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ABSTRACT

Nanostructured materials and topological materials have many unique and fascinating elec-

tronic and optical properties. In this dissertation, we explore the optics in those new materials

from three aspects: 1. Optical properties of Weyl semimetals, a novel topological material recently

observed in experiments, in a strong magnetic field. Our results show that the magneto-polaritons

in Weyl semimetals have peculiar properties, such as hyperbolic dispersion, photonic stop bands,

coupling-induced transparency, and broadband polarization conversion. 2. Superfluorescence in

quasi one-dimensional structures, carbon nanotubes. We show that due to the enhanced density of

states and confinement of electrons in nanotubes, superfluorescence could be achieved with high

enough pumping. This result indicates potential application of carbon nanotubes as effective radia-

tive emitter. 3. Purcell enhancement in subwavelength quasi two-dimensional materials. We use

Heisenberg-Langevin approach which includes dissipation and fluctuation in both the fermionic

ensemble and the electromagnetic field. We develop a general formalism and derive analytical

expression for spontaneous emission and parametric down-conversion in such systems.
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1. INTRODUCTION

1.1 Optics of nanostructures and topological materials

Optics have always been an essential tool for human beings to understand the world, from daily

activities way before the formation of civilization, to all aspects of scientific research nowadays.

Thanks to the development of fundamental theories and novel materials, we are able to build more

and more powerful optical engineering devices, to perceive and manipulate the world in a much

deeper and finer way. We are even able to observe and control chemical reactions on the femtosec-

ond time scale [1, 2], or perform quantum computing with the manipulation of single photon [3].

That is the reason that research of interaction between light and materials is both fascinating and

significant.

Topological materials are one of the most fascinating novel materials. Topology is a mathemat-

ical term describing some spatial properties unchanging under the continuous variation of shapes

or sizes. For Topological materials, their bulk states have different topological invariants. There

are many unique electronic and optical properties arising from these topological invariants: such

as quantum spin hall effect [4], topological magneto-electric effect [5], Kerr effect and Faraday

rotation.

In chapter 2, we discuss the magetic optical properties of topological materials — Weyl semimet-

als [6]. Weyl fermions were brought up by Herman Weyl in 1929 [7]. A relativistic particle can be

described by the Dirac Hamiltonian

H = pxαx + pyαy + pzαz +mβ. (1.1)

Here α and β are Dirac matrices. When the particle is massless, this four components Dirac spinor

could be reduced to a pair of two components spinors, namely Weyl fermions. The corresponding

Hamiltonian is

H = χvF~p~σ. (1.2)

1



Here χ is the chirality index, ~σ is the Pauli matrix vector, vF represents the isotropic electron

dispersion, energy E = ±|vF~p|.

Weyl fermion has not been found as an elementary particle in high energy experiments. How-

ever, in some semiconductor materials, there are band touching points that could be described by

the Weyl equation. Only recently, quasiparticles near these touching points with low excitation

energy were studied extensively and proved to behave like Weyl Fermions [8]. Those materials are

called Weyl semimetals (WSMs).

WSMs have unusual electronic and transport properties originating from the nontrivial topol-

ogy of the Brillouin zone [9, 10, 11], such as topologically protected surface states (Fermi arcs), the

non-conservation of the chiral charge in parallel electric and magnetic fields (the chiral anomaly),

and the resulting anomalous magneto-resistance [12, 13, 14]. In this dissertation, we focus on

the optical response of chiral Weyl fermions in a strong magnetic field, when the electron mo-

tion transverse to the field becomes quantized. We start with the Hamiltonian, band gaps and

wavefunctions of WSMs. Then we derive its dielectric tensor from interband and intraband transi-

tions. After that, we explore the dispersion and propagation of EM waves in WSMs. Results show

that hybridization of magneto-plasmons with electromagnetic waves in WSMs leads to fascinating

optical phenomena involving magnetopolaritons: hyperbolic dispersion, the absence of Landau

damping for strongly localized excitations, photonic stop bands, coupling-induced transparency,

efficient polarization conversion, and pulse compression, to name a few.

Nanostructured materials is another category of fascinating novel materials. Comparing to

conventional materials, the distinctive feature of nanomaterials is that they have nanoscale struc-

tures. These materials could be found in nature (graphene, photonic crystals), or be artificially

fabricated (carbon nanotubes, fullerenes, quantum wells, ceramic nanoparticles, semiconductor

quantum dots). This feature affects the optical properties of these materials in two aspects: quan-

tum confinement and quantization of the charged quasi-particle motion resulting in unique optical

response [15, 16], and the subwavelength scale of waveguide or cavity modifying the interaction

between resonating light and active medium [17, 18]. The research of optics in nanostructured ma-
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terials is quite broad. In this dissertation, we are focused on the superfluorescence of single wall

carbon nanotubes (SWCNT), which has unique optical response due to first aspect, and Purcell

effect in two-dimensional materials, due to the second aspect.

In chapter 3, we show that superfluorescence could be generated with enough excitation in

SWCNTs. SWCNTs are quasi one-dimensional structures of fullerene family. Their electronic

and photonic properties are very sensitive to its diameters and chirality. They could be either

metallic or semiconducting material with band gaps ranging from zero to several eV. Besides,

semiconducting SWCNTs has enhanced density of states at band edges, which makes them very

promising in applications of optoelectronic devices [19, 20, 21]. However, when SWCNTs are

used as radiative emitter for lasing, it’s not as efficient as people would expect. Time-resolved

pump-probe spectroscopy [22, 23] shows that SWCNTs have multi-exponential behavior of the

decay of photoluminescence: a fast non-radiative decay and a slow radiative decay. But this is only

in conventional laser regime. In superfluorescence formalism, if the growth rate of field is larger

than the dephasing rate, the radiative decay would be significantly enhanced. In this chapter, we

calculate SWCNTs’ optical response numerically with Semiconductor Bloch equations. Results

show that with high enough excitation, the growth rate of the field in SWCNTs will exceed the

dephasing rate, and thus make the radiative decay process as the dominant process in the decay of

photoluminescence.

In chapter 4 and chapter 5, Purcell enhancement of spontaneous emission and parametric down-

conversion in subwavelength quasi two-dimensional materials have been discussed [24, 25]. Pur-

cell effect refers to the enhancement of radiative process due to the localization of emitters in a

subwavelength cavity. In cavity quantum electrodynamics, Purcell effect has been explained as the

result of enhanced density of final states for the transition process. According to Fermi’s golden

rule, the transition rate is proportional to the density of final states. However, when there is strong

dissipation and fluctuation in the cavity, we need to use a more consistent quantum electrodynam-

ics (QED) approach. In this dissertation, we use QED Heisenberg-Langevin equations to describe

the radiative process including strong dissipation and fluctuations in both the electron ensemble in

3



active medium, and in the electromagnetic field in a subwavelength cavity. In chapter 4, we applied

this formalism for spontaneous emission in a subwavelength quasi two-dimensional waveguide. In

chapter 5, we applied the same formalism to both spontaneous and stimulated parametric down-

conversion. We have derived a general framework and convenient analytic expressions for such

radiative process in a subwavelength quasi 2D system.
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2. MAGNETO-POLARITONS IN WEYL SEMIMETALS IN STRONG MAGNETIC FIELD ∗

2.1 Introduction

Weyl semimetals (WSMs) have unusual electronic and transport properties originating from the

nontrivial topology of the Brillouin zone [1, 2, 3]. They have been studied experimentally, mostly

with angle-resolved photoemission spectroscopy; e.g. [4, 5, 6]. The most intensely studied phe-

nomena include topologically protected surface states known as Fermi arcs, the chiral anomaly, or

the non-conservation of the chiral charge in parallel electric and magnetic fields, and the resulting

anomalous magnetoresistance [7, 8, 9, 10]. Optics of WSMs received relatively less attention so

far. Far-infrared optical spectroscopy studies of TaAs without the magnetic field have been recently

reported [11]. The conductivity, magnetoplasmons, and polaritons in a magnetic field were calcu-

lated recently in quasiclassical approximation [12, 13, 14, 15, 16, 17, 18]. The strong-field optical

conductivity was calculated in [19]. Here we concentrate on the wave propagation in WSMs in

a strong magnetic field, when the electron motion transverse to the field becomes quantized. We

show that hybridization of magnetoplasmons with electromagnetic (EM) waves in WSMs leads to

fascinating optical phenomena involving magnetopolaritons: hyperbolic dispersion, the absence of

Landau damping for strongly localized excitations, photonic stop bands, coupling-induced trans-

parency, efficient polarization conversion, and pulse compression, to name a few. We show that

optical spectroscopic techniques provide a straightforward and “clean” way of detecting topologi-

cal properties of low-energy electron states and in particular the chiral anomaly. Moreover, WSMs

show strong promise for future photonic chips enabling a wide array of broadband optoelectronic

applications, such as polarizers, modulators, switches, and pulse shapers for mid-infrared through

terahertz wavelengths.

∗Reprinted with permission from "Magnetopolaritons in Weyl Semimetals in a Strong Magnetic Field" by Zhongqu
Long, Yongrui Wang, Maria Erukhimova, Mikhail Tokman, and Alexey Belyanin, 2018. Physical Review Letters, 120,
037403. Copyright 2018 by American Physical Society.
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2.2 Dielectric tensor for a WSM in a magnetic field

We consider the material which has only one pair of Weyl nodes for simplicity, with low-energy

excitations around each node described by the Weyl Hamiltonian,

H = χh̄vFσk. (2.1)

Here χ = ±1 is the chirality index, σ is a 3D vector of Pauli matrices, k is the 3D quasimomen-

tum of electrons counted from the Weyl node, and we assumed an isotropic electron dispersion

(scalar constant vF ). In a strong magnetic field oriented along z axis the 3D conical spectrum of

quasiparticles near each node is split into Landau-level (LL) subbands Wn labeled by the quantum

number n:

Wn = sgn(n)h̄vF

√
2|n|
l2b

+ k2
z for n 6= 0, (2.2)

W
(χ)
0 = −χh̄vFkz (2.3)

where lb =
√

h̄c
eB

is the magnetic length. The electron wavefunctions are given in [20]. We assume

that the field is strong enough so that W1 −W0 at kz = 0 is much larger than the LL broadening

determined by disorder.

The salient feature of the electron spectrum is the presence of chiral electron states with 1D

linear dispersion at n = 0 LL. The n = 0 electrons near each node are able to move only in one

direction, depending on the sign of χ and neglecting internode scattering. The majority of peculiar

optical properties of WSMs originates from the response of these electron states and its interplay

with inter-LL transitions.

The dielectric tensor for chiral fermions in WSMs has a general structure typical for a magne-
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tized electron-hole plasma:

εij =


ε⊥ ig 0

−ig ε⊥ 0

0 0 εzz

 (2.4)

where i, j = x, y, z. However, the expressions for its components and the resulting optical response

are far from typical. Consider first the longitudinal component εzz = εb + 4πiσzz/ω where εb is the

background dielectric constant of a crystal. The conductivity σzz can be found by calculating the

linear response to the longitudinal field Ez = Re[Eeiqzz−iωt]. It is convenient to define the optical

field through the scalar potential φ = Re[Φeiqzz−iωt] as E = −iqzΦ. We will assume for simplicity

that the Fermi energy for each chirality is between n = −1 and n = 1 and the temperature is low

enough so that the states with n 6= 0 are either completely filled or empty. The general result for an

arbitrary position of the Fermi level is given in [20]. Note also that for the longitudinal field E‖B

the transitions between the Landau levels are forbidden in the electric dipole approximation. The

resulting linearized density matrix equation for the density matrix elements ρ(χ)
kk′ for each chirality

is

− iωρ(χ)
kz ,k′z

+ i
W

(χ)
0 (kz)−W (χ)

0 (k′z)

h̄
ρ

(χ)
kz ,k′z

= − i
h̄
eΦ〈

n = 0, kz|eiqzz|n = 0, k′z
〉 [
f

(χ)
0 (kz)− f (χ)

0 (k′z)
]
, (2.5)

where f (χ)
0 (kz) are populations at n = 0 unperturbed by the optical field and we neglected relax-

ation, which will be added later. The matrix element in Eq. (2.5) is calculated using the electron

states in a magnetic field [20]; it is equal to the delta-function δkz−qz ,k′z . The solution of Eq. (2.5)

in the limit kz � qz is

ρ
(χ)
kz ,kz−qz =

ieE
ω − χqzvF

∂f
(χ)
0 (kz)

h̄∂kz
. (2.6)

The complex amplitude of the Fourier component of the electric current jz = ReJ̃eiqzz−iωt is given
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by

J̃ =
∑
kz ,χ

(jz)
(χ)
kz−qz ,kz ρ

(χ)
kz ,kz−qz , (2.7)

where the matrix element of the spatial Fourier component of the current is

(jz)
(χ)
k′z ,kz

= −e
〈
n = 0, k′z|e−iqzzχvFσz|n = 0, kz

〉
(2.8)

and the sum can be replaced by integration. The resulting longitudinal component of the conduc-

tivity tensor is

σzz =
ie3BvFω

2π2h̄2c

1

ω2 − q2
zv

2
F

, (2.9)

where the B-dependence appeared due to the density of states in a quantizing magnetic field. The

longitudinal dielectric tensor component therefore takes the form

εzz = εb − ω2
p/(ω

2 − q2
zv

2
F ). (2.10)

This result can be also obtained from the kinetic equation [20]. This expression has several peculiar

features. First, since the electrons at n = 0 can move only in one direction with the same velocity

vF , they cannot bunch in the velocity space and there is no Landau damping. Mathematically, the

Landau damping emerges due to contribution from the pole in the integral over electron momenta

in the linear conductivity. However, in our case there is no pole in the integral in Eq. (2.7) since

the denominator in Eq. (2.6) does not depend on the electron momentum.

Second, the effective plasma frequency in Eq. (2.10) does not depend on the electron density:

ω2
p =

2α

π

eBvF
h̄

, where α =
e2

h̄c
; see also [9, 12]. In the limit of a uniform electric field qz = 0

Eq. (2.9) immediately gives the chiral anomaly. Indeed, if only n = 0 electrons are involved,

the chiral current jchir = ∂[N (χ=+1) − N (χ=−1)]/∂t is related to the charge current in a uniform

but time-dependent field E‖B as ∂jz/∂t = −evF jchir. This gives the chiral anomaly current

jchir = −e2EB/(2π2h̄2c), in agreement with previous results; see e.g. [2, 3] for review.
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2.3 The dispersion equation and propagation

2.3.1 The dispersion equaiton

EM waves incident on a magnetized WSM propagate as eigenmodes that can be called magneto-

polaritons. They are the solutions of Maxwell’s equations for plane waves with the dielectric tensor

from Eq. (2.4). For the photon wave vector q in the (xz)-plane making an angle θ with the mag-

netic field direction along z-axis, they can be written as


ε+ − 1

2
µ2 (1 + cos2 θ) 1

2
µ2 sin2 θ 1√

2
µ2 sin θ cos θ

1
2
µ2 sin2 θ ε− − 1

2
µ2 (1 + cos2 θ) 1√

2
µ2 sin θ cos θ

1√
2
µ2 sin θ cos θ 1√

2
µ2 sin θ cos θ εzz − µ2 sin2 θ




E+

E−

Ez

 = 0, (2.11)

where µ2 =
c2q2

ω2
, ε± = ε⊥ ± g, and E± = 1√

2
(Ex ± iEy).

2.3.2 Longitudinal propagation

For the waves propagating strictly along the magnetic field, i.e. θ = 0, the solution to Eqs. (2.11)

consists of two eigenmodes with transverse polarization (“photons”),

µ2
L,R = ε±, EL,R =

1√
2
E±(x ± iy), (2.12)

and the wave with the longitudinal polarizationE = Ezz and dispersion equation εzz = 0 (“plas-

mon”). The plasmon dispersion is

ω2 =
ω2
p

εb
+ v2

F q
2. (2.13)

We emphasize again that, in contrast to “usual” plasmons, there is no cutoff in Eq. (2.13) due to

Landau damping at large wave vectors q > ω/vF . Therefore, a much stronger plasmon localization
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is allowed, with propagation only limited by absorption due to scattering on impurities etc.

2.3.3 Oblique propagation

For oblique propagation, even at very small angles θ, the plasmons and transverse waves are

coupled to form hybrid plasmon-polaritons. To determine general trends and obtain analytic re-

sults, we neglect the spatial dispersion (qz-dependence) of εzz in Eq. (2.10), which is possible as

long as µ2 sin2 θ � c2/v2
F . This is not so restrictive since c/vF > 100. We also neglect any spatial

dispersion in ε± in the dipole approximation.

