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ABSTRACT

Gauged off-shell Maxwell-Einstein supergravity in six dimensions with N = (1, 0) supersym-
metry has a higher derivative extension afforded by a supersymmetrized Riemann squared term.
This theory admits a supersymmetric Minkowski ×S2 compactification with a U(1) monopole of
unit charge on S2. We determine the full spectrum of the theory on this background. We also
determine the spectrum on a non-supersymmetric version of this compactification in which the
monopole charge is different from unity, and we find the peculiar feature that there are massless
gravitini in a representation of the S2 isometry group determined by the monopole charge.
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1 Introduction

Higher-derivative supergravities are of considerable interest, especially when they arise as low-
energy effective actions of string theories with higher-derivative corrections proportional to powers
of the slope parameter α′. However, their construction is notoriously difficult, in part due to the
fact that supergravities exist only on-shell in ten dimensions. In view of this difficulty, the compact-
ifications of these theories are rarely studied. In order to gain insights into the compactification of
higher-derivative theories, it is instructive to investigate the issue in the simpler situation of lower-
dimensional supergravities with higher-derivative terms, postponing for the present the question
of how they may arise from ten dimensions. An important technical advantage is that in some
lower-dimensional cases, off-shell formulations of the supergravity theories exist. This leads us to
consider in particular N = (1, 0) supergravity in six dimensions, which is the highest dimension,
and the highest degree of supersymmetry, for which a supergravity with an off-shell formulation
is known. The off-shell formulation of this supergravity was constructed in [1, 2], and a higher-
derivative extension with an off-shell supersymmetrized Riemann-squared term was obtained in
[3, 4]. The gauging of the U(1) R-symmetry in the presence of this higher-derivative extension has
also recently been obtained [5]. The model has two parameters, namely an overall coefficient M−2

in front of the higher-derivative superinvariant in the action, and the gauge-coupling constant g.
In the present paper, we shall study the six-dimensional gauged N = (1, 0) theory with the

Riemann-squared term constructed in [5]. In the absence of the curvature-squared terms the model
is an (off-shell) version of the Salam-Sezgin theory constructed long ago [6]. It was shown in [6]
that the model had the unusual feature of admitting a supersymmetric Minkowski4 × S2 vacuum,
in which there is a U(1) monopole flux with charge q = ±1 on the S2 internal space. A remarkable
feature of the theory with the Riemann-squared extension is that the Minkowski4 ×S2 background
continues to be a supersymmetric solution [5]. It also admits non-supersymmetric Minkowski4×S2

backgrounds in which the quantised monopole charge q is larger than 1.
Our focus in this paper is to study the spectrum of the Kaluza-Klein states in the fluctuations

around the Minkowski4 × S2 background. As far as we are aware, such a Kaluza-Klein spectral
analysis of a higher-derivative supergravity around a background with non-abelian symmetries has
not previously been carried out. Even in the much simpler S2 reduction of the Salam-Sezgin
model discussed in [6], the situation is of considerable interest because of the very unusual feature
of obtaining non-abelian symmetries from a sphere reduction, whilst obtaining a Poincaré rather
than AdS supergravity in the lower dimension. As expected, the states assemble into N = 1
four-dimensional supermultiplets. In the model constructed in [5] with the higher-order Riemann-
squared extension, we find a number of novel features associated with the occurrence of higher-order
wave operators, and the fact that certain fields that were purely auxiliary prior to the inclusion of
the higher-order terms now become dynamical. In particular, we find that certain four-dimensional
vector supermultiplets have wave operators that give rise to masses m that are determined by
a non-trivial polynomial of fourth order in m2. This leads to mass-squared values that are not
simply linear in the eigenvalues of the Laplace operators on the internal space, but, rather, involve
non-trivial roots of the associated quartic equation. One consequence of this is that the values of
m2 can be negative or even complex, thus implying that there will be instabilities.

The occurrence of such states might at first sight seem surprising in a supersymmetric vacuum.
A standard argument for positive semi-definiteness of the energy, first given in [7], uses the fact
that if a state |ψ〉 is annihilated by the supercharge Q, then the superalgebra {Q,Q} ∼ P implies
that P0 ≥ 0. However, a crucial ingredient in this argument is that the norm on the states |ψ〉 is
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positive definite [8] In our case, the higher-derivative terms in the six-dimensional theory lead to
ghost modes in the spectrum, and thus the assumptions required for the positivity result in [7] are
violated.

The detailed structure of the quartic polynomial in m2 for the vector multiplets implies that
two of the four roots are always real and positive, while the remaining two can be complex. The
conditions under which this occurs are governed by the ratio M2/g2 and by the Kaluza-Klein level
number ℓ of the harmonics on S2. As M2 becomes larger, the non-positivity and complexity of
the two roots sets in at larger and larger values of the level number ℓ. M2 must at least satisfy
M2 ≥ 8(5 + 2

√
6)g2 in order for the roots to be real and positive even at the lowest level ℓ = 0.

We also study the spectrum of the modes in the non-supersymmetric Minkowski4 × S2 vacua
that arise for S2 monopole charges q greater than 1. An interesting feature in these cases is that
the spectrum includes an SU(2) multiplet of massless spin-32 fields at level ℓ = 1

2 (|q| − 3).
The organisation of the paper is as follows. In section 2 we review the six-dimensional gauged

N = (1, 0) off-shell R+ |Riem|2 supergravity that was recently constructed in [5]. In section 3 we
study the complete linearised spectrum of Kaluza-Klein modes in the supersymmetric Minkowski4×
S2 vacuum, which has a monopole charge q = 1 on the S2 internal space, and exists for any value
of the coupling M−2 of the Riemann-squared invariant. In section 4 we repeat the analysis for
the non-supersymmetric Minkowski4 × S2 vacua, which have arbitrary integer monopole charge
|q| ≥ 2, and which exist only for a special value of the ratio g2/M2. For this analysis we need
many results on the properties of spin-weighted spherical harmonics on S2, since these are needed
for the expansions in the monopole background of the fermion fields and certain vector fields that
carry charges. We present a detailed discussion of these harmonics in appendix B. In appendix A
we give our spinor conventions, and in appendix C we summarise some results for spin projection
operators in four dimensions.

2 The Theory

The off-shell 6D (1, 0) supergravity multiplet consists of the fields [1]

(
eµ
a, V ′ij

µ , Vµ, Bµν , L, Cµνρσ , ψ
i
µ, χ

i
)

(2.1)

where V ′ij
µ is symmetric and traceless in its Sp(1) doublet indices, B and C are antisymmetric

tensor fields, L is a real scalar, and the spinors are symplectic Majorana-Weyl. The above fields
have (15, 12, 5, 10, 1, 5, 40, 8) degrees of freedom. In addition, we shall consider the off-shell Maxwell
multiplet consisting of the fields (

Aµ, Y
ij , λi

)
, (2.2)

where Y ij is symmetric in its indices and the fermion is symplectic Majorana Weyl. These fields
have (5, 3, 8) degrees of freedom.

The total Lagrangian we shall study is given by

L = LR − 1

8M2
LR2 , (2.3)
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where the U(1)R gauged off-shell supergravity Lagrangian, up to quartic fermion terms, is [1, 5]1

e−1LR =
1

2
LR+

1

2
L−1∂µL∂

µL+ 2
√
2gLδijYij −

1

24
LHµνρH

µνρ

+LV ′
µ
ijV

′µ
ij −

1

4
L−1EµEµ +

1√
2
Eµ (Vµ + 2gAµ)

+Y ijYij −
1

8
FµνF

µν − 1

16
εµνρσλτBµνFρσFλτ

−1

2
Lψ̄ργ

µνρDµψν −
√
2χ̄iγ

µνDµψνjδ
ij + L−1χ̄ /Dχ

−1

2
ψ̄µγνψν∂µL− 1√

2
δijψ̄

i
νγ

µγνχjL−1∂µL− 2
√
2gLλ̄iγ

µψµjδ
ij

+2gλ̄χ+
1

2
V

′ij
µ

(
2
√
2χ̄kψµi δjk − 3L−1χ̄iγ

µχj

)

− 1

48
LHµνρ

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + 2

√
2L−1ψ̄λiγ

λµνρχjδ
ij − 2L−2χ̄γµνρχ

)

− 1

4
√
2
Eρ

(
ψiµγ

ρµνψjνδij − 2
√
2L−1ψ̄σγ

ργσχ+ 2L−2χ̄iγ
ρχjδ

ij
)

−2λ̄ /Dλ+
1

12
Hµνρλ̄γ

µνρλ+
1

2
√
2
Fµν λ̄γ

ργµνψρ , (2.4)

where Hµνρ = 3∂[µBνρ] and

Eµ =
1

24
εµν1···ν5∂[ν1Cν2···ν5] . (2.5)

Dµψ
i
ν = (∂µ +

1

4
ωµ

abγab)ψ
i
ν −

1

2
Vµδ

ijψνj , (2.6)

Dµχ
i = (∂µ +

1

4
ωµ

abγab)χ
i − 1

2
Vµδ

ijχj + Vµ
′i
jχ

j . (2.7)

Note the presence of arbitrary coupling constant in LR. In fact, the sum of all the terms in
this Lagrangian that depend on g separately have the off-shell supersymmetry. Thus, the total
Lagrangian is a sum of three separately off-shell supersymmetric pieces.

The Lagrangian for the supersymmetrized Riemann squared term, up to quartic fermion terms,
is given by [3, 4]

e−1LR2 = Rµν
ab(ω−)R

µν
ab(ω−)− 2GabGab − 4G

′ij
µνG

′µν
ij ,

+
1

4
εµνρσλτBµνRρσab(ω−)Rλτ ab(ω−)

+2ψ̄ab(ω+)γ
µDµ(ω, ω−)ψab(ω+)−Rνρ

ab(ω−)ψ̄ab(ω+)γ
µγνρψµ

−8Gijµν

(
ψ̄µi γλψ

λν
j (ω+) +

1

6
ψ̄µi γ ·Hψνj

)
− 1

12
ψ̄ab(ω+)γ ·Hψab(ω+)

−1

2

[
Dµ(ω−,Γ+)R

µνab(ω−)− 2Hµν
ρRµνab(ω−)

]
ψ̄aγρψb , (2.8)

1We have let g → 4g and Aµ → Aµ/
√
2 in the results of [5].
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where G
′ij
µν and Gµν are the field strengths associated with V

′ij
µ and Vµ, which can be combined as

V ij
µ = V

′ij
µ + 1

2δ
ijVµ. Furthermore ψµν(ω+) = 2D[µ(ω+)ψν] and

Dµ(ω, ω−)ψ
abi = (∂µ +

1

4
ωµ

cdγcd)ψ
abi + 2ωµ−

c[aψb]ic + V i
µjψ

abi ,

ωµ±
ab = ωµ

ab ± 1
2Hµ

ab , Γρµν± = Γρµν ± 1
2Hµ

νρ . (2.9)

The off-shell resulting supersymmetry transformations of the Poincaré multiplet, up to cubic
fermion terms, are [1, 3, 5]

δeµ
a =

1

2
ǭγaψµ ,

δψµ
i = (∂µ +

1

4
ωµabγ

ab)ǫi + Vµ
i
jǫ
j +

1

8
Hµνργ

νρǫi ,

δBµν = −ǭγ[µψν] ,

δχi =
1

2
√
2
γµδij∂µLǫj −

1

4
γµEµǫ

i +
1√
2
γµV ′(i

µ kδ
j)kLǫj −

1

12
√
2
Lδijγ ·Hǫj ,

δL =
1√
2
ǭiχjδij ,

δCµνρσ = Lǭiγ[µνρψ
j
σ]δij −

1

2
√
2
ǭγµνρσχ ,

δVµ
ij =

1

2
ǭ(iγρψj)µρ +

1

12
ǭ(iγ ·Hψj)µ +

1

8
σ−1ǭ(iγρ

(
H[µ

abγabψ
j)
ρ]

)
(2.10)

and the off-shell supersymmetry transformations of the vector multiplet are

δAµ = −ǭγµλ ,

δλi =
1

8
√
2
γµνFµνǫ

i − 1

2
Y ijǫj ,

δY ij = −ǭ(iγµDµλ
j) +

1

8
ǭ(iγµγ ·Hψj)µ − 1

24
λ̄iγ ·Hλj − 1

2
Y k(iǭj)γµψµk . (2.11)

Of the auxiliary fields of the Poincaré supergravity, V
′ij
µ and Vµ can no longer be eliminated

algebraically due to the presence of the Riemann squared invariant but Y ij and Cµνρσ can still be
eliminated by means of their field equations as

Y ij = −
√
2gLδij , Eµ =

√
2L (Vµ + 2gAµ) . (2.12)

The total Lagrangian we shall study here is given by

L = LR − 1

8M2
LR2 , (2.13)

where M is an arbitrary mass parameter.
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3 Spectrum in Supersymmetric Minkowski4 × S2 Background

3.1 Supersymmetric Minkowski4 × S2 background

We shall study the compactification on the one half supersymmetric vacuum solution with the
geometry of Minkowski4 × S2. From here on, the 6D coordinates will be denoted by xM and they
will be split as (xµ, ym) to denote the coordinates of 4D spacetime and the internal two-dimensional
space. The supersymmetric Minkowski4 × S2 vacuum solution given by [5]

R̄µνλρ = 0 , R̄mn = α2ḡmn , L̄= 1 ,

F̄µν = 0 , F̄mn = 4gǫmn ,

Ḡµν = 0 , Ḡmn = −α2ǫmn , (3.1)

where α2 ≡ 8g2, ḡmn is the metric on S2 with radius 1/α, and ǫmn is the Levi-Civita tensor on the
same S2. We define the complex vectors

ẐM = V̂
′11
M + iV̂

′12
M , (3.2)

and parametrize the linearized fluctuations around above background as follows

ĝMN = ḡMN + ĥMN , L̂ = 1 + φ̂ , ÂM = ĀM + âM ,

V̂M = V̄M + v̂M , ẐM = ẑM , B̂MN = b̂MN , (3.3)

where we use “hat” to stand for six dimensional quantities and “bar” to denote quantities evaluated
in the vacuum background. In the background specified above, the linearized six dimensional
bosonic and fermionic gauge symmetries are expressed as2

δĥMN = ∇̄M ξ̂N + ∇̄N ξ̂M , δâM = ξ̂N F̄NM + ∂M Λ̂,

δv̂M = ξ̂N ḠNM − 2g∂M Λ̂ , δb̂MN = ∂M Λ̂N − ∂N Λ̂M ,

δψ̂M = D̄M ǫ̂, δλ̂ = 1
16 Γ̄

MN F̄MN ǫ̂+
i
2gǫ̂ , δχ̂ = 0 . (3.4)

This background preserves half supersymmetry because it admits a Killing spinor η̂ which has the
following properties

δψ̂M = D̄M η̂ = 0, δχ̂ = 0, δλ̂ = ( 1
16 Γ̄

MN F̄MN + i
2g)η̂ = 0 , (3.5)

and by choosing the six dimensional gamma matrices as in Appendix, it can be shown that

η̂ = ǫ⊗ η, η =

(
0
1

)
, (3.6)

where ǫ is a constant four dimensional Weyl spinor with appropriate chirality inherited from six
dimensions.

