣

√
αvχmin

χmax
−
√

χmax

αvχmin

∣∣∣∣∣

Ac =
√
αc +

1√
αc

, Bc =
√
αc −

1√
αc

Ā =
Av + χAc

1 + χ
, B̄ =

Bv + χBc

1 + χ

C1 = Ā2 +
B̄2

2
, C2 = Ā2 + B̄2 + 8

and, upon convention, χmin = min(χ1, χ2) and χmax = max(χ1, χ2). The αc ≥ 1 is implied in the
definition of Bc.
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5 Cell-Model Calculations

The FEM analysis framework in this section is an extension to that introduced in [31] for a quarter cylindrical
cell with a circular cross section, here taken as reference. The current cell with an elliptical cross section
is then generated from a function that maps the reference mesh into a new mesh with inner and outer
boundaries being elliptical. Similar to [31], the analysis framework is of a single-step small-strain finite-
element identity [18]. The elastic strain rates would then vanish at the limit load instant. This would
make the results disassociated with elastic moduli, which could be chosen arbitrarily. Correspondingly,
an incompressible velocity field would be induced by plastic deformation. To this end, a high value of
Poisson’s ratio should be enforced (here ν = 0.49), which renders the matrix material nearly isochoric
elastic-perfectly-plastic. The ratio between the yield strength to Young’s modulus is taken σ̄/E = 0.0002.
ABAQUS (Version 6.17) was employed to carry out analyses, with the geometric nonlinearity (NLGEOM)
switched off.

Note that periodicity equations cannot be directly applied to pairs of points in a cylindrical cell for
it being not space-filling, and thus such pairs that can obey periodicity do not exist. However, similar
conditions can be imposed that mimic periodic conditions, thus its name ”quasi-periodic”. For any two
points admitting periodic correspondence:

∆u = (E + Ω).∆x (47)

where ∆u is the difference in displacement between the points separated by the vector ∆x. The remote
stresses that correspond to the cell yield point are not known from the outset. Therefore, a macroscopic
strain E (representing a strain rate) should be enforced on the cell represented with

E = E11(e1 ⊗ e1 + e2 ⊗ e2) + E33e3 ⊗ e3 + E31(e1 ⊗ e3 + e3 ⊗ e1) + E32(e2 ⊗ e3 + e3 ⊗ e2) (48)

or in matrix form

E =




E11 0 E31

0 E22 E32

E31 E32 E33




where

E11 = ln

(
L1

L10

)
≈ U1

L10

E22 = ln

(
L2

L20

)
≈ U2

L20

E33 ≡ ln

(
H

H0

)
≈ U3

H0

E31 ≡
Ut1
2H0

E32 ≡
Ut2
2H0

(49)

Here, U1 and U2 denote prescribed displacements (representing velocities) on the lateral vertical lines pass-
ing through all points standing on (x1, x2) = (L1, 0) and (x1, x2) = (0, L2), respectively (see Appendix B
for details). The displacements for interlain points should be distributed in conformity with the ellipse
equation. See Eq. (11).
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Moreover, U3 as well as Ut1 and Ut2 are, respectively, the normal and tangential displacements (along
x1 and x2) prescribed on the top surface. The stress components emanating from the imposed strains are
calculated from volumetric averaging over the entire cell (see [31] for details).

On the other hand, the macroscopic rotation tensor must be of the form:

Ω = Ω31(e3 ⊗ e1 − e1 ⊗ e3) + Ω32(e3 ⊗ e2 − e2 ⊗ e3) (50)

which, in simplest sense, can be taken Ω = 0. However, this would trigger a vertical displacement on the
lateral surface, which can be averted by considering Ω13 = −Ω31 = E31 and Ω23 = −Ω32 = E32.

The periodic boundary conditions (47) can then be expressed as




∆u1

∆u2

∆u3





=




E11 0 2E31

0 E11 2E32

0 0 E33








∆x1

∆x2

∆x3





(51)

which are further replaced by the quasi-periodic conditions as follows

• On the top surface, ∆u = u(x1, x2, H)− u(x1, x2,−H) and ∆xT = {0, 0, 2H} so that:




∆u1 = 4E31H

∆u2 = 4E32H

∆u3 = 2E33H

(52)

• On the plane Ox1x3,
u2(x1, 0, x3) = 0 (53)

• On the plane Ox2x3,
u1(0, x2, x3) = 0 (54)

• On the lateral surface (x2
1/L

2
1 + x2

2/L
2
2 = 1, −H ≤ x3 ≤ H) multi-point constraints are imposed

so that the nodes lying on a semi-ellipse remain on a similar semi-ellipse with major and minor radii
consistent with the prescribed values of E11 and E22. That is

uref
1 (x1, x2, x3) = U1 cos θ , uref

2 (x1, x2, x3) = U2 sin θ
(
x1

L1

)2

+

(
x2

L2

)2

= 1
(55)

where uref
i are the displacements of some reference node on the semi-circle at some height x3. Then,

at xT = {L1, 0, x3} noting ∆u = u(x1, x2, x3)− uref , one can write:




∆u1 = E11(x1 − L1)

∆u2 = E22x2

∆u3 = 0

(56)

Correspondingly, at xT = {0, L2, x3}:




∆u1 = E11x1

∆u2 = E22(x2 − L2)

∆u3 = 0

(57)
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Remark: To simulate coalescence states, lateral strain rates, here represented with lateral strains, should
be prevented, i.e. E11 = E22 = 0, hence U1 = U2 = 0.

The mesh for every unit cell is generated through a mapping correspondence from the reference cell
with circular cross sections. The method is hereby explained for two types of cells: homothetic and non-
homothetic, the latter entailing a two-step mapping. In all configurations, L1 and H were kept equal to 1,
and the remaining dimensions were dictated by the prescribed values of χ1, χ2, w1,αc, as defined in Sec.
2.1. An example mesh for a non-homothetic cell, with (χ1, χ2, w1,αc) = (0.6, 0.267, 1, 4), is shown in Fig.
4.

(a) (b)

Figure 4: Example mesh for a non-homothetic cell with its geometry identified by (χ1, χ2, w1,αc) =
(0.6, 0.267, 1, 4): (a) frontward inclined view; (b) backward inclined view.

5.1 Cells under triaxial loading

5.1.1 Homothetic cells

The meshes for homothetic cells were created originally for a reference cylindrical cell with circular cross
sections, a unit outer radius L = 1, and specific values of void height h emanating from w1. Denoting small
and capital alphabets for the current and reference cells, respectively, with reference to Eq. (11):

x1 = rL1 cos θ , x2 = rL2 sin θ (58)

where r =
√
X2

1 +X2
2 and tan θ = X2/X1 are the radius and angle (with respect to the X1 positive

direction) of every node in the reference configuration.
The plastic strain contours for example geometries with varying αc, various χ1 = χ2, and several w1’s

are shown in the subsequent figures. Figure 5 shows different contours under triaxial loading for varying
values of αc and fixed values of other parameters given as χ1 = χ2 = 0.4 and w1 = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: PEEQ (equivalent plastic strain) contours on cell quarters for varying values of αc and fixed values of other
parameters specified as χ1 = χ2 = 0.4 and w1 = 1: (a,c,e) frontward inclined views, with α taken as 1, 4, and 16;
(b,d,f) backward inclined views.

Figure 6 shows different contours under triaxial loading for varying values of χ1 = χ2 chosen to be
0.25, 0.4, and 0.6 (left-hand subfigures, with w1 = 1) or various values of w1 taken 0.5, 1, and 2 (right-hand
subfigures, with χ1 = χ2 = 0.4) and αc = 2 kept fixed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: PEEQ (equivalent plastic strain) contours on cell quarters for αc = 2 kept fixed and: (a,c,e) varying values
of χ1 = χ2, with w1 = 1; (b,d,f) various values of w1, with χ1 = χ2 = 0.4.

5.1.2 Non-homothetic cells

Extra care should be taken in meshing a non-homothetic cell based on a reference cell. To this end, the cell
can be subdivided into sub-regions with different mapping conditions. Appendix A illustrates details about
this multi-regional mapping. Figure 7 shows different contours under triaxial loading for varying values of
χ1, with χ1χ2 = χ2 staying constant to 0.16, and fixed values of other parameters given as w1 = 1 and αc

taken as 1 or 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: PEEQ (equivalent plastic strain) contours on cell quarters for varying values of χ1, taken as 0.4, 0.6, and
0.8 with χ1χ2 = 0.16 fixed, and specified values of other parameters given as w1 = 1 and αc taken as 1 or 2: (a,c,e)
αc = 1; (b,d,f) αc = 2.

5.2 Cells under combined loading

This section exhibits velocity contour plots under combined tension and shear in the interest of better clarity.
The contours are shown with a cut-off in plastic strains so as to highlight the most intense plastic zones only.
Figure shows the velocity fields for values of αc being below unity (1/4), unity, and above unity (16) for
tensile, combined tensile and shear, and intense shear loading conditions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Velocity vectors, accompanied by PEEQ showcasing highly-plastic zones on cell quarters for χ1 = χ2 =
0.4, w1 = 1 and various values of αc values under tensile, combined tensile and shear, and intense shear loading
conditions: (a-c) αc = 1 (reference cell); (d-f) αc = 16 with shearing along x1; (g-i) αc = 4 with shearing along x2.

6 Results

The results are presented for prescribed values of (χ1, χ2, w1,αc) as formerly defined. For homothetic cells,
χ1 = χ2 = χ and αv = αc = α are prescribed in addition to w1, and w2 as well as χ and w will come as
geometric averages as stated in (46). All results are presented with λ1 = 1, though being directly ineffective.

6.1 Results in absence of shear

Figure 9 depicts the variation of the axial yield load vs. the α ratio for a homothetic cell, in comparison to
its numerical counterparts for selective α’s. Subfigures (a) and (b) show evolutions with several values of
χ1 = χ2 = χ and w1, respectively.

491



(a) (b)

Figure 9: Evolution of axial yield load vs. the α ratio for a homothetic cell, in comparison to its numerical counterparts
and (a) several χ1 = χ2 = χ’s with w1 = 1; (b) several w1’s with χ = 0.4. The solid lines stand for analytical values,
and the dots show numerical ones from cell-model calculations.

Alternatively, the variation of the yield load as function of the void spacing and void aspect ratio, i.e.
against the values of χ1 = χ2 = χ and w1 (with effective w obtained from (34)), for several values of the α
ratio, is shown in Fig. 10 for a homothetic cell. The curves for a circular cross section stand below those for
α > 1 (and, correspondingly, for α < 1).

(a) (b)

Figure 10: (a) Effect of χ1 = χ2 = χ, (b) effect of w1 on the axial yield load for a homothetic cell with χ = 0.4 and
several values of the α ratio.

All the same, similar results can be presented for non-homothetic cells, with arbitrary values of χ1 and
χ2 and, correspondingly, arbitrary αv and αc. For convenience, χ1 and χ2 are chosen such that the effective
spacing χ, according to (8), stays constant, equaling 0.4 in the present context. Figure 11 demonstrates the
effect of χ1, ranging from 0.4 to 0.8, on the evolution of the yield load against the αc ratio.
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Figure 11: (a) Effect of different χ1 values, ranging from 0.4 to 0.8, while χ = 0.4 and w1 = 1, on the evolution of
the yield load against the αc ratio. The solid lines stand for analytical values, and the dots show numerical ones from
cell-model calculations.