It is instructive first to consider the case when the Fermi level is exactly at the Weyl point for

both chiralities. In this case, due to electron-hole symmetry the off-diagonal terms in Eq. (2.4)

vanish and the dielectric tensor looks like the one for a uniaxial anisotropic medium. The disper-

sion equation for the extraordinary wave, i.e. the one polarized in the (x, z) plane, can be written

as
µ2
x

εzz
+
µ2
z

ε⊥
= 1. (2.14)

The transverse components of the dielectric tensor are always positive, whereas the εzz compo-

nent becomes negative for frequencies below the plasmon resonance, ω2 < ω2
p/εb. In this case

Eq. (2.14) becomes hyperbolic and its isofrequency lines are hyperbolae. Therefore, a magnetized

WSM is a natural hyperbolic material at low enough frequencies. Another natural hyperbolic ma-

terial is hexagonal boron nitride, where the hyperbolic dispersion exists in two narrow spectral

ranges near the phonon bands [22]. Otherwise, hyperbolic dispersion is achieved in the effective

medium approximation in metal/dielectric metamaterials prepared by nanofabrication [23]. It is

promising for numerous applications from superlenses and nanoimaging to photonic integrated

circuits. The plasmon resonance frequency ω = ωp/
√
εb in WSMs which determines the upper

bound for hyperbolic dispersion is in the THz to far-infrared range for a magnetic field of 1-10

Tesla, εb ∼ 10 and vF ∼ 108 cm/s. It is lower than the inter-LL absorption edge for all magnetic

fields, so the only loss mechanism is due to scattering on impurities which depends on the material

quality.
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The ordinary wave in this limit is linearly polarized along y-axis and has a standard dispersion

µ2 = ε⊥.

Fig. 2.1 shows the dispersion (real part of µ) for the extraordinary waves for several different

propagation angles θ. Far from inter-LL transitions, we can neglect any dispersion in the transverse

part of the dielectric tensor, assuming ε⊥ = εb ∼ 10. We also added the scattering rate as an

imaginary part of frequency (ω + iγ) in the first term of Eq. (2.5) and took γ to be 0.01 of the

plasmon resonance frequency ωres = ωp/ε
1/2
b . For longitudinal propagation θ = 0 the photon

dispersion is trivial: µ =
√
εb. For any nonzero angle, plasmons and photons hybridize. At

the hybrid plasmon-polariton resonance µ diverges in the absence of dissipation. The stop band

appears between the hybrid resonance and plasmon resonance. It is defined by the condition µ2 < 0

so that Re[µ] = 0 and the wave cannot propagate. At the boundaries of the stop band Re[µ] goes

through the value of 1 with a large derivative, leading to a small group velocity vgr � c. This

means that a layer of WSM is able to compress a pulse incident from vacuum by a factor c/vgr.

All spectral features are tunable by varying the magnetic field or the angle θ.
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Figure 2.1: Dispersion (real part of µ(ω)) of the extraordinary waves in a magnetic field of 10 T
for several different propagation angles θ.

Going back to the general case of an arbitrary Fermi level, Eqs. (2.11), and arbitrary values of

g leads to a biquadratic dispersion equation for µ:

µ4

2

(
(ε+ + ε−) sin2 θ + 2εzz cos2 θ

)
−
(
ε+ε− sin2 θ+

1

2
εzz(ε+ + ε−)(1 + cos2 θ)

)
µ2 + ε+ε−εzz = 0. (2.15)

The polarization coefficients of the normal modes are

E±
Ez

=
− 1√

2
µ2 sin θ cos θ(ε∓ − µ2)

ε+ε− − 1
2
µ2(1 + cos2 θ)(ε+ + ε−) + µ4 cos2 θ

. (2.16)

Equations (2.15), (2.16), and (2.10) provide a complete description of the electromagnetic

wave propagation in WSMs. They can be plotted numerically or solved analytically, leading to

cumbersome formulas. In the low temperature limit we obtain analytic expressions for all compo-

nents of the dielectric tensor, see [20]. Leaving detailed numerical studies to future publications,
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here we highlight the most interesting cases. Note that a finite separation between Weyl nodes

in momentum space by a vector 2b creates an additional anisotropy vector and gives rise to an

additional gyrotropic effect g ∝ b [21]. Therefore, the dispersion shown in Fig. (1) is valid only

if this additional g is small. This will be the case when the Weyl semimetal is created by applying

an external magnetic field to a Dirac semimetal, so that the separation of Weyl points is only due

to a Zeeman-type interaction which is typically small. We also note that the expressions for the

magnetopolariton dispersion for a nonzero g Eqs. (2.15) are analytic functions around g = 0, so

the dispersion curves in Fig. (1) will change little when g is small. The most significant effect of a

nonzero g is the appearance of an elliptical polarization, Eq. (2.16) instead of the linear one when

g = 0.

2.3.4 Coupling-induced transparency

For quasi-longitudinal propagation, sin2 θ � 1 and plasmon-polariton hybridization occurs in

the vicinity of the plasmon resonance, |εzz| � 1. In this case the approximate solution of Eq. (2.15)

is

µ2
1,2 =

1

(ε+ + ε−) sin2 θ + 2εzz

[
ε+ε− sin2 θ + εzz(ε+ + ε−)

±
√

(ε+ε− sin2 θ)2 + ε2zz(ε+ − ε−)2

]
. (2.17)

The polarization coefficients become

K± =
E±
Ez

=
− 1√

2
µ2 sin θ

ε± − µ2
. (2.18)

In the “non-gyrotropic” limit when EF = 0 and ε+ = ε− = ε⊥, the extraordinary wave has

dispersion

µ2
2 =

εzzε⊥
ε⊥ sin2 θ + εzz

; K+ = K− = − 1√
2

εzz
ε⊥ sin θ

. (2.19)
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The hybrid resonance corresponds to the vanishing real part of the denominator for µ2
2 in Eq. (2.17)

or (2.19), when |µ2
2| � 1.

The effect of coupling-induced transparency emerges near the plasmon resonance where µ2

can be of the order of 1 or smaller. When the angle θ is not too small, |εzz| � 1, sin2 θ � 1,

but |ε±| sin2 θ � |εzz|, the dispersion and polarization of the “extraordinary” wave (the wave that

becomes extraordinary if EF = 0) are simply

µ2
2 =

εzz
sin2 θ

;
Ex,y
Ez

= − εzz
2 sin θ

ε− ± ε+
ε+ε−

. (2.20)

In this case one can have |µ2| � ε± whereas the electric field of the wave is directed almost along

the magnetic field, i.e. still quasi-longitudinal. Note that µ2
2 in Eq. (2.20) depends only on the

εzz component, which means that the propagation is not affected at all by the resonant inter-LL

absorption losses described by the imaginary parts of ε±. The medium effectively becomes trans-

parent for this wave! More accurately, its losses are determined only by the imaginary part of

εzz, i.e. disorder-related scattering. Within the transparency band, strong plasmon-photon coupling

forces the polarization of the wave to be oriented almost along B, and therefore it is nearly de-

coupled from the transitions between LLs. The narrow band of transparency within a broad line

of inter-LL absorption is defined by the range of frequencies where |εzz| is small enough, namely

|εzz| � |ε±| sin2 θ. The situation is similar to the electromagnetically induced transparency (EIT)

[24], only in the case of EIT the coupling between two quantum oscillators is provided by a coher-

ent EM drive; see the comparison in [25]. The transparency will be visible if the disorder-related

losses determined by Imεzz are lower than the inter-Landau level absorption losses determined

by Imε±. Introducing the electron scattering rate γ in εzz, one can derive the visibility condition

as
√

γ
ω sin2 θ

< Imε±. The value of γ depends on the particular material, material quality, and

temperature. For example, far-infrared spectroscopy of TaAs [11] (without the magnetic field)

found the scattering time varying between 3 and 0.4 ps from low to room temperature. A value

of Imε+ ∼ 3 − 5 around h̄ω ∼ 100 meV as in Fig. 2 would lead to the visibility condition
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sin θ > 0.01− 0.03.

In the same limit the “ordinary” wave has the dispersion µ2
1 =

2ε+ε−
ε+ + ε−

and elliptical polariza-

tion in the plane of vectors q and y:
Ex
Ez

= sin θ and
Ey
Ez

=
i(ε+ + ε−)

ε+ − ε−
sin θ.

Figure 2.2: Absorption spectrum for LHC (solid line) and RHC (dashed line) polarizations in a
magnetic field B = 10 T at zero temperature, the Fermi energy of 60 meV, and the relaxation
constant γ = 1 meV.

2.4 Intersubband transitions and optical detection of the chiral anomaly

So far we considered peculiar optical properties of WSMs due to massless 1D chiral fermions at

the n = 0 LL. Here we show that resonant inter-LL absorption from n = 0 to n 6= 0 states provides

another sensitive method of studying chiral fermions near Weyl nodes and in particular, detecting

the chiral anomaly. Consider the propagation of transverse modes in the Faraday geometry when

the eigenmodes are left-hand or right-hand circularly polarized (LHC or RHC). The derivation of

the conductivity is outlined in [20]. Fig. 2.2 gives an example of the absorption spectrum at low

temperatures when the Fermi level EF = 60 meV is between n = 0 and n = 1 LLs and has
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the same value for both chiralities. Absorption edges of the lowest-energy transitions 0→ 1, then

−1→ 0,−2→ 1, and−1→ 2 are clearly visible in different polarizations (the last two transitions

coincide). In particular, there is a broad range of frequencies between 50 and 200 meV when only

the LHC polarization is absorbed. Therefore, a several µm thin WSM film can serve as a broadband

polarizer converting from linear into circular polarization. Note that both the frequency bandwidth

and the polarization coefficient are tunable by a magnetic field and/or Fermi level position. Other

obvious applications include optical isolators and saturable absorbers.

Figure 2.3: Absorption spectrum before (solid line) and after (dashed line) a constant electric field
E‖B is applied which shifts the Fermi levels by ±30 meV in the two Weyl nodes. The magnetic
field is 10 T and the relaxation constant γ = 1 meV.

Fig. 2.3 shows the evolution of this spectrum when a constant voltage is applied parallel to the

magnetic field, which shifts the Fermi levels for the two chiralities by ±30 meV. Here we assumed

that before applying bias, the Fermi energy was equal to 60 meV at both Weyl points. As is clear

from Fig. 3, when a voltage is applied, an additional absorption edge appears in the spectrum for
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each polarization, which will be clearly distinguishable as long as the magnitude of the Fermi

energy shift is larger than kBT . Note that this behavior and the possibility of the optical detection

of the chiral anomaly was predicted in Ref. [16].

In conclusion, we showed that unique topological properties of low-energy quasiparticles in

WSMs give rise to a plethora of highly unusual magneto-optical effects, which provide an efficient

way of studying these fascinating materials and can be utilized in future photonic devices in the

terahertz through mid-infrared range. All effects are broadly tunable by varying the magnetic field,

electric bias, or the propagation angle. We hope that our study will stimulate further experimental

work in this rapidly developing field.
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3. SUPERFLUORESCENCE IN CARBON NANOTUBES

3.1 Single Wall Carbon Nanotubes and Lasing

Carbon nanotubes were first discovered in 1992 by Iijima [1, 2]. They consisted of multiple

concentric tubes of rolled graphene. Later single wall carbon nanotubes (SWCNT) were produced

[3]. SWCNT’s properties change significantly with its structure. Its band gap could range from

0 to several eV, showing metallic or semiconducting behavior. Also as a quasi one dimensional

material, SWCNT shows an enhanced density of states and stronger Coulomb interactions. With

all those unique properties, people have done intensive research on their applications in field-effect

transistors [4], detectors [5], and lasers [6].

Time-resolved pump-probe spectroscopy reveals multi-exponential behavior of the decay of

photoluminescence [7, 8]: a fast non-radiative decay with several picoseconds characteristic decay

time, and a slow radiative decay with dozens picoseconds characteristic decay time. Fig. 3.1 is the

experimental result of SWCNT(6,5) from Rice University. This phenomenon makes SWCNT very

inefficient emitters for conventional lasing. Here we are exploring its potential in SF which could

generate ultrafast and efficient radiation pulses.

3.2 Superfluorescence

Superradiance (SR) was first predicted by Dicke in 1954 [9], as a phenomenon of coherent

decay of excited atoms. In SR, or SF, an ensemble of initially incoherent quantum oscillators

demonstrates a coherent behavior created by strong self-phasing. The emitted pulse has an intensity

proportional to N2 instead of N as in conventional lasing, and is developed much faster. Fig. 3.2

shows the formation process of SF. In SWCNT , if SF could be developed, it will dominate the

decay process and make SWCNT an efficient emitter. To achieve SF, the growth rate of the field

has to be greater than the dephasing rate of the optical polarization 1/T2 which is in the 10-100

fs range. SF is possible in SWCNTs because their quasi one dimensional structure leads to the
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Figure 3.1: Pump-probe spectroscopy of SWCNT(6,5) from Dr. Junichiro Kono’s group from Rice
University.

Figure 3.2: Superfluorescence formation.
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enhanced Coulomb interaction and higher electron density of states. This gives stronger interaction

between light and matter, in other words, larger gain or absorption. Here we explore how much

gain we can reach, and how many excitons are needed to have that gain.

3.3 Methods

Analytical calculation of excited SWCNT’s optical response is difficult due to the complex

non-negligible many body effects. For ab initio computational simulation, a generally accepted

approach is the combination of Density Functional Theory, GW approximation and Bethe-Salpeter

equation [10, 11]. However, this simulation is highly time consuming for most carbon nanotubes

because of their asymmetrical structure. In this project, we start with analytical calculation of

SWCNT in a single electron picture with tight binding model. After that, we use semiconductor

Bloch equations to calculate excited SWCNT’s optical responses numerically.

3.3.1 Carbon Nanotubes in Single Electron Picture

The optical properties of graphene have been studied extensively [12, 13]. Carbon nanotubes

could be viewed as rolled-up graphene, therefore we could get a single electron wavefunction of

carbon nanotubes by simply adding a periodic boundary condition to graphene [14].

In graphene, a unit cell consists of two carbon atoms A and B. Within the π-band approxima-

tion, only the interaction of Pz orbitals of carbon atoms needs to be considered. The wavefunciton

of a single electron under tight-binding model in graphene can be written as

Ψ(k, r) =
1√
Ncell

∑
l

eik·r [CA(k)Pz(r − rA − l) + CB(k)Pz(r − rB − l)] (3.1)

= CA(k)P̃A
z (k, r) + CB(k)P̃B

z (k, r). (3.2)

Here Ncell is the number of unit cells, l is the position of lth unit cell, rA(rB) is the local position

of atom A(B) in one unit cell. CA(k) andCB(k) are coefficients for this Bloch wavefunction which

can be solved later.
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Then we chose P̃A
z (k, r) and P̃B

z (k, r) as our basis. The Hamiltonian could be written as:

HAA = 〈P̃A
z (k, r)|H|P̃A

z (k, r)〉 = 0, (3.3)

HBB = 0, (3.4)

HAB = 〈P̃A
z (k, r)|H|P̃B

z (k, r)〉 = (1 + e−k·a1 + e−k·a2)γ0, (3.5)

HAB = (1 + ek·a1 + ek·a2)γ0, (3.6)

γ0 = 〈Pz(r − rA)|H|Pz(r − rB)〉. (3.7)

Here the self energy part has been set to 0, and under tight-binding model, only the interaction of

adjacent atoms has been considered. The value of γ0 is generally accepted as 2.89 eV.

Solving the matrix form of the Schrodinger equation:

 HAA HAB

HBA HBB


 CA

CB

 = E

 CA

CB

 , (3.8)

the bandstructure of graphene is obtained:

E = ±γ0

√
(1 + ek·a1 + ek·a2) (1 + e−k·a1 + e−k·a2)

= ±γ0

√
3 + 2 cosk · a1 + 2 cosk · a2 + 2 cosk · (a1 − a2). (3.9)

For large diameter SWCNT(n,m), the curvature barely affects the interaction between atoms. How-

ever, the existing wavefunction should satisfy periodic boundary condition. Dispersion relation

would be discrete along the chiral vectorCh = na1 +ma2. Ch connects two crystallographically

equivalent points on a graphene sheet after curvature.

The periodic boundary condition is

Ψ(k, r +Ch) = Ψ(k, r), (3.10)

Ψ(k, r +Ch) = Ψ(k, r + na1 +ma2) = eik·(na1+ma2)Ψ(k, r). (3.11)
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So

k · (na1 +ma2) = k ·Ch = 1. (3.12)

This gives us two types of carbon nanotubes: metallic nanotubes ( n−m = 3q) and semiconducting

nanotubes (n −m = 3q ± 1). Here we are more interested in the semiconducting types. Eq.3.12

suggests that k = K ∓ 2π
3|Ch|

(3p+ 1)Ĉh + k‖. Here p is an integer, k‖ is any vector along the axis

of the tube (perpendicular to Ch). Thus the band structure is:

Eq,k‖ = ±
√

3aγ0

2

√
(

2π

|Ch|
)2(q ± 1

3
)2 + k2

‖. (3.13)

And the energy gap is

Ecv =
2
√

3aγ0

3|Ch|
. (3.14)

.