2For later convenience, starting from the USp(2) symplectic-Majorana-Weyl spinors we have defined Weyl spinors
by complexifying as ψ = ψ1 + iψ2 and rescaled χ̂ and λ̂ used in [5] by χ̂→

√
2χ̂, λ̂→

√
2λ̂.
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3.2 Bosonic Sector

In this section, we shall drop the “bar” on the covariant derivatives for simplicity in notation. The
linearized bosonic field equations are given as follows

(R̂
(L)
MN + φ̂R̄MN ) = ∇̂M∇̂N φ̂+ α2ḡMN φ̂+ 1

2 (F̂
(L)
MP F̄

P
N + F̂

(L)
NP F̄

P
M − F̄MP F̄NQĥ

PQ) (3.7)

+1
2 ĥMN (α

2 − 1
4 F̄

PQF̄PQ)− 1
4 ḡMN (F̂

(L)
PQ F̄

PQ − F̄ Q
P F̄PT ĥQT ),

− 1
8M2S

(L)
MN ,

R̂(L) = 2α2φ̂+ 2�̂φ̂ , (3.8)

∇̂P Ĥ
(L)
PMN = 1

2ε
PQST

MN (12 F̂
(L)
PQ F̄ST − 1

2M2
R̃

(L)J
KPQR̄

K
JST ) +

1

M2
∇̂P

�̂Ĥ
(L)
PMN ,

+3M2∇̂P (Ĥ
(L)ST
+ [P R̄MN ]ST ) , (3.9)

0 = ∇̂P F̂
(L)
PM − ∇̂P ĥPQF̄

Q
M − ∇̂P ĥQM F̄

PQ + 1
2∇̂P ĥF̄

P
M + 4g(v̂M + 2gâM )− 1

2 ∗ Ĥ
(L)
MPQF̄

PQ ,

(3.10)

0 = ∇̂P Ĝ
(L)
PM − ∇̂P ĥPQḠ

Q
M − ∇̂P ĥQM Ḡ

PQ + 1
2∇̂P ĥḠ

P
M −M2(v̂M + 2gâM ) , (3.11)

0 =
(
∇̂P − iV̄ P

)
Ĝ

′(L)
PM − iḠMN ẑ

N −M2ẑM , (3.12)

where

Ĝ
′(L)
MN = 2D̂[M ẑN ] , D̂M ẑN ≡ (∇̂M − iV̄M )ẑN ,

R
(L)P

MNQ = R̂
(L)P

MNQ − ∇̂[NH
(L)P
Q] M ,

S
(L)
MN = 8

(
Ĝ

(L)
MP Ḡ

P
N + Ĝ

(L)
NP Ḡ

P
M − Ḡ P

M Ḡ Q
N ĥPQ

)
− 4ḡMN (Ĝ

(L)
PQḠ

PQ − Ḡ Q
P ḠPT ĥQT )

+4(R̃
(L)S

QMP R̄
Q P
SN + R̄S P

QM R̃
(L)Q

SNP − ĥPQR̄STMP R̄
T
SNQ)− 2ĥMN Ḡ

PQḠPQ

+ĥMN R̄
PQST R̄PQST − 2ḡMN (R̃

(L)S
TPQR̄

T PQ
S + R̄JKSP R̄

JKS
Qĥ

PQ)

+8(∇̂P ∇̃QR̃P (MN)Q)
(L) + 8∇̂S(R̄ PQ

S(M Ĥ
+(L)
N)PQ), (3.13)

and the penultimate term takes the form

(∇̂P ∇̃QR̃P (MN)Q)
(L) = R̄P Q

(MN)(R̄
S
P ĥSQ − R̄S T

P QĥST − 1
2�̂ĥPQ) + ∇̂P ∇̂QĥS(M R̄

P QS
N)

−1
2(∇̂P ∇̂(M ĥ

QSR̄N)SPQ + ∇̂P ∇̂S ĥQ(M R̄N)SPQ

−1
2R̄

PQS
T ĥ

T
(M R̄N)SPQ + 1

2R̄
PQ
T (M R̄N)SPQĥ

ST )

+1
2R̄PMNQ∇̂P ∇̂Qĥ+ ∇̂P ∇̂QR̃

(L)P
(MN)Q

−1
2(∇̂P Ĥ

(L)
QS(MR̄

PQ S
N) + ∇̂P Ĥ

(L)
QS(MR̄

P QS
N) ). (3.14)
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The covariant derivative ∇̃M is defined with respect to the connection Γ̃ρµν containing bosonic
torsion as

Γ̃ρµν =

{
ρ
µν

}
+

1

2
Hµν

ρ . (3.15)

Note that we are using Ĝ
′(L)
MN to denote the covariant field strength of the complex vector field ẑM ,

and G
(L)
MN to denote the field strength of the real vector vM .

There are no transverse traceless spin-2 harmonics on S2, and the transverse spin-1 harmonics
are related to spin-0 harmonics by

Y (ℓ)
m = ǫm

n∇nY
(ℓ) . (3.16)

We can expand the six-dimensional bosonic fields in terms of S2 harmonics as follows

ĥµν =
∑

ℓ≥0

h(ℓ)µνY
(ℓ) ,

ĥmn =
∑

ℓ≥2

(
L(ℓ)∇{mY

(ℓ)
n} + L̃(ℓ)∇{m∇n}Y

(ℓ)
)
+ ḡmn

∑

ℓ≥0

N (ℓ)Y (ℓ) ,

ĥµm =
∑

ℓ≥1

(k(ℓ)µ Y (ℓ)
m + k̃(ℓ)µ ∇mY

(ℓ)) ,

φ̂ =
∑

ℓ≥0

φ(ℓ)Y (ℓ) ,

âµ =
∑

ℓ≥0

a(ℓ)µ Y (ℓ), âm =
∑

ℓ≥1

(
a(ℓ)Y (ℓ)

m + ã(ℓ)∇mY
(ℓ)
)
,

v̂µ =
∑

ℓ≥0

v(ℓ)µ Y (ℓ), v̂m =
∑

ℓ≥1

(
v(ℓ)Y (ℓ)

m + ṽ(ℓ)∇mY
(ℓ)
)
,

ẑµ =
∑

ℓ≥1

z(ℓ)µ −1Y
(ℓ) ,

ẑm =
∑

ℓ=0,1

z(ℓ)−1V
(ℓ)
m +

∑

ℓ≥2

(
z(ℓ)Dm−1Y

(ℓ) + iz̃(ℓ)ǫm
nDn−1Y

(ℓ)
)
,

b̂µν =
∑

ℓ≥0

b(ℓ)µνY
(ℓ), b̂mn = ǫmn

∑

ℓ≥0

b(ℓ)Y (ℓ) ,

b̂µm =
∑

ℓ≥1

(
b(ℓ)µ Y (ℓ)

m + b̃(ℓ)µ ∇mY
(ℓ)
)
, (3.17)

where the notation {mn} means “symmetric and traceless,” and in the ẑm expansion −1V
(0)
m and

−1V
(1)
m are level ℓ = 0 and ℓ = 1 complex anti-self dual vector harmonics with charge −1 on the

2-sphere, whose explicit forms are given in Appendix B.2. Dm is the U(1) covariant derivative on
the 2-sphere, and −1Y

(ℓ) are the charged harmonics which are described in some detail in Appendix
B.1. Furthermore, the scalar harmonics Y (ℓ) employed above satisfy

�2Y
(ℓ) = −α2cℓY

(ℓ) , (3.18)

where �2 is the d’Alembertian on S2 with radius 1/α and

cℓ ≡ ℓ(ℓ+ 1) , α2 ≡ 8g2 . (3.19)
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We have also used the spin-1 harmonics Y
(ℓ)
m which satisfy the relations

�2Y
(ℓ)
n = −(cℓ − 1)α2Y (ℓ)

n , ǫmn∇mY
(ℓ)
n = α2cℓ Y

(ℓ) . (3.20)

Utilizing the six dimensional gauge symmetries (3.4), we impose the following gauge condition on
the linearized fields [9]

∇̂mĥ{mn} = 0, ∇̂mĥmµ = 0,

∇̂mâm = 0, ∇̂mb̂mM = 0. (3.21)

Upon the use of these gauge conditions, the harmonic expansions (3.17) simplify to

ĥµν =
∑

ℓ≥0

h(ℓ)µνY
(ℓ) , ĥµm =

∑

ℓ≥1

k(ℓ)µ Y (ℓ)
m ,

ĥmn = ḡmn
∑

ℓ≥0

N (ℓ)Y (ℓ), φ̂ =
∑

ℓ≥0

φ(ℓ)Y (ℓ) ,

âµ =
∑

ℓ≥0

a(ℓ)µ Y (ℓ) , âm =
∑

ℓ≥1

a(ℓ)Y (ℓ)
m ,

v̂µ =
∑

ℓ≥0

v(ℓ)µ Y (ℓ) , v̂m =
∑

ℓ≥1

(
v(ℓ)Y (ℓ)

m + ṽ(ℓ)∇mY
(ℓ)
)
,

ẑµ =
∑

ℓ≥1

z(ℓ)µ −1Y
(ℓ) ,

ẑm =
∑

ℓ=0,1

z(ℓ)−1V
(ℓ)
m +

∑

ℓ≥2

(
z(ℓ)Dm−1Y

(ℓ) + iz̃(ℓ)ǫm
nDn−1Y

(ℓ)
)
,

b̂µν =
∑

ℓ≥0

b(ℓ)µνY
(ℓ) , b̂µm =

∑

ℓ≥1

b(ℓ)µ Y (ℓ)
m , b̂mn = ǫmnb

(0)Y (0) . (3.22)

The de Donder-Lorentz gauge (3.21) does not fix all the gauge symmetries, and consequently there

are some residual ones generated by harmonic zero modes, S2 Killing vector Y
(1)
m and conformal

Killing vectors ∇mY
(1). Specifically, these residual gauge symmetries are:

• The four dimensional coordinate transformation generated by ξ̂µ = ξ
(0)
µ Y (0)

δh(0)µν = ∂µξ
(0)
ν + ∂νξ

(0)
µ . (3.23)

• The Stueckelberg shift symmetries generated by ξ̂m = ξ(1)∇mY
(1)

δh(1)µν = −∂µ∂νξ(1), δN (1) = −2ξ(1)

δa(1) = 4gξ(1), δv(1) = −α2ξ(1) . (3.24)

• Linearized SU(2) symmetry generated by ξ̂m = ξ′(1)Y
(1)
m and Λ̂ = −4gξ′(1)Y (1)

δk(1)µ = ∂µξ
′(1) . (3.25)
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• Four dimensional U(1)R symmetry generated by Λ̂ = Λ(0)Y (0)

δa(0)µ = ∂µΛ
(0) . (3.26)

• Abelian 2-form symmetry generated by Λ̂µ = Λ
(0)
µ Y (0)

δb(0)µν = ∂µΛ
(0)
ν − ∂νΛ

(0)
µ . (3.27)

We shall take into account these symmetries in the analysis of the spectrum below, where we treat
the spin-2, spin-1 and spin-0 sectors separately. In doing so we shall encounter the following wave
operators

O1 ≡ �̂0 + α2 −M2 ,

O2 ≡ �̂
2
0 −M2

�̂0 − α4 cℓ ,

O4 ≡ �̂
4
0 + (α2 −M2) �̂3

0 − 2α2(α2cℓ −M2) �̂2
0 − 4cℓ α

4(α2 −M2) �̂0 − 2α8 c2ℓ , (3.28)

where

�̂0 ≡ �− α2cℓ . (3.29)

In particular, the operator O4 has the property that for ℓ = 1 it factorizes as

O4|ℓ=1 = �O3 ,

O3 ≡ �
3 − (M2 + 7α2)�2 + 2α2(4M2 + 7α2)�− 12α4(M2 + α2) . (3.30)

In the ℓ = 0 sector, we will encounter the wave operator

Õ2 = �(�+ α2)−M2(�− 2α2) . (3.31)

Spin-2 sector

The spin-2 sector contains only the transverse and traceless gravitons, which upon the use of the
spin projector operators provided in the Appendix C, and for ℓ ≥ 1, satisfy the following equation

ℓ ≥ 1 : O2

(
P2h

)(ℓ)
µν

= 0 , (3.32)

where P 2 is the spin-2 projector defined in Appendix C. This equation describes two massive
gravitons with mass squared

ℓ ≥ 1 : m2
±(ℓ) =

1

2

(
M2 + 2α2cℓ ±

√
M4 + 4α4cℓ

)
. (3.33)

The ℓ = 0 needs to be treated separately, and in this case the gravitons satisfy

(�−M2)RL(0)µν = −M2
(
∂µ∂νS

(0) + α2ηµνS
(0)

)
+ ∂µ∂ν(� + α2)S(0), (3.34)
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where S(0) = φ(0) + N (0). The solutions of this equation can be expressed as h
(0)
µν = h

′(0)
µν + h

′′(0)
µν ,

where h
′′(0)
µν is completely determined by S(0) while h

′(0)
µν is the solution to the following equations

modulo the gauge symmetry (3.23):

ℓ = 0 : �(�−M2)h′(0)µν = 0, R′(0) = 0 , (3.35)

which describe a massless graviton and massive graviton with m2 =M2.

