
A REINFORCEMENT LEARNING APPROACH TO SELF-CONFIGURING

EDGE WIRELESS NETWORKS

A Thesis

by

MASON CHRISTOPHER RUMULY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Srinivas Shakkottai
Co-Chair of Committee, Jean-Francois Chamberland
Committee Members, Dileep Kalathil

Natarajan Gautam
Head of Department, Miroslav M. Begovic

May 2019

Major Subject: Electrical Engineering

Copyright 2019 Mason Christopher Rumuly

ABSTRACT

Wireless Internet access has brought legions of heterogeneous applications all

sharing the same resources. However, current wireless edge networks that cater to

worst or average case performance lack the agility to best serve these diverse sessions.

Simultaneously, software reconfigurable infrastructure has become increasingly main-

stream to the point that dynamic per packet and per flow decisions are possible at

multiple layers of the communications stack. Exploiting such reconfigurability re-

quires the design of a system that can enable a configuration, measure the network

performance statistics (Quality of Service), learn the impact on the application per-

formance (Quality of Experience), and adaptively select a new configuration. The

goal of this work is to design, develop and demonstrate a reinforcement learning

approach to self-configuring wireless edge networks that in instantiates this feedback

loop. Our context is that of reconfigurable queueing, and we use the popular ap-

plication of video streaming as our example. Through simulation and experimental

validation, we show how measurement, learning and control are combined to enable

high QoE video streaming on our platform.

ii

DEDICATION

To my dearly departed sister Aly.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Srinivas Shakkottai, who has graciously mentored and

assisted me since I was an undergraduate student. He has given me access to many

opportunities to expand my horizons and participate in many research endeavors,

with boundless patience and understanding as I learned the ropes. His help was

indispensable.

Many thanks to my collaborators on this project: Rajarshi Bhattacharyya, Desik

Rengarajan, and Archana Bura. Their insights, effort, ongoing encouragement, and

friendship have been invaluable.

My gratitude abounds upon my committee-members, Dr. Jean-Francois Cham-

berland, Dr. Dileep Kalathil, and Dr. Natarajan Guatam for their guidance and for

humoring my eccentricities in pursuing this achievement.

Special thanks to my friends and family for their support and love, and to all my

teachers, instructors, and mentors for their contributions over my blessed life to who

I am today.

Finally, ultimate thanksgiving and glory to God almighty, creator of heaven and

earth; to Jesus Christ, who is the Way, the Truth, and the Life; and to the Holy

Spirit.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of adviser Dr. Srinivas

Shakkottai and co-advisor Dr. Jean-Francois Chamberland and Dr. Dileep Kalathil

of the Department of Electrical and Computer Engineering, and Dr. Natarajan

Gautam of the Department of Industrial and Systems Engineering.

The experiments and analysis contained in this work were carried out in collab-

oration with Rajarshi Bhattacharyya, Desik Rengarajan, and Archana Bura.

All other work conducted for the thesis was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by a research assistanceship from Texas A&M

University in cooperation with the Texas Engineering Experiment Station.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Related Work . 2
1.2 Overview of Approach and Results 4

2. SYSTEM MODEL AND PROBLEM STATEMENT 8

2.1 QoE Model . 10

3. REINFORCEMENT LEARNING APPROACH TO EDGE CONFIGURA-
TION . 12

3.1 Exploration-Exploitation in RL . 12
3.1.1 Q-learning . 13

3.2 A Discussion on the State Space and RL Algorithms 14
3.2.1 Q-learning with Function Approximation 15
3.2.2 Experience Replay . 16
3.2.3 Target Network . 16
3.2.4 Target Network for Double DQN algorithm 17

4. A SOFTWARE DEFINED ARCHITECTURE FOR NETWORK CON-
FIGURATION . 19

4.1 Implementation Details of SCN . 21

vi

4.1.1 Queuing Mechanisms . 23
4.1.2 Policy Commands . 23
4.1.3 Statistics Commands . 25

5. EXPERIMENTAL EVALUATION . 26

5.1 Implementation Approach . 26
5.1.1 RL Agent . 26
5.1.2 Other Algorithms . 27

5.2 Simulation . 28
5.2.1 Hyperparameter Validation 29
5.2.2 Online Learning . 29
5.2.3 Policy Comparison . 33

5.3 On-System Performance . 33

6. CONCLUSION . 36

REFERENCES . 37

vii

LIST OF FIGURES

FIGURE Page

1.1 AP Self-Configuring Update Cycle 1

2.1 Simplified System Model . 8

2.2 DQS State Machine . 10

2.3 DQS Evolution with Stall and Play Events 10

3.1 Comprehensive Learning Diagram . 14

4.1 System Architecture . 19

4.2 Order of Interactions Between the Components of the System. 22

4.3 Policy Command Packet . 24

4.4 Queue Statistics Packet . 24

4.5 Client-specific Statistics Packet . 24

5.1 RL Selected Hyperparameter Training Comparison 30

5.2 Single Episode RL Agent Long Run 31

5.3 Average Episodes for Compared Policies 31

5.4 Virtual Performance Distribution for Compared Policies 32

5.5 Virtual Performance Averages for Compared Policies 32

5.6 Empirical Performance Averages for Compared Policies 34

viii

LIST OF TABLES

TABLE Page

5.1 RL Hyperparameter Selection . 27

ix

1. INTRODUCTION

The Internet has produced a wide variety of heterogeneous, resource-intensive

applications which subject networks to growing demands for the resources to provide

users with a high Quality of Experience(QoE)1. This problem is compounded by

the increasingly mobile nature of the devices used to access the Internet, which

concentrates strain on wireless edge networks. Access at the wireless edge is mediated

through wireless Access Points (AP), which have many potential degrees of freedom

over which to tailor the Quality of Service (QoS)2 used to deliver bytes to clients, such

as bandwidth apportionment and packet scheduling schemes. Current algorithms

focus on best-effort and application-agnostic performance, an approach which is ill-

suited to optimizing achievable QoE in real time with constrained resources.

Configure	 Measure	

Learn	
	

Adapt	

Figure 1.1: AP Self-Configuring Update Cycle

An AP under such conditions must autonomously discover the optimal actions

in its dynamic, error-prone environment in order to deliver the best possible QoE to

its users given limited resources. Such a goal requires the AP to proceed through a
1This is defined as an application-specific value in the interval [1, 5], with 1 indicating the lowest

and 5 indicating the highest satisfaction of the human end-user.
2This is defined as a vector of statistical connection properties consisting of

[throughput, delay, jitter, lossrate] at queues.