We can further calculate the transition matrix element of the dipole moment dck,vk:

dck,vk = −e〈Ψc(k, r)|r|Ψv(k, r)〉 =
e

2
Re[

ν

α
].

Here

ν(k) =
1

3
(a1 + a2) + e−k·a1(−2

3
a1 +

1

3
a2) + e−k·a2(

1

3
a1 −

2

3
a2). (3.15)

At the band edge, we have

dcv = ∓3ea

8π
(−n+m,

√
3(n+m)). (3.16)

3.3.2 Nanotubes in Semiconductor Bloch Equations

The semiconductor Bloch equations describe the optical response of semiconductors excited by

coherent classical light sources, such as lasers. They are based on a full quantum theory, and form

a closed set of integro-differential equations for the quantum dynamics of microscopic polarization
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and charge carrier distribution.

Hamiltonian in the electron-hole representation coupled to light field is

H =
∑
k

(Ee,kα
†
kαk + Eh,kβ

†
−kα−k) (3.17)

+
1

2

∑
k,k′,q 6=0

(V eeα†k+qα
†
k′−qαkαk′ + V hhβ†k+qβ

†
k′−qβkβk′ + V eh2α†k+qβ

†
k′−qβk′αk) (3.18)

−
∑
k

E(t)(dcvα
†
kβ
†
−k + h.c.). (3.19)

Here α and β are electron and hole operators, Ee/h is the corresponding energy, V is Fourier

transformed Coulomb interaction, E is the light field and dcv is the interband dipole moment.

Calculating the equations of motion for this system from this Hamiltonian, we get semicon-

ductor Bloch equations:

∂Pk
∂t

= −i(ee,k + eh,k)Pk − i(ne,k + nh,k−1)ωR,k +
∂Pk
∂t
|scatter, (3.20)

∂ne,k
∂t

= −2Im(ωR,kP
∗
k ) +

∂ne,k
∂t
|scatter, (3.21)

∂nh,k
∂t

= −2Im(ωR,kP
∗
k ) +

∂nh,k
∂t
|scatter. (3.22)

Here Pk(t) =< β−kαk > is pair function, ne =< α†α > is electron density, nh =< β†β >

is hole density, h̄ei,k = Ei,k +
∑

q V
i,e
k,qne,q +

∑
q V

i,h
k,q (1 − nh,q) is renormalized energy, ωR,k is

renormalized Rabi frequency:

ωR,k =
1

h̄
(dcvE +

∑
k

V e,h
k,q Pk+q). (3.23)

After we calculate polarization P , the following equations yield our gain or absorption:

P = χε0E , (3.24)

g(ω) =
4πω

nbc
χ′′(ω). (3.25)
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3.4 Results and Discussion

The numerical calculation is based on dense, purified, highly aligned SWCNT(6,5) films, with

area density 1/100−2 in cross section. Fig. 3.3 is the schematic representation of using SWCNT

thin films to obtain SF.

Figure 3.3: Schematic representation of obtaining SF with SWCNT thin film.

Fig. 3.4 shows the numerical calculation result of the absorption spectrum when different ef-

fects are included. For the tight-binding model in a single electron picture, SWCNT(6,5) shows

an absorption peak at about 1100 meV with a tail. If electron-electron exchange is included, the

absorption peak blue shifts to around 1500 meV. However, if electron-hole attraction is included,

the absorption peak red shifts back to about 1180 meV, without a tail. This excitonic absorption

shape agrees well with experimental results. Coulomb effects in this result are of the order of 100

meV, which is much larger than in conventional 3D semiconductors.

Fig. 3.5 shows the optical response of SWCNT(6,5) with different electron-hole densities. As

the density grows, gain emerges within a specific energy region. In this calculation, the maximum

27



Figure 3.4: Numerical calculation of absorption with different models for SWCNT(6,5). (A)
single-electron model with tight-binding approximation; (B) with screened electron-electron ex-
change energy; (C) with screened electron-hole attraction.

gain is obtained when electron-hole density is 0.17 N (N = 1/40000−3). If one considers a

waveguide mode with 10% overlap with a SWCNT film, the growth rate would be 1014s−1, which

is faster than the dephasing rate.

Our simulation result shows that for strong enough excitation, the growth rate of the EM field

can be as high as 1014 s−1, i.e. exceed the dephasing rate, which can lead to efficient generation of

SF pulses. Future works could be done for the detailed calculation of the SF process, especially at

the nonlinear stage.
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Figure 3.5: Numerical calculation of absorption with different electron-hole densities for
SWCNT(6,5). (A) electron-hole density 0.07 N (N = 1/40000−3); (B) density 0.12 N; (C) density
0.17 N.
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4. ENHANCEMENT OF THE SPONTANEOUS EMISSION IN SUBWAVELENGTH QUASI

TWO-DIMENSIONAL WAVEGUIDES AND RESONATORS*

4.1 Introduction

Enhancement of the radiative processes due to the localization of emitters in a subwavelength

cavity (so-called Purcell enhancement [1]) is a fundamental cavity-quantum electrodynamics (QED)

effect which finds an increasingly broad range of applications in the areas as diverse as nanopho-

tonics, plasmonics, linear and nonlinear optical sensing, and high-speed communications, to name

a few. It has been studied theoretically and experimentally so many times that it is hard to be-

lieve that any further development is needed. However, there seems to be a significant gap in the

formalism for the situations typically encountered in quantum optoelectronic devices, when the

electron ensemble is out of equilibrium and there is strong dissipation both in the optical dipole

oscillations in a macroscopic ensemble of fermionic emitters (e.g. electrons and holes in a semi-

conductor quantum well or a layer of quantum dots, or a 2D semiconductor such as MoS2, or

monolayer graphene) and for the electromagnetic (EM) field in a cavity. Examples include sub-

wavelength semiconductor lasers [2, 3, 4, 5, 6] and other devices or circuits with subwavelength

confinement in one or more dimensions e.g. [7, 8, 9]. In this case using a simple Purcell-type factor

∼ Qλ3/V , where Q is a quality factor of EM modes in a cavity of volume V and λ is the emis-

sion wavelength, can drastically overestimate the cavity enhancement of the spontaneous emission.

Although this fact is well known, a consistent QED theory including dissipation and fluctuations

is usually replaced by a more phenomenological rate equations approach [3]. Recent theoretical

analysis of subwavelength lasers [2] did include QED Heisenberg-Langevin equations for the EM

cavity modes, but not for the dynamics of the active medium.

Here we use a consistent Heisenberg-Langevin approach [10, 11] which includes dissipation

Reprinted with permission from "Enhancement of the spontaneous emission in subwavelength quasi-two-
dimensional waveguides and resonators" by Mikhail Tokman, Zhongqu Long, Sultan AlMutairi, Yongrui Wang,
Mikhail Belkin, and Alexey Belyanin, 2018. Physical Review A, 97, 043801. Copyright 2018 by American Phys-
ical Society.
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and fluctuations in the fermionic ensemble and in the EM field of a subwavelength cavity on equal

footing. Note that the description of dissipation and noise of a quantum field due to its interaction

with an active nonequilibrium medium require a completely different approach as compared to

the effects of Ohmic losses or radiation losses in an electrodynamic system. The latter effects

can be analyzed within a standard fluctuation-dissipation theorem [12]. The standard description

would also work for a popular model of a dissipative reservoir as an equilibrium ensemble of

oscillators [13]. This approach would only allow one to describe thermal emission from a medium

in thermal equilibrium. In contrast, our formalism allows us to treat radiation effects and obtain

a correct expression for the current operator including fluctuations due to nonequilibrium electron

systems, e.g. in the presence of pumping, beyond the applicability of the standard fluctuation-

dissipation theorem. The Langevin noise operators that we introduce are not based on a model

of a thermal reservoir. Instead, they are derived directly from the condition of preserving the

commutation relations and generalized Einstein relations [13]. Therefore, they can be applied to

any dissipation/fluctuation mechanism.

We apply the general formalism to the problem of spontaneous emission in a quasi-2D waveg-

uide or cavity with subwavelength confinement in one direction. Remarkably, we are able to derive

closed-form analytic results for all relevant quantities such as spontaneous emission power for sim-

ple but practically important geometries: strip lines and rectangular cavities. Our results provide

general framework and convenient formulas for the evaluation of enhancement of radiative pro-

cesses in such systems. Our results also indicate that a significant enhancement of the spontaneous

emission, by a factor of order 100 or higher, is possible for QWs and other 2D emitters sandwiched

between metal plates in a subwavelength cavity.

Section II describes the spatial structure of the EM field in a subwavelength quasi-2D electro-

dynamic structure and develops the quantization procedure. Section III introduces coupling to the

fermionic system. Section IV derives and solves Heisenberg-Langevin equations for the density

operator of quasiparticles and EM field operators. It derives the expression for the spontaneous

emission power and its useful limiting cases.
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4.2 Electromagnetic field of a subwavelength cavity

4.2.1 Spatial structure of the EM field modes

Consider a very thin layer of quantum dipole emitters (which we will call a quantum well (QW)

for brevity, although it can be any fermionic system), placed inside a strip line or a cavity formed

by two metallic planes at z = ±Lz/2 where Lz � c/
√
ε̄ω , where ε̄ is a typical (average) value of

the dielectric constant ε = ε(z) of the filling; see Fig. 1.

Figure 4.1: A sketch of a nanocavity with thickness Lz much smaller than wavelength. An active
layer of 2D emitters is shown in dark blue. The profile of the electric field of the fundamental
TE011 mode is sketched on the sides. The radiation can be outcoupled through the gratings or
cavity edges.

A TM-polarized EM field is described by the following components of the electric field, mag-

netic field and electric induction:

(Ex,z,By,Dx,z) = Re
[(
Ẽx,z(z), B̃y(z), D̃x,z(z)

)
e−iωt+iqx

]
(4.1)

Where we assumed that the strip line is oriented along x. From Maxwell’s equations,

∇ ·D = 0, ∇×B =
Ḋ

c
, ∇×E = −Ḃ

c
(4.2)
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together with the material equation,

D = ε(z)E (4.3)

we obtain:

∂D̃z

∂z
= −iqD̃x, iqB̃y = −iωD̃z

c
,

∂Ẽx
∂z

= i
ω

c
B̃y(z) + i

q

ε(z)
D̃z (4.4)

The first equation in (4) yields

D̃z = D̃z

(
−Lz

2

)
− iq

z∫
−Lz

2

D̃xdz
′

For subwavelength thickness Lzq � 1 the previous equation gives D̃z ≈ const, which corre-

sponds to the quasi-electrostatic structure of the field in the (y, z) cross section of the strip line.

From the second and third equations in Eq. (4.4) we can obtain

∂Ẽx
∂z

= −iω
2D̃z

qc2
+ i

q

ε(z)
D̃z (4.5)

Next we integrate Eq. (4.5) as
∫ Lz

2

−Lz
2

dz . . . , taking into account D̃z ≈ const and the boundary

conditions on the metal planes: Ẽx(+Lz
2

) = Ẽx(−Lz
2

) = 0. As a result, we obtain the dispersion

relation:

ω2

q2c2
=

1

Lz

Lz
2∫

−Lz
2

dz

ε(z)
. (4.6)

Since the direction of x-axis was arbitrary, we can represent the electric field vector as

E = DqFq(r)e−iωqt + C.C., (4.7)
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where the factor Fq(r) determines the spatial structure of the field:

Fq(r) = z
eiqr

ε(z)
, (4.8)

vector q is in the (x, y) plane, Dq is a constant which in this case corresponds to a z-independent

amplitude of the electric induction. According to the Brillouin concept, one can use the waves

defined by Eqs. (4.6)-(4.8) to construct any waveguide and cavity modes. They have quasi-TEM

polarization. In particular, if the sides y = ±Ly/2 are also metal-coated, consider the lowest order

(01) waveguide mode:

E = DqxFqx(r)e−iωqx t + C.C., q2
x +

(
π

Ly

)2

=
ω2

c2

Lz
Lz
2∫

−Lz
2

ε(z)−1dz

(4.9)

where the explicit form to the factor Fqx(r) ∝ e−iqxx is given below. If the facets x = ±Lx/2 are

metal-coated as well, the waveguide becomes a resonator and the lowest order modes are TE01N :

E = DNFN(r)e−iωN t + C.C.,

(
Nπ

Lx

)2

+

(
π

Ly

)2

=
ω2

c2

Lz
+Lz

2∫
−Lz

2

ε(z)−1dz

(4.10)

In Eqs. (4.9) and (4.10) the factors Dqx and DN are coordinate-independent amplitudes of the

electric induction. The factors Fq,qx,N(r) in Eqs. (4.7), (4.9), (4.10) can be written in the same

form using the index ν = q, qx, N to denote a corresponding spatial structure:

Fν(r) = z
ζν(x, y)

ε(z)
, ζq = eiqr, ζqx = cos

(
πy

Ly

)
eiqxx, ζN = cos

(
πy

Ly

)
×


cos

(
Noddπx

Lx

)
sin

(
Nevenπx

Lx

)
(4.11)

where
∫
S
ζνζ
∗
ν′d

2r ∝ δνν′ . For a particular case of a uniform dielectric constant, Eqs. (4.6)-(4.11)

are exact. Similar equations can be derived if one simply utilizes jumps of the dielectric constants
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on the sides instead of metal coating. Even without any jump in the dielectric constants, an open

end of a thin waveguide with vertical size much smaller than wavelength is a good reflector and

therefore any radiation losses through the facets are small and are not affecting the mode spatial

structure significantly.

4.2.2 Field quantization in a subwavelength waveguide/cavity

Here we consider field quantization in a volume V = LzS , where S = Lx × Ly . The field

operator can be represented in a standard form [14, 15]:

Ê =
∑
ν

[E(r)ν ĉν +E∗(r)ν ĉν
†] (4.12)

where ĉν and ĉν† are boson annihilation and creation operators,Eν(r) = z
ζν(x, y)

ε(z)
Dν , and Dν is

the normalization constant corresponding to the z-independent amplitude of the electric induction.

The value ofDν needs to be chosen in such a way that the commutation relation for boson operators

ĉν and ĉν† have a standard form [ĉν , ĉν
†] = δνν′ . In this case the field Hamiltonian will also be

standard:

Ĥf =
∑
ν

h̄ων(ĉν
†ĉν +

1

2
) (4.13)

To find the explicit expression for Dν we apply the phenomenological procedure of field quan-

tization in a medium [14, 16] which was justified in [17] based on a rigorous quantum electrody-

namics theory. According to this approach, the normalization is determined by the requirement that

the classical energy densityW of the EM fieldE = Eν(r)e−iωνt+C.C.,B = Bν(r)e−iωνt+C.C

give the total energy of
∫
V
Wd3r = h̄ων . For our strip line this procedure yields the following

expression for the normalization constant (see Appendix A):

|Dν |2 =
2πh̄ων∫

S
ζνζ∗νd

2r ×
Lz
2∫

−Lz
2

1

2ε2(ων , z)ων

[
∂(ω2ε(ω, z)

∂ω

]
ω=ων

dz

, (4.14)
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where
∫
S
ζqζ
∗
qd

2r = S,
∫
S
ζqxζ

∗
qxd

2r = S/2 and
∫
S
ζNζ

∗
Nd

2r = S/4. In the limiting case of plane

waves in a homogeneous medium Eq. (4.14) corresponds to a standard normalization of the electric

field [14, 17, 16]; indeed, taking into account that in a homogeneous medium Dν = Eνε(ων),

Eq. (4.14) gives |Eν |2 =
2πh̄ων

V

2ων

[
∂(ω2ε(ω, z)

∂ω

]
ω=ων

, where V = LzS is the quantization volume.

4.3 Non-dissipative dynamics of a coupled system of photons and electrons

4.3.1 General formalism

We will denote a quantum state of an electron in a QW or any other 2D nanostructure by a

band index m which may include also the subband, spin, and valley index as needed, and the 2D

quasimomentum k corresponding to the motion in (x, y) plane. The second-quantized energy of a

system of such quasiparticles is

Ĥe =
∑
mk

Wmkâ
†
mkâmk (4.15)

where â†mk, âmk are creation and annihilation operators of fermions, Wmk ≡ Wmmkk are the diag-

onal matrix elements of the energy operator of a quasiparticle. The eigenfunctions can be written

as

|m,k〉 =
eikr√
S
ψm(z) (4.16)

where
∫
S
ei(k−k

′)rd2r = Sδkk′ ,
l
2∫
− l

2

ψm(z)ψ∗n(z)dz = δmn. Here we assume that a 2D nanostructure

occupies a region −l/2 ≤ z ≤ l/2, l ≤ Lz. The total Hamiltonian of a coupled system of photons

and electrons is

Ĥ = Ĥf + Ĥe + V̂ (4.17)

where the operators Ĥf and Ĥe are given by Eqs. (4.13) and (4.15), and V̂ is the interaction

Hamiltonian, which can also be written in the second-quantized form:

V̂ =
∑
mnkk′

V̂nmk′kρ̂nmkk′ (4.18)
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where ρ̂nmkk′ = â†nk′ âmk is the density operator. Matrix elements V̂nmk′k in Eq. (4.18) are operators

since they depend on the quantum field.