6.2 Results under combined tension and shear

For the state of combined tension and shear, the results are presented for homothetic cells (for arbitrary cells,
they will be similar). The shear stress is once applied along x1 and once along x2, one being the semi-major
and the other being the semi-minor axis. Figure 12 shows the correlation of normal and shear stresses for
the aforesaid conditions and several values of the α ratio.

(a) (b)

Figure 12: Correlation between normal and shear stresses for a homothetic cell with χ = 0.4 and w1 = 1 with several
values of α: (a) under shearing applied along x1 (major axis); (b) under shearing applied along x2 (major axis). The
solid lines stand for analytical values, and the dots show numerical ones from cell-model calculations.

In order to have a better insight into the yield surface, the yield surface can be presented in the Σ33–
Σ31–Σ32 stress space, as shown in Fig. 13 for the homothetic cell with frozen microstructure denoted with
χ = 0.4 and w1 = 1 and several values of α. Symmetry with respect to the Σ31 and Σ32 is envisaged.
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(a) (b)

Figure 13: Correlation among Σ33, Σ31, and Σ32 for a homothetic cell with χ = 0.4 and w1 = 1: (a) reference cell
with a circular cross section; (b) effect of the α ratio selected below, equal, and above 1. The latter surfaces are shown
partially for better clarity of the effect.

7 Discussion

In accordance with both analytical and numerical results, the minimum limit load, in almost all geometric
configurations, corresponds to αc = 2 rather than the circular cross section denoted by αc = 1. Beyond
this point, for αc ≥ 2, the axial limit load increases with increasing αc which increases the overall stiffness
of the cross section and makes void impingement harder. Figure 5 exhibits the reason for this as being the
increasing lateral constraint on the central part of the cell, which renders the ligament stiffer and harder to
yield. The higher stiffness can further be witnessed along with decreasing χ1 = χ2 as well as decreasing
w1, in Fig. 6. This corroborates the increase in the limit load with both decreasing trends. Figure 7
demonstrates that, even at fixed effective ligament parameter χ, increasing χ1 decreases the net spacing
between two adjacent voids, and thus impingement would be accelerated altogether. Figure 11 authenticates
this observation.

Comparing subfigures 9a and 9b reveals that the predicted analytical limit loads are in sensible agree-
ment with their exact counterparts, being mindful of the fact that the model does not incorporate any ad-
justable parameters. However, differences may become more notable in some cases. Due to the use of the
approximation introduced in (31), the model loses its upper-bound nature at large values of χ. Yet, the
coincidence between the values is better in this case in that the analytical and numerical values get closer.

Regarding the effects induced by the microstructural geometry, the effect of void spacing χ at fixed w1,
reflected through the notion of porosity, is more pronounced in the yield load compared to the effect of the
void aspect ratio along one of the two axes, here w1. The reason is the former affects the yield condition
in the whole ligament domain whereas the latter only influences the surface dissipation. Nevertheless, for
very small void aspect ratios, though not shown here, when the effective aspect ratio w falls below 0.5
(approaching the limit of a penny-shape crack), the model erroneously overpredicts the yield limit since
coalescence by internal necking is certainly questionable. See [30] for further discussion on the singular
behavior of the model in this limit.

A closer scrutiny of the model demonstrates that, through the introduction of Ā and B̄, Σvol is symmetric
modulo αc being smaller or greater than 1. The difference between the limit loads pertaining to αc < 1 and
αc > 1 is then attributed to Σsurf through the notion of w which, according to (34), scales with αc at fixed

494



w1. A larger value of αc would then increase the limit load via increasing Σsurf , as seen in Fig. 10a. Figure
10b, ratifies this finding through the effect of w1 on the coalescence load at a fixed χ. This observation is
physically intuitive in the sense that the larger the value of αc, the sooner the two adjacent voids can impinge
in the direction where w is fixed (here w1) since less strain energy has to be dissipated from velocity jumps
between the ligament and matrix.

Figure 11 demonstrates that, at fixed effective void spacing χ and w in one direction (here w1), the
closest upper bound to numerical limit loads pertains to a homothetic cell. Yet, the difference between
analytical and numerical values remains reasonable even at intense differences between χ1 and χ2. At the
limit of (χ1, χ2) −→ (1, χ2), ellipticity of the cell (through the notion of αc) would not remarkably affect
the limit load after the value of 1, the reason being the only normalized intervoid distance influencing the
yield point is χ2 = χ2 which stays almost constant regardless of the αc ratio (this observation is corroborated
by numerical findings). At this limit, the voids have to impinge along both directions, and thus, the limit
load value is finite rather than zero. See Fig. 14a.

For αc values below 1, the cell can be be represented with an equivalent geometry with αc > 1 but
flipping χ1 and χ2. This would deliver a larger limit load since the impingement of voids along x2 is
obviously a lot more demanding, as shown in Fig. 14b.

(a) (b)

Figure 14: Schematic outline of extremely non-homothetic cells when the void boundaries reach out to the cell
boundaries along x1: (a) αc >> 1; (b) αc << 1.

Apropos of the combined effect of tension and shear, one can envisage, in Fig. 12, that the numerical
yield surface for αc >> 1 lies (mostly) exterior to its analytical counterpart, yet with a reasonable difference.
For smaller values of αc, however, the analytical yield surface is (mostly) an upper bound to its numerical
counterpart, still with reasonable difference.

Moreover, Fig. 8 demonstrates that, for a shear stress applied along the major axis, the maximum shear
stress T , i.e. the shear limit load at zero axial stress, stays almost constant considering the rather even
distribution of shear strains/velocities. For shearing along the minor axis, however, some normal strain (and
stress) is developed in the form of local vortices around the void. As a consequence, T , especially for
larger values of αc, decreases with increasing αc. Nevertheless, T in the analytical model is agnostic to the
shearing direction. This reveals the limitation of the simplistic Gurson-like shear field developed based on
a linear shear velocity profile along the vertical direction in both directions. The constraint warrants a more
realistic shear velocity profile that can take into account the effects induced by the cell shape (considering
the present discussion) as well as the void shape (considering the limitation elucidated in [31]).
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8 Concluding Remarks

This article presents the steps to introduction of an analytical yield criterion endowed with normalized
geometric parameters to describe void coalescence under arbitrary loading conditions (represented with
combined tension and shear loads) in ductile solids with arbitrary microstructures (represented with 3D
voids embedded in 3D matrix cells). The only stress components affecting void coalescence by internal
necking and/or internal shearing over a given localization plane are the axial and shear resolved tractions
[30]. The microstructure was approximately represented with a 3D cylindrical elementary cell with an
elliptical cross section and a coaxial cylindrical void. The model was derived from limit analysis on the
cell subjected to combined tension and shear with a J2 plasticity confined to inter-void ligaments. The
model was derived in three stages: (i) model for a homothetic cell, characterized with equal void normalized
spacing along the major and minor cell axes, under triaxial loading; (ii) model for a non-homothetic cell,
characterized with independent void normalized spacing along the axes, under triaxial loading; (iii) model
for a non-homothetic cell under combined tension and shear. Upon a similar approximation employed in the
derivations to that introduced in [30], the model appears as an extended counterpart of that introduced in the
same reference, and thus retrieves the same model at the limit of cells with circular cross sections.

The predictive capability of the model was assessed by comparing the analytical limit loads with their
numerical counterparts for selective geometric cases resulting from single-step limit analysis FEM cal-
culations over the same cells under quasi-periodic boundary conditions. The generic microstructure was
uniquely identified with four dimensionless parameters termed (χ1, χ2, w1,αc), signifying the normalized
void spacing along the two main cell axes, void aspect ratio along one main axis, and the ratio between the
main cell semi-axes, respectively. The results were presented under tensile as well as combined tensile and
shear loading conditions. The former set of results then comprised the axial limit load examining the sepa-
rate or combined effects of each and every microstructural parameter. All the same, the combined state of
tensile and shear loads was introduced with a yield locus displaying the correlation between axial and shear
stresses. Following a simple linear velocity profile, the maximum shear stress (in absence of axial loading)
was predicted as being agnostic to the shearing direction. The exact numerical values, however, did exhibit
some difference mainly for the case of shearing applied along the minor axis of the cell.
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Appendix A Mapping for Non-homothetic Cell Meshing

In order to reproduce the mesh for a non-homothetic cell from a reference cell with circular cross sections,
the cell can be subdivided into the sub-regions shown in Fig. A-1.

Figure A-1: Various zones with different mapping functions for mesh generation of non-homothetic cells, and the
cross section for each region.

The nodes are firstly mapped into a homothetic cell from the reference cylindrical cell (with circular
cross sections), and are then mapped from the homothetic cell into a non-homothetic one with a secondary
mapping. The initial mapping produces regions (1) and (2), and the secondary mapping generates regions
(3) and (4). Upon a similar procedure leading to (58), the mapping functions for each and every region will
be written as follows:

– Zone (1)

x
(1)
1 =

R1

R
r cos θ =

√
αvr cos θ

x
(1)
2 =

R2

R
r sin θ =

1√
αv
r sin θ

(A-1)

where r =
√
X2

1 +X2
2 and tan θ = X2/X1 with capital notations defined in advance, and αv is

obtained from (21).

– Zone (2)

With a linear transformation between the reference and non-homothetic voids, the void boundary still
remains elliptical. The distance between the nodes on reference and non-homothetic void surfaces
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can be expanded as a linear function of the known distances d10 and d20 which can be stated in the
following equivalent form:

d1 = (χ− χ1)

(
−1 +

r
L − χ
1− χ

)
L1 cos θ

d2 = (χ− χ2)

(
−1 +

r
L − χ
1− χ

)
L2 sin θ

which delivers the coordinates of the non-homothetic nodes as

x
(2)
1 =

[
(χ− χ1)

(
−1 +

r
L − χ
1− χ

)
+
r

L

]
L1 cos θ

x
(2)
2 =

[
(χ− χ2)

(
−1 +

r
L − χ
1− χ

)
+
r

L

]
L2 sin θ

(A-2)

– Zone (3)

This zone only differs in the vertical coordinates from zone (2). In fact, from the homothetic to the
non-homothetic cell, w1 has to stay constant, and thus, the void height should be adjusted with respect
to the reference cell. To this end, one can write

x
(3)
3 =

x
(v)
3

X
(v)
3

X3

where the subscript (v) stands for the void boundary. Moreover

x
(v)
3 = w1R1 = w1χ1L1

X
(v)
3 = wR = wχL

Since, however, L1 has been considered equal to L in the mapping, the above derivations, together
with (34), write

x
(3)
1 = x

(2)
1 , x

(3)
2 = x

(2)
2

x
(3)
3 =

1

χ
√
αc
X3

(A-3)

– Zone (4)

Zone (4) is similar to zone (3) in differing in the vertical component with respect to zone (2). For this
zone:

x
(4)
1 = x

(2)
1 , x

(4)
2 = x

(2)
2

x
(4)
3 = (χ− χ1)

(
−1 +

X3 − χ
H − χ

)
+X3

(A-4)

Since L1 = L = H = 1 has been considered in the configurations, some of the above equations
simplify.
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Appendix B Quasi-Periodic Boundary Conditions on the Unit Cell

This section expounds the boundary conditions imposed on a quarter of the unit cell in more specific equa-
tions. The independent degrees of freedom, appearing as prescribed displacements, are reflected by an axial
U3 and a tangential Ut2 displacement at each center-line. It should be noted that Ut2 is the only possible tan-
gential displacement that can preserve the quasi-periodicity boundary conditions provided only one quarter
of the cell is modeled, or else symmetry with respect to the x2 − x3 plane will be broken. Therefore, in
the case that shearing along x1 is desired, the modeled configuration should rotate by 90 degrees such that
the modeled x2 represents the desired x1. The various surfaces and edges of the computational domain are
schematized in Fig. A-2.