Spin-1 sector

Let ℓ ≥ 2. Then, the spin-1 sector consists of eight vectors (P 1h)µν , ∂
νbµν , z

T
µ , k

T
µ , a

T
µ , v

T
µ , b

T
µν , b

T
µ ),

where “T” indicates the transverse part and (P 1h)µν = P 1
µν
ρσhρσ (see Appendix B). Of these eight

vectors, (kTµ , a
T
µ , v

T
µ , b

T
µν , b

T
µ ) have mixing with each other through the following equations

0 = O2b
T (ℓ)
µν + 4gM2 ⋆ F (ℓ)

µν (a)− α4cℓ

(
⋆F (ℓ)

µν (k) − ⋆F (ℓ)
µν (b)

)
, (3.36)

0 = O1�̂0b
T (ℓ)
µ + 1

2α
2ǫ νλρµ ∂νb

T (ℓ)
λρ , (3.37)

0 = (�̂0 + α2)aT (ℓ)µ − 4gα2cℓk
T (ℓ)
µ + 4gvT (ℓ)µ − 2gǫ νλρµ ∂νb

T (ℓ)
λρ , (3.38)

0 = (�̂0 −M2)vT (ℓ)µ + α2cℓk
T (ℓ)
µ + 1

4gM
2a(ℓ)µ , (3.39)

0 =

(
O2 + α2(�̂0 − α2cℓ)

)
kT (ℓ)µ + 4gM2aT (ℓ)µ + 1

2α
2
(
4vT (ℓ)µ − ǫ νλρµ ∂νb

T (ℓ)
λρ

)
. (3.40)

Diagonalising the associated 5× 5 operator-valued matrix, we find that the modes are annihilated
by O2

1 O2 O4. In particular, the linear combinations with coefficients (−1,−4gα2cℓ/M
2, 0, 0, 1) and

(2, 4gα2cℓ/M
2, 1, 0, 0) are annihilated by O1. The remaining vectors, namely,

(
(P 1h)µν , ∂

νbµν , zµ
)

are separately annihilated by O1 as well. In summary, for ℓ ≥ 2 the total wave operator can be
denoted by

ℓ ≥ 2 : O(1) = O6
1 O2 O4 , (3.41)

implying six massive vectors with mass squared

ℓ ≥ 2 : m2(ℓ) =M2 + α2(cℓ − 1) , (3.42)

two massive vectors with mass squared defined in Eq.(3.33) and four massive vectors whose squared
masses are given by the roots of the polynomial

x4 + ax3 + bx2 + cx+ d = 0 ,

a = −M2 − (4ℓ2 + 4ℓ− 1)α2 ,

b = α2
[
2M2 + ℓ(ℓ+ 1)

(
(6ℓ2 + 6ℓ− 5)α2 + 3M2

) ]
,

c = −ℓ(ℓ+ 1)α2
{
α2

[
4 + ℓ(ℓ+ 1)(4ℓ2 + 4ℓ− 7)

]
α2 + 3ℓ(ℓ+ 1)M2

}
,

d = ℓ2(ℓ+ 1)2(ℓ− 1)(ℓ+ 2)α6
[
(ℓ2 + ℓ− 1)α2 +M2

]
. (3.43)
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Next, consider the case ℓ = 1. Recalling the factorization result given in (3.30), the total wave
operator becomes

ℓ = 1 : O(1) = O6
1O2|ℓ=1�O3 . (3.44)

In particular the massless vector is a linear combination of (k
T (1)
µ , a

T (1)
µ , v

T (1)
µ , b

T (1)
µν , b

T (1)
µ ) with

mixing coefficients (1,−4g, α2, 1, 0). The squared masses associated with O6
1O2|ℓ=1 can be read of

from (3.42) and (3.33) by setting ℓ = 1, and those associated with O3 are the roots of the following
polynomial

x3 − (M2 + 7α2)x2 + 2α2(4M2 + 7α2)x− 12α4(M2 + α2) = 0 . (3.45)

There remains the case of ℓ = 0. The only vector fluctuations at this level are (b
T (0)
µν , a

T (0)
µ , v

T (0)
µ ).

Upon diagonalising the associated 3× 3 operator-valued matrix, we find that the modes are anni-
hilated by the following partially-factorising operator polynomial

ℓ = 0 : O(1) = �(�−M2)Õ2 , (3.46)

where the would-be massless vector annihilated by � is eaten by the two form and the operator
Õ2 is defined in (3.31). Thus, for ℓ = 0 there are no massless vector modes, a massive vector with
mass M and two massive vectors with squared masses given by

m̃2
± =

1

2

(
M2 − α2 ±

√
M4 − 10M2α2 + α4

)
. (3.47)

The Spin-0 sector

We start with the case ℓ ≥ 2. Defining ϕ̃ = ωµνh
µν and ϕ = 1

3θµνh
µν (see Appendix C), this sector

consists of thirteen scalars (φ,N,ϕ, ϕ̃, a, v, ∂µkµ, ∂
µbµ, ∂

µaµ, ∂
µvµ, ∂

µzµ, z, z̃). The first six scalars
(φ,N,ϕ, ϕ̃, a, v) mix as follows

ℓ ≥ 2 : 0 = 2(�̂0 + α2)φ(ℓ) + (2�̂0 + 2α2 + α2cℓ)N
(ℓ) + 3�̂0ϕ

(ℓ) − α2cℓϕ̃
(ℓ) , (3.48)

0 = O2ϕ
(ℓ) + 2α2M2

[
φ(ℓ) − 2gcℓa

(ℓ)
]
− 2α2(M2 − α2cℓ)N

(ℓ) + 2α3cℓv
(ℓ) , (3.49)

0 =

(
M2 − (α2 +�)

)
ϕ̃(ℓ) + 3(M2 − α2)ϕ(ℓ) + 2M2φ(ℓ) + (2�̂0 + 2α2 + α2cℓ)N

(ℓ) ,

(3.50)

0 = (�̂0 + α2)a(ℓ) + 4gN (ℓ) − 2g(ϕ̃(ℓ) + 3ϕ(ℓ)) + 4gv(ℓ) , (3.51)

0 = (�̂0 −M2)v(ℓ) − α2N (ℓ) +
1

2
α2(ϕ̃(ℓ) + 3ϕ(ℓ))− 2gM2a(ℓ) , (3.52)

0 =

(
M2 − (α2 −�)

)
N (ℓ) + 3M2ϕ(ℓ) + 2M2φ(ℓ) − 4gM2a(ℓ) − 2α2v(ℓ) − α2(cℓ − 1)ϕ̃(ℓ) .

(3.53)

Diagonalising the associated 6× 6 operator-valued matrix, we find that the modes are annihilated
by O3

1 O4. Of the remaining scalars, (∂µkµ, ∂
µbµ, ∂

µaµ, ∂
µvµ, ṽ) mix but only three of them are
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dynamical. We choose these to be (∂µkµ, ∂
µbµ, ṽ) which are separately annihilated by O1, while

(∂µaµ, ∂
µvµ) are determined by

∂µa(ℓ)µ =
α2

2g

(
ṽ(ℓ) − ∂µk(ℓ)µ

)
,

∂µv(ℓ)µ = α2(cℓ − 1)ṽ(ℓ) + α2∂µk(ℓ)µ . (3.54)

Finally, the remaining scalars (z, z̃) are annihilated by O1, and the longitudinal modes ∂µzµ are
given in terms of z and z̃, by virtue of the equation D̂M ẑM = 0. Thus, for ℓ ≥ 2 the total wave
operator is given by

ℓ ≥ 2 : O(0) = O10
1 O4 . (3.55)

Of these, the three linear combinations of (φ,N,ϕ, ϕ̃, a, v) with coefficients (2+α2cℓ/M
2,−2, 0, 0, 0, 2),

(−2− α2cℓ/M
2, 2, 0, 0,−8g/M2, 0) and (−2 + α2cℓ/M

2, 2, 0, 4, 0, 0) are annihilated by O1.
In the case of ℓ = 1, utilizing the residual symmetry (3.24) and (3.25), one can eliminate N (1)

and ∂µk
(1)
µ . Taking into account the fact that the harmonic expansion of ẑm contributes only one

complex scalar for ℓ = 1, namely z(1), we find that for ℓ = 1 the total wave operator for the scalar
fields is given by

ℓ = 1 : O(0) = O6
1|ℓ=1 O3 . (3.56)

There remains the case of ℓ = 0. Of the remaining scalars, (φ(0), N (0), b(0)) satisfy the equations
Õ2 S

(0) = 0 where S(0) = φ(0) +N (0), �O1|ℓ=0 b
(0) = 0 and �O1|ℓ=0N

(0) = 0. Finally, there is a
complex scalar z(0) annihilated by O1|ℓ=0. Thus, for ℓ = 0 the total wave operator or the scalar
fields is given by

ℓ = 0 : O(0) = �
2O4

1 |ℓ=0 Õ2 , (3.57)

implying two massless and six massive scalars in this sector.

3.3 Fermionic sector

In terms of the complex spinor, the linearized equations of fermions around the background (3.1)
are given by

0 = Γ̄MPQD̄PψQ + 2iΓ̄NM D̄Nχ− 4giΓ̄Mλ− 1
2 F̄PQΓ̄

PQΓ̄Mλ− 1

8M2
ΘM , (3.58)

0 = Γ̄MND̄MψN − 2iΓ̄M D̄Mχ− 8giλ, (3.59)

0 = 2giΓ̄MψM + 8gχ− 4Γ̄MD̄Mλ+ 1
4 F̄PQΓ̄

M Γ̄PQψM , (3.60)

where

D̄Mψ = (∂M + 1
4 ω̄

AB
M Γ̄AB)ψ − i

2 V̄Mψ ,

ΘM = 8Γ̄P D̄QD̄Pψ
QM − 2R̄PMST Γ̄

QΓ̄ST D̄PψQ + 2R̄PQST Γ̄
ST Γ̄MD̄PψQ

+8iḠP [M Γ̄Q]D̄QψP − 8iḠM [P Γ̄Q]D̄QψP . (3.61)

In the remainder of this section, we shall drop the “bar” on the covariant derivatives as well as
the Γ-matrices for simplicity in notation. Since the (3.61) contains gauge field, we adopt the spin-
weighted harmonics

s−
1
2
η(ℓ), which are described in detail in appendix B, as the expansion basis.
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In this section we will need the harmonics for s = 0, namely
−
1
2
η(ℓ) which we will denote as η(ℓ) for

brevity in notation. These harmonics satisfy the relations,

η
(0)
− = η , η

(ℓ)
+ =

1

iα
√
cℓ
∇nY

(ℓ)σnη , η
(ℓ)
− = Y (ℓ)η, ℓ ≥ 1 , (3.62)

and have the following properties

σ3η
(ℓ)
± = ±η(ℓ)± , σnDnη

(ℓ)
± = iα

√
cℓ η

(ℓ)
∓ ,

[Dm,Dn]η
(ℓ)
− = 0 , [Dm,Dn]η

(ℓ)
+ = iα2ǫmnη

(ℓ)
+ ,

DnDnη
(ℓ)
− = −α2cℓη

(ℓ)
− , DnDnη

(ℓ)
+ = −α2(cℓ − 1)η

(ℓ)
+ . (3.63)

The Killing spinor η also has the property σ3η = −η. Furthermore, given that Γ7 = γ5 × σ3 (see
Appendix A), the chirality property of a spinor in 6D correlates the 4D and σ3 chiralities.