Taking into account the quasi-electrostatic structure of the electric field in the transverse cross-

section of a strip line, we can write the interaction Hamiltonian in the electric potential approxi-

mation:

V̂ = e

z∫
−l/2

Êzdz (4.19)

Using Eq. (4.12) for the field operator, the matrix elements of the interaction Hamiltonian are

V̂nmk′k = −d̃nm
∑
ν

(Dν ĉνζ
(ν)
k′k +D∗ν ĉ

†
νζ

(ν)†
k′k ) (4.20)

where d̃nm is the effective dipole moment of the optical transition:

d̃nm = −e
l/2∫

−l/2

ψ∗n(z)

 z∫
−l/2

dz′

ε(z′)

ψm(z)

 dz (4.21)

ζ
(ν)
k′k =

1

S

∫
S

e−ik
′rζν(x, y)eikrd2r, ζ

(ν)†
k′k = (ζ

(ν)
k′k)∗ (4.22)

For a homogeneous medium, in which Eν = Dν/ε , Eq. (20) will contain a standard expression

d̃nmDν = −e〈n|z|m〉Eν .

The Hamiltonian Eq. (4.17) gives rise to the Heisenberg equations for photon operators:

˙̂cν =
i

h̄
[Ĥ, ĉν ] = −iων ĉν +

i

h̄
D∗ν

∑
mnkk′

d̃nmζ
(ν)†
k′k ρ̂mnkk′ ,

˙̂c†ν =
i

h̄
[Ĥ, ĉ†ν ] = iων ĉ

†
ν −

i

h̄
Dν

∑
mnkk′

d̃nmζ
(ν)
k′kρ̂mnkk′ (4.23)

We write a similar equation for the density operator using a shortcut notation |m,k〉 = |µ〉 for

brevity. Using the fundamental commutation relation [17, 18, 19]

[ρ̂µ′η′ , ρ̂µη] = (δµ′ηρ̂µη′ − δµη′ ρ̂µ′η) (4.24)
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which is valid whether the creation and annihilation operators â†η and âµ satisfy the commutation

relations for bosons or fermions, we obtain:

˙̂ρµη =
i

h̄
[Ĥ, ρ̂µη] = − i

h̄

∑
µ′

(Ĥµµ′ ρ̂µ′η − ρ̂µµ′Ĥµ′η) (4.25)

The resulting equation for the density operator has the same form as the von Neumann equation,

although the original Heisenberg equation had an opposite sign in front of the commutator [17,

18, 19]. This is to be expected, because for time-dependent Heisenberg operators â†η and âµ the

average of dyadics ρ̂µη = â†ηâµ over the initial quantum state should correspond to a usual density

matrix.

4.3.2 Matrix elements of the interaction Hamiltonian

The form of the interaction Hamiltonian for the fields with different spatial structure depends

on the matrix elements ζ(ν)
k′k defined in Eq. (4.22). In particular, for plane waves we obtain ζ(q)

k′k =

δk′;k+q. For a waveguide or a cavity the corresponding expressions for ζ(qx)
k′k and ζ(N)

k′k are quite

cumbersome and are given in Appendix B.

If we take into account that the de Broglie wavelength of electrons is typically much smaller

than the spatial scale of the EM field, i.e. k � |q|, qx,
πN

Lx
,
πN

Ly
, the expressions for matrix

elements are simplified. Indeed, in this case we can assume that the optical transitions are direct

in momentum space and take ζ(ν)
k′k ≈ ανδk′k . The factor in front of the delta-function is one for

plane waves; for a waveguide or a cavity one should choose αν =

√∑
k′ ζ

(ν)
k′kζ

(ν)†
kk′ . With this

choice, a resonance line which is âĂIJsmearedâĂİ in the quasimomentum space can be reduced to

the delta-function ανδk′k while conserving the sum of intensities of all transitions within the line.

The Parseval theorem then gives
∑
k′ ζ

(ν)
k′kζ

(ν)†
kk′ = S−1

∫
S
ζνζ
∗
νd

2r (see Appendix B). As a result the

matrix element can be written in the same form for plane waves, in a waveguide, and in a cavity:

V̂nmkk′ ≈ −d̃nm
∑
ν

(D̃ν ĉν + D̃∗ν ĉ
†
ν)δk′k (4.26)
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where

|D̃ν |2 =
2πh̄ων

SG(Lz, ων)
(4.27)

G(Lz, ων) =

Lz
2∫

−Lz
2

1

2ε2(ων , z)ων

[
∂(ω2ε(ω, z)

∂ω

]
ω=ων

dz (4.28)

Note that in a uniform nondispersive medium d̃mn = dmn/ε and G = Lz/ε.

4.3.3 The probability of the spontaneous emission

Consider a spontaneous radiative transition m → n for a quasiparticle in an open electrody-

namic system, e.g. in the space between two conducting planes or in a waveguide. The transition

probability is usually calculated using Fermi’s golden rule [20]:

Am→n =
2π

h̄2

∫
dΠf |Vfi|2δ

(
Wi

h̄
− Wf

h̄
− ων

)
(4.29)

where the integration
∫
dΠf is taken over all final states of a system labeled by f . The matrix

element Vfi in this case is equal to 〈1ν |V̂nmk′k|0ν〉, where |nν〉 is a Fock state of photons. Using

Eqs. (4.20) and (4.26)-(4.28) we obtain

Vfi = −d̃nmD∗νζ
(ν)†
k′k ≈ −d̃nmD̃

∗
νδk′k (4.30)

Taking into account the photon density of states, one can get for the radiation emitted into space

between two conducting planes

dΠf =
S|q|dθdωq

(2π)2|∂ωq/∂q|

where θ determines the direction of vector q in the (x, y) plane. For the radiation emitted into a

waveguide,

dΠf =
Lxdωqx

2π|∂ωqx/∂qx|
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The resulting expressions for the spontaneous emission probabilities are

A(q)
m→n =

2π|d̃mn|2ωmn|q|
h̄G(Lz, ωmn)|∂ωq/∂q|ωq=ωmn

(4.31)

A(qx)
m→n =

2π|d̃mn|2ωmn
h̄LyG(Lz, ωmn)|∂ωqx/∂qx|ωqx=ωmn

(4.32)

where ωmn is the transition frequency.

In order to use Fermi’s golden rule in a cavity, one has to formally introduce the density of states

assuming that the modal spectrum is spread near the resonance frequency ωmn by the linewidth∆ω

:

dΠf =
(∆ω/2π)

(ωmn − ωN)2 + (∆ω/2)2
dω (4.33)

which results in

A(N)
m→n(∆ω) =

2π|d̃mn|2
(

4ωmn
∆ω

)
h̄LxLyG(Lz, ωmn)

(4.34)

Eq. (4.34) is also valid for a waveguide at a critical frequency, i.e. for |∂ωqx/∂qx| = 0, because

such a system is effectively a cavity. In a homogeneous medium, expressions (4.31), (4.32) and

(4.34) can be simplified. In this case Eqs. (4.21) and (4.28) lead to

|d̃mn|2

G(Lz, ωmn)
=

|dmn|2

Lz
2ων

[
∂(ω2ε)

∂ω

]
ω=ωmn

Finally we compare the spontaneous emission probability in a cavity with that in free space. The

latter is equal to A(0) =
4ω3|dmn|2

√
ε

3h̄c3
. Their ratio is

A
(N)
m→n

A(0)
≈ 3π

2

(c/ω
√
ε)3

LxLyLz

(
4ω21

∆ω

)
(4.35)

Note that in Eq. (4.35) the minimal lateral sizes of an electrodynamic system we consider are

Lx,y = πc/ω
√
ε , whereas the value of Lz can be much smaller.
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Up to a numerical factor which depends on geometry, Eq. (4.35) is a widely used expression for

the Purcell enhancement of the spontaneous emission. However, Eqs. (4.31), (4.32), and (4.34) do

not include the effects of nonradiative relaxation in an ensemble of fermions. Moreover, the above

approach does not allow one to determine the line broadening in a cavity in a consistent way. To

include all dissipation processes consistently, we use the Heisenberg-Langevin formalism.

4.4 Dissipative dynamics in an ensemble of photons and electrons

4.4.1 Heisenberg-Langevin equations for the quasiparticle density operator

Dissipative effects in an open quantum system can be taken into account by adding the re-

laxation operator R̂µη and corresponding Langevin noise operator F̂µη to the right-hand side of

Eq. (4.25)[15, 10, 11, 21, 18, 19]. One cannot add dissipation phenomenologically, without includ-

ing Langevin sources, because this would violate the fundamental commutation relation Eq. (4.24)

[10, 11, 18, 19]. For the simplest model of “transverse” relaxation, when

R̂µ6=η = −γµηρ̂µη. (4.36)

Refs. [10, 11] derived the following expressions for the commutator and correlator of the Langevin

noise (for a particular case of a two-level system):

[F̂µη(t
′), F̂ †µη(t)] = (−γµη(ρ̂ηη − ρ̂µµ) + R̂ηη − R̂µµ)δ(t′ − t)

〈F̂ †µη(t), F̂µη(t′)〉 = (2γµη〈ρ̂µµ〉+ 〈R̂µµ〉)δ(t′ − t)
(4.37)

where F̂ †µη = F̂ηµ and the symbol 〈. . . 〉 means in this case the averaging over both the initial

quantum state and the statistics of a dissipative reservoir. The dissipation operator in its simplest

form of Eq. (4.36) implies the absence of any inertia in a dissipative subsystem; that is why the

noise operator turns out to be delta-correlated in time. Note that for degenerate fermion distri-

butions Eqs. (4.37) are valid if the evolution equation for the density operator includes exchange

effects which take care of Pauli blocking.

The nonzero value of the relaxation operator for populations, R̂µµ 6= 0 in Eq. (4.37) cor-
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responds to the nonequilibrium distribution. A steady-state distribution can be nonequilibrium

because of an external pumping. An incoherent pumping generally redistributes populations over

many subbands; therefore within the model taking into account a limited number of subbands

such a pumping is convenient to introduce as a source Ĵµη in the evolution equation for the den-

sity operator. This way we can assume that there is a âĂIJgeneralizedâĂİ relaxation operator

ˆ̃Rµη = R̂µη + Ĵµη on the right-hand side of Eq. (4.25), and the steady-state (but not necessar-

ily equilibrium) distribution corresponds to the condition 〈 ˆ̃Rµµ〉 = 0 for all µ. Of course, the

modification of the relaxation operator causes the noise operator to change. However, within the

simplest model of Eq. (4.36) this does not affect the general form of Eqs. (4.37). One just needs to

keep in mind that the relaxation constants γµη and operators R̂µµ in Eq. (4.36), (4.37) contain the

contribution from incoherent pumping.

The equation for the density operator can be further simplified if we (i) include only two sub-

bands, i.e. m,n = 1, 2; (ii) assume that optical transitions in the interaction Hamiltonian are

direct; see Eq. (4.26). In this case the equation for the off-diagonal density operator elements in-

cludes only the elements ρ̂21kk and ρ̂12kk = ρ̂†21kk Finally, (iii) we assume populations to satisfy

R̂11kk = R̂22kk = 0. This gives

˙̂ρ21kk + iω21(k)ρ̂21kk + γ21kkρ̂21kk =
id̃21

h̄

(∑
ν

D̃ν ĉν

)
· (ρ̂11kk − ρ̂22kk) + F̂21kk, (4.38)

where ω21(k) =
W2k −W1k

h̄
.

As usual, the properties pf the Langevin source F̂21kk(t) in Eq. (4.38) are convenient to express

through the properties of its spectral components: F̂21kk(t) =
∞

∫
F̂ω;21kke

iωtdω, F̂−ω;12kk = F̂ †ω;21kk

. Taking into account that R̂11kk = R̂22kk = 0, we can get from Eq. (4.37) (see also [10, 19])

〈F̂ †ω;21kkF̂ω′;21kk〉 =
γ21kk

π
n2kδ(ω − ω′), 〈F̂ω;21kkF̂

†
ω′;21kk〉 =

γ21kk

π
n1kδ(ω − ω′), (4.39)

where n1k = 〈ρ̂11kk〉 and n2k = 〈ρ̂22kk〉 are constant populations supported by pumping.
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4.4.2 Heisenberg-Langevin equations for field operators

Similarly to relaxation in the medium, relaxation of the EM field gives rise to the noise sources

in the equations for field operators [15]. When field absorption by fermions is included, the

noise term for the EM field appears due to Langevin noise terms in the density operator equa-

tions [10, 11, 19, 22]. Including any additional field absorption unrelated to absorption in the

medium should be accompanied by adding Langevin noise terms directly to field equations. We

take into account this additional absorption for the νth mode of the field by including phenomeno-

logical dissipative operators −Γ ĉν and −Γ ĉ†ν to the right-hand side of the field equations (4.23).

To preserve the commutation relation [ĉν , ĉ
†
ν ] we need to add the Langevin noise operator L̂(t),

satisfying the commutation relation [L̂(t′), L̂†(t)] = 2Γδ(t − t′) (see Appendix C). Its correlator

is equal to 〈L̂†(t′)L̂(t)〉 = Ξ · 2Γδ(t − t′), where the parameter Ξ is determined by a state of a

dissipative resevoir. When the latter is in equilibrium, we obtain [15] Ξ = (eh̄ων/T − 1)−1.

Next we take into account that the dissipation of a given νth mode of the EM field could also be

due to absorption in metal walls and bulk material unrelated to the active medium. In this case we

add the dissipative operators to the right-hand side of Eq. (4.23), −(Γr +Γσ)ĉν and −(Γr +Γσ)ĉ†ν ,

together with corresponding Langevin noise terms, L̂(ν)
r and L̂(ν)

σ . Here the factor Γr describes

radiative and diffraction losses out from the cavity and Γσ describes Ohmic losses. Taking into

account Eq. (4.26) for the interaction Hamiltonian, we obtain

˙̂cν + (iων + Γr + Γσ) · ĉν =
id̃12D̃

∗
ν

h̄

∑
ν

ρ̂21kk + L̂(ν)
r + L̂(ν)

σ . (4.40)

Here the Langevin sources can again be defined through the properties of their spectral compo-
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nents:

L̂(ν)
r,σ =

∞

∫
L̂(ν)
r,σ;ωe

−iωtdω, L̂
(ν)
r,σ;−ω = L̂(ν)†

r,σ;ω;

〈L̂(ν′)†
r,σ′;ω′L̂

(ν)
r,σ;ω〉 = nTr,σ(ων)

Γr,σδνν′

π
δ(ω − ω′),

〈L̂(ν)
r,σ;ωL̂

(ν′†)
r,σ′;ω′〉 = [nTr,σ(ων) + 1]

Γr,σδνν′

π
δ(ω − ω′), (4.41)

where nTr,σ(ων) =
1

eh̄ων/Tr,σ − 1
and Tr,σ are the temperature of the ambient space which controls

radiative losses and the bulk material inside the cavity. The presence δνν′ in Eq. (4.41) corresponds

to the Langevin sources that are δ-correlated not only in space but also in time [10, 19].

4.4.3 Spontaneous emission from an ensemble of nonequilibrium fermions in a single-mode

cavity

If we assume the populations to be given, the Heisenberg equations for the off-diagonal el-

ements of the density operator can be averaged over the original state of quasiparticles. After

averaging, the off-diagonal elements will depend on the field operators, noise operators, and pop-

ulations nmk. The operators of populations ρ̂mmkk in Eq. (4.38) will be replaced by c-numbers:

ρ̂mmkk =⇒ nmk ; see [17, 19].