Figure A-2: Various surfaces and edges over a finite-element mesh for one quarter of an example unit cell with
its geometry denoted with microstructural parameters given as (χ1, χ2, w1) = (0.6, 0.267, 1.0), with the coordinate
origin standing at the void center in the undeformed configuration.

Edge-Top-Middle

u2(x1, 0, H) =
1

2
Ut2,

u3(x1, 0, H) =
1

2
U3. (A-5)

Surface-Top-Left/Surface-Top-Right

u1(x1,−x2, H)− u1(x1, x2, H) = 0,

u2(x1,−x2, H) + u2(x1, x2, H) = Ut2,

u3(x1,−x2, H) + u3(x1, x2, H) = U3. (A-6)
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Edge-Top-Left/Edge-Top-Right

u1(x1,−
√
L2

2 − (
x1

αc
)2, H) = u1(x1,

√
L2

2 − (
x1

αc
)2, H) =

x1

2L1
U1,

u2(x1,±
√
L2

2 − (
x1

αc
)2, H) =

1

2

(
Ut2 ±

√
1− (

x1

L1
)2 U2

)
,

u3(x1,±
√
L2

2 − (
x1

αc
)2, H) =

1

2
U3. (A-7)

Surface-Lateral-Left/Surface-Lateral-Right

u1(x1,−
√
L2

2 − (
x1

αc
)2, x3) = u1(x1,

√
L2

2 − (
x1

αc
)2, x3) =

x1

2L1
U1,

u2(x1,−
√
L2

2 − (
x1

αc
)2, x3)− u2(x1,

√
L2

2 − (
x1

αc
)2, x3) = −

√
1− (

x1

L1
)2 U2,

u3(x1,−
√
L2

2 − (
x1

αc
)2, x3)− u3(x1,

√
L2

2 − (
x1

αc
)2, x3) = 0. (A-8)

Edge-Bottom-Left/Edge-Bottom-Right

u1(x1,−
√
L2

2 − (
x1

αc
)2, 0) = u1(x1,

√
L2

2 − (
x1

αc
)2, 0) =

x1

2L1
U1,

u2(x1,±
√
L2

2 − (
x1

αc
)2, 0) = ±1

2

√
1− (

x1

L1
)2 U2,

u3(x1,±
√
L2

2 − (
x1

αc
)2, 0) = 0. (A-9)

Edge-Bottom-Middle

u2(x1, 0, 0) = 0,

u3(x1, 0, 0) = 0. (A-10)

Surface-Bottom-Left/Surface-Bottom-Right

u1(x1,−x2, 0)− u1(x1, x2, 0) = 0,

u2(x1,−x2, 0) + u2(x1, x2, 0) = 0,

u3(x1,−x2, 0) + u3(x1, x2, 0) = 0. (A-11)

Edge-Back-Middle

u1(−L1, 0, x3) = −1

2
U1. (A-12)

Surface-Front

u1(0, x2, x3) = 0. (A-13)

where αc = L1/L2.
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Abstract
Void coalescence in columns (necklace coalescence) is a newly uncovered ductile fracture mecha-

nism that has not been exhaustively investigated in the literature. An in-depth study into micromechanics-
based modeling of necklace coalescence, per se and in competition to coalescence in layers, is addressed.
The model is developed from homogenization on the same microstructure employed to predict void
growth followed by coalescence in layers through a unified perspective [1]. Yet, the plastic deformation
was rearranged so as to mimic plasticity localized within plastic plugs embedding the void. The model
is formed as a yield function endowed with the effects induced by loading as well as void shape, cell
shape, and relative intervoid distance. The predictive capability of the model is authenticated from suc-
cessful comparison to reported results as well as to FEM values resulting from single-step cell-model
calculations with a nearly-isochoric plastic process controlled by remotely prescribed normal and lateral
strains. Yield surfaces accounting for void growth ensued by coalescence in columns and layers are
plotted to probe the effects of the ligament parameter, void and cell aspect ratios. The innermost surface
denoting the driving yielding mechanism is found to be fully determined by the microstructure. Besides,
special plasticity mechanisms exist during the process prior to localized deformation. Amongst them
are void growth associated with stagnation in the radial velocity, and vertically-localized plasticity with
stagnation within the vertical velocity that could lead to so-called void collapse in certain microstructural
states.

Key Words: Ductile fracture; Porous plasticity; Strain localization; Coalescence in layers; Coalescence
in columns.

1 Introduction

During every ductile fracture process, localized plastic deformation is the most vivid indication of failure
characteristics. This instant mostly correlates with the onset of drop in the stress bearing vs. equivalent
plastic strain [2]. Except for quasi-brittle modes of failure (like that triggered by particle cracking, espe-
cially in aluminum composites consisting of soft matrices and hard particles [3]), there is significant plastic
deformation at the post-localized deformation regime. Apart from being significant, plastic deformation
demonstrates significant paradigm change in the damage mechanism after this onset, that can depend on
various extrinsic factors such as the specimen geometry and matrix texture [4].
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In exception for shear-dominated fields imparted on materials with vanishingly small porosities, whereby
the voids elongate and rotate but may never link up [5] (except in case a shear band forms), strain localiza-
tion is associated with incipient deformation-induced concentration of voids within thin planar layers or
along beads (plugs) within thin cylindrical regions [2, 3]. The former is named coalescence in layers and
the latter was termed coalescence in columns by Benzerga [3], and we will adhere to the same terminology
throughout the present work. Void coalescence in layers, as most ambivalently observed in the form of
internal necking, potentially combined with internal shearing [6], has been investigated extensively in the
literature, starting from the pioneering work of Koplik and Needleman [7] that uncovered the constitutive
properties of internal necking in accordance with evolution analyses of stress and strain, porosity, and void
aspect ratio founded on cell-model calculations. In particular, the lateral strains cease to evolve, i.e. the
lateral strain rates vanish throughout internal necking. The onset of internal necking has been predicted by
virtue of the heuristic introduction of a porosity acceleration factor q to the Gurson model by Tvergaard
and Needleman [8], later noted as the Tvergaard parameter. Thomason [9] carried out the first attempt to
introduce a descriptive model for the onset of internal necking through the assessment of some plastic limit
load in the intervoid ligament in a square-prismatic RVE containing a prismatic void with a square basis. His
RVE consisted of rigid zones above and below the void with plastic flow confined in between. Depending on
the microstructure evolution scheme, Benzerga et al. [10] evaluated the performance of the various versions
of Thomason’s model. Later on, the void shape effect was investigated by Pardoen and Hutchinson [11]
through the heuristic introduction of the void aspect ratio w as to extend Thomason’s model to spheroidal
voids. It remained for Benzerga and Leblond [12], Torki et al. [6,13], and Keralavarma et al. [14] to deliver
the first completely analytical line of models accounting, respectively, for internal necking, combined in-
ternal necking and shearing, with isotropic and anisotropic matrix materials. The first and foremost feature
underlying the analytical nature of the aforementioned models is the use of a cylindrical RVE containing a
coaxial cylindrical void. The same RVE was employed by Morin et al. [15] to relax the condition of zero
lateral boundary strain rates to allow for void growth with seamless transition into coalescence by internal
necking.

The distinction between coalescence in layers and columns is partly dictated by the loading condition,
especially the prevalence of the axial-to-lateral stress or vice versa [2], and partly by the microstructure [16].
In a triaxial stress state, every value of stress triaxiality (defined as the ratio between the mean normal
stress to the Mises equivalent stress) can be attributed to two loading conditions, one with a prevailing
normal stress and one with the lateral stress being dominant. Therefore, stress triaxiality is not a revealing
descriptor regarding this effect. Rather, the more distinctive macroscopic parameter is the Lode parameter,
that mainly involves the third invariant of the stress tensor J3. It is defined as L =

√
3 tan θ, where θ is

the well-known Lode angle utilized in the Haigh-Westergaard nondimensional stress space, admitting the
relation cos 3θ = (27/2) det (Σ

′
/Σe), with Σe being the Mises equivalent stress and uppercase letters used

to denote remote macroscopic stresses [2]. Accordingly, coalescence in columns is known to prevail for a
Lode parameter L = +1 (which represents predominant lateral stress) as well as for L = −1 (which implies
the converse) and elongated voids. The latter was explored by Benzerga [3] in the peculiar distribution of
voids in laminated plates, where the extremely prolate (elongated) voids were generated through decohesion
of the metallic matrix circumscribing inclusions elongated by the rolling process. Yet, macroscopic load
descriptors cannot capture the salient features of the fracture process at the microstructural level. This
warrants the consideration of mechanism-based models that predict the limit load at the cell level in terms
of the current microstructural state.

Gologanu et al. were the first and only ones who strove to develop a micromechanics-based model
that could describe coalescence in columns [16, 17]. Their model was derived on the sole basis of re-
homogenization on the homogenized plastic plugs surrounded by a solid torus. More specifically, they
could not originate a closed-form yield condition that could describe a state of plasticity localized along the
plugs. Rather, the model was left implicit with one independent arbitrary parameter (see Sec. 4.1 and [16]
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for more details), any prescribed value of which clarified one pair of lateral and axial stress values at a
specific porosity. Moreover, the only microstructural parameter they inserted in the model was porosity. As
no other work of consequence is reported in this respect, the present work includes, yet is not limited to, two
significant objectives: first to suggest a first-ever closed-form mathematical model capable of describing a
state of coalescence in columns, in solo and in competition with an existing model predicting coalescence
in layers; secondly to incorporate the effects induced by the microstructural geometry in addition to that of
the stress state. The latter will be expressed in terms of the effects of the intervoid distance as well as by
void and cell shapes on each yielding mechanism, which helps demonstrate the driving yielding mechanism
exclusive to every microstructural state in a periodic medium.

2 Problem Statement

2.1 Microstructural geometry

Every micromechanical problem can be described through the definition of a reference volume element
(RVE). The virtue of a proper choice of RVE is two-fold: describing the microstructural geometry of the
problem as well as simulating the load and displacement boundary conditions. The RVE at hand, originally
proposed by Benzerga and Leblond [12], had supplied the first analytical model accounting for coalescence
in layers. The same RVE then proved efficacious in extending the model to incorporation of shear stresses [6,
13]. More extensively, the same RVE was utilized in interconnecting between void growth and coalescence
under triaxial loading, alone [1] or superposed by shear (in a recent work by the first author). It can be
shown, through the course of the present work, that the same RVE can be exploited in the derivation of an
analytical model describing void coalescence in columns.

Figure 1: (a) Geometry of a cylindrical RVE representing column-like coalescence under a triaxial loading scheme;
(b) lateral projection of the RVE with the induced geometry and macroscopic rate-of-deformation components belong-
ing to each subpart.