1

feedback loop to continually adjust its strategy: it must choose a configuration of its

operating parameters, measure the impact of this configuration on the client appli-

cations, learn the implications of this result, and adapt its configuration in response,

as in Figure 1.1. A solution must be able to consider the long-term consequences of

any decision in addition to the immediate results.

Many advances have been made in the field of Reinforcement Learning (RL) on

autonomous solutions to problems of this form. In recent advances, Deep Neural

Networks are employed in conjunction with Time-Difference bootstrapping methods

and various control policies in order to estimate the value associated with taking an

action at any given time, with their prowess in complex systems shown a battery

of Atari video games [1]. These agent architectures are capable of learning new

systems without preexisting domain knowledge, and do not depend on modeling the

systems to which they are applied; we aim to apply these methods to the domain of

Self-Configuring Networks(SCN).

In order to demonstrate the effectiveness of this approach, we will focus on video-

streaming applications, which form a large part of real network traffic and have

exacting service requirements to deliver satisfactory QoE [2]. Our goal in this work

is to design, develop and demonstrate a framework for adaptive network configuration

via differentiated QoS that is provided to flows via the QoS statistics of the queues

that they are exposed to. We will see that intelligently utilizing the diversity of QoS

provided by such queueing policies can significantly enhance QoE foe all flows.

1.1 Related Work

Our work brings together several different areas ranging from SDN, QoS, QoE

and online reinforcement learning:

OpenFlow and Configuration: There has been much recent interest in extending

2

the SDN idea to other layers. For example, CrossFlow [3, 4] uses SDN OpenFlow

principles to control networks of Software Defined Radios. In ÆtherFlow [5], the

SDN/OpenFlow framework is used to bring programmability to the Wireless LAN

setting. They show that this type of system can handle hand-offs better than the tra-

ditional 802.11 protocol. These SD-X extensions (X being the MAC layer in this case)

focus on centralized configuration of the hardware and do not provide sample statis-

tics on performance that we desire. Closer to our theme, systems such as AeroFlux

[6] and OpenSDWN [7] develop a wireless SDN framework for enabling prioritiza-

tion rules for flows belonging to selected applications (such as video streaming) via

middle-boxes using packet inspection. However, they do not tie such prioritization

to the impact on application QoE or end-user value across competing applications

from multiple clients. Nor do they use measured QoS statistics as feedback.

Queueing: There has been significant work on QoS as a function of the scheduling

policy at queues, with a sequence of fundamental results starting with [8]. Follow-on

work in the wireless context has resulted in algorithms such as backpressure-based

scheduling and routing in wireless networks [9], and more recently, deficit-based

scheduling [10, 11] that ensures that strict delay guarantees are met. Most of these

works aim at maximizing throughput or loss rate, but they do not consider all the

elements of QoS together.

QoE Maps: The map between QoS and QoE has been studied recently, particu-

larly on the wired network. The work in this space attempts to determine the QoS

properties of a network, and then based on data obtained directly from an applica-

tion, match the observed QoS to the corresponding QoE. Mok et al. [12] describe

a method for determining the QoE for HTTP Streaming, focusing on the choice of

initial streaming rate for maximizing QoE. Other work focuses on different applica-

tions, such as Skype [13] or general Web services [13], to identify conditions that are

3

sufficient to meet the average QoE targets for those applications.

Online Reinforcement Learning: An online learning approach is natural for the

control of systems with measurable feedback under each configuration. The idea of

using Thompson sampling has received increasing attention, with empirical studies

(e.g., [14]) indicating its superior learning rate to prior approaches, and the deriva-

tion of fundamental optimal regret bounds [15]. However, we are unaware of work

that uses this promising approach for network configuration. The idea of using rein-

forcement learning in the context of adaptive video rate selection has recently been

explored [16]. However, the context of adaptive network configuration for high QoE

application perfromance has not been considered earlier.

SDN-based Video Streaming: A number of systems have been proposed to improve

the performance and QoE of video streaming with SDN. One direction is to assign

video streaming flows to different network links according to various path selection

schemes [17] or the location of bottlenecks detected in the WAN [18]. In the home

network environment, the problem shifts from managing the paths of video traffic

to sharing the same network (link) with multiple devices or flows. VQOA [19] and

QFF [20] employ SDN to monitor the traffic and change the bandwidth assignment

of each video flow to achieve better streaming performance. However, without an

accurate QoS-to-QoE map to predict the QoE, the controller can only react to QoE

degradation passively.

1.2 Overview of Approach and Results

This thesis builds upon an system for reconfigurable edge networks entitled

QFlow, currently under development in our group. The main idea behind QFlow

is to instantiate a platform for reliable delivery of configuration commands to hard-

ware that can support re-configuration. It extends the OpenFlow protocol (currently

4

limited to the network layer) in a generic manner that enables us to use it reconfig-

ure queueing mechanisms. Using commercially available WiFi routers with Gigabit

ethernet backhaul as the wireless edge hardware, reconfigurable queueing is attained

by leveraging differentiated queueing mechanisms available in the Traffic Controller

(tc) package by installing OpenWRT (a stripped-down Linux version). Here, we can

choose between queueing disciplines and set filters to assign flows to queues.

QFlow also enables continuous monitoring of flows at the packet level to obtain

per-queue and per station network performance metrics, such as throughput, latency,

and RSSI. Furthermore, it allows for monitoring of client-specific application state

such as buffered seconds of video and stall duration (when the video re-buffers).

These monitors at the WiFi router and the mobile station, are compatible with

our OpenFlow extensions, and use the protocol to periodically send statistics to the

OpenFlow controller for processing. In order for the statistics ot be meaningful, we

reconfigure the system at intervals of 10 seconds, and collect statistics throughout

each such interval. Details on QFlow are presented in Chapter 4.

The goal of this thesis is to utilize the reconfiguration functionalities provided

by QFlow in a online manner to ensure high QoE video streaming over multiple

connected clients. Our setup consists of two queues at an AP over which we employ

token-bucket based differentiated services to enable a higher QoS for one queue over

another. Three Intel NUCs are used to instantiate up to 9 clients (YouTube sessions).

Note that each such session can be associated with multiple TCP flows, and we treat

all the flows associated with a particular YouTube session identically. QoS values

are measured across the queues at the AP and communicated back to the database,

whereas QoE observed at each station (NUC) is calculated based on a decision tree

that both accounts for the QoS received, video stalls (re-buffering) and the amount

of buffered video of the YouTube session.