The structure of Eqs. (4.38) and (4.40) suggests the substitution ĉν = ĉ0ν(t)e
−iωνt, ĉ†ν =

ĉ†0ν(t)e
+iωνt. Here ĉ0ν(t) and ĉ†0ν(t) are “slow” amplitudes in the following sense: 〈 ˙̂c0ν〉 � ων〈ĉ0ν〉;

see [17]. Neglecting any inhomogeneous broadening of the resonance line, a steady-state solution

of Eq. (4.38) for a single-mode cavity is

ρ̂21kk ≈
id̃21D̃ν

h̄

ĉ0νe
−iωνt(n1k − n2k)

i(ω21 − ων) + γ21kk

+
∞

∫
F̂ω;21kke

−iωtdω

i(ω21 − ω) + γ21kk

. (4.42)
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Substituting Eq. (4.42) into Eq. (4.40) we obtain

˙̂c0ν + (Γr + Γσ + iδω + γ)ĉ0ν =
id̃21D̃

∗
ν

h̄

∑
k ∞

∫
F̂ω;21kke

−i(ω−ων)tdω

i(ω21 − ω) + γ21kk

+
∞

∫
L̂

(ν)
rω′e

−i(ω′−ων)tdω′ +
∞

∫
L̂

(ν)
σω′′e

−i(ω′′−ων)tdω′′ (4.43)

where

δω = Ω2Re
∑
k

n1k − n2k

(ω21 − ων)− iγ21kk

, γ = Ω2Im
∑
k

n1k − n2k

(ω21 − ων)− iγ21kk

, (4.44)

Ω2 =
|d̃21|2|D̃ν |2

h̄2 =
|d̃21|22πων

h̄LxLyG(Lz, ων)
. (4.45)

The frequency shift δω of the “cold” cavity mode is due to the optical transitions between

electron states in a QW. We can redefine the cavity mode frequency assuming that the effect of

electrons has been included in ων from the very beginning (a “hot” cavity mode). The decay rate γ

describes absorption by electrons; the population inversion corresponds to γ < 0. If (γ+Γr+Γσ) <

0 the instability develops and the field grows with time; we don’t consider this case here.

The steady-state solution of Eq. (4.43) has the form

ĉ0ν =
id̃12D̃

∗
ν

h̄

∑
k

∫
∞

F̂ω;21kke
−i(ω−ων)tdω

[i(ων − ω) + Γr + Γσ + γ]× [i(ω21 − ω) + γ21kk]

+

∫
∞

L̂
(ν)
rω′e−i(ω

′−ων)tdω′

[i(ων − ω′) + Γ + Γσ + γ]
+

∫
∞

L̂
(ν)
σω′′e−i(ω

′′−ων)tdω′′

[i(ων − ω′′) + Γ + Γσ + γ]
. (4.46)

Next, we use the Hermitian conjugate of Eq. (4.46) to find the value of 〈ĉ†0ν ĉ0ν〉, assuming that the

statistics of noise operators F̂21kk(t), L̂(ν)
r (t) and L̂(ν)

σ (t) are independent from each other. Using
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Eqs. (4.39) and (4.41) we obtain

〈ĉ†0ν ĉ0ν〉 = Ω2
∑
k

∫
∞

dω

π

γ21kkn2k

[(ων − ω)2 + (Γr + Γσ + γ)2]× [(ω21 − ω)2 + γ2
21kk]

+
Γr

Γr + Γσ + γ
nTr(ων) +

Γσ
Γr + Γσ + γ

nTσ(ων). (4.47)

For simplicity, we neglect the last two terms in Eq. (4.47) which describe the contribution of

the EM background of a surrounding medium and thermal radiation of the material inside a cavity.

The power emitted by electrons into the outside space is P = 2Γr × h̄ων × 〈ĉ†0ν ĉ0ν〉:

P = h̄ωνΩ
2
∑
k

∫
∞

dω

π

2Γrγ21kkn2k

[(ων − ω)2 + (Γr + Γσ + γ)2]× [(ω21 − ω)2 + γ2
21kk]

. (4.48)

Equation (4.48) for the spontaneous emission power is the main result of this section. It has

two obvious limiting cases:

(i) The transition line is much narrower than the cavity resonance: Γr + Γσ + γ � γ21kk. In

this case we can get from Eq. (4.48)

P = h̄ων [A
(N)
2→1(∆ω)

∆ω=∆ω
(1)
eff

] · Γr
Γr + Γσ + γ

· Γr + Γσ + γ

(ων − ω21)2 + (Γr + Γσ + γ)2
·
∑
k

n2k, (4.49)

where A(N)
2→1(∆ω) is the probability of the spontaneous emission in a cavity given by Eq. (4.34)

and ∆ω(1)
eff = 2(Γr + Γσ + γ). The second factor in Eq. (4.49) determines the fraction of the

radiation which escaped outside. The third factor is due to a position of the narrow transition line

within a broader cavity mode line. The last factor is a number of radiating particles:
∑

k n2k ⇒
S

(2π)2

∫
n2kd

2k.

(ii) The transition line is much wider than the cavity resonance: Γr + Γσ + γ � γ21kk. In this

case

P = h̄ων [A
(N)
2→1(∆ω)

∆ω=∆ω
(2)
eff

] · Γr
Γr + Γσ + γ

·
∑
k

〈γ21〉 γ21kkn2k

(ων − ω21)2 + γ2
21kk

. (4.50)

Instead of the cavity linewidth 2(Γr + Γσ + γ) Eq. (4.50) contains the homogeneous linewidth
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∆ω
(2)
eff = 〈γ21〉 where the right-hand side is an average value of γ21kk. Now the third factor is due

to a position of the narrow cavity mode line within a broader transition line. Therefore, the effective

quality factor is determined by greater of the two values, Γr + Γσ + γ or 〈γ21〉. The spontaneous

emission efficiency is proportional to the factor
Γr

Γr + Γσ + γ
, where γ is the decay rate of the field

due to absorption by electrons. Since γ depends on the electron density, the spontaneous emission

efficiency per particle also depends on their density.

One can further simplify Eq. (4.48) if relaxation constants γ21kk do not depend on k, i.e.

γ21kk ≡ γ21:

P = h̄ωνΩ
2

∫
∞

dω

π

2Γrγ21

[(ων − ω)2 + (Γr + Γσ + γ)2]× [(ω21 − ω)2 + γ2
21]

∑
k

n2k. (4.51)

Here γ is defined by Eq. (4.44); for γ21kk ≡ γ21 it becomes

γ = Ω2 γ21

(ω21 − ων)2 + γ2
21

∑
k

(n1k − n2k) , (4.52)

where Ω2 is given by Eq. (4.45). Using Eq. (4.34), one can rewrite Eq. (4.51) as

P = h̄ωνA
(N)
2→1

∑
k

n2k, (4.53)

where

A
(N)
2→1 =

2π|d̃21|2
(

4ω21

∆ωeff

)
h̄LxLyG(Lz, ων)

(4.54)

and
1

∆ωeff
=

∫
∞

dω

4π

2Γrγ21

[(ων − ω)2 + (Γr + Γσ + γ)2]× [(ω21 − ω)2 + γ2
21]
. (4.55)

For a cavity filled with a uniform and dispersionless medium with dielectric constant ε one can
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further simplify Eq. (4.53) as

P =

[
h̄ωνA

(0)
∑
k

n2k

][
6

π2

(λ/2
√
ε)

3

LxLyLz

]
Qeff , (4.56)

Where A(0) =
4ω3|d21|2

√
ε

3h̄c3
is the spontaneous emission rate into free space filled with dielectric

medium ε and Qeff =
ω21

∆ωeff
is the effective quality factor. The term in the first brackets on

the rhs of Eq. (4.56) is the power of spontaneous emission into free space; the term in the second

brackets is the geometric enhancement due to a subwavelength cavity.

The integral in Eq. (4.55) is a product of two Lorentzians which can be easily evaluated ana-

lytically but is a bit cumbersome. Assuming for simplicity exact resonance between the transition

frequency and the cavity resonance, ων = ω21, we obtain

Qeff =
ω21Γr

2(Γr + Γσ + γ)(γ21 + Γr + Γσ + γ)
→ ω21

2(γ21 + Γr)
, (4.57)

where the last expression is in the limit Γr � Γσ + γ.

For a fixed transition linewidth γ21 we normalizeQeff by the Q-factor of the radiative transition
ω21

2γ21

and plot the normalized Q-factor Qnorm =
2γ21

∆ωeff
as a function of the cavity linewidth Γr for

different values of the total normalized intracavity absorption rate (Γσ + γ)/γ21; see Fig. 4.2. As

shown in Fig. 4.2, the total magnitude of the intracavity absorption rate should be kept below the

total linewidth γ21 of the emission line. Figure 4.2 also shows that it makes no sense to increase

the Q-factor of the cavity mode
ων
2Γr

beyond the value of Γr corresponding to the peak value

of the effective Q-factor Qeff . For smaller values of Γr the intracavity quantum efficiency will

stay roughly the same, limited by the dissipation rate γ21 of the optical polarization, whereas the

radiation power outcoupled from the cavity reduces ∝ Γr. The effective Q-factor quickly drops

down with detuning of the cavity mode from the emission line; see Fig. 4.3.

For mid-infrared intersubband transitions in multiple QW nanocavities at h̄ω21 ∼ 100 − 200
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Figure 4.2: The normalized effective Q-factor as a function of the normailzed cavity linewidth
Γr/γ21 at exact resonance ω21 = ων . Four curves correspond to four different values of the total
intracavity absorption rate (Γσ + γ)/γ21: 0.01, 0.1, 1, and 10, from top to bottom curve.

meV and full linewidth 2γ21 = 10 meV [23] the maximum Qeff ∼ 50 − 100 and the geometric

enhancement in Eq. (4.56) can add another factor of 10 − 100. For THz intersubband transitions

Qeff is similar whereas the geometric enhancement is a factor of 10 higher. For a near-infrared in-

terband transition in semiconductor QWs the frequency is∼ 5− 10 times higher, but the linewidth

is 2 − 3 times higher as well, so Qeff can be about 100-300. This example also suggests that an

optimal radiative loss from a cavity (or a cavity mode linewidth) for semiconductor 2D emitters

should be of the order of 5-10 meV. 2D semiconductors such as MoS2 have excitonic emission

lines that are quite broad, up to 50-100 meV. They are ideally suited for integration with plasmonic

nanocavities which have a relatively low Q-factor but a very small effective mode volume. As

an example, Ref. [26] reports a 2000-fold enhancement in the photoluminescence intensity from

MoS2 monolayer in a plasmonic nanocavity formed by a gold substrate and a patch silver nanoan-

tenna. Since the emission line of MoS2 was so broad (about 30 nm at 660 nm wavelength), ac-

cording to Eqs. (4.56), (4.57) the authors made an optimal choice of using a plasmonic nanocavity

with strong radiative outcoupling and comparably broad nanocavity modes, but with an ultrasmall
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Figure 4.3: The normalized effective Q-factor as a function of frequency detuning at Γr = γ21.
Three curves correspond to three different values of the total intracavity absorption rate (Γσ +
γ)/γ21: 0.01, 0.1, and 1, from top to bottom curve. They are plotted for the value of the normailzed
cavity linewidth Γr/γ21 = 0.1, 0.3, and 1, respectively, which correspond to the maximum Qeff in
Fig. 4.2.

effective mode volume of ∼ 10−3(λ/
√
ε)3.

All results in this section are applicable to a waveguide at the cutoff frequency.

In conclusion, using consistent Heisenberg-Langevin approach we derived general analytic for-

mulas describing the spontaneous emission of 2D emitters placed in plane-parallel subwavelength

cavities or waveguides. We found that a significant enhancement of the outcoupled spontaneous

emission and quantum efficiency of semiconductor quantum devices can be achieved for realistic

device parameters. The present formalism can be extended to the nonlinear optical processes in

2D subwavelength cavities [27].
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5. PURCELL ENHANCEMENT OF THE PARAMETRIC DOWN-CONVERSION IN

TWO-DIMENSIONAL NONLINEAR MATERIALS*

5.1 Introduction

Enhancement of the radiative processes due to the localization of emitters in a subwavelength

cavity (so-called Purcell enhancement [1]) is a fundamental cavity quantum electrodynamics (QED)

effect of great importance for numerous applications. The bulk of the research has been focused

on exploring the enhancement of spontaneous emission in various compact radiation sources from

single quantum emitters to LEDs and nanolasers. The nonlinear optics has received relatively less

attention; however, recent advancements in strong light localization using subwavelength cavities,

photonic crystals, metamaterials, and metasurfaces enabled the nonlinear optics in ultrasmall vol-

umes and at relatively low power levels; see e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein.

The rise of 2D materials with atomic monolayer thickness and excellent nonlinear optical prop-

erties, such as graphene [11, 12, 13, 14] and transition metal dichalcogenide monolayers [15, 16]

has enabled quasi-2D cavities and waveguides only a few nm thick [17, 18]. These advances cre-

ate new exciting opportunities for ultracompact nonlinear optical devices, but also raise important

issues of the correct description of quantum fields in systems with strong dissipation both in a

macroscopic ensemble of fermionic emitters (e.g. a 2D semiconductor or monolayer graphene, or

a 2D electron gas in a quantum well) and for the electromagnetic (EM) field in a cavity.

One important application for Purcell-enhanced nonlinear optics is compact systems for gen-

eration of squeezed and entangled photon states as a result of parametric down-conversion. Such

systems are inevitably lossy. The general approach to introducing dissipation and corresponding

fluctuations has been known for a long time and is based on the Heisenberg-Langevin formalism;

e.g. [19, 20, 21, 22, 23]. Its generalization to systems far from equilibrium, with arbitrary dissipa-

tion mechanisms and arbitrary photon density of states is nontrivial; see e.g. [24, 25]. Recent work

Reprinted with permission from "Purcell enhancement of the parametric down-conversion in two-dimensional
nonlinear materials" by Mikhail Tokman, Zhongqu Long, Sultan AlMutairi, Yongrui Wang, Valery Vdovin, Mikhail
Belkin, and Alexey Belyanin, 2019. APL Photonics, 4, 034403. Copyright 2019 by AIP publishing.
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[10] considered the process of spontaneous parametric down-conversion in hyperbolic metamateri-

als, in which the EM field dissipation and fluctuations are due to an equilibrium thermal reservoir.

In the present paper we consider both spontaneous and stimulated parametric down-conversion in

a generic quasi-2D subwavelength cavity, taking into account dissipation and fluctuations both due

to absorption in the intracavity material and due to in/outcoupling of the intracavity EM field with

the outside world.

We generalize the properties of Langevin noise sources known for a single mode of a quantized

field (e.g. [19, 20, 26]) to an ensemble of coupled field oscillators. We derive the properties of

the Langevin sources needed to conserve their commutation relations and show that they are not

affected by a more complicated dynamics of coupled Heisenberg field operators; moreover, this

statement does not depend on any specific microscopic model of a dissipative reservoir. We are able

to derive closed-form analytic results for the spontaneous parametric signal, the parametric gain,

and the threshold for parametric amplification. These expressions include the contributions from all

relevant dissipation and fluctuation effects such as absorption and radiation losses, interaction with

thermal and zero-point fluctuations, parametric amplification of thermal noise and seed photons at

the signal frequency, etc.; see e.g. Eqs. (5.32), (5.35) below.

Our approach has obvious limitations of a Heisenberg-Langevin formalism, namely it assumes

that the coupling of a dynamic subsystem to a dissipative reservoir is sufficiently weak. If this is

not the case and the coupling to other EM modes, photons, etc. is strong, one would have to include

it as part of an “exact” Hamiltonian dynamics, in which case there would be no need in adding the

corresponding Langevin sources and the commutation relations would be satisfied automatically.

We also do not investigate the nonlinear stage of parametric oscillations accompanied by the pump

depletion, nonlinear evolution of phasematching conditions, nonlinear modification of refraction

and diffraction losses, and other nonlinear effects that are essentially classical and depend on a

particular experimental setup.

Section II describes the spatial structure of the EM field in a subwavelength quasi-2D elec-

trodynamic structure, develops the quantization procedure in a dissipationless system, and dis-
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cusses three-wave mode matching conditions. Section III introduces the Heisenberg-Langevin

approach for the parametric down-conversion in a dissipative cavity. It derives convenient ana-

lytic expressions for the spontaneous parametric signal, the parametric amplification threshold in

plane-parallel cavities, and the signal evolution at the linear stage. We discuss several numerical

examples for the parametric down-conversion in quasi-2D systems studied by other groups. Sec-

tion IV compares parametric amplification threshold in a subwavelength cavity with the one in a

standard Fabry-Perot cavity containing a 2D nonlinear layer. In this case the performance tradeoff

is between the cavity losses and the modal overlap with a nonlinear layer. Larger cavities tend

to have a higher Q-factor but lower coupling to a nonlinear 2D layer. Our results show that it is

possible to achieve a significant reduction of the parametric amplification threshold due to Purcell

enhancement in quasi-2D subwavelength cavities.

5.2 Parametric down-conversion in a conservative system

Consider three cavity modes with frequencies related by the energy conservation in the para-

metric down-conversion process:

ωp = ωs + ωi. (5.1)

Here the pumping at frequency ωp will be considered a classical coherent field,

Ep = Ep(r)e−iωpt + C.C. (5.2)

The field at signal and idler frequencies, ωs and ωi , will be the quantum field described by the

operator

Ê =
∑
ν=s,i

[Eν(r)ĉν +E∗ν(r)ĉ†ν ], (5.3)

where ĉν and ĉν† are boson annihilation and creation operators. The functionsEp,s,i(r) in Eqs. (5.2)

and (5.3) are determined by the spatial structure of the cavity modes. The normalization of func-

tionsEν(r) needs to be chosen in such a way that the commutation relation for boson operators ĉν
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and ĉν† have a standard form [ĉν , ĉν
†] = δνν′ . Following [27, 28, 29], one can obtain

∫
V

E∗νj(r)
1

2ων

[
∂ (ω2εjk(ω, r))

∂ω

]
ω=ων

Eνk(r) d3r = 2πh̄ων , (5.4)

where ων is the eigenfrequency of a cavity mode, Eνj(r) is a Cartesian component of the vector

field Eν(r), εjk(ω, r) is the dielectric tensor, and V is a cavity volume (a quantization volume).