The elementary volume Ω is a cylindrical cell embedding a coaxial cylindrical void ω, acted upon by
macroscopic axial and lateral stresses as outlined in Fig. 1a 1. Consider the RVE subdivision as shown in
Fig. 1a. The overall volume can be then decomposed into the following constituents:

Ω = V (Ω) = Ω(P) + Ω(V) + Ω(M) (1)
1Despite its being not space filling, the given RVE stands as a reasonable approximation of more complex geometries in periodic

media, e.g. a circumscribing hexagonal-prismatic or a square-prismatic cell.
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where the subparts (V ), (P ), and (M) stand for the void, the porous part (excluding the void), and the
matrix tori, respectively.

The overall geometry of the RVE is then determined by the independent dimensionless parameters de-
fined as follows:

χ =
R

L
, w =

h

R
, λ =

H

L
... c =

h

H
=
χw

λ
(2)

where χ is the ligament parameter, w and λ are the void and cell aspect ratios, respectively, and the auxiliary
parameter c serves as a control parameter whose value below unity ensures that the void stays within the
confines of the cell.

2.2 Kinematic relations

The continuity from the macroscopic perspective entails that the following relationships hold among the
macroscopic rates of deformation:

D
(P+V)
33 = D

(M)
33 = D33 (3)

Moreover, with regards to tr(D) one can write:

Dkk =
1

Ω

∫

Ω
dkk dΩ =

1

Ω

[∫

Ω
d

(P+V)
kk dΩ +

∫

Ω
d

(M)
kk dΩ

]

∫

Ω
d

(M)
kk dΩ = Ω(M)D

(M)
kk = 0 ... Dkk = χ2

∫

Ω(P+V)

d
(P+V)
kk dΩ = χ2D

(P+V)
kk

(4)

where Ω(P+V)/Ω = χ2. Hence, exploiting (3), one could write:

D
(P+V)
11 =

D11

χ2
+

1

2

(
1

χ2
− 1

)
D33 (5)

Due to the isochoric nature of every plastic process within a solid material, i.e. the (P) and (M) zones,
D(P) and D(M) are traceless, whereas D(P+V) does not lie in this category since it encloses a void. There-
fore,

D
(M)
kk = 0 ∴ D

(M)
11 = −D33

2
(6)

2.3 Tentative velocity field

The isochoric nature of plasticity entails that Ω(P) and Ω(M) stay constant, and the following equation sets
are analogous:

Ω(P) = cte , Ω(M) = cte ∴ d
(P)
kk = divv(P) = 0 , d

(M)
kk = divv(M) = 0 (7)

The tori obey a Gurson-like velocity field, which reads:

v(M)
r =

A

r
− B

2
r , v(M)

z = Bz

v(M)
z (H) = BD33 ∴ B = D33 , v(M)

r (L) = D11L ∴ A =
DkkL

2

2

(8)

The plugs, in the simplest-case scenario, admit the following form of vr:

v(P)
r = D

(P+V)
11 r =

1

2χ2

(
Dkk − χ2D33

)
r (9)
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Therefore, satisfying v(P)
r (R) = v

(M)
r (R) reassures a C0-order continuity along the r direction. The z-wise

velocity function should then be derived from a zero-divergence condition. Hence,

div(P) ≡ v(P)
r,r +

v
(P)
r

r
+ v(P)

z,z = 0 ∴ v(P)
z = −2D

(P)
11 z + C(r) (10)

Whilst there exist infinite solutions toC(r), the highest-order solution that can give rise to a closed-form
yield function is a constant parameter: C(r) = C0. To find this constant parameter:

v(P)
z (H) = D33H ∴ C0 = D

(P+V)
kk H =⇒ v(P)

z =
1

χ2
[Dkk(H − z) + χ2D33z] (11)

One can easily observe that the derived v(P)
z is discontinuous with respect to z. While this distribution is

contrary to reality, it proves feasible in the macroscopic scale provided the macroscopic dissipation induced
by this discontinuity is affixed to the total dissipation function. This will be further clarified in Sec. 2.4.

A more realistic velocity field is created upon higher continuity induced by a higher-order choice of
v

(P)
z . To this end, one can arbitrate the following field for v(P)

z :

v(P)
z = D33z + 2

Dkk

χ2
(H − z)

[
1−

(
r

R

)2
]

(12)

which, upon satisfaction of divv = 0, delivers the following r component:

v(P)
r =

−r
2


D33 +

Dkk

χ2

[
−2 +

(
r

R

)2
]
 (13)

2.4 Effective dissipation

Π(D), being the effective plastic dissipation, is the upper bound to the plastic power (i.e. work flow) through
the fundamental inequality of limit analysis written as:

∀D, Σ : D ≤ Π(D), Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω +
1

Ω

∫

S
sup
σ∗∈C

t∗i JviK dS (14)

which sets a variational definition of the effective yield criterion for a porous material if the velocity field
is discontinuous across an arbitrary interface S. 〈·〉Ω stands for averaging over Ω, K(D) is the set of
kinematically admissible velocity fields that are compatible with D, inf and sup, respectively, represent the
infimum and supremum over a set, and C is the microscopic reversibility domain with its boundary being
the matrix yield surface σ̄. Finally, t∗ denotes the traction acting on its corresponding interface, and JvK is
the velocity discontinuity (i.e. jump) across the same interface.

On account of a J2 flow theory, Π can be simplified into the following:

Π =
1

Ω

∫

Ω
σ̄deq dΩ , deq =

√
2

3
d : d (15)

where deq is a consequence of the velocity field associated with the infimum to the set of all kinematically
admissible volumetric averages. The simplest admissible velocity field is, indeed, close to the minimum of
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interest though it may not be the minimum itself. As such, it can be granted an infimum. With reference to
the derivations in Sec. 2.3, deq can be obtained from the following components of d:

d(P)
rr = v(P)

r,r = D
(P+V)
11

d
(P)
θθ =

v
(P)
r

r
= d(P)

rr

d(P)
zz = v(P)

z,z = −2D
(P+V)
11

∴ d(P)
eq = 2

∣∣∣D(P+V)
11

∣∣∣

(16)

in the minimum-continuity field and, by the same token,

d(P)
eq =

√
R|D33| (17)

upon higher continuity, where
R = U0 + 2U1u+ U2u

2 (18)

with u = (r/L)2, and

U0 = (ξ1 − 1)2

U1 = ξ1 + ξ2
1(δ − 1)

U2 =
13

12
ξ2

1

ξ =
Dkk

D33
, ξ1 = 2

ξ

χ2

δ =
2

3

(
λ(1− v)

χ

)2

(19)

Moreover,

d(M)
rr = v(M)

r,r = −1

2

(
Dkk

u
+D33

)

d
(M)
θθ =

v
(M)
r

r
=

1

2

(
Dkk

u
−D33

)

d(M)
zz = v(M)

z,z = D33

∴ d(M)
eq =

√
1

3

(
Dkk

u

)2

+D2
33

(20)

Therefore, the layer-wise effective dissipations will turn out as

– Minimum continuity:

Π(P) =
1

Ω(P)

∫

Ω(P)

d(P)
eq dΩ = 2

∣∣∣D(P+V)
11

∣∣∣ σ̄ (21)

Besides, the discontinuity between v(P)
z and v(M)

z promotes an additional term as stated parametrically
in (14), rewritten herein as follows:

Πsurf =
1

Ω(P)

∫

Sint

τ̄JvK dS (22)
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where τ̄ = σ̄/
√

3 is the matrix shear strength in terms of the uniaxial yield strength, and Sint is the
area of the interface connecting (P) and (M) at r = R. Then

JvKr=R =
∣∣∣v(P)
z − v(M)

z

∣∣∣
r=R

=
|Dkk|
χ2

(H − z)

∴ Πsurf =
1

πR2(H − h)

∫ H

h
τ̄JvK(2πR dz) =

w

χ2

1− c
c
|Dkk| τ̄

(23)

– Higher continuity:

Π(P) =
|D33| σ̄
1− c

∫ 1

v=c
I dv , I =

∫ 1

u=0

√
R(u) du (24)

where I is fortunately calculable analytically. Since U2 ≥ 0, the following integral will be admitted
provided the following discriminant is positive [18]:

∆ = U0U2 − U2
1 > 0 (25)

Then, the integral is expressible as follows:

I =
1

2

[
(u+ B)

√
R(u) + P ln|L|

]1

u=0
(26)

where

B =
U1

U2
=

12

13

(
1

ξ1
+ δ − 1

)

P =
U0 − U

2
1
U2√U2

=

√
12

13

1

|ξ1|

[
(ξ1 − 1)2 − 12

13

(
1 + ξ1(δ − 1)

)2
]

L =
√
U2R(u) + U2u+ U1

(27)

Note that the discriminant in (25) is absolutely positive on account of u > 0.

The overall integral in (24), however, is not solvable analytically. With the existing mathematical
tools, one can numerically estimate the integral. Alternatively, one can approximate the integral by
expressing I in terms of the average value (〈

√
δ〉Ω(P))2. See Appendix A. Note that continuity

between v(P)
z and v(M)

z is satisfied, thereby eliminating the additional surface dissipation.

Moreover,

Π(M) =
1

Ω(M)

∫

Ω(M)

d(M)
eq dΩ ≡ 1

1− χ2

∫ 1

v=0

∫ 1

u=χ2

σ̄d∗(M)
eq (u, v) dudv =

σ̄

1− χ2

∫ 1

χ2

d∗(M)
eq du (28)

The integral in Π(M) can be evaluated in exact or approximate form. The exact form is presented herein, and
its approximate counterpart will be reported in Appendix A.

Using (20), one can recast and evaluate the integral in (28) in the following form:

Π(M) =
σ̄|D33|
1− χ2

∫ 1

χ2

√(
ξ2

u

)2

+ 1 du = |ξ2|



√

1 +

(
u

ξ2

)2

− sinh−1

(|ξ2|
u

)


1

u=χ2

=
|Dkk|√

3(1− χ2)


sinh−1 (Y|ξ2|)−

√
1 +

1

(Yξ2)2




1/χ2

Y=1

(29)
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where ξ2 = ξ/
√

3, with ξ defined in (19).
Altogether, the total dissipation is the volumetric average of Π functions over the whole volume. With

cP and cT denoting the volume fractions of the (P) and (M) subvolumes, the following can be written:

Π = cP

(
Π(P) + Πsurf

)
+ cTΠ(M) , cP = χ2(1− c) , cT = 1− χ2 (30)

where Πsurf obeys (23) in the minimum continuity and Πsurf = 0 in the higher continuity fields.

2.5 Yield criterion

The nondimensional counterpart of (14), normalized with respect to σ̄D33, gives rise to the functions f and
g defined as follows:

∀ξ f(ξ) ≤ g(ξ)

where

f(ξ) =
Σ
σ̄

: D

D33
= (ξ − 1)

Σ11

σ̄
+

Σ33

σ̄

g(ξ) =
1

D33

Π

σ̄

(31)

where ξ has been defined in (19). Owing to the existence of absolute functions within g(ξ), there are,
respectively, three and two zones associated with the outcoming yield surface corresponding to the minimum
and higher-continuity fields at a frozen microstructure. In the former, there exist two straight and one curved
subsurface, which are connected through a C0 continuity level. The algebraic features of g in the minimum
and higher-continuity fields resemble other functions normalized with the same logic in [1] and [6, 13],
respectively.

(a) (b)

Figure 2: Schematized outline of the g normalized function upon the definition of (31)2, with its asymptotic behavior
at ξ −→∞: (a) upon minimum continuity, (b) upon higher continuity.