Since there is no gamma traceless and transverse spin-3/2 harmonics on the S2, generically, the
harmonic expansion are carried out as

ψ̂µ = ψ
(0)
µ− ⊗ η(0) +

∑

ℓ≥1

(
ψ
(ℓ)
µ+ ⊗ η

(ℓ)
+ + ψ

(ℓ)
µ− ⊗ η

(ℓ)
−

)
,

ψ̂m = Γmψ
(0)
+ ⊗ η(0) + Γm

∑

ℓ≥1

(
ψ
(ℓ)
− ⊗ η

(ℓ)
+ + ψ

(ℓ)
+ ⊗ η

(ℓ)
−

)

+
∑

ℓ≥1

(
ψ̃
(ℓ)
+ ⊗D{m}η

(ℓ)
+ + ψ̃

(ℓ)
− ⊗D{m}η

(ℓ)
−

)
,

χ̂ = χ
(0)
+ ⊗ η(0) +

∑

ℓ≥1

(
χ
(ℓ)
− ⊗ η

(ℓ)
+ + χ

(ℓ)
+ ⊗ η

(ℓ)
−

)
,

λ̂ = λ
(0)
− ⊗ η(0) +

∑

ℓ≥1

(
λ
(ℓ)
+ η

(ℓ)
+ + λ

(ℓ)
− η

(ℓ)
−

)
, (3.64)

where D{m} is the gamma traceless covariant derivative and the ± subscripts denote chirality
property under γ5. Using the 6D linearized fermionic gauge symmetry (3.4), one can impose the
following gauge condition

ψ̂{m} = 0 , (3.65)

where {m} means Γ-traceless. As a consequence, the expansion takes the following simpler forms

ψ̂µ = ψ
(0)
µ− ⊗ η(0) +

∑

ℓ≥1

(
ψ
(ℓ)
µ+ ⊗ η

(ℓ)
+ + ψ

(ℓ)
µ− ⊗ η

(ℓ)
−

)
, (3.66)

ψ̂m = Γmψ
(0)
+ ⊗ η(0) + Γm

∑

ℓ≥1

(
ψ
(ℓ)
− ⊗ η

(ℓ)
+ + ψ

(ℓ)
+ ⊗ η

(ℓ)
−

)
, (3.67)

χ̂ = χ
(0)
+ ⊗ η(0) +

∑

ℓ≥1

(
χ
(ℓ)
− ⊗ η

(ℓ)
+ + χ

(ℓ)
+ ⊗ η

(ℓ)
−

)
, (3.68)

λ̂ = λ
(0)
− ⊗ η(0) +

∑

ℓ≥1

(
λ
(ℓ)
+ ⊗ η

(ℓ)
+ + λ

(ℓ)
− ⊗ η

(ℓ)
−

)
. (3.69)

The gauge choice (3.65) does not fix all the gauge symmetries, we find the following residual
symmetry transformations
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• Generated by ǫ̂(0) = ǫ(0)η(0):
δψ(0)

µ = ∂µǫ
(0), (3.70)

• Generated by ǫ̂ = ǫ
(1)
+ η

(1)
+ :

δψ
(1)
µ+ = ∂µǫ

(1)
+ +

i√
2
α ǫ

(1)
+ , (3.71)

δλ
(1)
+ = igǫ

(1)
+ . (3.72)

We shall take into account these symmetries in the analysis of the spectrum below, where we treat
the spin-3/2, spin-1/2 sectors separately.

Spin-3/2 sector

Let us begin with the restriction ℓ ≥ 1. This sector contains only the gravitino fields which satisfy
the following equations

ℓ ≥ 1 : /∂
(
(�̂0 + α2)−M2

)
P 3/2ψ

(ℓ)
µ+ + iα

√
cℓ

(
(�̂0 + α2)−M2

)
P 3/2ψ

(ℓ)
µ− = 0 ,

iα
√
cℓ

(
(�̂0 + α2)−M2

)
P 3/2ψ

(ℓ)
µ+ − /∂

(
�̂0 −M2

)
P 3/2ψ

(ℓ)
µ− = 0 , (3.73)

where P 3/2 is the spin-3/2 projector operator defined in Appendix C. Diagonalising the associated
2 × 2 operator-valued matrix, we find that the modes are annihilated by the partially-factorising
operator polynomial, of sixth order in /∂, given by

ℓ ≥ 1 : O(3/2) = O1O2 . (3.74)

Next, consider the case of ℓ = 0. By choosing the gauge γµψ
(0)
µ = 0, the gravitino equation can be

written as

/∂
(
�−M2

)
ψ(0)µ = −

(
/∂∂µ −M2γµ

)
Ψ(0) − 2M2

(
γµν∂νψ

(0) − iγµν∂νχ
(0)

)
. (3.75)

The solutions of above equation can be expressed as ψ
(0)
µ = ψ

′(0)
µ + ψ

′′(0)
µ where ψ

′′(0)
µ is completely

determined by ψ(0) and χ(0) while ψ
′(0)
µ is the solution to the following equations modular gauge

symmetry (3.70)

ℓ = 0 : /∂(�−M2)ψ′(0)
µ = 0 , γµψ′(0)

µ = 0 , ∂µψ′(0)
µ = 0 . (3.76)

It describes a massless and two massive gravitini.
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Spin-1/2 sector

The ℓ ≥ 2 sector consists of ten spin 1/2 fields (Λ+,Ψ+,Λ−,Ψ−, ψ+, ψ−, χ+, χ−, λ+, λ−), where

Ψ(ℓ) ≡ ∂µψ
(ℓ)
µ and γµψ

(ℓ)
µ ≡ Λ(ℓ). The linearized equations describing their mixing are

0 = /∂Λ
(ℓ)
− −Ψ

(ℓ)
+ + iα

√
cℓψ

(ℓ)
+ − iα

√
cℓΛ

(ℓ)
+ + 2/∂ψ

(ℓ)
− − 2i/∂χ

(ℓ)
− + 2α

√
cℓχ

(ℓ)
+ − 8giλ

(ℓ)
+ , (3.77)

0 = /∂Λ
(ℓ)
+ −Ψ

(ℓ)
− + iα

√
cℓψ

(ℓ)
− + iα

√
cℓΛ

(ℓ)
− − 2/∂ψ

(ℓ)
+ + 2i/∂χ

(ℓ)
+ + 2α

√
cℓχ

(ℓ)
− − 8giλ

(ℓ)
− , (3.78)

0 = igΛ
(ℓ)
− + 2gχ

(ℓ)
− − /∂λ

(ℓ)
+ − iα

√
cℓλ

(ℓ)
− , (3.79)

0 = 2igψ
(ℓ)
+ + 2gχ

(ℓ)
+ + /∂λ

(ℓ)
− − iα

√
cℓλ

(ℓ)
+ , (3.80)

0 = iα
√
cℓ /∂(�+M2)ψ

(ℓ)
+ − iM2α

√
cℓ/∂Λ

(ℓ)
+ + iα

√
cℓ

(
M2 − α2 + α2cℓ

)
Ψ

(ℓ)
− + 2M2α

√
cℓ /∂χ

(ℓ)
+

−8igM2 /∂λ
(ℓ)
+ + α2(cℓ − 1)/∂Ψ

(ℓ)
+ + α2(2− cℓ)�ψ

(ℓ)
− , (3.81)

0 = −i/∂
(
�+M2 − α2)

)
ψ
(ℓ)
− − iM2 /∂Λ

(ℓ)
− + i

(
α2 + α2cℓ −M2

)
Ψ

(ℓ)
+ − 2M2 /∂χ

(ℓ)
−

−α√cℓ
(
/∂Ψ

(ℓ)
− +�ψ

(ℓ)
+

)
, (3.82)

0 = /∂

(
�+ α2 − α2cℓ + 2M2

)
Λ
(ℓ)
− −

(
�+ 2α2 − 2α2cℓ + 2M2

)
Ψ

(ℓ)
+ + iα

√
cℓ(�+ 4M2)ψ

(ℓ)
+

+/∂

(
6M2 + 2α2 − α2cℓ)

)
ψ
(ℓ)
− − iα

√
cℓ

(
�+ α2 − α2cℓ + 3M2

)
Λ
(ℓ)
+ − 6iM2 /∂χ

(ℓ)
−

+8αM2√cℓχ(ℓ)
+ − 32igM2λ

(ℓ)
+ + iα

√
cℓ/∂Ψ

(ℓ)
− , (3.83)

0 = −/∂
(
�− α2cℓ + 2M2)

)
Λ
(ℓ)
+ +

(
�− 2α2cℓ + 2M2)

)
Ψ

(ℓ)
− − iα

√
cℓ

(
�− 4α2 + 4M2)

)
ψ
(ℓ)
−

+/∂(6M2 − α2cℓ)ψ
(ℓ)
+ − iα

√
cℓ

(
�+ α2 − α2cℓ + 3M2

)
Λ
(ℓ)
− − 6iM2 /∂χ

(ℓ)
+ − 8αM2√cℓχ(ℓ)

−

+iα
√
cℓ /∂Ψ

(ℓ)
+ , (3.84)

0 = M2
(
−Λ

(ℓ)
− + 2iχ

(ℓ)
−

)
−

(
2� − α2cℓ

)
ψ
(ℓ)
− + /∂Ψ

(ℓ)
+ + iα

√
cℓΨ

(ℓ)
− + iα

√
cℓ /∂ψ

(ℓ)
+ , (3.85)

0 = (α2 −M2)Λ
(ℓ)
+ − 2iM2χ

(ℓ)
+ +

(
2�+ 2α2 − α2cℓ

)
ψ
(ℓ)
+ − iα

√
cℓΨ

(ℓ)
+ + /∂Ψ

(ℓ)
− + iα

√
cℓ /∂ψ

(ℓ)
− .

(3.86)

Diagonalising the associated 10×10 operator-valued matrix, we find that the modes are annihilated
by the partially-factorising operator polynomial, of eighteenth order in /∂, given by

ℓ ≥ 2 : O1/2 = O5
1 O4 . (3.87)

Next we consider the case of ℓ = 1. In this case, one can use the fermionic shift symmetry (3.72)

to eliminate ψ
(1)
+ . Consequently we get 9 by 9 mixing and we find that the modes are annihilated

by the partially-factorising operator polynomial, of fifteenth order in /∂, given by

ℓ = 1 : O1/2 = O4
1 |ℓ=1 /∂O3 , (3.88)
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where O3 is defined in (3.30). The factor /∂ demonstrates that there is massless spin-1/2 mode. This

massless mode corresponds to linear combinations of (Λ
(1)
+ ,Ψ

(1)
+ ,Λ

(1)
− ,Ψ

(1)
− , ψ

(1)
− , χ

(1)
+ , χ

(1)
− , λ

(1)
+ , λ

(1)
− )

with mixing coefficients (8, 0, 0, 0,−2,−2i, 0, 0, 1).
There remains the case of ℓ = 0. In this case, we have

ℓ = 0 : 0 = −Ψ(0) − 2/∂ψ(0) + 2i/∂χ(0) − 8giλ(0) , (3.89)

0 = 2giψ(0) + 2gχ(0) + /∂λ(0) , (3.90)

0 = (1 +
1

2M2
�)Ψ(0) + 3/∂ψ(0) − 3i/∂χ(0) , (3.91)

0 = −Ψ(0) − /∂

(
1 +

1

M2
(�+ α2)

)
ψ(0) + 2i/∂χ(0) − 8giλ(0) . (3.92)

Diagonalising the associated 4× 4 operator-valued matrix, we find that the modes are annihilated
by the partially-factorising operator polynomial, of seventh order in /∂, given by

ℓ = 0 : O(1/2) = O1|ℓ=0 /∂ Õ2 . (3.93)

Thus, at the ℓ = 0 level, there is only one massless spin-1/2 modes given by Ψ(0) = 0, λ(0) =
0, iψ(0) + χ(0) = 0.

3.4 The supermultiplet structure and stability

In arranging the full spectrum described above into a collection of supermultiplet structure, it is
useful to recall that following massive supermultiplets:

massive supergravity multiplet : (hµν , Aµ,Ψµ) ,

massive gravitino multiplet : (ψµ, Zµ, χ) ,

massive vectormultiplet multiplet : (Aµ, φ, λ) ,

massive scalar multiplet : (Z,ψ) , (3.94)

where Aµ is a real and Zµ is a complex vector, φ is a real and Z is a complex scalar, and Ψµ is
Dirac and ψµ, χ, ψ are Majorana. The Dirac gravitino can be written as Ψ = ψ1

µ++ψ2
µ−, where the

two terms represent Weyl spinors that are independent of each other, and consequently Ψµ on-shell
describes 8 real degrees of freedom. The Majorana gravitino, on the other hand can be written as
ψµ = ψµ++ψµ− where ψµ− = (ψµ+)

∗. Thus, on shell ψµ describes 4 real degrees of freedom. With
this information at hand, we can now tabulate the supermultiplet structure of the full spectrum.
It is convenient to do so by specifying the wave operators for different spin fields and consider the
cases of ℓ = 0, ℓ = 1 and ℓ ≥ 2 separately. The results are given in Table 1, Table 2 and Table 3.