Equation (5.4) is valid when the dissipation is weak enough. Specifically, the following three

conditions have to be satisfied for a dissipation rate Γ of a given cavity mode. The first condition is

obvious: Γ � ω has to be true for the frequencies of all modes involved in the parametric process.

The second condition implies that the change of the Hermitian dielectric function εjk(ω) has to

be small over the frequency interval of the order of Γ : |(∂εjk(ω)/∂ω)Γ | � |εjk(ω)|. The third

condition states that the change in the derivative of εjk(ω) which enters the expression for the EM

energy density in Eq. (5.4) must also be small: |(∂2εjk(ω)/∂ω2)Γ | � |(∂εjk(ω)/∂ω)|.

Consider a 3D cavity filled with an isotropic dielectric medium, as sketched in Fig. 1. The

cavity thickness in z-direction is much smaller than wavelength: Lz � c/
√
ε̄ω , where ε̄ is a typical

(average) value of the dielectric constant of the filling. As was shown in [26], if the dielectric

filling consists of plane-parallel layers, i.e. ε = ε(z), the structure of the cavity eigenmodes is

quasi-electrostatic along the z-axis, i.e. Ezε(z) ≈ const, Ex,y � Ez. In this case the field of a

cavity mode can be written as

Ep,s,i(r) ≈ z0Dp,s,i
ζp,s,i(x, y)

ε(ωp,s,i, z)
, (5.5)

where the constants Dp,s,i are coordinate-independent amplitudes of the electric induction. To find

the functions ζp,s,i(x, y) we solve the wave equation

∇ · (∇ ·Ep,s,i)−∇2Ep,s,i −
ω2
p,s,i

c2
ε(ωp,s,i, z)Ep,s,i = 0.
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Consider a z-component of this equation,

∂

∂z

(
∂E(p,s,i)x

∂x
+
∂E(p,s,i)y

∂y

)
=

[
∂2

∂x2
+

∂2

∂y2
+
ω2
p,s,i

c2
ε(ωp,s,i, z)

]
E(p,s,i)z. (5.6)

Following the procedure described in [26], we integrate Eq. (5.6) over
∫ Lz/2
−Lz/2 dz taking into

account the boundary conditions on the metal planes of the cavity, Ex,y(±Lz/2) = 0. Then we

substitute Eq. (5.5) into the result of integration, which gives

 ∂2

∂x2
+

∂2

∂y2
+

ω2
p,s,i

c2 1
Lz

∫ Lz/2
−Lz/2

1
ε(ωp,s,i,z)

dz

 ζp,s,i = 0. (5.7)

The solution to Eq. (5.7) with zero boundary conditions at the edges of the cavity determines

eigenfrequencies and the structure of the eigenmodes for a quasi-2D cavity with an arbitrary shape

in the (x, y)-plane.

Similar equations can be derived if one simply utilizes jumps of the dielectric constants on the

sides instead of metal coating. Even without any jump in the dielectric constants, an open end of

a thin waveguide with vertical size much smaller than wavelength is a good reflector and therefore

any radiation losses through the facets are small and are not affecting the mode spatial structure

significantly.

The expression for the constants Dp,s,i for quantized fields can be obtained from the general

equation Eq. (5.4) (see also [26]),

|Dν |2 =
2πh̄ων∫

S
|ζν(x, y)|2d2r 1

2ων

∫ Lz/2
−Lz/2

[
∂(ω2ε(ω,z))

∂ω

]
ω=ων

dz
, (5.8)

where ν = p, s, i. For a simple case of a rectangular-shaped cavity, when S = Lx × Ly, where Lx

andLy are the cavity dimensions along x and y directions, it is easy to obtain useful analytic expres-

sions for the modal spatial structure and frequencies. For eigenmodes with one half-wavelength
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along the y-axis and N half-wavelengths along the x-axis, we obtain the modal profile

ζν = cos

(
πy

Ly

)
×


cos

(
N

(ν)
oddπx

Lx

)

sin

(
N

(ν)
evenπx

Lx

) , (5.9)

∫
S

|ζν(x, y)|2d2r =
S

4
. (5.10)

The eigenfrequencies are given by

(
Nνπ

Lx

)2

+

(
π

Ly

)2

=
ω2
ν

c2

Lz
+Lz

2∫
−Lz

2

1
ε(ων ,z)

dz

. (5.11)

For a particular case of a uniform dielectric constant, Eqs. (5.9) and (5.11) are exact, i.e. they do

not require an assumption of a quasielectrostatic field structure.

We assume that a 2D electron system with the second-order nonlinear susceptibility is posi-

tioned in the cavity. The material can be a quantum well (QW), a 2D semiconductor, and even

graphene, which has a strong second-order nonlinearity beyond electric-dipole approximation, de-

spite being centrosymmetric [14]. The second-order nonlinearity gives rise to the nonlinear polar-

ization at signal and idler frequencies. The excitation equations for the cavity modes derived from

the operator-valued Maxwell’s equations [27] take the form

˙̂cν + iων ĉν = − i

h̄ω2
ν

∫
V

¨̂
PNL(r, t)E∗ν(r)d3r. (5.12)

The nonlinear polarization P̂NL(r, t) should be determined for a given electron system; in gen-

eral, it has a nonuniform distribution over the cavity cross-section. However, it is obvious from

Eq. (5.12) that only the integral over the nonlinear polarization matters. Therefore it is convenient

to consider a nonlinear layer with uniform dielectric constant εQW (ωp,s,i) = εp,s,i and uniform
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Figure 5.1: A sketch of a nanocavity with thickness Lz much smaller than wavelength. The profiles
of the electric fields of the TE013 pump mode (blue) and TE011 signal and idler modes (red) are
sketched on the sides. Dark blue layer indicates a 2D nonlinear material; light blue layer is a cavity
filling. Top and bottom gold layers are metal plates. The radiation can be in/outcoupled through
the gratings or cavity edges.

second-order nonlinear susceptibilities χ(2)(ωs = ωp − ωi) = χ
(2)
s , χ(2)(ωi = ωp − ωs) = χ

(2)
i ,

χ(2)(ωp = ωs + ωi) = χ
(2)
p . For a general case of a nonuniform layer the above quantities can be

considered as parameters obtained as a result of integration in Eq. (5.12).

For a uniform layer the nonlinear polarization can be expressed as

P̂NL = z0ζp(x, y)[ζi(x, y)χ(2)
s EpE

∗
i e
−iωptĉ†i + ζs(x, y)χ

(2)
i EpE

∗
se
−iωptc†s] +H.C.; (5.13)
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where c†s ∝ eiωst, c†i ∝ eiωit,

|Es,i|2 =
8πh̄ωs,i

LxLyLz
1

2ωs,i

[
∂(ω2ε)

∂ω

]
ω=ωs,i

, (5.14)

and Ep = const. In Eq. (5.14) we assumed a rectangular cavity shape for simplicity.

If the nonlinearity is non-dissipative, the nonlinear susceptibilities satisfy the symmetry prop-

erties which ensure than Manley-Rowe relationships are satisfied in a conservative system [30, 31].

χ(2)
s = χ

(2)
i = χ(2)∗

p = χ(2). (5.15)

Using the rotating wave approximation, Eqs. (5.12) and (5.13) give the following parametrically

coupled equations for a given classical pumping:

˙̂cs + iωsĉs + ςe−iωptĉ†i = 0, ˙̂c†i − iωiĉ
†
i + ς∗e+iωptĉs = 0 (5.16)

where

ς = − i
h̄
χ(2)lEpE

∗
iE
∗
s × J, (5.17)

J =

∫
Lx×Ly

ζp(x, y)ζi(x, y)ζs(x, y)d2r (5.18)

is a modal overlap factor and l is the thickness of the nonlinear layer in z direction.

Equations (5.16) are Heisenberg equations for the effective Hamiltonian

Ĥ = h̄ωs

(
ĉ†sĉs +

1

2

)
+ h̄ωi

(
ĉ†i ĉi +

1

2

)
− ih̄ςe−iωptĉ†sĉ

†
i + ih̄ς∗eiωptĉsĉi. (5.19)

For a parametric down-conversion of a pump photon into two identical photons, when

ωp = 2ωs (5.20)
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we arrive at the Hamiltonian

Ĥ = h̄ωs

(
ĉ†sĉs +

1

2

)
− ih̄ ς

2
e−iωptĉ†sĉ

†
s + ih̄

ς

2

∗
eiωptĉsĉs. (5.21)

The condition J 6= 0 is similar to the three-wave phase matching condition for the wave vec-

tors of modes participating in the parametric down-conversion. The phase matching needs to be

satisfied together with frequency matching in Eq. (5.1), which could be highly nontrivial in a

3D geometry and in a dispersive medium. An important advantage of a subwavelength cavity

is that these conditions are straightforward to satisfy by adjusting the cavity geometry. Indeed,

consider the decay of the pump into two lowest-order TE011 modes satisfying Eq. (5.20); in this

case ζs(x, y) = cos

(
πy

Ly

)
cos

(
πx

Lx

)
. For a pumping mode of TE01N type with N even, J = 0;

however for N odd we get J 6= 0. For example, for a TE013 pumping mode (see Fig. 1), when

ζp(x, y) = cos

(
πy

Ly

)
cos

(
3πx

Lx

)
, we obtain: J =

LxLy
π2
× 16

45
. In this case from Eq. (5.20) and

mode frequencies given by Eq. (5.11) one can get a condition for cavity sizes:

Lx
Ly

=

√√√√√√√
9− 4

ε(2ωs)

ε(ωs)

4
ε(2ωs)

ε(ωs)
− 1

5.3 Equations for parametric down-conversion in a dissipative system: Heisenberg-Langevin

approach

Here we take into account absorption and radiative losses within the Heisenberg-Langevin for-

malism. We remind the reader that this approach assumes that the coupling of a dynamic subsystem

to a dissipative reservoir is sufficiently weak. If this is not the case and the coupling is strong, the

process of energy loss by a given EM mode should be described within a closed Hamiltonian sys-

tem (e.g. as a coupling to other EM modes, phonons etc.). In this case one does not need any

Langevin sources, because in a Hamiltonian system proper commutation relations are satisfied au-

tomatically. Whenever the energy exchange of a dynamical subsystem with a reservoir is relatively
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weak and can be considered within a phenomenological approach, the “dissipation + the Langevin

noise” model should be valid for any mechanism of dissipation.

For example, we assume here that the spatial mode structure corresponds to the one in an

ideal cavity, whereas diffraction losses of the field out of a cavity can be described by an effective

loss rate. This assumption obviously works as long as losses do not affect the mode structure

significantly. If the latter is not true, one would have to solve a rigorous diffraction problem which

couples the field modes in the cavity and outside. For such a rigorous problem all commutation

relations would be satisfied automatically.

Introducing operators of slowly varying field amplitudes, namely ĉs,i = ĉ0s,i(t)e
−iωs,it, ĉ†s,i =

ĉ†0s,i(t)e
+iωs,it, we obtain from Eqs. (5.16) the following equations:

˙̂c0s + Γsĉ0s + ςĉ†0i = L̂s

˙̂c0i + Γiĉ0i + ςĉ†0s = L̂i

 , (5.22)

where Γs,i = Γr(s,i) +Γσ(s,i), the coefficients Γr(s,i) and Γσ(s,i) denote, respectively, radiative losses

due to the outcoupling of radiation from the cavity and absorption losses due to intracavity absorp-

tion. L̂s,i are the Langevin noise operators. We show in Appendix A that to preserve commuta-

tion relations [ĉ0i, ĉ
†
0i] = [ĉ0s, ĉ

†
0s] = 1 at Γs,i 6= 0 the noise operators in the right-hand side of

Eqs. (5.22) should satisfy the same commutation relations as in the case of one quantum oscillator

[19, 20, 26] and they should also commute with each other:

[
L̂s(t

′), L̂†s(t)
]

= 2Γsδ(t− t′),
[
L̂i(t

′), L̂†i (t)
]

= 2Γiδ(t− t′),
[
L̂s(t

′), L̂†i (t)
]

= 0. (5.23)

The fact that commutation relations are the same for one quantum oscillator and for two (or more)

interacting oscillators is expected, since the processes within the Hamiltonian dynamics do not

affect the commutators; this can be easily checked, for example for the system described by the

Hamiltonian Eq. (5.19). Noise correlators can be defined by generalizing the simplest expression
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in [19] to the case of two absorbers with different temperatures:

〈L̂†s(t)L̂s(t′)〉 = 2 [ΓσsnTσ(ωs) + ΓrsnTr(ωs)] δ(t− t′)

〈L̂†i (t)L̂i(t′)〉 = 2 [ΓσinTσ(ωi) + ΓrinTr(ωi)] δ(t− t′)

 (5.24)

where nTr,σ is the average number of thermal photons at temperature Tr,σ; Tr and Tσ denote the

temperature outside and inside the cavity, respectively. Expressions (5.24) imply that dissipative

and radiative noises are not correlated.

The solution to Eqs. (5.22) can be represented as [21, 23]

 ĉ0s

ĉ†0s

 =

 1

K1

 e−λ1t

ĉ1 +

t∫
0

eλ1t
′
L̂1(t′)dt′

+

 1

K2

 e−λ2t

ĉ2 +

t∫
0

eλ2t
′
L̂2(t′)dt′

 ,

(5.25)

where λ1,2 and

 1

K1,2

 are eigenvalues and eigenvectors of the 2× 2 matrix:

 Γs ς

ς∗ Γi

×
 1

K1,2

 = λ1,2

 1

K1,2

 , (5.26)

ĉ1 =
K2ĉs(0)− ĉ†i (0)

K2 −K1

, ĉ2 = −K1ĉs(0)− ĉ†i (0)

K2 −K1

L̂1 =
K2L̂s − L̂†i
K2 −K1

, L̂2 = −K1L̂s − L̂†i
K2 −K1

 , (5.27)

ĉs(0) and ĉ†i (0) are initial conditions.

From the solution (5.25)-(5.26) one can derive a standard-looking condition for the parametric

instability(see e.g. [32]):

|ς|2 > ΓsΓi. (5.28)

Consider the inequality (5.28) in more detail, neglecting for clarity the frequency dispersion of the
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dielectric filling of a cavity. Taking into account Eq. (5.14), one can derive from Eq. (5.17) that

|ς| = |χ(2)Ep|
√
ωsωi

8πl

Lzε

J

LxLy
, (5.29)

where the dimensionless factor J/(LxLy) depends only on the spatial structure of the modes with

frequencies ωp,s,i. From Eqs. (5.28), (5.29) the instability condition takes the form

256π2

ε2L2
z

(χ(2)l)2|Ep|2
(
ωs
∆ωs

)(
ωi
∆ωi

)(
J

LxLy

)2

> 1, (5.30)

where ∆ωs,i = 2Γs,i are the linewidths for the signal and idler modes.

To avoid cumbersome expressions, consider the decay of a pump photon into identical quanta

as in Eq. (5.20). In this case the instability condition is |ς| > Γs. It is convenient to choose the

phase of the pump mode so that the value of is real and positive. Then Eqs. (5.25)-(5.27) yield

ĉ0s = e−Γst
[
ĉs(0)cosh(ςt)− ĉ†s(0)sinh(ςt)

]
+

t∫
0

e(−ς+Γs)(t′−t) L̂s(t
′)− L̂†s(t′)

2
dt′+

+

t∫
0

e(ς+Γs)(t′−t) L̂s(t
′) + L̂†s(t

′)

2
dt′. (5.31)

Taking into account the properties of Langevin operators in Eq. (5.22) and taking
〈
ĉ†s(0)ĉ†s(0)

〉
=

〈ĉs(0)ĉs(0)〉 = 0 as an initial state, one can derive from Eq. (5.31) the average photon numbers for

signal modes ns =
〈
ĉ†sĉs
〉

=
〈
ĉ†0sĉ0s

〉
:

ns = e−2Γst
{
ns(0)

[
cosh2(ςt) + sinh2(ςt)

]
+ sinh2(ςt)

}
+ [ΓσsnTσ(ωs) + ΓrsnTr(ωs)]×

(
1− e2(ς−Γs)t

2(−ς + Γs)
+

1− e2(−ς−Γs)t

2(ς + Γs)

)
+ Γs

(
1− e2(ς−Γs)t

4(−ς + Γs)
+

1− e2(−ς−Γs)t

4(ς + Γs)
− 1− e−2Γst

2Γs

)
, (5.32)

where Γs = Γσs + Γrs. When the parametric amplification starts from the level of vacuum fluctu-
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ations, one should put ns(0) = 0 in Eq. (5.32).