5

Given this experimental setup, our objective is to complete the control loop in

Figure 1.1 by designing intelligence into the system in terms of choosing between

configurations automatically, i.e., which clients to assign to which queues at each

reconfiguration interval. Such a controller can be seen as sampling the state space

of cross-layer mechanism combinations as the channel conditions and offered load

change dynamically. Our goal then reduces to modeling the system as a Markov

Decision Process (MDP), where the state consists of the state of the video players

at each client (including the current QoE), and designing a controller that suggests

optimal actions (choice of how to assign clients to queues). However, the transition

probabilities of this MDP are unknown, which motivates the need to employ Re-

inforcement Learning (RL) to jointly learn the system and to identify the optimal

decision at each time. Distributed computing capabilities enables the efficient col-

lection and processing of sample statistics to inform policy decisions. However, the

huge dimensionality of the configuration space implies that reducing the dimension-

ality of the search space and low complexity of learning algorithms is crucial. Thus,

we desire lightweight reinforcement learning algorithms that can learn quickly and

accurately.

We approach the problem of RL using a an ϵ−greedy approach under which the

policy uses a random action with probability ϵ, and the greedy optimal action with

probability 1 − ϵ. The value of ϵ is gradually decayed to zero. Given the history of

state action pairs seen until the current time, the actual learning aspect of RL lies in

determining the value of each possible action using this available history. A simple

method for learning is the so-called Q-learning, under which the value of each action

under a given policy is determined. Since the state space in our problem is overly

large for standard Q-learning, we take recourse to approximation of the Q-function

using an Artificial Neural Network (ANN), with appropriate input sequencing using

6

experience replay and target network modifications. The end result is trained ANN

that correctly identifies Q-functions in the context of network reconfiguration.

We then evaluate our system using both simulations and over an experimental

deployment. Our results on adaptive flow assignment reveal that the vanilla approach

of treating all flows identically has significantly worse average QoE than adaptive

approaches. More interestingly, flows in both the high and low priority queues in

the adaptive approaches outperform the base case, indicating that by selecting flows

in need of QoE improvement (due to high likelihood of stalls in the near future),

adaptive flow assignment improves QoE for all flows. Finally, the RL approach

turns out to be superior to all other approaches, and yields the highest QoE over all

methods as it correctly learns the impact of prioritization on each client and selects

the appropriate client at each step.

7

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a model in which clients are connected to an wireless Access Point

(AP) in a high demand situation. We choose video streaming as the application

of interest using the case study of YouTube, since video has stringent network re-

quirements and occupies a majority of Internet packets today [21]. Our goal is to

maximize the overall QoE of all the clients in this resource constrained situation.

The model used to determine QoE will be explained further in this chapter.

Controller

AP

Queue Assignment

Clients

Figure 2.1: Simplified System Model

A simplified model of the system is shown in Figure 2.1. The AP has a high

priority and low priority queue. Clients assigned to the high priority queue typically

experience a better QoS (higher bandwidth, lower latency etc.) when compared

to the clients assigned to the low priority queue. The goal of the controller is to

strategically assign clients to each of these queues at every decision period (DP)

such that the overall QoE of all clients is maximized. Determining the optimal

8

strategy is complex, since the controller does not have prior knowledge of the system

model. Hence, the controller must learn the system model.

Consider a discrete time system where time is indexed by t ∈ {0, 1, ...}. At each

DP (t = 0, 1, 2..) the controller makes an assignment of clients to queues, and observes

the system. Based on its observation and previous assignment, the controller makes

an assignment in the next DP, eventually learning the system model empirically.

This class of problem falls within the Reinforcement Learning(RL) paradigm, and

thus can be abstracted to a general RL framework consisting of an Environment that

produces states and rewards and an Agent that takes actions; these are designated

as follows:

Environment: The environment is composed of clients and the AP. Let C denote

the set of clients.

State: Each client keeps track of its state which consists of its current buffer

(the number of seconds of video that it has buffered up), the number of stalls it has

experienced (i.e., the number of times that it has experienced a break in playout and

consequent re-buffering), and its current QoE. The state of the system is the union

of the states of all clients. Let sct denote the state of client c at time t and st denote

the state of the system,

sct = [Current Buffer State, Stall Information, Current QoE] ∀c ∈ C

st = [
∪
∀c∈C

sct]

Agent: The controller is the agent, which takes an action at (queue assignment)

every decision period in order to maximize its expected discounted reward.

Reward: The reward R(st, at) obtained by taking action at at state st is the

average QoE of all clients in state st+1.

9

Begin	

Startup	
delay	

Initial	
Playing	

End	

First	Re-
buffering	

First	Re-
buffering	
Playing	

Multiple	
Re-

buffering	

Multiple	
Re-

buffering	
Playing	

Figure 2.2: DQS State Machine

0 10 20 30 40 50 60 70 80
Time (in seconds)

1

2

3

4

5

De
liv

er
y

Qu
al

ity
 S

co
re

Sta
ll

Stall

Play

Play

DQS Play Status

Figure 2.3: DQS Evolution with Stall and
Play Events

The goal of the controller is to maximize the overall QoE of the system, which

implies maximizing the average QoE over an infinite time horizon. This goal can be

formulated as maximizing the expected discounted reward over an infinite horizon.

Let π(at|st) denote the probability of taking action at given the current state (called

the policy) and γ denote the discount factor. Then the goal is to find π∗, the policy

that maximizes the expected discounted reward,

π∗ = argmaxπE

[
∞∑
t=0

γtR(st, at)|s0 = s, at ∼ π(·|st)

]
.

2.1 QoE Model

We require a model to determine the human perception of QoE. We studied three

models in this context, namely Delivery Quality Score (DQS) [22], generalized DQS

[23], and Time-Varying QoE (TV-QoE) [24]. All of the three models are based on

the same features (stall event information) if there is no rate adaptation. Since our

goal is to support high resolution video without degradation, we fix the resolution

so as to prevent video rate adaptation. Under this scenario, all three models are

10

fundamentally similar, and we choose DQS as our candidate.

Without rate adaptation, the impairments in video streaming that have the greatest

impact on the QoE are startup delay and stalling events [25, 26, 27] . The DQS

model weights the impact according to duration of the impairments to better model

the human perception. For example, the impact of stall events during playback is

greater on the QoE than that of initial buffering. Similarly, the first stalling event is

looked at with less dissatisfaction than repeated stalling. The state diagram of the

model is shown in Figure 2.2. The increases and the decreases in perceived QoE are

captured by a function which is a combination of raised cosine and ramp functions.