Having established the full spectrum of states in the four-dimensional theory, we may now
examine the question of stability, which is governed by the mass values for the massive fields. We
begin with the ℓ = 0 level, given in Table 1. In addition to the massless graviton and scalar
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s = 2 s = 3/2 s = 1 s = 1/2 s = 0

� /∂

�−M2
�−M2

�−M2

Õ2 Õ2 Õ2

/∂ �
2

O1 O4
1

Table 1: The spectrum of wave operators for ℓ = 0. The operator O1 is to be evaluated for ℓ = 0.
There is one massless spin-2 and one massless spin-0 multiplet, a massive spin-2 multiplet with
mass M , two spin-0 multiplets with squared mass m2 =M2−α2 and two massive spin-1 multiplets
with mass2 given in (3.47).

s = 2 s = 3/2 s = 1 s = 1/2 s = 0

O2 O2 O2

O1 O4
1 O1

O3 O3 O3

O2
1 O2

1 O2
1

� /∂

O1 O4
1

Table 2: The spectrum of wave operators for ℓ = 1. The operators O1 and O2 are to be evaluated
for ℓ = 1. There are two spin-2 multiplets with squared masses given in (3.33) for ℓ = 1, two
spin-3/2, two spin-1 multiplets and two spin-0 multiplets with squared mass m2 =M2 + α2, three
spin-1 multiplets with squared masses given by the roots of the polynomial given in (3.45) and a
massless vector multiplet.

multiplets, there are massive graviton, vector and scalar multiplets at this level. The massive
graviton multiplet has m2 =M2, the scalar multiplet has m2 =M2 −α2, and the vector multiplet
has masses given by (3.47). These imply, respectively, that stability requires M2 > 0, M2 > α2

and M2 ≥ (5 + 2
√
6)α2 ≈ 9.89898α2 .

At the level ℓ = 1, in addition to the massless vector multiplet, there are massive graviton,
gravitino, vector and scalar multiplets. The gravitino multiplet, two of the massive vector multiplets
and the scalar multiplet have masses given by the operator O1, implying m2 = M2 + α2, which
therefore impose no new conditions. The massive graviton multiplet with mass operator O2 has m

2

given by equation (3.33) with ℓ set equal to 1. This implies m2 = (M2+4α2±
√
M4 + 8α4)/2, and

hence gives no further restriction. There remains the massive vector multiplet with mass operator
O3 given in (3.30). This gives a cubic polynomial in m2, and we find that this has three real (and
positive) roots for m2 provided that µ ≡M2/α2 satisfies the condition

4µ4 − 64µ3 + 153µ2 − 26µ − 139 ≥ 0 . (3.95)

This implies we must have µ ≥ µmin, where µmin ≈ 13.1425. In other words, at level ℓ = 1 stability
requires that M2 should exceed approximately 13.1425α2.

For levels ℓ ≥ 2, the multiplets are given in Table 3. The gravitino, vector and scalar multiplets
with mass operator O1 have m2 given in equation (3.42), and these are always positive for all
values of ℓ ≥ 2. Likewise, for the graviton multiplet with mass operator O2, m

2, given in (3.33),
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s = 2 s = 3/2 s = 1 s = 1/2 s = 0

O2 O2 O2

O1 O4
1 O1

O4 O4 O4

O2
1 O2

1 O2
1

O2
1 O8

1

Table 3: The spectrum of wave operators for ℓ ≥ 2. For each integer ℓ, there are two spin-2
multiplets with squared mass m2

±(ℓ) given in (3.33), two spin-3/2, two spin-1 multiplets and four
spin-0 multiplets with squared mass m2(ℓ) given in (3.42), and four spin-1 multiplets with squared
masses given by the roots of the polynomial given in (3.43).

is positive for all ℓ ≥ 2. There remains the vector multiplet with mass operator O4. This leads to
a quartic polynomial in m2, which can be read off from (3.28) and (3.29). One can show that this
polynomial necessarily has at least two real roots, which are positive, and that if the four roots for
m2 are real then they are also positive. The condition for having four real roots is that a rather
complicated discriminant of sixth order in µ = M2/α2 should be positive. This discriminant also
depends on the level ℓ. For a few representative values of ℓ, we find the requirement µ ≥ µmin(ℓ):

ℓ = 2 3 5 10 100 1000 10000

µmin ≈ 16.9381 20.869 28.8614 49.0439 414.215 4067.07 40595.8

Table 4: Minimum values of µ =M2/α2 necessary to achieve real positive mass-squared values for
the O4 vector multiplet at level ℓ.

In the limit of large ℓ, we find that to leading order, µmin(ℓ) grows linearly with ℓ, with

µmin(ℓ) ∼ 4.05874 ℓ + · · · (3.96)

This implies that for any given ratio µ = M2/α2, there is a a critical level ℓmax beyond which the
Kaluza-Klein tower must be truncated in order not to have modes with complex masses, which
would be associated with instabilities.

4 Spectrum in Non-Supersymmetric Minkowski4 × S2 Background

4.1 Non-supersymmetric Minkowski4 × S2 background

In addition to supersymmetric vacuum solution discussed in previous section, the theory [5] also
possesses non-supersymmetric Minkowski4 × S2 vacua when M2 = α2, with the curvature and flux
given by

R̄µνλρ = 0 , R̄mn = α2ḡmn , L̄ = 1 ,

F̄µν = 0 , F̄mn = 4qgǫmn ,

Ḡµν = 0 , Ḡmn = −qα2ǫmn , (4.1)
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where q plays the role of monopole charge and is quantized to be q = 0,±1,±2 . . .. The supersym-
metric vacua correspond to q = ±1.

4.2 Bosonic sector

We will perform a similar spectrum analysis around the non-supersymmetric background. The
harmonic expansion (3.22) for the uncharged fields after the gauge fixing is still valid, and the
residual gauge symmetries are almost the same except that some terms related to background flux
should be multiplied by the monopole charge. We present the results for the spectrum below.
While we shall use the same notation for operators such as �̂0 and others, it is understood that
they are to be evaluated for M2 = α2.

Spin-2 sector

The equations of motion satisfied by graviton for ℓ ≥ 1 is

ℓ ≥ 1 : (�̂2
0 − α2

�̂0 − α4 cℓ)(P2h)(ℓ)µν = 0 , (4.2)

describing massive gravitons with square masses

m2
±(ℓ) =

1

2
α2

(
1 + cℓ ±

√
1 + 4cℓ

)
. (4.3)

For ℓ = 0, the linearized field equation is

ℓ = 0 : (�− α2)RL(0)µν = −α2∂µ∂νS
(0) − α4ηµνS

(0) + ∂µ∂ν(�+ α2)S(0) , (4.4)

where S(0) = φ(0) +N (0). It describes a massless graviton and massive graviton with squared mass
m2 = α2.

Spin-1 sector

For ℓ ≥ 2 the mixing among the five vector fields (kTµ , a
T
µ , v

T
µ , bTµν , b

T
µ ) now have the following form

ℓ ≥ 2 : 0 = (2cℓα
4 − �̂

2
0)k

T (ℓ)
µ − 4gα2qaT (ℓ)µ − α2

2
(4qvT (ℓ)µ − ǫ νλρµ ∂νb

T (ℓ)
λρ ) , (4.5)

0 = (α2
�− �̂

2
0)b

T (ℓ)
µν − 4qgα2 ⋆ F (ℓ)

µν (a) + α4cℓ(⋆F
(ℓ)
µν (k)− ⋆F (ℓ)

µν (b)) , (4.6)

0 = �̂
2
0b
T (ℓ)
µ + 1

2α
2ǫ νλρµ ∂νb

T (ℓ)
λρ , (4.7)

0 = (�̂0 + α2)aT (ℓ)µ − 4qgα2cℓk
T (ℓ)
µ + 4gvT (ℓ)µ − 2qgǫ νλρµ ∂νb

T (ℓ)
λρ , (4.8)

0 = (�̂0 − α2)vT (ℓ)µ + α4qcℓk
T (ℓ)
µ − 2gα2a(ℓ)µ , (4.9)

Diagonalising the associated 5× 5 operator-valued matrix, we find that the modes are annihilated
by the partially-factorising operator polynomial, of eighth order in �̂0, given by �̂

2
0O6. The explicit
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form of O6 can be obtained straightforwardly from (4.9), and one finds that it is symmetric under
q → −q meaning that vector spectrum is symmetric under the sign change of monopole charge.
Of the remaining vectors ((P1h)µν , ∂

µbµν) are annihilated by �̂0. Thus, apart from the charged
vectors which will be treated separately below, the total wave operator for ℓ ≥ 2 is given by

ℓ ≥ 2 : O(1) = �̂
4
0|M2=α2 O6 , (4.10)

implying four massive vectors with squared masses m2 = α2cℓ, and six massive vectors whose
squared masses m2 correspond to the roots O6 in which � is to be replaced by m2.

In the case of ℓ = 1, again excluding the charged vector, we find that a massless vector appears
since for cℓ = 2, the operator O6 factorizes as O6 = �O5, and the total wave operator becomes

ℓ = 1 : O(1) = �̂
4
0|ℓ=1 �O5 . (4.11)

The massless vector is composed from a linear combination of (k
T (1)
µ , a

T (1)
µ , v

T (1)
µ , b

T (1)
µν , b

T (1)
µ ) with

mixing coefficients
(

2
1+q2

,− 8qg
1+q2

, 2qα
2

1+q2
, 1, 0

)
.

In the uncharged vector sector, there remains the case of ℓ = 0, for which the relevant vector

fields are (b
T (0)
µν , a

T (0)
µ , v

T (0)
µ ). Upon diagonalising the associated 3 × 3 operator-valued matrix, we

find that the modes are annihilated by the following partially-factorising operator polynomial

ℓ = 0 : O(1) = �(�− α2)(�2 + 2α4q2) . (4.12)

As before, we find that the would-be massless modes annihilated by � is eaten by the two form.
Thus there are no massless vector modes at ℓ = 0.

Finally, we turn to the treatment of the complex vector ẑµ. This field ẑµ is expanded in terms
of charge “-q” scalar harmonics starting from ℓ = |q| as follows:

ẑµ =
∑

ℓ≥q

z(ℓ)µ −qY
(ℓ) , (4.13)

The resulting linearized field equation is

ℓ ≥ |q| :
(
�− α2cℓ + α2q2 −M2

)
zT (ℓ)µ = 0 . (4.14)

Spin-0 sector

For ℓ ≥ 2, the equations describing the mixing between (φ,N,ϕ, ϕ̃, a, v) take the following form

ℓ ≥ 2 : 0 = 2(�̂0 + α2)φ(ℓ) + (2�̂0 + 2α2 + α2cℓ)N
(ℓ) + 3�̂0ϕ

(ℓ) − α2cℓϕ̃
(ℓ) , (4.15)

0 = α2(3ϕ(ℓ) + 2φ(ℓ) − 4gqa(ℓ) − 2qv(ℓ)) + α2(1− cℓ)ϕ̃
(ℓ) +�N (ℓ) , (4.16)

0 = 2α2φ(ℓ) + (2�̂0 + 2α2 + α2cℓ)N
(ℓ) −�ϕ̃(ℓ) , (4.17)

0 = (�̂0 + α2)a(ℓ) + 4gqN (ℓ) − 2gq(3ϕ(ℓ) + ϕ̃(ℓ)) + 4gv(ℓ) , (4.18)

0 = (�̂0 − α2)v(ℓ) − α2qN (ℓ) +
α2

2
q(3ϕ(ℓ) + ϕ̃ℓ)− 2gα2a(ℓ) , (4.19)

0 = (α2
�− �̂

2
0)ϕ

(ℓ) + 2α4φ(ℓ) + α4(2− cℓ)N
(ℓ) − 4qgcℓα

4a(ℓ) − 2cℓα
4qv(ℓ) .(4.20)
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Diagonalising the associated 6×6 operator-valued matrix, we find that the modes are annihilated by
the partially-factorising operator polynomial, of seventh order in �̂0, given by O4�̂

3
0|M2=α2 Of the

remaining scalars, (∂µkµ, ∂
µbµ, ∂

µaµ, ∂
µvµ, ṽ), three of them namely (∂µkµ, ∂

µbµ, ṽ) are annihilated
by �̂0, and the remaining two are determined in terms of them. Thus, in total, apart from the
complex scalars which will be treated separately below, the wave operator for the scalar fields is
given by

O(0) = �̂
6
0O4 . (4.21)

Next, consider the case ℓ = 1. Utilizing the residual symmetry (3.24) and (3.25), one can

eliminate N (1) and ∂µk
(1)
µ . The mass operator coming from the mixing among (φ,ϕ, ϕ̃, a, v) takes

the form �̂
2
0|ℓ=1O3. Taking into account ∂µb

(1)
µ and ṽ(1), the total wave operator, again, excluding

the complex scalar sector, is given by

ℓ = 1 : O(0) = �̂
4
0O3 . (4.22)

There remaining the case of ℓ = 0. In this case, the relevant scalar fields are (φ(0), N (0), b(0)),
and they satisfy the following equations respectively

ℓ = 0 : (�2 + 2α4)S(0) = 0 , S(0) = φ(0) +N (0) ,

�
2b(0) = 0 ,

�
2N (0) = 0 . (4.23)

Thus besides two massless modes, we also have modes with linear time coordinate dependence.
Finally, we discuss the complex scalars originating from ẑm. For positive monopole charge, the
harmonic expansion of ẑm is given by