In the limit of zero pumping intensity, Eq. (5.32) gives an expression which describes how the

initial perturbation of a photon number approaches equilibrium:

ns = e−2Γstns(0) +
ΓσsnTσ(ωs) + ΓrsnTr(ωs)

Γs
×
(
1− e−2Γst

)
. (5.33)

Above the instability threshold, when ς � Γs, it is enough to keep only exponentially grow-

ing terms in Eq. (5.32). We can also assume that an average number of thermal photons in an

ambient space nTr(ωs) is negligible. This gives an expression for the parametric signal power

Ps ≈ 2ςh̄ωsns:

Ps ≈ ςh̄ωse
2ςt

[
ns(0) +

Γσs
ς
nTσ(ωs) +

1

2

]
. (5.34)

Obviously this expression is valid only at the initial linear stage. The subsequent evolution is

governed by the nonlinear pump depletion and nonlinear modification of phasematching conditions

and losses. An order-of magnitude estimate of the maximum steady-state power can be obtained

from Manley-Rowe relations as shown below for a specific example.

The fractions of the power emitted outside and absorbed inside a cavity are Prs ≈ ΓrsPs/ς and

Pσs ≈ ΓσsPs/ς respectively; most of the power is accumulated in a cavity. From Eq. (5.34) one

can see that the amplification of intrinsic thermal noise of a QW layer with temperature Tσ can be

ignored if
Γσs
ς
· 2

exp(h̄ωs/Tσ)− 1
� 1.

When the parametric growth rate is lower than losses, ς < Γs, the general solution Eq. (5.32)

describes the regime of spontaneous parametric down-conversion. In the stationary limit, when

(Γs − ς)t→∞, the radiated signal power Prs ≈ 2Γrsh̄ωsns becomes

Prs = h̄ωs
2ΓrsΓs
Γ 2
s − ς2

[ΓσsnTσ(ωs) + ΓrsnTr(ωs)] + h̄ωs
Γrsς

2

Γ 2
s − ς2

. (5.35)

The first term in the right-hand side of Eq. (5.35) is due to the thermal emission modified by the

parametric decay of the pump photons. The second term originates from the parametric decay of
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the pump photons under the action of vacuum fluctuations of the intracavity field; this is a purely

quantum effect. Thermal effects can be neglected if

ΓsΓ(σ,r)s

ς2

2

exp (h̄ωs/(kBTσ,r))− 1
� 1.

The results in Eqs. (5.32)-(5.35) provide the dependence of the parametric signal from all rel-

evant dissipation and fluctuation effects. In addition to dissipation and thermal fluctuations due to

absorption in the cavity walls and a semiconductor heterostructure, they take into account outcou-

pling of a signal into the ambient space and coupling to thermal photons from the environment.

Eq. (5.35) determines the spontaneous parametric signal emitted from a cavity against the back-

ground of noise created by both thermal radiation from a cavity and reemission of thermal photons

coupled into a cavity from the outside. The background noise depends from the cavity tempera-

ture and the environment temperature. In addition to the spontaneous decay process we take into

account the modification of background noise by pumping.

For a numerical example, consider a nanocavity filled with multiple quantum wells, excited

with a mid-infrared pump, as reported in [8]. Using Eq. (5.30) for their values of intersubband

nonlinearity |χ(2)| ∼ 3× 10−7 m/V, ωs,i/∆ωs,i ∼ 20 and J/LxLy ∼ 0.3 we obtain the intracavity

pump field at the instability threshold to be Ep ' 8 kV/cm, which is achievable and is lower than

the saturation field for the intersubband nonlinearity. Above the threshold, the signal and idler

fields start growing inside the cavity until they get limited by the Manley-Rowe relations [33],

i.e. the intracavity signal field reaches |Es| ' |Ep|/
√

2. Therefore, the maximum output signal

power that can be obtained per one nanocavity described in [8] is about 8× 10−7 W for the photon

leakage rate Γrs = 1012 s−1.

Far below the instability threshold, when ς � Γs, the spontaneous rate of parametric down-

conversion scales as (Γrs/Γ
2
s )ς2. For the parameters from the above numerical example, when

ς = Γs/2 the emission rate of signal photons is around 3× 1011 s−1 and the power is 6 nW.

A very high second-order nonlinear surface conductivity for graphene was reported in [14],
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corresponding to the effective bulk susceptibility |χ(2)| ∼ 10−3 m/V per monolayer in the THz

range. This large susceptibility if partially offset by a small factor l/Lz in Eq. (5.29) where l is

a thickness of the graphene layer. However, for hBN-encapsulated graphene utilized to fabricate

low-disorder graphene samples [34] the total cavity thickness Lz can be as small as several nm, so

the factor l/Lz can be as large as 0.1. Even factoring in enhanced cavity losses, this can yield a

lower parametric instability threshold as compared to semiconductor quantum well samples.

5.4 Comparing parametric instability in a subwavelength cavity and in a Fabry-Perot cavity

Compare the parametric instability in a subwavelength cavity with similar instability of modes

in a Fabry-Perot (FP) cavity with all three dimensions larger than wavelength, which we will

call a quasi-optical cavity. Consider a planar quasi-2D cavity of the surface area LxLy, in which

the waves are propagating along the nonlinear layer of thickness l much smaller than the cavity

thickness LFP transverse to the nonlinear layer, so the cavity volume is LFPLxLy. The dielectric

constant of a cavity filling is ε. In this case the parametric down-conversion is still described by

Eqs. (5.22), (5.17), and (5.18), in which the relaxation constants Γs,i and the overlap integral are

determined by the FP cavity Q-factor and the corresponding spatial structure of the modes. For the

normalization constants of the quantum fields entering Eq. (5.17) we use standard expressions for

a two-mirror FP cavity:

|Es,i|2 =
4πh̄ωs,i

LxLyLFP ε
. (5.36)

The resulting parametric instability threshold is

64π2

ε2L2
FP

(
χ(2)l

)2 |Ep|2
(
ωs
∆ωs

)(
ωi
∆ωi

)(
J

LxLy

)2

> 1, (5.37)

where ∆ωs,i ≈ 2Γs,i.

As we already pointed out, in a cavity with all three dimensions larger than the wavelength the
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phase matching condition for a three-wave mixing may be more difficult to satisfy. Even if we

assume that phase matching is somehow arranged and the geometric factor J/LxLy is of the same

order as in a subwavelength cavity, the latter is expected to have a lower parametric threshold.

Indeed the ratio of the threshold pump intensity |Ep|2 in a subwavelength cavity to that in a quasi-

optical cavity scales as ∼
(
Lz
LFP

)2(
∆ωeff
∆ωFP

)2

, where ∆ωeff and ∆ωFP ≈ ∆ωs,i are typical

linewidths of the subwavelength cavity and FP cavity modes, respectively. This ratio can be much

smaller than 1, which indicates that a much lower pumping is needed to reach the parametric

instability threshold in a subwavelength cavity, even if the FP cavity has a higher Q-factor as

compared to the subwavelength cavity, ∆ωFP < ∆ωeff .

A plane-parallel quasi-2D subwavelength cavity geometry considered in this paper is the most

natural choice for integration with 2D nonlinear materials. However, other geometries are also

possible, for example plasmonic or grating structures supporting surface modes. To get an order of

magnitude estimate of the parametric threshold, one can use our results in Eqs. (5.30), (5.37) after

replacing Lz or LFP with a mode size transversely to the nonlinear layer.

A promising example of such a plasmonic nanocavity was reported in [35]. It consists of a

monolayer MoS2, which is a 2D semiconductor, sandwiched between a gold substrate and a patch

silver nanoantenna. Such a cavity has high radiative and absorption losses but a very small trans-

verse mode size of less than 10 nm and an ultrasmall effective mode volume of ∼ 10−3(λ/
√
ε)3.

The authors of [35] used their cavities to obtain a 2000-fold enhancement in the photolumines-

cence intensity from MoS2 monolayer. However, a cavity of similar design can also be used for

parametric down-conversion from visible to the near-IR range. A high second-order nonlinearity,

about an order of magnitude higher than in BBO or lithium niobate, has been reported for MoS2

monolayer [36]. An even higher nonlinearity has been observed in the vicinity of exciton reso-

nances [37]. Assuming conservatively that the effective second-order susceptibility for MoS2 is

|χ(2)| ∼ 10−10 m/V, monolayer thickness 0.6 nm, transverse mode size 5 nm, ωs,i/∆ωs,i ∼ 20 and

J/LxLy ∼ 0.3 we obtain from Eq. (5.30) the intracavity pump field at the parametric amplification

threshold to be Ep ' 30 MV/cm, which is much higher than the estimate above for a nonlinear
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cavity based on mid-infrared resonant intersubband nonlinearity of quantum wells, but is below

the saturation threshold for MoS2 and easily achievable with pulsed lasers.

Ultracompact subwavelength electrodynamic structures utilizing 2D materials are promising

for applications in integrated photonic circuits, whenever one needs a compact planar architecture.

At the same time, due to strong dissipation they are unlikely to outperform conventional nonlinear

devices made of bulk transparent nonlinear materials when it comes to the nonlinear conversion

efficiency and power. For example, in [38] the authors realized low-threshold mode-matched para-

metric generation in whispering gallery mode resonators made entirely of bulk lithium niobate.

In this case the bulk nonlinear material occupies all modal volume. The lower nonlinearity and

the loss of Purcell enhancement are compensated by lower dissipation and increased interaction

volume.

In conclusion, we applied a consistent Heisenberg-Langevin formalism to the process of non-

linear parametric down-conversion of cavity modes in planar subwavelength cavities containing

2D nonlinear materials. We derived general analytic formulas for the spontaneous parametric sig-

nal and threshold of stimulated parametric down-conversion of a pump cavity mode into the signal

and idler modes. We found that a significant reduction in the parametric instability threshold can

be achieved for realistic materials and cavity parameters due to Purcell enhancement.
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6. SUMMARY

In this dissertation, we showed the unique optical properties of a specific topological material

- Weyl semimetals, quasi one-dimensional materials - carbon nanotubes, and Purcell enhancement

of quasi two-dimensional materials.

For Weyl semimetals, we derived its dielectric tensor from general Hamiltonian for Weyl fer-

imions in a strong magnetic field, and then the propagation of electromagnetic waves based on this

dielectric tensor. Results showed unusual magneto-optical effects for Weyl semimetals: hyperbolic

dispersion, photonic stop bands, coupling-induced transparency, and broadband polarization con-

version. All effects are tunable by varying the magnetic field strength, electric bias or propagation

angle. These effects lead to potential applications of Weyl semimetals in photonic devices.

For carbon nanotubes, we derived their optical response under different excitation scale with

tight binding model and Semiconductor Bloch equation. Results showed that the optical gain could

exceed the threshold for superfluorescence, and thus make SWCNTs a fast and effective emitter.

For the Purcell effect in subwavelength quasi two-dimensional materials, we used Heisenberg-

Langevin approach to study the radiative processes. This approach included dissipation and fluctu-

ation in both fermionic ensemble and electromagnetic field. Our results provided a general frame-

work for spontaneous emission and parametric down-conversion. We derived the analytical ex-

pression for the spontaneous emission power, the spontaneous parametric conversion power, and

threshold for parametric instability. Our results provided a very detailed understanding of Purcell

effect in realistic situation, and could be used as guidance for subwavelength cavity design.

In conclusion, nanostructures and topological materials have many unusual optical properties.

We hope our study could help future research in photonic engineering devices based on those

fascinating novel materials.
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APPENDIX A

CONDUCTIVITY OF WEYL SEMIMETALS IN A STRONG MAGNETIC FIELD

A.1 Electron states in a magnetic field

When a uniform magnetic field is applied to a WSM, the Weyl cones split into Landau sub-

bands.

The Hamiltonian of a Weyl electron in a magnetic field is

H = χvFσ
(
p+

e

c
A
)

(A.1)

Here χ = ±1 is chirality index. If we choose the vector potential A = (0, Bx, 0), then the

Hamiltonian is

H = χvF

 h̄kz πx − iπy

πx + iπy −h̄kz

 = χh̄vF

 kz
√

2
lB
a

√
2

lB
a† −kz

 (A.2)

Here π = p+ e
c
A, lB =

√
h̄c/eB, and we introduced creation and annihilation operators,

a =
lB√
2h̄

(πx − iπy), a† =
lB√
2h̄

(πx + iπy),

which satisfy

a†ψn0 =
√
|n|ψn1, aψn1 =

√
|n|ψn0

when the eigenstates are sought in the form

Ψn(ky, r) =

 unψn0

vnψn1

 .

75



Then we can obtain fromHΨn = W
(χ)
n Ψn:

χh̄vF

 kz
√

2
lB
a

√
2

lB
a† −kz


 unψn0

vnψn1

 = χh̄vF

 (kzun +

√
2|n|
lB

vn)ψn0

(−kzvn +

√
2|n|
lB

un)ψn1

 = W (χ)
n Ψn.

The eigenenergies are

W
(χ)
0 = −χh̄vFkz (A.3)

Wn = sgn(n)h̄vF

√
2|n|
l2b

+ k2
z for n 6= 0 (A.4)

un =

√
1

2
(1 +

h̄vFkz
Wn

) (A.5)

vn =

√
1

2
(1− h̄vFkz

Wn

) (A.6)

and the full expression for eigenstates is

Ψn(k, r) =
Cn√
LyLz

exp(−i(kyy + kzz))

 sgn(n)i|n|−1φ|n|−1un

i|n|φ|n|vn

 . (A.7)

Here

Cn =

 1 n = 0

1√
2

n 6= 0
(A.8)

φ|n| =
Hn(

x−l2Bky
lB

)√
2|n||n|!

√
πlB

exp

(
−1

2

(
x− l2Bky

lB

)2
)
. (A.9)

A.2 Selection rules for transitions between Landau levels

The selection rules for 3D chiral fermions in a magnetic field are very similar to that for 2D

electrons in graphene. For a monochromatic optical field at frequency ω propagating along z

direction and described by the vector potential A = −i(c/ω)E in the xy plane, the interaction
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Hamiltonian is

Hint = χvFσ
e

c
A. (A.10)

The probability of an optical transition between state m and n is determined by the matrix

element < m|Hint|n >

< m|Hint|n >= −iχvF e
ω

< m|σxx + σyy|n > E (A.11)

σxx + σyy =

 0 x − iy

x + iy 0

 =
√

2

 0 eRHC

eLHC 0


Writing E = ELeLHC + EReRHC and substituting the wave functions from Eq. (A.9) into

Eq. (A.11), we obtain

< m|Hint|n > = −iχvF e
ωc

CmCnvmuni
−|m|+|n|−1 < φ|m||φ|n|−1 >

√
2ER

− iχvF e

ωc
CnCmvnumi

−|m|+|n|+1 < φ|m|−1|φ|n| >
√

2EL (A.12)

The resulting selection rules are:

|m| = |n| − 1 for eRHC polarization (A.13)

|n| = |m| − 1 for eLHC polarization (A.14)

A.3 Transverse optical conductivity due to transitions between Landau levels

The current density generated in response to a monochromatic field is

j =
i(evF )2h̄

4π2l2b

∫
dkz
∑
mn

[(σR)nmeRHC + (σL)nmeLHC ][(σR)mnEL + (σL)mnER]

× fn(kz)− fm(kz)

[h̄ω − (Wm(kz)−Wn(kz) + iγ)](Wm(kz)−Wn(kz))
(A.15)
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The corresponding conductivities for LHC and RHC polarizations are given by

σ̃RR =
i(evF )2h̄

4π2l2b

∫
dkz
∑
mn

[(σR)nm(σL)mn]× fn(kz)− fm(kz)

[h̄ω − (Wm(kz)−Wn(kz)) + iγ](Wm(kz)−Wn(kz))

σ̃LL =
i(evF )2h̄

4π2l2b

∫
dkz
∑
mn

[(σL)nm(σR)mn]× fn(kz)− fm(kz)

[h̄ω − (Wm(kz)−Wn(kz)) + iγ](Wm(kz)−Wn(kz))

Here fn,m(kz) are occupation numbers of electron states;

(σR)nm =< n|

 0 1

0 0

 |m >

=
√

2CnCmvnumδ(|n| − |m| − 1)

(σL)nm =< n|

 0 0

1 0

 |m >

=
√

2CnCmvmunδ(|n| − |m|+ 1)

The resulting expressions for σ̃RR and σ̃LL are

(σ̃RR)n→m =
i(evF )2h̄

2π2l2b

∫
dkz(CnCmvnum)2 fn − fm

∆W (h̄ω −∆W + iγ)
δ(|n| − |m| − 1) (A.16)

(σ̃LL)n→m =
i(evF )2h̄

2π2l2b

∫
dkz(CnCmvmun)2 fn − fm

∆W (h̄ω −∆W + iγ)
δ(|n| − |m|+ 1), (A.17)

where ∆W = Wm(kz)−Wn(kz); the quantities C, v, u and Wn are defined earlier.