The items below describe the various subsections of the yield criterion, accompanied by figures schema-
tizing the corresponding zones on the yield locus. The schematic outline of the present g function is shown
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in Fig. 2. Note that there exists a singularity within Π and g in the higher-continuity field at ξ = 0. The
latter two functions should thus be evaluated in limit form at this point.

2.5.1 Minimum continuity

The g(ξ) function in this case is decomposed into the following terms:

g(ξ)

sgn (D33)
= (1− c)

(∣∣∣ξ − χ2
∣∣∣+

w√
3

1− c
c
|ξ|
)

+|ξ2|


sinh−1 (Y|ξ2|)−

√
1 +

1

(Yξ2)2




1/χ2

Y=1

(32)

which delivers the following first derivative with respect to ξ:

g′(ξ) = (1− c)sgn
(
ξ − χ2

)
+

sgn (ξ)√
3

(
w

(1− c)2

c
+
[
sinh−1 (Y|ξ2|)

]1/χ2

Y=1

)
(33)

The Π, and in consequence, the g function are non-differentiable at the points that renders the absolute
functions zero. There are two points with this property that are itemized below.

1. Singular (straight) zones

At the yield point (i.e. at the boundary of C), f and g should meet, but f is not allowed to cross g.
Therefore:

– At ξ = 0:

f
′
(ξ) =

Σ11

σ̄

g
′
(ξ)

sgn (D33)
= −(1− c) +

w√
3

(1− c)2

c
sgn (ξ)

(34)

Then, at the yield point, one can write:

f
′
(ξ) ≤ g′(ξ) ∴

∣∣∣∣
Σ11

σ̄
sgn (D33) + (1− c)

∣∣∣∣ ≤
w√
3

(1− c)2

c

f(ξ) = g(ξ) ∴ Σ33

σ̄
=

Σ11

σ̄
+ sgn (D33) (1− cξ2)

(35)

– At ξ = χ2:

f
′
(ξ) =

Σ11

σ̄

g
′
(ξ)

sgn (D33)
= (1− c)sgn

(
ξ − χ2

)
+

w√
3

(1− c)2

c
+

1√
3

[
sinh−1 (Y χ

2

√
3

)

]1/χ2

Y=1

(36)
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Then, at the yield point, we have:

f
′
(ξ) ≤ g′(ξ) ∴

∣∣∣∣∣∣∣∣

Σ11

σ̄
sgn (D33)− 1√

3



[

sinh−1 (Y χ
2

√
3

)

]1/χ2

Y=1

+ w
(1− c)2

c




∣∣∣∣∣∣∣∣
≤ 1− c

f(ξ) = g(ξ) ∴ Σ33

σ̄
=

Σ11

σ̄
(1− χ2) + sgn (D33)

χ2

√
3




(1− c)2

c
+


sinh−1 (Y χ

2

√
3

)−
√

1 +
3

(Yχ2)2




1/χ2

Y=1




(37)

The corresponding f and g curves as well as the zone associated with this ξ = 0 and ξ = χ2 are
schematized in Fig. 3.

(a) (b)

(c) (d)

Figure 3: (a,b) Schematized f and g functions, with its corresponding zone on a representative yield surface at the
vicinity of ξ = 0; (c,d) schematized f and g functions, with its corresponding zone on a representative yield surface
at the vicinity of ξ = χ2.

2. Regular (curved) zones
(
ξ ∈ R− {0, χ2}

)
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At any point ξ besides 0 and χ2, the dissipation function Π and, by consequence, the g function
are differentiable. The corresponding f and g curves as well as the regular zone associated with
ξ ∈ R− {0, χ2} are schematized in Fig. 4.

(a) (b)

Figure 4: Schematized f and g functions, with its corresponding zone on a representative yield surface at any real
value of ξ ∈ R− {0, χ2}.

At the yield point, the variational definition of the effective yield criterion is equivalent to the fol-
lowing relation that expresses the macroscopic stress tensor as the first derivative of the dissipation
function.

∀D Σ =
∂Π

∂D
⇐⇒ ∀ξ f

′
(ξ) = g

′
(ξ) , f(ξ) = g(ξ) (38)

Note that the total dissipation has been calculated only for the upper cell half. Accordingly, the lateral
stress quotient will be half the total lateral stress. Therefore:

Σ11 =
∂Π

∂D11
∴ Σ11

σ̄
sgn (D33) = (1− c)sgn

(
ξ − χ2

)
+

sgn (ξ)√
3

(
w

(1− c)2

c
+
[
sinh−1 (Y|ξ2|)

]1/χ2

Y=1

)

Σ33 =
∂Π

∂D33
∴ Σ33

σ̄
sgn (D33) = (1− c)(1− χ2)sgn

(
ξ − χ2

)
+ sgn (ξ)

[
w√
3

(1− c)2

c
+ (α1 − α2) + (β1 − β2)

]

(39)
where

√
3α1 = sinh−1|ξ2| ,

√
3α2 = sinh−1 |ξ2|

χ2

√
3β1 =

√
1 + ξ2

2 ,
√

3β2 =
√
ξ2

2 + χ4

(40)

The elimination of ξ is not a straight-forward process, and has thus been relegated to Appendix B.

In essence, the regular portion of the yield surface can be expressed as follows:

[
Σ33−Σ11

σ̄ + (1− c)χ2sgn (Dkk)
]2

+ 2χ2 cosh

(
√

3

[
Σ11
σ̄ − (1− c)

(
1 + w√

3
1−c
c

)
sgn (Dkk)

])
− (1 + χ2) = 0

(41)
See Appendix A for justification.
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Remark: A complete form of the sgn (D33) , sgn (Dkk) = sgn (ξ) sgn (D33) , sgn
(
Dkk − χ2D33

)
=

sgn
(
ξ − χ2

)
sgn (D33) set is a complicated piecewise function that is derived from the normality rule. How-

ever, each sign value can be simplified in the whole R or, at least, in the interval of interest. A trace through
the parametric curve of any arbitrary surface with the subparts itemized above entails that the above set of
signs, each sign considered in its own interval of interest, can be written in terms of the stress components
as follows:

sgn (D33) = sgn (Σ33) , sgn (Dkk) = sgn (Σ11) , sgn
(
Dkk − χ2D33

)
= sgn (Σ11) (42)

The complete yield criterion based on the minimum-continuity velocity field can thus be expressed as a
piecewise-continuous function Fcol = 0 as follows

Fcol =





Σ33 − Σ11

σ̄
− (1− cχ2)sgn (Σ33) for

∣∣∣∣
Σ11

σ̄
sgn (Σ33) + (1− c)

∣∣∣∣ ≤
w√
3

(1− c)2

c

Σ33 − (1− χ2)Σ11

σ̄
− χ2

√
3

sgn (Σ33)




(1− c)2

c
+


sinh−1

(
Y χ

2

3

)
−
√√√√1 +

1
(
Y χ2

3

)2




1/χ2

Y=1




for

∣∣∣∣∣∣∣
Σ11

σ̄
sgn (Σ33)− 1√

3


w (1−c)2

c +

[
sinh−1

(
Y χ2

3

)]1/χ2

Y=1




∣∣∣∣∣∣∣
≤ 1− c

[
Σ33 − Σ11

σ̄
+ (1− c)χ2sgn (Σ11)

]2

+ 2χ2 cosh


√3

[
Σ11

σ̄
− (1− c)

(
1 +

w√
3

1− c
c

)
sgn (Σ11)

]
− (1 + χ2) Otherwise

(43)
The counterpart to this equation will be provided in Appendix A.

2.5.2 Higher continuity

Inasmuch as Π is differentiable (see Fig. 2b), thereby the whole yield surface being smooth, the yield
function will be expressible in derivative form. To this end, the following fundamental derivative must be
determined first:

I,ξ1 =
1

2

[
B′
√
R+ (u+ B)R∗ + P ′ ln|L|+ PL

′

L

]1

u=0

(44)

where, with reference to the definitions in (27) and ξ1 from (19), we have:

B′ = ∂B
∂ξ1

=
−12

13ξ2
1

P ′ = ∂P
∂ξ1

=

√
12

133/2
sgn (ξ1)

[
−2(δ − 1)2 + 3− 1

ξ2
1

]

R∗ =
1

2
√
R
∂R
∂ξ1

=
13
12ξ1u

2 + [1 + 2(δ − 1)ξ1]u+ (ξ1 − 1)√
13
12ξ

2
1u

2 + 2ξ1[1 + (δ − 1)ξ1]u+ (ξ1 − 1)2

L′ = ∂L
∂ξ1

=

√
13

12
|ξ1|R∗ +

13

6
ξ1u+ [1 + 2(δ − 1)ξ1]

(45)
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which is utilized in the following relations that constitute the stress field within the plastic plugs:

Σ
(P)
11

σ̄
sgn (D33) =

2

χ2(1− c)

∫ 1

v=c
I,ξ1 dv

Σ
(P)
33

σ̄
sgn (D33) =

1

1− c

[
−
(
ξ1 −

2

χ2

)∫ 1

v=c
I,ξ1 dv +

∫ 1

v=c
I dv

] (46)

Then, according to (30), the total stress field can be expressed as

Σ11

σ̄
=

Σ
(1)
11

σ̄
+

Σ
(2)
11

σ̄

Σ33

σ̄
=

Σ
(1)
33

σ̄
+

Σ
(2)
33

σ̄

(47)

where

Σ
(1)
11

σ̄
sgn (D33) = 2

∫ 1

v=c
I dv

Σ
(1)
33

σ̄
sgn (D33) = −2(ξ − 1)

∫ 1

v=c
I,ξ1 dv + χ2

∫ 1

v=c
I dv

Σ
(2)
11

σ̄
sgn (Dkk) = α1 − α2

Σ
(2)
33

σ̄
sgn (Dkk) = β1 − β2

(48)

with the (1) and (2) superscripts pertaining to Π(P) from (24) and Π(M) from (29), respectively. Also, α1,
..., and β2 have been defined in (40). Note further that sgn (D33) and sgn (Dkk) can be expressed in terms
of the stress field from (42).

Figure 5 shows the schematic comparison between the two models derived from minimum and higher-
continuity fields. Section 4.2 elaborates on the difference between the two surfaces.

Figure 5: Schematic comparison between the yield loci accounting for necklace void coalescence based on minimum
and higher continuity fields.
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3 Cell-Model Calculations

There is a rather large cache of cell-model calculations on porous cells with the purpose of assessing the
predictive capabilities of the semi-analytical [9, 19, 20] or completely analytical flow potentials accounting
for void growth [21–23] or void coalescence [6, 7, 12, 13, 24] . The cell geometries were carried out for
either tetragonal or cylindrical cells containing either spheroidal or cylindrical voids. The calculations in
the present study are for the very same unit cell used in the development of the model, Fig. 1. The strat-
egy for authenticating the FEM calculations for the purpose of validating micromechanical models is the
application of a finite displacement under a small-strain finite element framework (with geometric nonlin-
earity deactivated), which has proven the numerical equivalent of the limit analysis theory (see [25]). As the
elastic solution almost vanishes in the limit-analysis theory, the elastic constants may be chosen arbitrarily,
and the Poisson ratio is taken close to 0.5 (ν = 0.49) to mimic an isochoric dynamic process in the plastic
regime. The typical yield strength to Young’s modulus ratio of σ̄/E = 0.0002 has also been adopted. It
is noteworthy that the FEM results tend to mimic the yield point at a fixed geometric state. Correspond-
ingly, the analyses, in spite of being evolutionary, are single-step calculations where the velocity field v is
described with the aid of a displacement field u, and thus the rate of deformation tensor D is represented by
an imposed strain tensor E.