This enables it to model greater or lesser changes in the perceived QoE according

to the time it spends in a particular state. The behavior of the predicted QoE by

the model in the presence of a particular stalling pattern can be seen in Figure 2.3,

where the two stall events result in degradation of QoE. Recovery of QoE from each

stall event becomes progressively harder.

11

3. REINFORCEMENT LEARNING APPROACH TO EDGE

CONFIGURATION

The goal of an RL agent is to learn how to behave in an uncertain environment

in a way that maximizes its objective. The agent learns by interacting with the

environment, via state, actions and reward. State is used to describe the agent with

regard to the environment it is acting in. Given a state that the environment is in,

the agent applies an action a, and obtains a reward r from the environment. The

action can be thought of as a change applied to the environment in order to achieve

its goal. Reward measures the immediate response of the environment to the action

applied when it is in state s.

The interaction of agent with the environment is modeled as a set of tuples

(st, at, rt+1, st+1) over time. It represents a transition from one state to another state

when an action is applied, and the reward obtained from the environment. Based on

these interactions, the RL algorithm needs to extract a policy π that recommends an

action to take, given a state, in order to maximize its long term cumulative reward.

In other words, it has to act in such a way that minimizes mistakes over time.

3.1 Exploration-Exploitation in RL

The RL algorithm faces the fundamental dilemma between exploring the envi-

ronment, i.e., sampling new states and actions, and exploitation of the knowledge

it accrued so far. This trade-off is instantiated in the ϵ-greedy algorithm. The al-

gorithm operates in the following manner: At any time, the agent takes a random

action with ϵ probability, and an action with respect to the greedy policy (i.e., one

that provides maximum value given the current knowledge of the system) with prob-

ability 1− ϵ. Here, ϵ aids in exploration. The value of ϵ is gradually reduced from a

12

maximum value to a minimum value. This process means that the algorithm exploits

the knowledge it has gained about the system with more and more certainty as the

time progresses.

3.1.1 Q-learning

Each state-action pair (s, a) under a policy π can be mapped to a scalar value,

using a Q-function. Q(s, a) is the expected reward of taking an action a in a state s

and following the policy π from there on.

Qπ(s, a) = E

[
∞∑
t=0

γtR(st, π(st))|s0 = s, a0 = a

]
(3.1)

, where γ ∈ [0, 1] is the discount factor, which quantifies our preference for immedi-

ate rewards, in an infinite time horizon. Thus, maximizing the cumulative reward is

equivalent to finding a policy that maximizes the Q-function. The Q-learning algo-

rithm [28] is aimed at this. The control algorithm can be represented by a Markov

Decision Process. The optimal Q-function satisfies the Bellman equation,

Q(st, at) = Rt+1 + γmax
at+1

Q(st+1, at+1),∀st, at. (3.2)

Q-learning can be implemented by an iterative procedure, as follows:

Given samples s0, a0, R0, s1, a1, R1, . . . where sk+1 ∼ P (.|sk, ak) where P is the tran-

sition model of the system, which is unknown to the RL agent.

Qk+1(s, a) =


(1− αk)Qk(s, a) + αk (Rk + γmaxbQk(sk+1, b)) , if s = sk, a = ak

Qk(s, a), otherwise
(3.3)

The convergence of Q-learning depends upon visiting each state action pair infinitely

13

often. Hence, one approach is to use ϵ-greedy policy in conjunction with the above

iterative algorithm. In the literature, these techniques are combined with table look

up for Q-values for the state transitions. In the next section, we argue that such

a scheme does not scale well with the large dimensionality of our problem, and we

propose a different approach.

3.2 A Discussion on the State Space and RL Algorithms

Figure 3.1 depicts the learning scenario in an edge configuration problem. The

individual client states are combined to form a comprehensive state. The aggregate

reward is the reward of all clients combined. The learning agent observes the states

and rewards, and outputs an action. The environment then moves to the next state,

yielding a reward.

Figure 3.1: Comprehensive Learning Diagram

The goal of our work is to model the learning agent for Edge Configuration

problem. Using RL to solve the Edge Configuration problem poses a number of

difficulties. Most importantly, the state space corresponding to Edge Configuration

problem is huge, compared to many traditional RL formulations. As discussed in

14

section 2, our state st comprises of union of states of all clients at time t. The state

of each client is a tuple consisting of its buffer state, stall information, and its QoE

at t. Buffer state and QoE are considered to be real numbers, and thus can take an

uncountable number of values. In such large state spaces, tabular methods discussed

in the previous section are very memory inefficient.

Furthermore, a change in state observed by the agent depends upon the QoS of

the queues on the AP in which the agent places the flows. The QoS of a queue at

the AP is random due to the dynamic nature of the wireless environment (effects of

fading). The RL agent has to act in this uncertain environment.

To overcome these challenges, we propose a Deep Reinforcement Learning frame-

work that makes use of the following approaches: Q-learning with Function ap-

proximation, experience replay, and target network. We now explain each of these

components.

3.2.1 Q-learning with Function Approximation

To address the problem with high dimensionality of the state space, we use func-

tion approximation techniques to approximate the Q-function. Since we can not

exhaustively visit every state and action pair to learn its Q values, function approx-

imation generalizes the Q-function from seen states to unseen states.

Q(s, a) ≈ Q(s, a;w) (3.4)

i.e, the Q function is parameterized by a weight vector w, and we learn w. Then,

given any state s and action a, we can obtain the Q values. Hence, we need a good

class of function approximators. Artificial Neural networks (ANN) are empirically

proven to be able to provide a generic class of function approximators that scale well

given the size of the problem domain. Thus, our natural choice is to adopt ANN’s to

15

estimate the Q-functions. Performing Q-learning with function approximation using

ANN’s is via the Deep Q Network (DQN) algorithm [1]. The parameter update

equation for Q-learning with FA is given as the following gradient descent equation,

with step size α.

w = w + α∇Qw(st, at)(Rt + γmax
b

Qw(st+1, b)−Qw(st, at)) (3.5)

3.2.2 Experience Replay

In using Q-learning with function approximation, sequential states are used to

approximate the Q function. i.e., take action at, and obtain the data point e =

{st, at, Rt, st+1}. Clearly, the transitions obtained this way are highly correlated.