As an example, we provide below an explicit form of the conductivity components for lowest-

78



energy transitions 0→ 1, −1→ 0, −1→ 2 and 1→ 2 for an arbitrary chirality χ = ±1:

(σ̃LL)0→1 =
i(evF )2h̄

2π2l2b

∫
dkz(C1C0v0u1)2 fn − fm

∆W (h̄ω −∆W + iγ)

=
i(evF )2h̄

2π2l2b

∫
dkz

1

4
(1 + χkz(

2

l2b
+ k2

z)
−0.5)

× fn − fm
h̄vF (

√
2
l2b

+ k2
z + χkz)(h̄ω − h̄vF (

√
2
l2b

+ k2
z + χkz) + iγ)

(σ̃RR)−1→0 =
i(evF )2h̄

2π2l2b

∫
dkz(C−1C0v−1u0)2 fn − fm

∆W (h̄ω −∆W + iγ)

=
i(evF )2h̄

2π2l2b

∫
dkz

1

4
(1− χkz(

2

l2b
+ k2

z)
−0.5)

× fn − fm
h̄vF (

√
2
l2b

+ k2
z − χkz)(h̄ω − h̄vF (

√
2
l2b

+ k2
z − χkz) + iγ)

(σ̃LL)−1→2 =
i(evF )2h̄

2π2l2b

∫
dkz(C−1C2v−1u2)2 fn − fm

∆W (h̄ω −∆W + iγ)

=
i(evF )2h̄

2π2l2b

∫
dkz

1

16
(1 + χkz(

2

l2b
+ k2

z)
−0.5)(1 + χkz(

4

l2b
+ k2

z)
−0.5)

× fn − fm
h̄vF (

√
4
l2b

+ k2
z +

√
2
l2b

+ k2
z)(h̄ω − h̄vF (

√
4
l2b

+ k2
z +

√
2
l2b

+ k2
z) + iγ)

(σ̃LL)1→2 =
i(evF )2h̄

2π2l2b

∫
dkz(C1C2v1u2)2 fn − fm

∆W (h̄ω −∆W + iγ)

=
i(evF )2h̄

2π2l2b

∫
dkz

1

16
(1− χkz(

2

l2b
+ k2

z)
−0.5)(1 + χkz(

4

l2b
+ k2

z)
−0.5)

× fn − fm
h̄vF (

√
4
l2b

+ k2
z −

√
2
l2b

+ k2
z)(h̄ω − h̄vF (

√
4
l2b

+ k2
z −

√
2
l2b

+ k2
z) + iγ)

Note that the occupation number f0 of the n = 0 state depends on chirality even when Fermi

energies are the same for both chiralities, since the energy W0 = −χh̄vFkz depends on chirality.

A.4 Longitudinal conductivity and plasmon dispersion for an arbitrary Fermi level

Here we consider plasmons propagating along the magnetic field of a WSM with the Fermi

level crossing an arbitrary number N of Landau levels. The Hamiltonian is

H(χ) = χvFσ
(
p+

e

c
A(r)

)
− eφ(r, t), (A.18)
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whereA(r) defines a constant magnetic fieldB‖z whereas the electric fieldE‖z of the plasmon

is described by the scalar potential φ = ReΦeiqz−iωt.

The kinetic equation for the electron distribution f (n,χ)
kz

in the nth Landau subband is

∂

∂t
f

(n,χ)
kz

+
∂Wn,χ

h̄∂kz

∂

∂z
f

(n,χ)
kz
− eE ∂

h̄∂kz
f

(n,χ)
kz

= 0. (A.19)

Here we ignored relaxation. It can be added within the rate approximation as an imaginary part of

frequency in the final expression for the conductivity. Note that for n = 0

∂Wn=0,χ

h̄∂kz
= χvF .

For n 6= 0 the presence of R- and L-fermions with opposite chiralities χ = ±1 leads only to the

degeneracy factor g = 2, as long as their Fermi energies are the same.

Since we need the linear response, we linearize the distribution function in Eq. (A.19) as

f
(n,χ)
kz

= F
(n,χ)
kz

+ Ref̃
(n,χ)
kz

eiqz−iωt, which yields

f̃
(0,χ)
kz

=
ieE

(ω − χqvF )

∂

h̄∂kz
F

(0,χ)
kz

; f̃
(n6=0,χ)
kz

=
ieE

(ω − q ∂Wn

h̄∂kz
)

∂

h̄∂kz
F

(n6=0,χ)
kz

. (A.20)

The complex amplitude of the current density is

jz = Rej̃ze
iqz−iωt, j̃z = j̃0 +

∑
n6=0

j̃n; (A.21)

j̃0 = − e
2BvF

4π2h̄2c

∫ ∞
−∞

(
f̃

(0,χ=1)
kz

− f̃ (0,χ=−1)
kz

)
dkz, (A.22)

j̃n6=0 = −2
e2B

4π2h̄2c

∫ ∞
−∞

∂Wn

h̄∂kz
f̃

(n)
kz

dkz. (A.23)

From Eq. (A.22) and the first of Eq. (A.20) we obtain

j̃0 = −ie
3BvF

4π2h̄2c

(
1

ω − qvF

∫ ∞
−∞

∂

∂kz
F

(0,χ=1)
kz

dkz −
1

ω + qvF

∫ ∞
−∞

∂

∂kz
F

(0,χ=−1)
kz

dkz

)
. (A.24)
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Now we can derive the conductivity and the longitudinal component of the dielectric tensor by

equating

j̃0 +
∑
n6=0

j̃n = −iω(εzz − εb)
4π

E. (A.25)

Note that F (0,χ=1)
kz→−∞ ⇒ 1, F (0,χ=1)

kz→∞ ⇒ 0, whereas F (0,χ=−1)
kz→−∞ ⇒ 0 and F (0,χ=−1)

kz→∞ ⇒ 1. Therefore,

Eq. (A.24) yields

j̃0 =
ie3BvFE

2π2h̄2c

ω

ω2 − q2v2
F

. (A.26)

The same result can be obtained from the quantum-mechanical density-matrix approach. We can

similarly evaluate the integrals in Eq. (A.23) assuming the Fermi distribution with zero tempera-

ture. The result is

εzz = εb − ω2
p

 1

ω2 − q2v2
F

+ 2
N∑
n=1

1
vF

∣∣∣ ∂Wn

h̄∂kz

∣∣∣
Wn=EF

ω2 − q2
(
∂Wn

h̄∂kz

)2

Wn=EF

 . (A.27)

The dispersion relation εzz = 0 for a plasmon propagating along the magnetic field can be

solved using Eq. (A.27), leading to a cumbersome expression. In the limit of small q one can put

q = 0 in Eq. (A.20) and replace

f̃
(n6=0)
kz

≈ ieE

ω

∂

h̄∂kz
F

(n6=0)
kz

.

This gives much simpler expressions:

εzz = εb −
ω2
p

ω2

[
1 +

2

vF

N∑
n=1

∫ ∞
−∞

(
∂2Wn

h̄∂k2
z

)
F

(n)
kz

dkz

]
, (A.28)

ω2 =
ω2
p

εb

[
1 +

2

vF

N∑
n=1

∫ ∞
−∞

(
∂2Wn

h̄∂k2
z

)
F

(n)
kz

dkz

]
. (A.29)

These expressions are not limited to low temperatures and are valid for any unperturbed electron

distribution F (n)
kz

.
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APPENDIX B

HEISENBERG-LANGEVEN FORMALISM WITHIN A SUBWAVELENGTH CAVITY

B.1 EM field quantization in a subwavelength cavity filled with a layered dispersive medium

We start from the expression for the energy of a classical EM field in a nonmagnetic medium:

W =
B2

8π
+

1

4π

t∫
C

EḊdt. (B.1)

According to Eq. (4.12) in our case the electric field and electric induction vectors are equal to

E = zDν
ζν(x, y)

ε(ων , z)
e−iωνt + C.C., D = zDνζν(x, y)e−iωνt + C.C. (B.2)

For a non-uniform medium with frequency dispersion the spatial distribution of the field depends

explicitly on the frequency ων ; this fact requires certain modification of the approach to calculate

the field energy W . Assume an adiabatically slow “turning on” of the electric induction at the

moment of time t = C, i.e. Dν =⇒ Dν(t), Dν(C) = 0, Ḋν � ωνDν . In this case one can write

Ḋ = zζν(x, y)e−iωνt(−iωνDν + Ḋν) + C.C.

E ≈ zζν(x, y)e−iωνt
(

Dν

ε(z, ων)
+ iḊν

∂

∂ω

(
1

ε(z, ω)

)
ω=ων

)
+ C.C.


. (B.3)

In addition, we take into account that for monochromatic fields E = Eν(r)e−iωνt + C.C. , B =

Bν(r)e−iωνt+C.C. andD = Dν(r)e−iωνt+C.C. in a cavity or under periodic boundary conditions

the flux of the complex vector Eν ×B∗ν through a surface enclosing volume is equal to zero. This

allows one to prove that
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∫
V

BνB
∗
νd

3r =

∫
V

DνE
∗
νd

3r, (B.4)

Using Eqs. (B.1) - (B.4) one can get

∫
V

Wd3r =
|Dν |2

4π

∫
S

ζνζ
∗
νd

2r ×

+Lz
2∫

−Lz
2

[
2

ε(z, ων)
− ων

∂

∂ω

(
1

ε(z, ω)

)
ω=ων

]
dz.

After we impose the requirement
∫
V
Wd3r = h̄ων and take into account the relation

2

ε
− ω ∂

∂ω

(
1

ε

)
=

1

ε2ω

∂(ω2ε)

∂ω

we arrive at the normalization condition Eq. (4.14).

B.2 Matrix elements of the interaction Hamiltonian for fermions coupled to an EM field in

a cavity or a waveguide

The explicit form of the matrix elements in Eq. (4.22) is

(i) in the waveguide:

ζ
(qx)
k′k = δk′x,kx+qxYk′y ,ky , (B.5)

where

Yk′y ,ky =
sin
[(
ky + π

Ly
− k′y

)
Ly
2

]
(
ky + π

Ly
− k′y

)
Ly

+
sin
[(
k′y + π

Ly
− ky

)
Ly
2

]
(
k′y + π

Ly
− ky

)
Ly

;

(ii) in the cavity:

ζ
(N)
k′k = Yk′y ,kyXk′x,kx , (B.6)
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where

X
(odd)
k′x,kx

=
sin
[(
kx + Noddπ

Lx
− k′x

)
Lx
2

]
(
kx + Noddπ

Lx
− k′x

)
Lx

+
sin
[(
k′x + Noddπ

Lx
− kx

)
Lx
2

]
(
k′x + Noddπ

Lx
− kx

)
Lx

,

X
(even)
k′x,kx

= i
sin
[(
k′x + Nevenπ

Lx
− kx

)
Lx
2

]
(
k′x + Nevenπ

Lx
− kx

)
Lx

− i
sin
[(
kx + Nevenπ

Lx
− k′x

)
Lx
2

]
(
kx + Nevenπ

Lx
− k′x

)
Lx

.

These expressions are presented in the form which shows explicitly the factors of the type
sin(Ax)

x
.

When calculating the radiated power by an ensemble of fermions we need to know the squares

of matrix elements summed over electron k-states, in particular
∑

k′y
Yk′y ,kyYky ,k′y and

∑
k′x
Xk′x,kxXkx,k′x .

Taking into account that

+∞∫
−∞

sin2 x

x2
dx = π,

+∞∫
−∞

cos2 x(
π
2

)2 − x2
dx = 0,

we obtain

∑
k′y

Yk′y ,kyYky ,k′y =⇒ Ly
2π

∫
∞

Yk′y ,kyYky ,k′ydk
′
y =

1

2
,
∑
k′x

Xk′x,kxXkx,k′x =⇒ Lx
2π

∫
∞

Xk′x,kxXkx,k′xdk
′
x =

1

2
.

(B.7)

Since
∫
S
ζqxζ

∗
qxd

2r = S/2 and
∫
S
ζNζ

∗
Nd

2r = S/4 , Eq. (B.7) give the equation
∑
k′ ζ

(ν)
k′kζ

(ν)†
kk′ =

S−1
∫
S
ζνζ
∗
νd

2r, which is used in Chapter 4.

B.3 Commutation relations for Langevin sources

Consider first a single quantum oscillator described by the Hamiltonian Ĥ = h̄ω(ĉ†ĉ + 1/2).

After substituting ĉ = ĉ0e
−iωt and ĉ† = ĉ†0e

−iωt the Heisenberg equations of motion take the form

˙̂c0 = 0, ˙̂c†0 = 0. The simplest model of interaction with a dissipative reservoir modifies these

equations as follows: ˙̂c0 + Γ ĉ0 = 0, ˙̂c†0 + Γ ĉ†0 = 0. However, this modification leads to violation

of boson commutation relation [ĉ0, ĉ
†
0] = 1. To resolve this issue and preserve the commutator one

has to add the Langevin sources to the right-hand side of Heisenberg equations:
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˙̂c0 + Γ ĉ0 = L̂, ˙̂c†0 + Γ ĉ†0 = L̂†. (B.8)

Langevin noise operators in Eq. (B.8) describe fluctuations in a dissipative system. Note that

〈L̂〉 = 0 ; the notation 〈· · · 〉 means averaging over the statistics of the dissipative reservoir and

over the initial quantum state |Ψ〉 within the Heisenberg picture.

The commutation relations for a noise operator can be obtained directly from the given form of

the relaxation operator if we require that standard commutation relations [ĉ0, ĉ
†
0] = 1, [ĉ0, ĉ0] = 0,

be satisfied at any moment of time. Indeed, let’s substitute the solution of the operator-valued

equations (B.8)

ĉ0 = ĉ0(0)e−Γt +

t∫
0

eΓ (t′−t)L̂(t′)dt′, ĉ†0 = ĉ†0(0)e−Γt +

t∫
0

eΓ (t′−t)L̂†(t′)dt′ (B.9)

into the commutators. It is easy to see that the standard commutation relations will be satisfied if,

first of all, the field operators at an initial moment of time, ĉ0(0) and ĉ†0(0), commute with Langevin

operators L̂(t) and L̂†(t) in any combination. Second, the following condition has to be satisfied:

[L̂, ĉ†0] = [ĉ0, L̂
†] = Γ. (B.10)

Substituting Eq. (B.9) into Eq. (B.10) and using the identity
t∫

0

X(t′)δ(t − t′)dt′ = X(t)/2 we

arrive at

[L̂(t′), L̂†(t)] = 2Γδ(t− t′). (B.11)

Now consider an ensemble of coupled oscillators Eq. (5.22). One can find directly from the

solution Eq. (5.25) that the following conditions have to be satisfied in order to preserve standard

commutation relations [ĉ0s, ĉ
†
0s] = [ĉ0i, ĉ

†
0i] = 1, [ĉ0s, ĉ0i] = 0 etc.:
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[L̂s, ĉ
†
0s] = [ĉ0s, L̂

†
s] = Γs

[L̂i, ĉ
†
0i] = [ĉ0i, L̂

†
i ] = Γi

[L̂s, ĉ
†
0i] = [ĉ0s, L̂

†
i ] = [L̂s, ĉ0i] = [ĉ0s, L̂i] = 0

 . (B.12)

It is easy to find out that Eqs. (B.12) will be satisfied if the field operators at t = 0 commute with

Langevin noise operators in any combination, and the noise operators L̂s and L̂i commute with

each other. In addition, substituting Eq. (5.25) - (5.27) into Eq. (B.12) one can show that in order

to satisfy Eq. (B.12) the following relations must hold:

t∫
0

(
K2e

λ1(t′−t) −K1e
λ2(t′−t)) [L̂s(t′), L̂†s(t)] dt′

K2 −K1

= Γs, (B.13)

t∫
0

(
K2e

λ2(t′−t) −K1e
λ1(t′−t)) [L̂i(t′), L̂†i (t)] dt′

K2 −K1

= Γi. (B.14)

From Eqs. (B.13) and (B.14) one can obtain the requirement Eq. (5.23) which preserves correct

commutators of the field operators. Therefore, the commutation properties of correct noise opera-

tors for coupled oscillators have to be exactly the same as for uncoupled isolated oscillators.

Here we presented a general proof which does not rely on any specific microscopic model of a

dissipative subsystem coupled to the field oscillators. The proof for a particular case of two iden-

tical coupled oscillators interacting with a standard dissipative reservoir of equilibrium harmonic

oscillators has been recently obtained.
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