Unlike in previous studies, since the loading and cell geometry admit an axisymmetric condition, an
axisymmetric element type is utilized in the present study, and thus the lateral projected section of the main
RVE is modeled. This scheme induces multi-fold increase in the calculation speed. More importantly, the
elaborate equations as for the imposition of quasi-periodic boundary conditions will end up being remark-
ably simpler by virtue of replacing circles with lines 2. Considering the upper half of the cell with symmetry
conditions imposed on the lateral plane, the displacement u at field point x writes

u(x) = (E + Ω).x + ũ(x) (49)

where E is the macroscopic strain tensor, Ω is the (skew-symmetric) macroscopic rotation tensor and ũ is a
periodic displacement field being the so-called periodicity vector. For any two points in periodic correspon-
dence:

∆u = (E + Ω).∆x (50)

where ∆u is the difference in displacement between the points separated by the vector ∆x. As such, the
macroscopic strain enforced on the cell is represented by the following tensor:

E = E11e1 ⊗ e1 + E33e3 ⊗ e3 =

[
E11 0

0 E33

]
(51)

where, in terms of the imposed displacements (U1, U3), we have

E11 ≡ ln

(
L

L0

)
≈ U1

L0

E33 ≡ ln

(
H

H0

)
≈ U3

H0

(52)

And, in absence of shear distortion, Ω = 0. The periodic boundary conditions (50) now read:
{

∆u1

∆u3

}
=

[
E11 0

0 E33

]{
∆x1

∆x3

}
(53)

More specifically, the displacement functions simplify to the following values for the various subparts:
2The prefix quasi- alluding to the non-space-filling nature of a cylindrical geometry. See more details in [6].
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• On the top surface, ∆u = u(x1, H)− u(x1,−H) and ∆xT = {0, 2H} so that:
{

∆u1 = 0

∆u3 = 2E33H
(54)

• On the plane Ox2x3,
u1(0, x3) = 0 (55)

• On the lateral surface (x1 = ±L, −H ≤ x3 ≤ H), the nodes lying on a projected horizontal
line should remain within a distance consistent with the prescribed value of E11. Let uref be the
displacement of some reference node on the line at some height x3, say xT = {L, x3} and ∆u =
u(x1, x3)− uref , then: {

∆u1 = E11(x1 − L)

∆u3 = 0
(56)

The ratio between the lateral and axial stresses is governed by the U1/U3 ratio. The input time step
needs to be large enough to ensure that the limit load is reached. Average remote stresses over the cell are
calculated from summation over the average stresses on all elements. Namely,

Σij =

N∑

n=1

M∑

m=1

(σij)
m
n v

m
n (57)

where N is the total number of elements, M the number of Gauss points per element (here M = 8), and
vmn = V m

n /Ω the volume fraction assigned to integration point m within element n. The components of
interest are Σ33 and Σ11.

A comprehensive explanation on the periodicity equations expressed mathematically has been reported
in Appendix B of [6]. Therein, E11 was enforced zero (after the whole set of equations were presented) to
mimic coalescence by internal necking and/or shearing. Similar calculations have been worked out by Morin
et al. [1] under triaxial loading (and by the first author of the present work under combined triaxial and shear
loading) that incorporated both void growth and coalescence by internal necking, where the microstructure
was to be chosen in such a way that internal necking be realized as the governing mechanism for strain
localization. In the present context, however, no restriction will be enacted on the microstructural parameters
nor on the U1/U3 ratio. Therefore, the localization mechanism will be governed by both the microstructural
state and the U1/U3 ratio. The only constraint exerted on the geometry is then to assure that, with the
adopted (χ,w, λ) set, the void fully fits into the unit cell. That is, the condition c < 1 should be satisfied,
where c has been defined in Sec. 2.1.

4 Results

4.1 Comparison to Gologanu et al. [16]

The model developed by Gologanu et al. [16] is an earlier-developed model considered as reference to
evaluate the predicted yield surfaces based on the present model. Unlike the present model, the former
mainly involves porosity f as a microstructural parameter. The present model based on minimum continuity
is hereby compared to its counterpart in [16], where porosity is dictated by χ through the following relation:

f =
w

λ
χ3 (58)
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Figure 6 shows the comparison between the latter and the present model based on the minimum-continuity
field for various values of porosity. The results are presented for a rather small cell aspect ratio λ = 1/3
whose effective yielding mechanism is coalescence in columns rather than in layers at larger hydrostatic
portions of the loading. The effect of microstructure on the effective yielding mechanism will be more
clearly elaborated on in Section 5.

Figure 6: Comparison between the present model predictions with those of Gologanu et al. [16] for various porosity
values and the other parameters as given.

The difference between the present and the reference models lies in the fact that the model proposed by
Gologanu et al. [16] relies on macroscopic kinematic boundary conditions regardless of the microscopic cell-
level kinematics, that are affected by microstructural geometry per se. At lower porosity levels, the present
model predicts a larger limit load at higher hydrostatic stresses characteristics of larger lateral stresses since
larger lateral loads would induce a negative axial velocity in the plugs, which demands a larger axial limit
load.

All the same, the presently predicted limit load at higher porosities is smaller than that from Gologanu et
al. [16] in that the latter considers the plug as homogeneous throughout the cell height whereas the present
model accounts for the large void spacing which gives rise to rather large porosity levels. Consequently, the
evaluated limit load would be smaller.

4.2 Effect of velocity continuity

The present section elaborates on the comparison between the models based on different continuity levels:
minimum and higher continuity fields. Figure 7 exhibits the difference between the models for various void
aspect ratios, ligament parameters, and cell aspect ratios.

520



(a) (b)

(c)

Figure 7: Comparison between yield surfaces based on minimum and higher-continuity fields: (a) for fixed (w, λ) and
various ligament parameters χ, (b) for fixed (χ, λ) and various void aspect ratios w, (c) for fixed (χ,w) and various
cell aspect ratios λ.

At low hydrostatic stresses, characteristic of mainly deviatoric loads, the predicted limit load is the
least sensitive to the velocity profile. This limit corresponds to minimal relative axial velocity between
the plugs and the torus, with the whole cell admitting minimal, albeit nonzero, expansion. All the same,
higher continuity within the axial velocity would trigger a higher limit load at larger hydrostatic stresses
representative of higher lateral stresses superposed by axial loading. This entails a larger Poisson effect
when the torus and plugs are clamped than when they act in parallel modulo minimum continuity. By the
same token, the difference between the two surfaces proves inconsequential at large χ’s and w’s as well as
small λ’s due to the Poisson effect being limited. Accordingly, the higher-continuity yield surface is a tight
lower bound to its minimum-continuity counterpart at large χ’s and w’s as well as small λ’s, and is an upper
bound thereof at smaller χ’s and w’s as well as higher λ’s. This upper bound becomes rather spuriously
large with increasingly large hydrostatic stresses in that the higher-continuity field exerts overconstraint on
the point-wise velocity gradients. As explored in the sequel, the minimum-continuity model stands closer
to numerical values, and will be thus favored over the other for assessment purposes.

Note also that the spuriously large hydrostatic stresses pertaining to χ = 0.2, w = 0.25, and λ = 3
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is indicative of coalescence in columns as an erroneous yielding mechanism. The effective mechanism
corresponding to these parameters is coalescence in layers. Section 5 further illustrates this matter.

5 Effective Yield Surface

The yield surface devised by Eq’s (43) and (47) has a large portion in proximity with the surface accounting
for void growth by way of homogeneous plasticity which are, more specifically, the planar subsurfaces of
(43) and the zones with nearly horizontal slopes in (47). However, the highly-curved subsurface is the main
matter of difference. In the minimum-continuity model, (43)3 is counterpart to the planar part signifying
coalescence in layers, i.e. with internal necking. The coalescence mechanism involves a zero increase in the
lateral strain, i.e. a zero lateral rate of deformation D11 = 0, which prompts a rigid behavior in the matrix
(M) subparts. A recent work by Morin et al. [1] expresses yielding by void growth seamlessly ensued by
coalescence in layers through a unified perspective. This model is built upon the same RVE as shown in Fig.
1 but with different kinematic boundary conditions admitted, as depicted in Fig. 8.

Figure 8: Reference volume element corresponding to the unified model, incorporating void growth via homogeneous
plasticity ensued by coalescence by way of internal necking.

This model, also termed unified, should be compared to its counterparts derived herein, (43) or (47). An
upper bound to the net yield surface for a specified microstructure will be then close to the interior surface
between the two surfaces.

Details aside (see [1] for the whole path to this model), the comparison between the two models is
well-posed through the development of the unified model upon the same ξ ratio. By letting

ζ =
1√
3

ξ

(1− c)ξ + c

, the derivations in [1] prove the following:

Πuni = cΠ(P+V) + (1− c)Π(M) + Πsurf

Π(P+V) = σ̄

∣∣∣∣(
1

c
− 1)Dkk +D33

∣∣∣∣

[
ζ sinh−1 (ζu)−

√
1

u2
+ ζ2

]1/fb

1

Π(M) = σ̄|Dkk −D33|

Πsurf = σ̄|Dkk|Σsurf , Σsurf =
σ̄

3
√

3

χ3 − 3χ+ 2

χw

(59)
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where c = χw/λ is the porous volume fraction, and fb = χ2 is the porosity within the intervoid ligament.
The porous, void, and matrix subparts are represented as depicted in Fig. 8a.

After the elimination of ξ and rearranging the unified yield surface, the following piecewise function
can be written, following the derivations carried out in [1]:

Funi =





T − (1− fb)

if

∣∣∣∣∣
Σ11
σ̄ + (1− c)

[
(1− fb) + sgn

(
−(1− c) + cT coal − Σ33−Σ11

σ̄

)]∣∣∣∣∣ ≤
tΣsurf

σ̄

T 2 + 2fb cosh
√

3

(
Σ33 − sgn (Σ33) tΣsurf

σ̄
−T

)
− (1 + f2

b) if |T | ≥ T coal

(T coal)2 + 2fb cosh
√

3

(
Σ33 − sgn (Σ33) tΣsurf

σ̄
−T coal

)
− (1 + f2

b) Otherwise

(60)
where

T =
1

c

[
Σ33 − Σ11

σ̄
+ (1− c)sgn

(
−(1− c) + cT coal − Σ33 − Σ11

σ̄

)]

(T coal)2 =
5

3
+ f2

b −
4

3

√
1 + 3f2

b

Further, tΣsurf was proposed in [6] to overcome the limitation of the unified model, at the coalescence
level, to flattened voids. The recommended calibration function t reads:

t(χ,w) =
(t0 + t1χ)w

1 + (t0 + t1χ)w
(61)

where t0 and t1 are parameters to be determined from numerical results (the choice of t0 = −0.84, t1 = 20.6
recommended in [13] is a proper one).