ẑm = z(q−1)
−qV

(q−1)
m + z(q)−qV

(q)
m +

∑

ℓ>q

(z(ℓ)Dm−qY
(ℓ) + z̃(ℓ)ǫ nmDn−qY

(ℓ)) . (4.24)

Thus we have

ℓ > q : z(ℓ) , z̃(ℓ) with m2 = α2cℓ − α2q +M2 ,

ℓ = q : z(q) , with m2 = α2q +M2 ,

ℓ = q − 1 : z(q−1) , with m2 =M2 − α2q . (4.25)

4.3 Fermionic sector

The analysis of the fermionic spectrum in a non-supersymmetric background (4.1) is more subtle
than that in supersymmetric background. Since the non-supersymmetric background do not posses
Killing spinor, we will use spin-weighted harmonics

s−
1
2
η(ℓ), described in detail in appendix B, as

basis of expansion. For brevity, we shall use the notation

s−
1
2
η(ℓ) ≡ η̃(ℓ) , (4.26)

where s = 1
2(1− q). These harmonics satisfy the relations

η̃
(ℓ)
+ = η+

(
s−1Y

(ℓ)
)
, η̃

(ℓ)
− = η−

(
sY

(ℓ)
)
, (4.27)

(
d

dθ
+m csc θ + s cot θ)

(
sY

(ℓ)
)
=

√
(ℓ+ s)(ℓ+ 1− s)

(
s−1Y

(ℓ)
)
, (4.28)

(
d

dθ
−m csc θ − (s− 1) cot θ)

(
s−1Y

(ℓ)
)
= −

√
(ℓ+ s)(ℓ+ 1− s)

(
sY

(ℓ)
)
. (4.29)

23



The lowest level would have definite chirality when ℓ = −s for q > 0 and ℓ = s− 1 for q < 0. The
spin weighted harmonics satisfy the following properties

σ3η̃
(ℓ)
± = ±η̃(ℓ)± , σnDnη̃

(ℓ)
± = iα

√
c̃ℓ η̃

(ℓ)
∓ ,

[Dm,Dn]η̃
(ℓ)
− = −isα2ǫmnη̃

(ℓ)
− , [Dm,Dn]η̃

(ℓ)
+ = i(1− s)α2ǫmnη

(ℓ)
+ ,

DnDnη̃
(ℓ)
− = −α2(c̃ℓ − s)η̃

(ℓ)
− , DnDnη̃

(ℓ)
+ = α2(1− s− c̃ℓ)η̃

(ℓ)
+ , (4.30)

where

c̃ℓ =

(
cℓ − s(s− 1)

)
. (4.31)

The harmonic expansion for 6D spin-1/2 fields follows the same procedure as in supersymmetric
case by using the spin weighted harmonics, while it is more subtle when expanding the 6D gravitini.

It can be checked that the linearized equations have the following discreet symmetry

q → −q , ψµ+ → −ψµ−, ψµ− → ψµ+ ,

ψ− → ψ+ , ψ+ → −ψ− , χ− → χ+ ,

χ+ → −χ− , λ+ → −λ− , λ− → λ+ , (4.32)

which implies that the spectrum keeps the same under the sign change of monopole charge. In the
following, we will focus on the case with positive monopole charge and use |s| to denote 1

2(q − 1).

Spin-3/2 Sector

The gravitini satisfy

ℓ ≥ |s|+ 1 : /∂
(
�+ α2|s| − α2c̃ℓ

)
ψ
(ℓ)
µ+ + iα

√
c̃ℓ

(
�− α2c̃ℓ

)
ψ
(ℓ)
µ− = 0 ,

iα
√
c̃ℓ

(
�− α2c̃ℓ

)
ψ
(ℓ)
µ+ − /∂

(
�+ (|s|+ 1− c̃ℓ)α

2
)
ψ
(ℓ)
µ− = 0 . (4.33)

Diagonalising the associated 2× 2 operator-valued matrix, we find that the modes are annihilated
by the partially-factorising operator polynomial, of third order in �, given by

O(3/2) = Õ3 , (4.34)

where the explicit form of Õ3 can be deduced from (4.33).
Next, we consider the case of ℓ = |s|. In this case, we find that the quadratic action for the

lowest level fermionic fields is proportional to

L(2) ∝ −iχ̄γµν∂µψν − iψ̄µγ
µν∂νχ+ 2iχ̄/∂ψ − 2iψ̄ /∂χ+ 2χ̄/∂χ

−8gχ̄λ− 8gλ̄χ− 4λ̄/∂λ− 4ig|s|λ̄γµψµ − 4ig|s|ψ̄µγµλ
−8g(1 + |s|)iλ̄ψ + 8g(1 + |s|)iψ̄λ− 1

2 ψ̄µγ
µνλ∂νψλ + ψ̄ /∂ψ

+ψ̄µγ
µν∂νψ − ψγµν∂µψν −

1

α2

(
1
4 ψ̄µν /∂ψ

µν − ψ̄ /∂�ψ

+1
2 |s|α2ψ̄µ/∂ψ

µ − |s|α2ψ̄∂µψ
µ + |s|α2ψ̄µ∂

µψ − (1 + 2|s|)α2ψ̄ /∂ψ

)
. (4.35)

24



Unlike the supersymmetric case, we see the appearance of the terms λ̄γµψµ, ψ̄µ/∂ψ
µ and ψ̄µ∂

µψ
which break the fermionic gauge symmetry. The homogeneous solutions for gravitini satisfy

/∂(�− α2 − |s|α2)ψ(|s|)
µ = 0, γµψ(|s|)

µ = 0, ∂µψ(|s|)
µ = 0. (4.36)

Thus, due to the lack of fermionic gauge symmetry, the longitudinal mode ψµ ∝ pµe
ipx with p2 = 0

becomes a dynamical degree of freedom.

Spin-1/2 Sector

The ℓ ≥ |s|+2 sector consists of ten spin-1/2 fields (Λ+,Ψ+,Λ−,Ψ−, ψ+, ψ−, χ+, χ−, λ+, λ−). The
linearized equations describing their mixing are

0 = /∂Λ
(ℓ)
− −Ψ

(ℓ)
+ + iα

√
c̃ℓψ

(ℓ)
+ − iα

√
c̃ℓΛ

(ℓ)
+ + 2/∂ψ

(ℓ)
− − 2i/∂χ

(ℓ)
− + 2α

√
c̃ℓχ

(ℓ)
+ − 8giλ

(ℓ)
+ , (4.37)

0 = /∂Λ
(ℓ)
+ −Ψ

(ℓ)
− + iα

√
c̃ℓψ

(ℓ)
− + iα

√
c̃ℓΛ

(ℓ)
− − 2/∂ψ

(ℓ)
+ + 2i/∂χ

(ℓ)
+ + 2α

√
c̃ℓχ

(ℓ)
− − 8giλ

(ℓ)
− , (4.38)

0 = g(1 + |s|)iΛ(ℓ)
− + 2gχ

(ℓ)
− − /∂λ

(ℓ)
+ − iα

√
c̃ℓλ

(ℓ)
− , (4.39)

0 = 2ig|s|ψ(ℓ)
+ + 2gχ

(ℓ)
+ + /∂λ

(ℓ)
− − iα

√
c̃ℓλ

(ℓ)
+ , (4.40)

0 = i
√
c̃ℓ/∂(� + α2 + |s|α2)ψ

(ℓ)
+ − iα2

√
c̃ℓ/∂Λ

(ℓ)
+ + iα2c̃ℓ

3/2Ψ
(ℓ)
− + 2α2

√
c̃ℓ/∂χ

(ℓ)
+

−8g(1 + |s|)α i/∂λ(ℓ)+ + α(c̃ℓ − 1− |s|)/∂Ψ(ℓ)
+ + α(2 + 2|s| − c̃ℓ)�ψ

(ℓ)
− , (4.41)

0 = i
√
c̃ℓ/∂(� − |s|α2)ψ

(ℓ)
− + iα2

√
c̃ℓ /∂Λ

(ℓ)
− − iα2c̃ℓ

3/2Ψ
(ℓ)
+ + 2α2

√
c̃ℓ/∂χ

(ℓ)
− + 8ig|s|α/∂λ(ℓ)−

+α(c̃ℓ + |s|)/∂Ψ(ℓ)
− + α(c̃ℓ + 2|s|)�ψ(ℓ)

+ , (4.42)

0 = /∂(�+ 3α2 + |s|α2 − α2c̃ℓ)Λ
(ℓ)
− − (� + 4α2 + 2|s|α2 − 2α2c̃ℓ)Ψ

(ℓ)
+ + iα

√
c̃ℓ(� + 4α2 + 4|s|α2)ψ

(ℓ)
+

+α2 /∂(8 + 2|s| − c̃ℓ)ψ
(ℓ)
− − iα

√
c̃ℓ(�+ 4α2 − α2c̃ℓ)Λ

(ℓ)
+ − 6iα2 /∂χ

(ℓ)
− + 8α3

√
c̃ℓχ

(ℓ)
+

−32igα2 (1 + |s|)λ(ℓ)+ + iα
√
c̃ℓ /∂Ψ

(ℓ)
− , (4.43)

0 = −/∂(� + 2α2 − |s|α2 − α2c̃ℓ)Λ
(ℓ)
+ + (�+ 2α2 − 2|s| − 2α2c̃ℓ)Ψ

(ℓ)
− − iα

√
c̃ℓ(�− 4|s|α2)ψ

(ℓ)
−

+α2 /∂(6− 2|s| − c̃ℓ)ψ
(ℓ)
+ − iα

√
c̃ℓ(�+ 4α2 − α2c̃ℓ)Λ

(ℓ)
− − 6iα2 /∂χ

(ℓ)
+ − 8α3

√
c̃ℓχ

(ℓ)
−

−32ig|s|α2λ
(ℓ)
− + iα

√
c̃ℓ/∂Ψ

(ℓ)
+ , (4.44)

0 = (1 + |s|)α2Λ
(ℓ)
− − 2iα2χ

(ℓ)
− + (2� − 2|s|α2 − α2c̃ℓ)ψ

(ℓ)
− − /∂Ψ

(ℓ)
+ − iα

√
c̃ℓΨ

(ℓ)
− − iα

√
c̃ℓ /∂ψ

(ℓ)
+ ,

(4.45)

0 = |s|α2Λ
(ℓ)
+ − 2iα2χ

(ℓ)
+ + (2� + 2α2 + 2|s|α2 − α2c̃ℓ)ψ

(ℓ)
+ − iα

√
c̃ℓΨ

(ℓ)
+ + /∂Ψ

(ℓ)
− + iα

√
c̃ℓ /∂ψ

(ℓ)
− .

(4.46)

Diagonalising the associated 10×10 operator-valued matrix, we find that the modes are annihilated
by the partially-factorising operator polynomial, of ninth order in �, given by

ℓ ≥ |s|+ 2 : O(0) = �̂
3
0 Õ6 , (4.47)

where the explicit form of the operator O6 can be determined from the linearized spin 1/2 field
equations listed above.

ℓ = |s|+ 1
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At this level, since Dmη
(|s|+1)
+ = i

2α
√
c̃ℓσmη

(|s|+1)
− , there emerges a fermionic gauge symmetry

generated by ǫ̂ = ǫ
(|s|+1)
+ η

(|s|+1)
+

δψ
(|s|+1)
µ+ = ∂µǫ

(|s|+1)
+ + iα

√
(1 + |s|)

2
ǫ
(|s|+1)
+ ,

δλ
(|s|+1,m)
+ = ig(1 + |s|)ǫ(|s|+1)

+ . (4.48)

Using this gauge symmetry, one can eliminate ψ
(|s|+1)
+ , such that the 10 by 10 mixing becomes 9

by 9 mixing. Diagonalising this system, we find that the modes are determined by the partially-
factorising operator polynomial, of fifteenth order in /∂, given by

ℓ = |s|+ 1 : /∂
(
�− (|s|+ 2)α2

)2
Õ5 , (4.49)

where the explicit form of Õ5 can be deduced from the mixing equations. It is clear that is a massless

spin-1/2 mode. Explicitly, it is a linear combination of (Λ
(|s|+1)
+ ,Ψ

(|s|+1)
+ ,Λ

(|s|+1)
− ,Ψ

(|s|+1)
− , ψ

(|s|+1)
− ,

χ
(|s|+1)
− , χ

(|s|+1)
+ , λ

(|s|+1)
+ , λ

(|s|+1)
− ) with mixing coefficients

(8(1 + 2|s|), 0, 0, 0,−2,−2i(1 + 2|s|), 0, 0,
√

1 + |s|(1 + 4|s|). (4.50)

ℓ = |s|

The coupled system of linearized field equations for the spin-1/2 fields (Λ
(|s|)
+ ,Ψ

(|s|)
− , ψ

(|s|)
+ , χ

(|s|)
+ , λ

(|s|)
− )

are

0 = /∂Λ
(|s|)
+ −Ψ

(|s|)
− − 2/∂ψ

(|s|)
+ + 2i/∂χ

(|s|)
+ − 8giλ

(|s|)
− , (4.51)

0 = ig|s|Λ(|s|)
+ + 2g(1 + |s|)iψ(|s|)

+ + 2gχ
(|s|)
+ + /∂λ

(|s|)
− = 0, (4.52)

0 = 8gi/∂λ
(|s|)
− + /∂Ψ

(|s|)
− + 2�ψ

(|s|)
+ = 0, (4.53)

0 = (� + 2α2 − |s|α2)/∂Λ
(|s|)
+ − (�+ 2α2 − 2|s|α2)Ψ

(|s|)
− + (2|s| − 6)α2 /∂ψ

(|s|)
+ + 6α2 i/∂χ

(|s|)
+

+32g|s|α2 iλ
(|s|)
− , (4.54)

0 = α2 /∂Λ
(|s|)
+ − (1 + |s|)α2Ψ

(|s|)
− − /∂(�+ 2α2 + 2|s|α2)ψ

|s|
+ − 8g(1 + |s|)α2 iλ

(|s|)
− + 2α2 i/∂χ

(|s|)
+ .