Hence, Q-learning may not converge. An attractive solution to this problem is using

experience replay [1]. Experience replay uses the idea of supervised learning. As the

agent explores the environment, it adds the transitions {st, at, Rt, st+1} to the replay

buffer. To learn the Q-function, a random mini batch of K data points, sampled

from the replay buffer are utilized. This way, it is ensured that the data points are

not correlated.

3.2.3 Target Network

Another problem with Q learning with function approximation as seen in equa-

tion (3.5) is that the Q-learning target Rt + γmaxb Qw(st+1, b) is moving along with

the parameter w. Hence, the stochastic gradient descent may not converge. To over-

come this, we fix the for the target for multiple steps. With the target network, the

16

parameter w update equation becomes

w = w + α∇Qw(st, at)(Rt + γmax
b

Qw−(st+1, b)−Qw(st, at))

w− = w after every N steps.

The DQN algorithm, using above mentioned techniques, suffers from overesti-

mation of Q values. As seen from equation (3.5), Q learning uses maxbQw(st+1, b)

as an estimate for maxb E [Qw(st+1, b)]. To overcome this problem, we propose to

use a Double DQN [29] based algorithm. Similar to DQN, Double DQN also uses

two Q-networks, one to select actions, and the other to improve the actions, which

is called the target network. Double DQN algorithm improves the DQN’s target

network in the following manner.

3.2.4 Target Network for Double DQN algorithm

The Double DQN’s parameter update equation is shown below:

w = w + α∇Qw(st, at)(Rt + γQw−(st+1, argmax
b

Qw(st+1, b))−Qw(st, at)) (3.6)

Here, the target is computed at the target network based on the greedy action with

respect to the current Q network. In DQN, the target is computed solely based on

the greedy action with respect to the target Q network. This way, double DQN

overcomes the over estimation problem in DQN. Below, we show the pseudo code for

Double DQN algorithm implemented for the Edge Configuration problem.

17

Algorithm 1 A Double DQN algorithm for Edge configuration
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights w

Initialize target action-value function Q− with weights w− = w

Initialize state s1

for t = 1, . . . , T do

With probability ϵ select a random action at.

Otherwise select greedy action at = argmaxa Qw(st, a).

Play action at and observe reward Rt and state st+1.

Store Experience (st, at, Rt, st+1) in D.

Sample random mini batch of Experience (sj, aj, Rj, sj+1) from D.

Set Target γj = Rj + γQw− (sj+1, argmaxbQw(sj+1, b)).

Perform gradient descent step on (γj −Qw(sj, aj))
2 with respect to the param-

eters w.

Every C steps reset w− = w.

end for

Algorithm 1 uses ideas of ϵ-greedy policy, experience replay and target network,

as discussed earlier. Though no convergence guarantees exist theoretically, empirical

evidence suggests that these techniques are shown to perform very well in several

games [29]. The details of the Double DQN implementation for edge configuration

problem are discussed in Chapter 5.

18

4. A SOFTWARE DEFINED ARCHITECTURE FOR NETWORK

CONFIGURATION

The architecture of the Self Configuring Network (SCN) is shown in Figure 4.1.

The system consists of three main parts, an off-the-shelf 802.11n Wireless Access

Wireless Station

QoS Policy

Controller
Database

Controller

Client Middleware

To/From
Internet

Network
Interface

SoftStack
Interface

Queueing
Mechanism

Statistics
Collection

Reconfigurable
Queueing

User
Application

Data path

Control path

Client
Database

QoS →
QoE Map

WiFi Access Point

Statistics

Po
lic

y
C

o
m

m
an

d
s

Stati
sti

c s
R

esp
o

n
ses

QoS →
 QoE Map

RL Agent

2

2

2

1

Network
Interface

73

4

4

5

5 6`

Figure 4.1: System Architecture

19

Point, multiple wireless stations and a centralized controller. Each of these units

contain multiple components, which have been represented with different colors and

numbers to identify functionality:

1⃝ Per-Packet Queueing Mechanisms: We chose queues at the MAC layer

as a reconfigurable mechanism for our system because of the impact they have on

the performance of flows. The configuration options include creation of multiple

queues, allocation of bandwidth and application of different scheduling algorithms.

This enables us to apply mechanisms with different priorities/capabilities to different

sessions, resulting in contrasting performance at the end users.

2⃝ QoS Policy: A policy decision determines the assignment of sessions to

queues. Each such assignment results in the realization of QoS vectors for each of

the queues created. Such decisions are made at the centralized controller and are

forwarded to the Access Point using OpenFlow commands. The SoftStack interface

interprets these commands and reconfigures the queueing mechanisms accordingly.

Statistics corresponding to the queues, which include Throughput, Round Trip Time

and Drop Rate, are periodically sent back to the Controller as custom OpenFlow

messages.

3⃝ Application QoE: The Client middleware layer abstracts the system from

the end user. It is responsible for identifying and collecting data specific to the fore-

ground application (like current QoE, state of the buffer, stall information). Available

QoS options are retrieved from the Controller database. Regression techniques are

then employed to predict the QoE for the application, given the current applica-

tion state and the QoS vector. The updated state of the application is sent to the

Controller database.

7⃝ RL Agent: The Reinforcement Learning (RL) agent makes the policy deci-

sion for scheduling all the participating clients on the available reconfigurable queue-

20

ing mechanisms. It extracts the current states of all the clients from the Controller

database and feeds this extended state as an input to the learning algorithm to obtain

the policy decision (assignment). This assignment, which is saved to the Controller

database, is subsequently retrieved by the QoS Policy component and sent to the

Access Point for implementation.

Tying together the units are 4⃝ Databases at the Controller (to capture the

MAC layer state), and at each client (to capture the application specific state). 5⃝

Network Interface and 6⃝ User Application are unaware of our system.

The interactions between the different components described above are shown

in Figure 4.2 in a chronological order. The Client Middleware sends a request to

the Controller to retrieve the list of available QoS vectors, which is then used to

predict the perceived QoE of the client. The state of the client, which comprises

of this QoE value along with application state, is then sent to the Controller. The

RL Agent receives the state of all the clients and then uses this cumulative state

information as an input to the RL algorithm. The output of the algorithm is the

policy (assignment of sessions to queues), which is sent to the Access Point using

OpenFlow. The SoftStack component interprets these commands and performs the

implementation of the policy. The resultant QoS vector for each of the two queues

is then sent back to the Controller using OpenFlow messages.