Since Eq’s (43) and (60) are piecewise with overlapping intervals, one proper method to evaluate the
net surface, denoting the driving failure mechanism at a microstructure, is to calculate the radius of the
yield locus within the Σ11 − Σ33 space at every value of Σ11. The innermost surface will then be that
corresponding to the minimum radius. That is:

R2
min = min{Σ2

11 + Σ2
33} ∀ Σ11 (62)

Figure 9 shows the column-coalescence and unified surfaces accompanied by the net surface for ex-
ample microstructural states. The surfaces denoting coalescence in columns are named ”column” surfaces
henceforth. homogeneous plasticity is more or less common to the two models, i.e. almost equally pre-
dicted by the two criteria. The distinction between the two yielding mechanisms can therefore be mainly
observed through the portion at the vicinity of the hydrostatic stress axis. Details aside, one can deduce that
coalescence in layers is the driving yielding mechanism except for very slim plugs (for values of χ ≤ 0.2),
flat voids (for values of w ≤ 0.5), and long cells (for values of λ > 1) whereas coalescence in columns is
the prevalent mechanism for thick plugs (for χ ≥ 0.3), elongated voids (for w > 1), and stumpy cells (for
λ ≤ 0.5). Section 6 embodies a clearer distinction between the two mechanisms at various microstructural
formations.
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(a) (b)

(c) (d)

Figure 9: Comparison between column and unified surfaces for representative microstructural configurations, and
exhibition of the net surface for each microstructure. (a,b) demonstrate the effect of increasing porosity, mainly
signified by the χ parameter. (c,d) illustrate the effect of elongated voids and shortened cells. Note that shortened
voids and elongated cells have similar effects as exhibited in (a,b).

6 Representative Yield Loci

This section comprises a comprehensive investigation on the effects induced by each microstructural param-
eter (with the other two constants kept constant) on the effective yielding mechanism. Each figure compares
the yield loci corresponding to void growth as well as void coalescence in layers anc columns, the innermost
of which is the predicted effective mechanism. All curves are compared to their FEM counterparts calcu-
lated in accordance with Section 3. To this end, the portion with large Σm values is the main distinctive
zone which exhibits the main difference between various localization schemes: in columns or in layers,
whichever occurs sooner. Homogeneous plasticity ensued by plastic localization in layers is accounted for
by the unified model, whereas that signifying plasticity localized in columns is represented by Eq. (43). The
latter loses the upper-bound character at limited ranges of microstructural parameters but is generally closer
than its higher-order peer in (47) to numerical values. Figure 10 demonstrates the effects induced by every
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microstructural parameter on the effective yield surface.

(a) (b)

(c)

Figure 10: Effects induced by variation of microstructural parameters on the yield loci representing homogeneous
plasticity ensued by coalescence in layers (denoted with the unified model) as well as plasticity localized in columns
(denoted with the column model): (a) effect of ligament parameter χ; (b) effect of void aspect ratio w; (c) effect of
cell aspect ratio λ. Note that the choice of a large λ in (b) lies in the ability to pick a wider range of w without the
ligament aspect ratio exceeding unity, i.e. c < 1.

While the figures entail attentive examination, it can be conveniently observed that changing the χ
or w variable from small to large values (while the rest are kept fixed) would transfer the driving yielding
mechanism from layered into column coalescence. Incidentally, for large values of χ andw, the two yielding
mechanisms occur almost synonymously while coalescence in layers is triggered slightly sooner, and vice
versa. For cell aspect ratios well below unity (λ < 1), however, coalescence in columns is clearly preferred
with significant distance between the two predicted mechanisms.

Moreover, the present model accounting for column coalescence violates the upper-bound character
[2] at very large values of χ and w as well as for small values of λ. In particular, with χ approaching
unity, both (43) and (60) violate this character. This is rooted in the idealized choice of velocity fields that
predict yielding at lower stress states. However, the predicted driving mechanism is both qualitatively and
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quantitatively (except for χ −→ 1) well commensurate with the FEM outcomes.
Above all, λ induces an opposite effect on the driving yielding mechanism compared to χ and w being

varied. That is, changing λ from small to large values (while the rest are constant) would transfer the
driving yielding mechanism from column into layered coalescence. Further, the effect of the cell aspect
ratio λ is more remarkable when plasticity is localized in columns whereas it bares almost no effect on
void coalescence occurring in layers. Thereupon, the points exhibiting FEM results for λ = 5 have been
identified with solid circles in order to be more easily distinguishable from those pertaining to λ = 1 since
they stand on the same slanted line denoting coalescence in layers.

A deeper insight into the driving yielding mechanism can be acquired through the following velocity
vector plots for each microstructural state exemplified in Fig. 10. These vector plots exclusively belong to
the distinctive portion of the loci at the vicinity of the Σm axis. Note that, for the sake of better clarity in
the localization of deformations, the plastic strains are highly cut off with respect to the elastic lower bound
such that the highly plastic regions are mainly visible. Moreover, a logarithmic scale has been employed in
the contours to better showcase the spatial variation of plastic strains. This allows for better distinguishing
of the driving yielding mechanism.

Remark: As revealed by Fig. 11(c,f,i), the plugs enclosing the voids need not undergo significant plastic
deformation for the mechanism to be accounted column-like coalescence. Rather, what dictates the driving
yielding mechanism it is the major direction along which the strains become localized, notwithstanding
there may exist larger plasticity zones within the unit cell. Meanwhile, a complete examination of FEM
results at fixed microstructural states reveals some additional yielding mechanisms that emerge from a full
trace of the stress state on the yield surface. The reader is well-advised to see Appendix C in this regard.

7 Concluding Remarks

An all-inclusive investigation was probed into micromechanical modeling of ductile fracture by void coa-
lescence in columns, i.e. necklace coalescence in competition to coalescence in layers by internal necking.
The model accounting for coalescence in columns was developed based on homogenization on the same
unit cell employed to predict void growth succeeded by coalescence in layers, termed the unified model
as advanced in a recently-reported work [15]. Yet, the plastic deformation was structured according to
a different framework so as to mimic the true material behavior under plasticity mainly localized within
the plastic plugs circumscribing the void, thus its name column-like coalescence. The model is endowed
with the involvement of geometrically unique microstructural descriptors, and was successfully compared
to previously predicted values from Gologanu [17] as well as to their FEM counterparts from the present
study. The FEM outcomes were results to single-step cell-model calculations with a nearly-isochoric plastic
process controlled by remotely prescribed normal and lateral strains. Various yield surfaces were plotted
demonstrating the effects of variation in the ligament parameter χ as well as void and cell aspect ratios,
w and λ, respectively. At each case, the two yield surfaces ensued by coalescence in layers and columns,
as well as the effective surface (the innermost of the two) were compared to one another and to their FEM
counterparts. The driving mechanism was observed to be fully determined by the microstructural state. That
is, the effective yielding mechanism is void growth followed by coalescence in layers for smaller χ’s and
w’s as well as for larger λ’s. It would tend towards coalescence in columns when χ approaches 1, w is well
above 1, and also when λ is well below 1. Among all, the effect of λ is more remarkable in the distinction
between coalescence in layers and columns.

Aside from that, special plasticity mechanisms were visualized through the course of plastic deformation
prior to void coalescence in layers or columns. These comprise void growth associated with stagnation in
the radial velocity between the radial bounds of the void, as well as vertically-localized plasticity associated
with stagnation in the vertical velocity. The latter could lead to a particular phenomenon here termed void
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Velocity vector plots for the microstructural parameters exemplified in the Fig. 10 plots: (a–c) varying
values of χ from small to large, admitting coalescence ranging from layered to column-like (occurring in approximate
simultaneity with the layered scheme); (d–f) varying values of w from small to large, inducing a similar effect to
that of χ; (g–i) varying values of λ from small to large, admitting coalescence ranging from column-like (almost
simultaneous with layered) to purely layered.
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collapse if the stagnation point approaches a zero height.
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Appendix A Approximate Yield Criterion

A.1 Minimum continuity

Following the scheme suggested in [20], also utilized in [6, 13], one can write:

Π(M) ≈ σ̄

√√√√1

3

(
1

1− χ2

∫ 1/χ2

1

Dkk

u
du

)2

+D2
33 = σ̄

√√√√1

3

(
ln (1/χ2)

1− χ2

)2

D2
kk +D2

33 (A-1)

which loses the upper-bound character and yet stays close to the rigorous upper-bound of the function.
Correspondingly, the g(ξ) function, as defined in (31), is decomposed into the following terms:

g(ξ) = sgn (D33)


(1− c)

(∣∣∣ξ − χ2
∣∣∣+

w√
3

1− c
c
|ξ|
)

+

√
1

3

(
ln

1

χ2

)2

ξ2 + (1− χ2)2


 (A-2)

Following the same rationale expounded in Section 2.5, the subsurfaces of the yield surface can be
derived as follows:

1. Singular (straight) zones

– At ξ = 0:

f
′
(ξ) =

Σ11

σ̄

g
′
(ξ)

sgn (D33)
= −(1− c) +

w√
3

(1− c)2

c
sgn (ξ)

(A-3)

which is identical to (34). Then, at the yield point, one can write:

f
′
(ξ) ≤ g′(ξ) ∴

∣∣∣∣
Σ11

σ̄
sgn (D33) + (1− c)

∣∣∣∣ ≤
w√
3

(1− c)2

c

f(ξ) = g(ξ) ∴ Σ33

σ̄
=

Σ11

σ̄
+ sgn (D33) (1− cξ2)

(A-4)

which is identical to (35).
– At ξ = χ2:

f
′
(ξ) =

Σ11

σ̄

g
′
(ξ)

sgn (D33)
= (1− c)sgn

(
ξ − χ2

)
+

w√
3

(1− c)2

c
+

1
3

(
ln 1

χ2

)2
ξ2

Q

(A-5)

where Q =

√
1
3

(
ln 1

χ2

)2
ξ2 + (1− χ2)2. Then, at the yield point, we have:

f
′
(ξ) ≤ g′(ξ) ∴

∣∣∣∣∣∣∣∣∣

Σ11

σ̄
sgn (D33)−




1
3

(
ln 1

χ2

)2
χ2

R1
+

w√
3

(1− c)2

c




∣∣∣∣∣∣∣∣∣
≤ 1− c

f(ξ) = g(ξ) ∴ Σ33

σ̄
=

Σ11

σ̄
(1− χ2) + sgn (D33)

[
Q+

wχ2

√
3

(1− c)2

c

]
(A-6)
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2. Regular (curved) zones
(
ξ ∈ R− {0, χ2}

)

According to the parametric representation of the yield surface:

Σ11

σ̄
sgn (D33) = (1− c)sgn

(
ξ − χ2

)
+

w√
3

(1− c)2

c
sgn (ξ) +

1
3

(
ln 1

χ2

)2
ξ

Q

Σ33

σ̄
sgn (D33) = (1− c)(1− χ2)sgn

(
ξ − χ2

)
+

w√
3

(1− c)2

c
sgn (ξ) +

1
3

(
ln 1

χ2

)2
ξ + (1− χ2)2

Q
(A-7)

where Q(ξ) =

√
1
3

(
ln 1

χ2

)2
ξ2 + (1− χ2)2.