(4.55)

Diagonalising this system, we find two massless modes which satisfy the relations

Ψ
(|s|)
− = 0 , λ

(|s|)
− = 0 , |s|Λ(|s|)

+ − 2iχ
(|s|)
+ + 2(1 + |s|)ψ(|s|)

+ = 0 . (4.56)

ℓ = |s| − 1

When monopole charge q ≥ 3, there exist charge “−q/2” vector-spinor harmonics ηm on S2

possessing following properties

Dm

(

s−
1
2
η(|s|−1)

)

m

= 0 , σm
(

s−
1
2
η(|s|−1)

)

m

= 0 , (4.57)
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where s = (1− q)/2. It follows that

σmDm

(

s−
1
2
η(|s|−1)

)

n

= 0 . (4.58)

Associated to this harmonics, there is a new spin-1/2 field ψ̃(|s|−1) satisfying

/∂�ψ̃(|s|−1) = 0 . (4.59)

4.4 Remarks on the non-supersymmetric spectrum

We saw in the supersymmetric vacuum that even at the ℓ = 0 level in the Kaluza-Klein har-
monic expansions, avoiding tachyons in the four-dimensional spectrum required imposing the con-
dition M2 ≥ (5 + 2

√
6)α2 on the parameter M in the six-dimensional Lagrangian. In the non-

supersymmetric vacua we necessarily have M2 = α2, and in fact having larger values for the
background monopole charge q then the q = ±1 supersymmetric case only makes the tachyon
problem worse, as can be seen from the vector mass operator (4.12). For this reason, we shall not
explore further the precise details of the occurrence of tachyonic states in the non-supersymmetric
backgrounds.

One feature of interest that we shall, however, comment on is the occurrence of massless fermions
in the non-supersymmetric backgrounds. As can be seen from the spin-32 operator in (4.36), there
will be massless spin-32 fields at level ℓ = |s| = 1

2(q−1); thus these will occur in an SU(2) multiplet
of dimension 2ℓ + 1 = q. At ℓ = |s| + 1, ℓ = |s| and ℓ = |s| − 1 there will also be massless spin-12
modes, as was discussed in the spin-12 section above.

5 Conclusions

In this paper we have studied the complete linearised spectrum in the S2 Kaluza-Klein reduction
of off-shell six-dimensional N = (1, 0) gauged supergravity extended by a Riemann-squared super-
invariant. The higher-derivative terms in the six-dimensional theory can be expected to imply the
occurrence of ghosts. As discussed in the introduction, the usual argument for the positivity of the
energies of states in a supersymmetric background breaks down, and indeed we found that states
in the Kaluza-Klein spectrum could now have complex energies, thus implying instabilities.

One way to understand the occurrence of complex masses is that there are mixings between four-
dimensional ghostlike and non-ghostlike modes. This may be illustrated by the following simple
example. Consider a set of fields φi with the Lagrangian

L = −1
2Kij ∂φi ∂φj − 1

2Vijφiφj , (5.1)

where Kij and Vij are constant symmetric matrices. If the eigenvalues of Kij are all positive, then
Kij and Vij can be simultaneously diagonalised, by means of orthogonal transformations combined
with rescalings of the fields. However, if Kij has negative as well as positive eigenvalues, then the
rescalings will introduce factors of

√
−1 and the diagonalised mass matrix will be complex.

One way to avoid the ghost problems of the higher-derivative theory is to treat it not as an
exact model in its own right, but rather as an effective theory valid at energy scales

√
Λ much

smaller than M . In this case the propagators are governed by the leading-order theory without the
higher-derivative terms, and these terms are treated as interactions. The Kaluza-Klein spectrum in
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the reduced four-dimensional theory would then be simply that of the original Salam-Sezgin model
corresponding to the M2 → ∞ limit. This spectrum has been given in [6] and our results agree in
the M2 → ∞ limit. However, the Kaluza-Klein level number ℓ would have to be restricted to lie
below some maximum value, in order to satisfy the Λ << M2 limit. Interestingly, this condition is
sufficient to ensure that in the full, extended, theory, the m2 values of the retained modes would
all be real and positive. This can be seen from (3.96), which indicates that the m2 values will all
be real and positive if ℓ is less than about M2/(4α2).

A couple of remarks about the consistency of the Kaluza-Klein reduction are in order. Although
we have restricted ourselves to a linearised analysis of the four-dimensional spectrum, it should be
emphasised that provided one is keeping all the infinite towers of modes, then even at the full
non-linear order the reduction would still be consistent. The truncation of the spectrum at some
maximum value of the level number ℓ that we discussed in the previous paragraph would not, of
course, be consistent beyond the linear order, since the higher modes that were being set to zero
would be excited by sources involving the modes that are being retained.

Another more subtle question of consistency arises in this model also. It was shown in [11]
that the Salam-Sezgin theory admits a non-trivial consistent Pauli reduction on S2, in which a
finite subset of fields including the ℓ = 1 triplet of Yang Mills gauge bosons are retained. It
would be interesting to see whether such a Pauli reduction is still possible in the theory with the
higher-derivative extension that we have been considering in this paper.

Another interesting question is whether the six dimensional model, with the auxiliary fields
eliminated in an order by order expansion in inverse powers of M2, can be embedded into the ten-
dimensional heterotic string. In the gauged theory where g 6= 0, this continues to be a challenging
problem even before the higher-derivative terms are considered (although some progress was made
in a restricted sector of the theory in [12]). For g = 0, on the other hand, it was conjectured in [13]
that there is a relation with the 4-torus reduction of the heterotic theory with Riemann-squared
corrections that were constructed in [14]. This relation holds upon making a suitable truncation
and performing an S-duality transformation. This conjecture was tested to lowest order in the
bosonic sector in [13].

It would also be interesting to study exact solutions of the higher-derivative six-dimensional
supergravity. While many solutions of the Salam-Sezgin theory are known, exact solutions of the
higher-derivative theory, beyond the vacuum solutions we have discussed in this paper, are scarce.
As far as we are aware, the only further example, which exists only in the ungauged theory, is the
self-dual string that was found in [15].

A further question is whether there exist other quadratic-curvature superinvariants over and
above the Riemann-squared invariant of the theory we have been considering. This may have
consequences for the embedding of the theory in ten dimensions.
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A Conventions

We choose the 6D gamma matrices to be

Γ0 = γ0 ⊗ σ3 , Γ1 = γ1 ⊗ σ3 , Γ2 = γ2 ⊗ σ3 ,

Γ3 = γ3 ⊗ σ3 , Γ4 = 14×4 ⊗ σ1 , Γ5 = 14×4 ⊗ σ2 . (A.1)

One can check that

Γ0Γµ†Γ0 = Γµ , B = Γ3Γ̂5 ,

B∗B = −1 , BΓµB−1 = Γµ∗ . (A.2)

The SU(2) symplectic-Majorana-Weyl spinor is defined by

ψ∗i = (ψi)
∗ = ǫijBψj . (A.3)

A useful formula related to the SU(2) symplectic-Majorana-Weyl spinor is

λ̄iΓ(n)ψj = tnψ̄
jΓ(n)λi , tn =

{
+, n = 1, 2, 5, 6;
−, n = 0, 3, 4.

(A.4)

B Spin-weighted Harmonics on S2

In this appendix, we give an elementary construction of the spin-weighted spherical harmonics.
This is based on a specialisation of results for the analogous harmonics in the complex projective
space CPn, which were discussed in [10]. Since the azimuthal labelm on the spin-weighted spherical
harmonics sYℓm plays an important role in the derivations in this appendix, we shall suspend our
convention used in the body of the paper of suppressing the m label. In order to avoid confusion
with coordinate indices, we shall use i, j,... for coordinate indices on S2 in this appendix.

B.1 Scalar spin-weighted harmonics

The scalar spin-weighted spherical harmonics sYℓm are the eigenfunctions of the charged scalar
Laplacian �(s) on the unit S2, carrying electric charge s, in the presence of a Dirac monopole with
potential A = − cos θ dφ:

�(s) ≡
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

( ∂

∂φ
+ i s cos θ

)2
. (B.1)

In the language of differential forms, the charged Laplacian operator on the unit S2 with metric
dΩ2

2 = dθ2 + sin2 θ dφ2 may be written in terms of the charged Hodge-de Rham operator

∆ ≡ ∗D∗D +D∗D∗ , (B.2)

as
−�(s) = ∆ , (B.3)

where D is the charge-s gauge-covariant exterior derivative

D = d+ is cos θdφ . (B.4)
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The spin-weighted harmonics may be constructed by starting with the four-dimensional scalar
Laplacian on C

2, and then embedding the unit S3, viewed as a U(1) bundle over S2, in C
2.

Introducing complex coordinates Za on C
2, the four-dimensional Laplacian is

�4 = 4
∂2

∂Za∂Z̄a
. (B.5)

Clearly, if we define functions

f = Ta1···ap
b1···bq Za1 · · ·Zap Z̄b1 · · · Z̄bq , (B.6)

where Ta1···ap
b1···bq is symmetric in its upper and its lower indices, and traceless with respect to any

contraction of upper and lower indices, then they will satisfy

�4f = 0 . (B.7)

Writing
Z1 = r ei(ψ+φ)/2 cos 1

2θ , Z2 = r ei(ψ−φ)/2 sin 1
2θ , (B.8)

the Euclidean metric on C
2 is expressible as

ds24 = dr2 + r2 dΩ2
3 , (B.9)

where
dΩ2

3 =
1
4(dψ + cos θ dφ)2 + 1

4(dθ
2 + sin2 θ dφ2) (B.10)

is the metric on the unit 3-sphere. The four-dimensional Laplacian is given by

�4 =
1

r3
∂

∂r

(
r3

∂

∂r

)
+

1

r2
�3, (B.11)

where �3 is the Laplacian on the unit S3. Noting from (B.6) and (B.8) that f takes the form

f = rp+q ei(p−q)ψ/2 Y (θ, φ) , (B.12)

then (B.7) and (B.11) imply that

�3

(
ei(p−q)ψ/2 Y (θ, φ)

)
= −(p+ q)(p + q + 2) ei(p−q)ψ/2 Y (θ, φ) . (B.13)

From (B.10), �3 is given by

1
4 �3 =

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

( ∂

∂φ
− cos θ

∂

∂ψ

)2
+

∂2

∂ψ2
, (B.14)

and so if we define
p = ℓ− s , q = ℓ+ s , (B.15)

then (B.13) implies that Y (θ, φ) satisfies

−�(s) Y = [ℓ(ℓ+ 1)− s2]Y , (B.16)

where �(s) is the charged scalar Laplacian on S2 that we defined in equation (B.1). Up to an overall
conventional normalisation, we see that Y (θ, φ) constructed from (B.6) and (B.12) is nothing but a
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spin-weighted spherical harmonic sYℓm. Since p and q in (B.6) are non-negative integers, and they
are related to ℓ and s by (B.15), it follows that

ℓ ≥ |s| . (B.17)

It is easily seen that the number of independent traceless symmetric tensors Ta1···ap
b1···bq in (B.6)

is equal to 1 + p+ q, and hence we have constructed the 2ℓ+ 1 spin-weighted spherical harmonics

sYℓm at level ℓ satisfying

−�(s) sYℓm = [ℓ(ℓ+ 1)− s2] sYℓm , ℓ ≥ |s| , −ℓ ≤ m ≤ ℓ . (B.18)

Note that s, ℓ and m are either all integers, or else all half-integers.
With the conventional normalisation, the spin-weighted spherical harmonics satisfy the relations

D− sYℓm ≡
( ∂

∂θ
+m csc θ + s cot θ

)
sYℓm =

√
(ℓ+ s)(ℓ+ 1− s) s−1Yℓm ,

D+ s−1Yℓm ≡
( ∂

∂θ
−m csc θ − (s− 1) cot θ

)
s−1Yℓm = −

√
(ℓ+ s)(ℓ+ 1− s) sYℓm . (B.19)

B.2 Vector spin-weighted harmonics

The spin-weighted vector harmonics are the eigenfunctions of the charged Hodge-de Rham operator
(B.2) acting on 1-forms:

∆V = λ̃ V , V = dyiVi . (B.20)

Generically, these eigenfunctions can be constructed from the scalar spin-weighted harmonics sYℓm
(denoted simply as Y below) by writing

V = DY + µ ∗DY , (B.21)

where D = d+ i s cos θ dφ is the gauge-covariant exterior derivative. We shall write the eigenvalues
for the scalar spin-weighted harmonics, given by (B.18), simply as λ, so that