4.1 Implementation Details of SCN

In this section, we take a closer look at the the different functional components

described in the previous section. OpenFlow is a communication protocol which

empowers a centalized controller to modify the forwarding tables of network routers

and switches. It abstracts away the vendors specific details of network devices and

enables separation of the previously tightly cooupled control and data planes. We

21

Client Middleware requests list of available
QoS vectors from Controller database

 Client Middleware calculates QoE based on
 QoS → QoE Map

State (QoE, buffer, stall information) of all
clients sent to Controller

RL Agent in Controller makes flow
assignment policy decision

Controller sends policy decisions to AP
using OpenFlow commands

Commands are interpreted and Client flows
are assigned to Queues

Statistics collected at AP and Clients are sent
to Controller using OpenFlow

Sm
al

l ti
m

es
ca

le

Controller processes data and updates
database

Figure 4.2: Order of Interactions Between the Components of the System.

use experimenter messages to forward custom SCN commands to an off-the-shelf TP-

Link WR1043ND v3 router. The router is installed with OpenWRT Chaos Calmer

as the operating system. OpenWRT supports Linux based utilities like tc (Traffic

Control) which simplifies implementation of reconfigurable queueing mechanisms.

We use CPqD SoftSwitch [30], an OpenFlow 1.3 compatible user-space software

switch implementation, to enable support for OpenFlow.

We next require capabilities to create and modify the queueing mechanisms.

22

The extension of SoftSwitch, which we name SoftStack, empowers us to make the

necessary mechanism changes. It also allows us to collect both queue and client

specific statistics. We define two types of SCN commands, Policy commands and

Statistics commands to implement these capabilities.

4.1.1 Queuing Mechanisms

Traffic control (tc) is a Linux utility that enables us to configure the settings of

the kernel packet scheduler by allowing us to Shape (control the rate of transmission

and smooth out bursts) and Schedule (prioritize) traffic. Each network interface is

associated with a qdisc (Queueing discipline) which receives packets destined for the

interface. qdiscs can be Classful or Classless. Classless qdiscs perform basic traffic

management tasks like reordering, slowing down or dropping packets. Classful qdiscs,

on the other hand, enable us to create children classes, each of which can be assigned

a Classful/Classless qdisc, and are meant for more complicated traffic scenarios, like

when different flows have to be treated differently. We selected Hierarchical Token

Bucket (htb) which is a Classful qdisc, for our experiments because of the versatility

of the scheme. It performs shaping by specifying rate (guaranteed bandwith) and

ceil (maximum bandwidth) for a class, with sharing of available bandwidth between

children of the same parent class, and can also prioritize classes. Finally, Filters are

used to classify and enqueue packets into classes. We use tc with htb to create a

hierarchy of classes with specified rates and ceils to provide different levels of service

during the course of our experiments.

4.1.2 Policy Commands

Policy commands enable the implementation of a policy decision, which is to

select the appropriate mechanism (from the list of available ones) for each client.

The packet format of a policy messages is shown in Figure 4.3. The QoS Policy

23

Experimenter ID: SCN

Type: SCN Policy Command

Command ID

Command Length

Command

Figure 4.3: Policy Command Packet

Experimenter ID: SCN

Type: SCN Queue Statistics

Queue ID

Packets Out

Bytes Out

Dropped Packets

Figure 4.4: Queue Statistics Packet

Experimenter ID: SCN

Type: SCN Client Statistics

Client ID

Average RTT (in ms)

RSSI (in dBm)

Application specific info

Figure 4.5: Client-specific Statistics Packet

component encapsulates a policy decision in the format, and sends it to the Access

Point using OpenFlow. When SoftStack receives the message, it verifies the identity

of the message from the headers, interprets the policy command, and implements the

requested reconfiguration. We have implemented policy commands for reconfiguring

the queuing mechanisms at the MAC layer.

We require mechanisms with different capabilities at the MAC layer to provide

prioritized service to the clients. In our experiments, we create two queues with

different token rates using htb. We enable sharing of tokens between queues to

prevent wastage in scenarios of excess bandwidth. We also create a default queue to

handles any background traffic.

Decisions at the data link layer include assigning flows to queues, changing the

bandwidth allocated to the queues, and enabling or disabling sharing of excess (un-

24

used) bandwidth between them.

4.1.3 Statistics Commands

Implementation of a policy decision at the Access Point results in variations of

the QoS vector (for the queues). These variations are captured using Statistics com-

mands and communicated back to the Controller. Statistics related to the MAC layer

queues include cumulative counts of downlink packets, bytes and dropped packets.

In addition to the queue statistics, client state is also affected by a policy decision.

Client-specific statistics like Round Trip Times (RTT), signal strength (RSSI) and

Application specific statistics like buffer state, stall information and video bitrate are

sent also periodically (once every second) to the controller.

We define the structure of both Queue and Client-specific Statistics messages for

validation and correct interpretation of the messages at the Controller. The packet

formats of the two types of Statistics messages are shown in Figure 4.4 and Figure 4.5.

At the Access Point, SoftStack encapsulates the raw statistics in the indicated format

and sends them to the Controller using OpenFlow. When the Controller receives a

Statistics message, it verifies the type of messsage by reading the header information

and then saves the extracted statistics to the database.

The client-specific statistics, collectively with the statistics of the queue it is as-

signed to, comprise the Quality of Service (QoS) for a client, and is a measure of the

service provided by the network. QoS is a vector which contains [throughput, RTT

(mean&median), jitter, drop rate, buffer state, stall information, video bitrate],

and is used to estimate the Quality of Experience (QoE) of the application.

25

5. EXPERIMENTAL EVALUATION

We evaluated our approach in order to show the advantages of online adaptive

approach when compared to a fixed policy. We focused on the questions of how

quickly the agent is able to find the optimal policy, as well as the performance of its

optimal policy as compared to a selection of other scheduling algorithms.

The evaluation consisted of three parts: first, the implementation of an appro-

priate RL algorithm; second, performance evaluation on a simulated system; finally,

performance evaluation on a physical wireless testbed. Each system uses a Decision

Period (DP) timescale of 10 seconds; that is, the agent observes the environment

and chooses its next action every ten seconds.

5.1 Implementation Approach

5.1.1 RL Agent

We initially implemented a custom RL agent based on DQN which included

certain later upgrades. However, we ultimately opted to use the TensorForce library

implementation of DQN in order to take advantage of the generalizability, efficiency,

and optimization present in the existing work and which it would not be productive

to duplicate [31].