In the interest of eliminating ξ from (A-7), let

X1 =
ξ

R , X2 =
1

R ∴ ξ =
X1

X2

Then, (A-7) can be recast by the following form:

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On the other hand, from (39), with ξ andR inserted in terms of (X1,X2), one can write:

(X1

X2

)2
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3

(
ln 1

χ2

)2

[
1

X 2
2

− (1− χ2)2

]
∴ 1

3

(
ln

1

χ2

)2

X 2
1 + (1− χ2)2X 2

2 = 1 (A-9)

which, in combination with (A-8), leads to the following expression pertaining to the regular portion:

3


 Σ̄1/σ̄

ln 1
χ2




2

+

(
Σ̄2 − Σ̄1

σ̄

)2

− 1 = 0 (A-10)

where

Σ̄1

σ̄
=

Σ11

σ̄
sgn (D33)− (1− c)

[
sgn
(
ξ − χ2

)
+

w√
3
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[
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(
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)
+
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c

sgn (ξ)

]

The complete approximate yield function based on the minimum-continuity field can thus be expanded
as the following piecewise-continuous function:
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Fcol =



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where
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√
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Figure A-1 shows the comparison between the two surfaces various void aspect ratios, ligament param-
eters, and cell aspect ratios.
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(a) (b)

(c)

Figure A-1: Comparison between minimum-continuity yield surfaces based on exact and approximate integrations:
(a) for fixed (w, λ) and various ligament parameters χ, (b) for fixed (χ, λ) and various void aspect ratios w, (c) for
fixed (χ,w) and various cell aspect ratios λ.

A.2 Higher continuity

Following the scheme suggested in [20], one can approximate Π(P) in (24) by replacing I with Ī constituted
by (〈

√
δ〉Ω(P))2. That is

Π(P) ≈|D33| σ̄Ī (A-12)

with the terms identical to those in (27) except for U1, which is replaced by Ū1 equaling

Ū1 = ξ1 + ξ2
1

[(
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= ξ1 + ξ2

1

[
1

6

(
λ(1− c)

χ

)2

− 1

]
(A-13)

where use has been made of 〈
√
δ〉Ω(P) reading

〈
√
δ〉Ω(P) =

√
2

3

λ

χ

(
1

1− c

∫ 1

c
v dv

)
=
λ

χ

1− c√
6
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Correspondingly, the counterpart to (46) becomes:

Σ
(P)
11

σ̄
sgn (D33) =

2

χ2
Ī,ξ1

Σ
(P)
33

σ̄
sgn (D33) =

[
−
(
ξ1 −

2

χ2

)
Ī,ξ1 + Ī

] (A-14)

Then, according to (30), the total stress field can be expressed identically to that in (47), with the fol-
lowing components:

Σ
(1)
11

σ̄
sgn (D33) = 2Ī

Σ
(1)
33

σ̄
sgn (D33) = −2(ξ − 1)Ī,ξ1 + χ2Ī

(A-15)

with Σ
(2)
11 and Σ

(2)
33 identical to those in (48).

Appendix B Elimination of ξ from (39)

In the ξ ∈ R − {0, χ2} region where Π is differentiable, the latter can be recast in terms of D33 and Dkk,
here termed Π∗(Dkk, D33), which delivers the following auxiliary stresses:

Σ∗1 =
∂Π

∂Dkk
= sgn (D33) sgn (ξ) (α1 − α2)

Σ∗2 =
∂Π

∂D33
= sgn (D33) (β1 − β2)

(A-16)

where ∂Π∗/∂Dkk is carried out on the condition of D33 remaining fixed, and vice versa. Moreover, one can
write, by exploiting the cosh of a subtraction in (A-16)1:

cosh

(√
3sgn (Dkk)

Σ∗1
σ̄

)
=

β1β2 − ξ2
2

χ2
∴ χ2 cosh

(√
3sgn (Dkk)

Σ∗1
σ̄

)
= 1− sgn (D33)β1

Σ∗2
σ̄

(A-17)

where use has been made of Eq’s (40) and that sgn (D33) sgn (ξ) = sgn (Dkk). Therefore, ξ2 can be
eliminated from (A-17) and (40) combined:

ξ2
2 =




1− χ2 cosh
(√

3sgn (Dkk)
Σ∗1
σ̄

)

Σ∗2
σ̄




2

− 1 (A-18)

Moreover, exploiting sinh of a subtraction in (A-16)1, together with (40), gives:

sinh

(√
3sgn (Dkk)

Σ∗1
σ̄

)
=
|ξ2|
χ2

sgn (D33)
Σ∗2
σ̄

(A-19)

Finally, the following identity, combined with Eq’s (A-17) and (A-19), together with (40), supplies the
following Gurson-like relation between Σ∗1 and Σ∗2:

cosh2

(√
3sgn (Dkk)

Σ∗1
σ̄

)
− sinh2

(√
3sgn (Dkk)

Σ∗1
σ̄

)
= 1 ∴ (β1β2 − ξ2

2)2 − ξ2
2(β2 − β1)2 = χ2

∴
(

Σ∗2
σ̄

)2

+ 2χ2 cosh

(√
3sgn (Dkk)

Σ∗1
σ̄

)
− (1 + χ2) = 0

(A-20)
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where the sgn (Dkk) inside the cosh term can be removed for being ineffective.
It now suffices to express Σ∗1 and Σ∗2 in terms of Σ11 and Σ33 so as for Eq. (A-20) to relate the latter two

stresses. To this end, one can refer to (A-16) and (39) simultaneously, so that

Σ∗1
σ̄

=
Σ11

σ̄
− (1− c)

(
1 +

w√
3

1− c
c

)
sgn (Dkk)

Σ∗2
σ̄

=
Σ33 − Σ11

σ̄
+ (1− c)χ2sgn (Dkk)

(A-21)

Appendix C Special Mechanisms

While the yield locus around the Σ33 − Σ11 intercept conveys the way strains localize at the failure in-
stant, there exist particularly appealing plasticity mechanisms within the dynamic process during the pre-
localization regime. This section tends to probe into these mechanisms through depicting the velocity vector
plots at the bottom and top portions of each yield locus examined in Sec. 2.5. The bottom portion of a locus
denotes when the lateral stress is either the major one (Σ11 > Σ33) or has limited difference with the axial
stress. The top portion, however, represents the converse. Altogether, the special mechanisms of plastic flow
during the pre-localization phase can be categorized as follows:

– During void growth ensued by coalescence in layers:

In the top half of the surface, there exists a zone associated with a stagnation within the radial velocity
component vr. At the stagnation radius, the deformation is mainly elastic with limited plasticity. This would
reduce the plastic region mainly up to the radius of stagnation, and hence the effective RVE will have the
same height with but a smaller radius than the whole cell. At the limit of coalescence in layers, the stagnation
radius turns into the radius of the cell.

– During void growth ensued by coalescence in columns:

All the same, in the bottom half of the surface, there exists a zone associated with a stagnation within
the vertical velocity component vz . At the stagnation height, the deformation is mainly elastic with limited
plasticity. This would reduce the plastic region mainly up to the height of stagnation, and hence the effective
RVE will have the same radius with but a smaller height than the whole cell. At the zone of coalescence in
columns, the stagnation height reduces to zero, and a highly-sheared zone forms between the plugs and the
torus. This phenomenon can be termed void collapse. The condition upon which void collapse can occur is
set forth by the following relationship between the lateral and axial stresses:

Σ33 − Σ11 < 0 , Σm > 0

=⇒ 2Σ11 > −Σ33 ≡ |Σ33| ∴ |Σ33| < 2|Σ11|
(A-22)

The various conditions stated above are schematized in Fig. A-2.
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Figure A-2: Schematic special flow mechanisms with their corresponding velocity vectors: (a,b) radial stagnation
during void growth ensued by layered coalescence in the top portion of the yield surface (with the axial stress being the
major one); (c,d) vertical stagnation during void growth ensued by column coalescence (void collapse) in the bottom
portion of the yield surface (with the lateral stress being the major one).

The trend of realizing the above special mechanisms through variation of each microstructural parameter
can be described according to the following trends:

C.1 Variation of χ

Let’s focus on small to medium values of χ first. Within a very slight variation in Σm in the bottom portion
of the yield surface, the vertical velocity slope will shift from continuous (denoting homogeneous plasticity)
to discontinuous, and a stagnation point will appear in vz . This can be attributed as void collapse when the
height of stagnation shrinks to zero, that can be envisaged at higher χs. On the top portion, however, the
stagnation will be triggered in vr, characterized by homogeneous plasticity (void growth) which is ensued
by coalescence in layers. At large values of χ, void collapse occurs at significantly lower values of Σm,
and plasticity will proceed in homogeneous manner for larger mean stresses. The top portion of the yield
surface will behave similarly to that of small to medium χs. Since, with slight decrease in Σm, the height
of stagnation in vz drops towards zero in thin plugs, void collapse has more inclination to occur with larger
voids, i.e. at greater χs, and nonetheless, less likely to happen in smaller cells (with less χs) due to the
opposite reason. Figure A-3 demonstrates that via velocity vector plots.

C.2 Variation of w

Evolution of the void aspect ratio w is entitled to the same special mechanisms. However, the transition
from a continuous vz into that with stagnation occurs at a wider range of Σm from larger to smaller Σm
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values, especially at larger values of λ. Moreover, void collapse at larger ws is not as intense as that in larger
values of χ due to the plastic torus being more bulky. Moreover, on the top portion, the stagnation triggered
in vr (characterized by homogeneous plasticity ensued by coalescence in layers) occurs in larger ws but not
likely to be realized at very large ws, e.g. w = 10. Figure A-4 demonstrates that via velocity vector plots.

C.3 Variation of λ

Variation of the cell aspect ratio λ correlates with the same special mechanisms. Resembling that in small
to medium ws, the transition from a continuous vz into that with stagnation occurs at a rather wide range
of Σm from larger to smaller Σm values. It sounds more appealing that vertical velocity stagnation takes
place even in very thin plugs, i.e. at long voids and short cells (see Fig. A-5b). Since, with limited decrease
in Σm, the height of stagnation in vz drops towards zero in thin plugs, void collapse is more propensive to
occur in short cells, i.e. at small λs, and all the same, less prone to happen in long cells due to the converse
reason. Figure A-5 depicts special flow mechanisms at various λs via velocity vector plots.
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(a) (b)

(c) (d)

(e) (f)

Figure A-3: Velocity vector plots signifying special flow mechanisms at small-to-medium and large ligament pa-
rameters, accompanied by their corresponding neighborhoods on the yield surfaces: (a,b) and (d,e) bottom portions
of the yield surface for small and large χs with continuous and discontinuous vertical velocity gradients, the latter
denoting column coalescence; (c) and (f) top portions of the yield surface for small and large χs with discontinuous
radial velocity gradients. Void collapse is observed at (d) when the stagnation height approaches zero.
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(a) (b)

(c) (d)

(e) (f)

Figure A-4: Velocity vector plots, accompanied by their corresponding neighborhoods on the yield surfaces, showing
special flow mechanisms at various void aspect ratios: (a,b) bottom and top yield surface portions for small and
medium ws; (c,d) bottom and top portions of the yield surface for large ws; (e,f) bottom and top portions of the yield
surface for very large ws, void collapse being observed in the former.
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(a) (b)

(c) (d)

(e) (f)

Figure A-5: Velocity vector plots signifying special flow mechanisms at small-to-medium and large cell aspect
ratios, accompanied by their corresponding neighborhoods on the yield surfaces: (a,b) and (d,e) bottom portions of the
yield surface for small and large λs with continuous and discontinuous vertical velocity gradients, the latter denoting
column coalescence; (c) and (f) top portions of the yield surface for small and large λs with discontinuous radial
velocity gradients. Void collapse is observed at (d) when the stagnation height approaches zero.
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