∆Y = λY , λ = ℓ(ℓ+ 1)− s2, . (B.22)

Noting that
D2 = −isΩ2 , (B.23)

where Ω2 = sin θ dθ ∧ dφ is the volume form on the unit S2, that D∗D∗(DY ) = D∆Y = λDY ,
∗D∗D(DY ) = −is ∗D(∗Ω2Y ) = −is ∗DY and that ∆∗ = ∗∆, we see that

∆V = (λ+ iµs)DY + (µλ− is)∗DY . (B.24)

Thus V is an eigenfunction, satisfying (B.20), if µ = ±i, and so generically we get two distinct
vector eigenfunctions V ± with corresponding eigenvalues λ̃± from each scalar eigenfunction Y ,
where

V ± = DY ∓ i∗DY , λ̃± = λ± s . (B.25)

In terms of ℓ and s, these eigenvalues are given by

λ̃+ = (ℓ+ s)(ℓ+ 1− s) , λ̃− = (ℓ− s)(ℓ+ 1 + s) . (B.26)
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Note that the vector harmonics V ± obey the complex duality conditions

∗V ± = ±iV ± . (B.27)

A special case arises if the scalar eigenvalue λ is equal to s or −s. (Since λ is necessarily non-
negative, the former can only arise if s is positive, and it implies ℓ = s, while the latter arises if s
is negative, and implies ℓ = −s.) Calculating the norm of V −, we find

∫
∗V̄ − ∧ V − =

∫
(∗DȲ − i∗DȲ ) ∧ (DY + i ∗DY ) = 2

∫
(∗DY ∧DȲ − iDY ∧DȲ )

= 2

∫
((D∗DY )Ȳ − i (D2Y )Ȳ ) = 2(λ− s)

∫
|Y |2 , (B.28)

and so V − = 0 if λ = s. A similar calculation shows V + = 0 if λ = −s. Thus if λ = s then the
mode V −, which from (B.25) would have had eigenvalue λ̃− = 0, is absent. Similarly, if λ = −s
then V +, which would likewise have had eigenvalue λ̃+ = 0, is absent.

In fact vector spin-weighted zero modes of ∆ do arise, but they cannot be constructed from
scalar harmonics in the manner described above. If ∆V = 0 then integrating ∗V̄∆V over the sphere
implies ∫

(|D∗V |2 + |DV |2) = 0 (B.29)

and hence V is (gauge) closed and co-closed,

DV = 0 , D∗V = 0 . (B.30)

We can project into the self-dual and anti-self-dual subspaces, and thus seek 1-forms V satisfying

∗V = ±iV , DV = 0 . (B.31)

Making the ansatz
V = eimφ (fdθ + gdφ) , (B.32)

where f and g are functions of θ, we find ∗V = eimφ (−f sin θ dφ+ g csc θ dθ) and hence the duality
condition implies

g = ±i f sin θ . (B.33)

The condition DV = 0 implies g′ = if(m+ s cos θ), and hence we obtain

f = c(sin θ)−1±s (tan 1
2θ)

±m . (B.34)

Thus if s ≥ 1 we obtain regular self-dual harmonics (∗V + = +i V +) given by

V + = (sin 1
2θ)

s−1+m (cos 1
2θ)

s−1−m eimφ (dθ + i sin θ dφ) , −(s− 1) ≤ m ≤ (s− 1) , (B.35)

while if s ≤ −1 we obtain regular anti-self-dual harmonics (∗V − = −i V −) given by

V − = (sin 1
2θ)

−s−1−m (cos 1
2θ)

−s−1−m eimφ (dθ − i sin θ dφ) , s+ 1 ≤ m ≤ −s− 1 . (B.36)

In each case, these charge-s vector harmonics form an ℓ = |s| − 1 representation of SU(2), as
evidenced by the (2|s| − 1)-fold multiplet of m values.
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In summary, each spin-weighted scalar harmonic Y with eigenvalue λ = ℓ(ℓ+ 1)− s2 and with
with ℓ ≥ |s| + 1 gives rise to two spin-weighted vector harmonics, namely a self-dual harmonic
V + with eigenvalue λ̃+ = (ℓ + s)(ℓ + 1 − s) for the charge−s Hodge-de Rham operator ∆, and
an anti-self dual harmonic V − with eigenvalue λ̃− = (ℓ − s)(ℓ + 1 + s). However, the lowest-level
spin-weighted scalar harmonic, with ℓ = |s|, gives rise to only one spin-weighted vector harmonic,
namely V + if s is positive, or V − if s is negative. The “missing” vector harmonic when ℓ = |s|
would have been a zero-mode of ∆. In its place, a zero-mode harmonic satisfying ∆V = 0 does
occur, but it cannot be constructed from the scalar spin-weighted harmonics. It corresponds to
ℓ = |s| − 1, and therefore has multiplicity 2|s| − 1.

B.3 Spin-1
2
spin-weighted harmonics

We may define the spin-weighted spinor harmonics to be charged solutions of the Dirac equation
in the monopole background. They may, in general, be constructed from the scalar spin-weighted
harmonics, as we now describe. We first note that there exist two charged gauge-covariantly
constant spinors on S2 with the monopole background, satisfying Dη = 0 where we now add a spin
connection term to the gauge-covariant exterior derivative,

D = ∇+ i s cos θ dφ , ∇ ≡ d+ 1
4ωabσ

ab (B.37)

and, when acting on η±, s = ±1
2 . This can be seen from the integrability condition

0 = [Di,Dj ]η = 1
4Rijkℓσ

kℓη − i s ǫij η = i ǫij (
1
2σ3 − s)η (B.38)

from which we see that there exist two solutions:

s = 1
2 : Dη+ = 0 , σ3η+ = η+ ,

s = −1
2 : Dη− = 0 , σ3η− = −η− . (B.39)

Using the standard basis for the Pauli matrices σi, the solutions, we find that the gauge-covariantly
constant spinors η± are given by

η+ =

(
1
0

)
, η− =

(
0
1

)
. (B.40)

From these spinors, which are normalised so that η̄+η+ = η̄−η− = 1, we may construct the gauge-
covariantly constant vector

U = η̄−σ
iη+ ∂i =

∂

∂θ
+ i csc θ

∂

∂φ
, (B.41)

which has charge s = 1. Its complex conjugate Ū = ∂/∂θ − i csc θ ∂/∂φ has charge s = −1. In
fact U is the holormorphic (1, 0)-form on the Kähler manifold S2, satisfying Ji

j Uj = i Ui, where
Jij = ǫij is the Kähler form. Note that

σiη+ = U i η− , σiη− = Ū i η+ . (B.42)

The operators U iDi and Ū
iDi give precisely D+ and D−, defined in (B.19), when acting on sYℓm

and s−1Yℓm respectively. It is now clear why D+ and D− raise and lower the charge of the spin-
weighted scalar harmonics by one unit, since U i and Ū i are gauge-covariantly constant vectors
carrying +1 and −1 charge respectively.
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The solutions of the charged Dirac equation can be expressed in terms of chiral spinors ψ+ and
anti-chiral spinors ψ−, satisfying

σiDiψ+ = i λ+ ψ− , σiDiψ− = i λ− ψ+ . (B.43)

Since (σiDi)
2ψ = DiDiψ + (s̃σ3 − 1

2)ψ where ψ is any spinor with charge s̃, we have

−DiDiψ+ = (λ+λ− + s̃− 1
2)ψ+ , −DiDiψ− = (λ+λ− − s̃− 1

2)ψ− . (B.44)

The product λ+λ− is therefore uniquely determined, as a function of s̃ and ℓ, for each spinor
eigenfunction of the second-order operator DiDi. The values of λ+ and λ− separately are not
determined, but depend upon the choice of relative normalisation for ψ+ and ψ− in (B.43).

It is convenient to consider spinor eigenfunctions ψ+ and ψ− with charge s̃ = s − 1
2 . We may

construct these from the scalar spin-weighted harmonics sYℓm discussed earlier by writing

ψ− = η− (sYℓm) , ψ+ = η+ (s−1Yℓm) . (B.45)

Note these ψ± are denoted by η̃
(ℓ)
± in (4.26). For brevity in notation, however, we shall continue

to use the notation ψ± instead in this section. Acting on these with the Dirac operator, we find,
using (B.19), (B.41) and (B.42), that

σiDiψ− = σiη−Di sYℓm = η+ Ū
iDi sYℓm

= η+

( ∂

∂θ
+m csc θ + s cot θ

)
sYℓm = η+

√
(ℓ+ s)(ℓ+ 1− s) s−1Yℓm ,

σiDiψ+ = σiη+Di s−1Yℓm = η− U
iDi s−1Yℓm (B.46)

= η−

( ∂

∂θ
−m csc θ − (s− 1) cot θ

)
s−1Yℓm = −η−

√
(ℓ+ s)(ℓ+ 1− s) sYℓm ,

and hence

σiDiψ− =
√
(ℓ+ s)(ℓ+ 1− s)ψ+ , σiDiψ+ = −

√
(ℓ+ s)(ℓ+ 1− s)ψ− . (B.47)

It is worth remarking that there is an alternative procedure that in general constructs the
charged spin-12 harmonics from scalar harmonics, in which only one of the gauge-covariantly con-
stant spinors is required. For example, using only η− we can construct the negative-chirality spin-12
harmonics ψ− as in the first equation in (B.45), while for the positive-chirality harmonics we take

ψ′
+ = σiη−Di sYℓm . (B.48)

A straightforward calculation shows that

σiDi ψ
′
+ = −(ℓ+ s)(ℓ+ 1− s) η− sYℓm . (B.49)

The harmonics ψ′
+ are in general proportional to the harmonics ψ+ given in (B.45). However,

the charge 1
2 harmonic ψ+ = η+ itself (which is a zero mode of the Dirac operator) cannot be

constructed using (B.48), since it would require taking s = 1 and ℓ = 0, for which sYℓm does not
exist.

It might also seem that charge −s− 1
2 zero modes ψ′

+ would be obtained if s were negative and
ℓ = −s. However, calculating the norm of ψ′

+, we find
∫

S2

|ψ′
+|2

√
gd2x = (ℓ+ s)(ℓ+ 1− s)

∫

S2

|sYℓm|2
√
gd2x , (B.50)

and thus ψ′
+ would actually be identically zero if ℓ = −s. These putative zero modes are in fact

not obtained by the construction for ψ+ in (B.45) either, since this would require the use of scalar
harmonics with ℓ smaller than the magnitude of their spin weight.

34



B.4 Spin-3
2
spin-weighted harmonics

The general spin-32 harmonics ηi can be decomposed into chiral and antichiral projections η±i
satisfying

σiDi η
+
j = λ+ η

−
j , σiDi η

−
j = λ− η

+
j . (B.51)

Each chiral projection admits a decomposition of the form

η±i = σiψ
∓ + η±{i} + η̃±i , (B.52)

where η±{i} is longitudinal and gamma traceless, σi η±{i} = 0, and η̃±i is transverse and gamma

traceless, satisfying Diη̃±i = 0 and σi η̃±i = 0. We can write η±{i} in terms of spin-12 modes η± as

η±{i} = 2Diψ
± − σiσ

jDjψ
± = (Di ∓ i ǫi

j Dj)ψ
± . (B.53)

In fact η±{i} can alternatively be written in terms of the vector harmonics V ± constructed from

scalar harmonics as in (B.25), by taking

η±{i} = V ±
i η± . (B.54)

The gamma-tracelessness of η±{i} follows immediately from the fact that V ±
i and σiη± are either

both self-dual or both anti-self dual. The charge carried by η±
{i}

will, of course, be equal to s ± 1
2 ,

where s is the charge of V ±
i .

The transverse traceless spin-32 harmonics η̃i can be constructed in the same way, and are given
by (B.54) except that now, V ±

i are the self-dual vector harmonics (B.35) or the anti-self dual
harmonics (B.36) that cannot be constructed from scalar harmonics. Since such V ±

i vectors arise
only when s ≥ 1 or s ≤ −1 respectively, the transverse traceless spin-32 harmonics η̃±i arise only for
charges s̃ ≥ 3

2 or s̃ ≤ −3
2 respectively.

All necessary properties of the spin-32 harmonics follow from the properties of the lower-spin
harmonics that we discussed previously.

C Spin Projection Operators

The well known spin projector operators associated with a second rank symmetric tensor field are
given by [16]

P2
µν,ρσ = 1

2(θµρθνσ + θµσθνρ − 2
3θµνθρσ) ,

P1
µν,ρσ = 1

2(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ) ,

P(0,s)
µν,ρσ = 1

3θµνθρσ ,

P(0,ω)
µν,ρσ = ωµνωρσ , (C.1)

where
θµν = ηµν −�

−1∂µ∂ν , ωµν = �
−1∂µ∂ν . (C.2)
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Similarly, the spin projector operators associated with vector-spinor field take the form

P 3/2
µν = θµν −

1

3
θµθν ,

(P
1/2
11 )µν =

1

3
θµθν , (P

1/2
12 )µν =

1√
3
θµων ,

(P
1/2
21 )µν =

1√
3
ωµθν , (P

1/2
22 )µν = ωµων , (C.3)

where
θµ = θµνγ

ν , ωµ = ωµνγ
ν . (C.4)
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