Random search for hyperparameters of the agent was carried out using the sim-

ulated system; see subsection 5.2.1 for examples of the comparative performance.

The final agent configuration chosen for evaluating the efficacy of this approach is

detailed in Table 5.1.

26

Hyperparameter Chosen Value
Discount 0.9999
Network Hidden Layers (64, 32)
Network Optimizer Adam, Learning Rate 0.001
Replay Buffer 500000
Replay Batch 32
Target Sync Period 100000
Huber Loss 1.0
Double Learning On
Control Policy ϵ-greedy, Decay ϵ from 1.0 to 0.01 over 1000000 steps

Table 5.1: RL Hyperparameter Selection

5.1.2 Other Algorithms

We also implemented the following policies in order to serve as comparative

benchmarks for the agent:

Vanilla This policy serves as the lower bound on performance. It is set apart by

having only one queue available, to which all resources are allocated and to

which all clients are given access; no assignment actions are available.

Round-Robin This policy chooses each assignment in turn, giving all flows equal

time in the high-priority queue. Although computationally cheap at 0(1), it

does not take into account the system state at all. As such, it may serve clients

which are unable to make use of the service due to buffer fill or being in a state

where no amount of service can significantly increase experience quality.

Greedy Buffer This policy chooses the two clients with the smallest buffer to assign

to the high-priority queue. This is still a relatively cheap algorithm, linear in

the number of clients because it computes the minima of an unsorted list. It

also improves on Round-Robin by focusing on the client which is most likely

27

to stall next, forming the most intuitive of the heuristic policies; this policy is

similar to the one found by the Bandit and RL agents in exploration. More

formally, it treats the buffers built up by the clients as anti-deficit, where

dt = min(0, dt−1 + 10 −Dt) is the deficit at time t where Dt seconds of video

are delivered at a given time; the highest two deficits, corresponding to the

lowest two buffers, are given high-priority service.

Reward Greedy This policy is identical to the RL agent, with the single modifi-

cation of setting the future value decay γ = 0. This produces a myopic agent

which performs single-step maximization of the reward like a contextual multi-

arm-bandit. This policy is included to demonstrate the worth of considering

long-term value.

5.2 Simulation

In order to quickly iterate on and validate algorithms and implementations, as

well as pre-train agents for the physical testbed, we implemented a simulation envi-

ronment which closely mimics the dynamics of the physical testbed with YouTube

clients. The environment simulated each video including its bitrate, buffer, length,

and QoE separately. The bitrate and length of each video was generated according

to a normal distribution; buffer was stored in terms of time, rather than bits. Each

client would continuously play one video after another, stalling where its buffer runs

out and building up a buffer of 10 seconds before attempting playing again. Queue

performance was kept to a constant total bandwith, but the fairness of queue’s service

among flows assigned to that queue was chosen in each DP according to a Dirichlet

distribution.

For these simulations, the environment uses a high-priority queue with 11 Mbps

bandwidth and a low-priority queue with 4.3 Mbps (Vanilla simulation used a sin-

28

gle 15.3 Mbps queue). Six clients are specified which draw video bit-rates from a

N (2.9, 10) distribution in Mbps, and draw video lengths from a N (600, 50) distribu-

tion in seconds.

5.2.1 Hyperparameter Validation

For hyperparameter search, the system was simulated for 200 DP per episode for

1000 episodes, as seen in each plot of Figure 5.1. Note that increasing the number

of units or layers in the network used for value estimation after (64, 32) does not

significantly affect the convergence curve; however, the magnitude of the learning rate

creates large differences in the performance to which the agent ultimately converges.

Further, a single layer is incapable of learning to the performance achieved by the

two-layer network. We therefore choose the (64, 32) configuration for our agent.

5.2.2 Online Learning

Upon choice of these hyperparameters, a new agent with the chosen parameters

was allowed to run with learning on a single 5 Million DP episode and all other

settings identical to those used for validating the hyperparameters, the results of

which is shown in Figure 5.2 in both raw reward at each time-step and with an

exponential moving average applied. It stabilizes at an approximate 4.25 average

QoE by approximately 500000 DP (about 1.9 months of simulated time). This

demonstrates that the agent requires significant training in order to be useful on a

real, dynamic system within a reasonable period of time, but also that it is capable of

learning online, so may be able to take advantage of transfer learning to warm-start

with a good policy and tune it to specific contexts.

29

Figure 5.1: RL Selected Hyperparameter Training Comparison

30

Figure 5.2: Single Episode RL Agent Long Run

0 1000 2000 3000 4000 5000
Decision Period

3.4

3.6

3.8

4.0

4.2

4.4

Av
er

ag
e

Qo
E

Compared QoE Trace for 6 Clients
Vanilla
Round Robin
Reward Greedy
Greedy Buffer
RL Agent

Figure 5.3: Average Episodes for Compared Policies

31

3.0 3.5 4.0 4.5
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Simulated Performance Distribution for 6 Clients
Vanilla
Round Robin
Reward Greedy
Greedy Buffer
RL Agent

Figure 5.4: Virtual Performance Distribution for Compared Policies

Vanilla Round Robin Reward Greedy Greedy Buffer RL Agent
0

1

2

3

4

5

Ov
er

al
l Q

oE
 A

ve
ra

ge 3.54
3.35

4.12 4.01
4.20

Simulated Performance Comparison for 6 Clients

Figure 5.5: Virtual Performance Averages for Compared Policies

32

5.2.3 Policy Comparison

Finally, a 1000-run average was taken on this virtual system for a 5000 DP

episode to compare this trained RL agent to the alternative policies detailed above.

Figure 5.4 shows the distribution of performance for each policy, summarized to the

empirical mean in Figure 5.5, while Figure 5.3 shows the reward trace for an episode

averaged over the 1000 runs at each time step. The trained RL agent outperforms

all other policies as well as providing a QoE which does not vary greatly with time.

Notice the prominent transient QoE spike at the beginning of the episode, which is

due to starting all clients at once with a fresh video; this transient fades over time

as the video start times desynchonize due to the normally-distributed durations.

5.3 On-System Performance

A physical testbed was constructed in order to test a practical implementation of

the RL policy. SoftStack was installed on a commercial WiFi router to serve as the

AP. Three Intel NUCs (equipped with 5th generation i7 processors and 8GB memory)

serve as client machines, each running 2 client YouTube sessions while connected

wirelessly to the AP. Each YouTube session is associated with multiple TCP flows,

which are treated as a bundle for the sake of this experiment; that is, the ability to

separate out content flows from advertisement or other flows was considered out-of-

scope. Each client reported relevant session information to a central database, such

as ports used, play/load state, bitrate, stall information, and QoE. Videos randomly

chosen with replacement from a selected list of videos were played sequentially as

long as the system was active. YouTube was chosen as the experimental application

due to its popularity and free access; this method can be applied to easily to other

sites which employ MPEG-DASH streaming technology, such as Netflix and Hulu,

with little modification.

33

Vanilla Reward Greedy Greedy Buffer RL Agent
QoE Run Average

0

1

2

3

4

5

Po
lic

y 2.85

3.68

4.23
4.55

Empirical Comparison

Figure 5.6: Empirical Performance Averages for Compared Policies

The access point was allowed a total of 7 Mbps, with a 2.8 Mbps low-priority

queue and a 4.2 Mbps high-priority queue (or a single 7 Mbps queue in the case of

the Vanilla policy). These quantities were chosen to produce a constrained system

where perfect service, that is, zero stalls and 5.0 episode average QoE, is impossible.

Each policy tested was allowed to run continuously for 30 minutes. For the RL

performance, the agent trained on the 5M DP run on the simulator was loaded at

the beginning of the run and allowed to learn as it controlled the system. The

comparison of these results can be found in Figure 5.6. The RL agent outperforms

all other policies.

Earlier work [32, 33, 34] has indicated that a threshold approach using the deficit

in received packets to determine which clients to prioritize might be the optimal

approach to attaining high QoE video streaming. However, this does not account for

the fact that QoE follows a Markov process of its own, and choosing the correct client

34

also depends on how many stalls it has incurred. It is interesting to note that that

the RL approach outperforms the deficit approach by likely learning which clients

are essentially unrecoverable, and focusing on those that have the maximum impact

on average QoE.

35

6. CONCLUSION

In this thesis, we considered the design, development and evaluation of a rein-

forcement learning (RL) approach to self configuring networks. We were led by the

recent success of RL in a variety of control applications, and our goal was to dis-

till these successes into algorithmic choices that could quickly and accurately learn

the Markov Process underlying our system. We chose a focus application of video

streaming due to its need for high QoS at certain critical states of the application in

order to attain high QoE at the user level.

We developed a Markov Decision Process model of the system, whose parameters

are unknown and must be learned in an online manner. We used simulations to

winnow out bad candidates, and to determine good choices for the parameter space.

Working with off-the-shelf hardware and open source operating systems and proto-

cols, we then showed how implicit learning of queueing behavior via RL able to decide

on the correct configuration to best suit the needs of video streaming applications.

As our YouTube observations suggest, such a holistic framework that accounts

for this entire chain can reveal efficiencies and interactions that a narrow focus on

individual components of the system is incapable of achieving. We believe that the

application of our system will be in upcoming small cell wireless architectures such

as 5G, and our goal will be to extend our ideas to such settings.

36

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[2] A. Ericsson, “Ericsson mobility report: On the pulse of the networked society,”

Ericsson, Sweden, Tech. Rep. EAB-14, vol. 61078, 2015.

[3] P. Shome, M. Yan, S. M. Najafabad, N. Mastronarde, and A. Sprintson, “Cross-

flow: A cross-layer architecture for SDR using SDN principles,” in Proceedings

of IEEE NFV-SDN, 2015.

[4] P. Shome, J. Modares, N. Mastronarde, and A. Sprintson, “Enabling dynamic

reconfigurability of SDRs using SDN principles,” in Proceedings of Ad Hoc Net-

works, 2017.

[5] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton, “Ætherflow: Princi-

pled wireless support in SDN,” in Proceedings of IEEE ICNP, 2015.

[6] J. Schulz-Zander, N. Sarrar, and S. Schmid, “AeroFlux: A near-sighted con-

troller architecture for software-defined wireless networks,” in Proceedings of

USENIX ONS, 2014.

[7] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,

“OpenSDWN: Programmatic control over home and enterprise WiFi,” in Pro-

ceedings of ACM SOSR, 2015.

[8] L. Tassiulas and A.Ephermides, “Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio

networks,” IEEE Trans. Automat. Contr., vol. 37, no. 12, pp. 1936–1948, 1992.

37

[9] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for fading

wireless channels,” IEEE/ACM Trans. Network., vol. 13, pp. 411–424, April

2005.

[10] I. Hou, V. Borkar, and P. Kumar, “A theory of QoS for wireless,” in IEEE

INFOCOM 2009, Rio de Janeiro, Brazil, April 2009.

[11] S. Yau, P.-C. Hsieh, R. Bhattacharyya, K. Bhargav, S. Shakkottai, I. Hou,

and P. Kumar, “Puls: Processor-supported ultra-low latency scheduling,” in

Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc

Networking and Computing. ACM, 2018, pp. 261–270.

[12] R. Mok, W. Li, and R. Chang, “IRate: Initial video bitrate selection system for

HTTP streaming,” IEEE Journal on Selected Areas in Communications, vol. 34,

no. 6, pp. 1914–1928, June 2016.

[13] T. Spetebroot, S. Afra, N. Aguilera, D. Saucez, and C. Barakat, “From network-

level measurements to expected quality of experience: The Skype use case,” in

Proceedings of IEEE M&N, 2015.

[14] O. Chapelle and L. Li, “An empirical evaluation of Thompson sampling,” in

Advances in neural information processing systems, 2011, pp. 2249–2257.

[15] S. Agrawal and N. Goyal, “Near-optimal regret bounds for Thompson sampling,”

Journal of the ACM (JACM), vol. 64, no. 5, p. 30, 2017.

[16] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with

pensieve,” in Proceedings of the Conference of the ACM Special Interest Group

on Data Communication. ACM, 2017, pp. 197–210.

[17] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-based

application-aware networking on the example of YouTube video streaming,” in

38

Proceedings of EWSDN, 2013.

[18] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards QoE-aware video

streaming using SDN,” in Proceedings of IEEE GLOBECOM, 2014.

[19] S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla, “SDN based QoE op-

timization for HTTP-based adaptive video streaming,” in Proceedings of IEEE

ISM, 2015.

[20] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards

network-wide QoE fairness using Openflow-assisted adaptive video streaming,”

in Proceedings of ACM FhMN, 2013.

[21] Ericsson, “Ericsson Mobility Report: On the Pulse of the Networked

Society,” https://www.ericsson.com/assets/local/mobility-report/documents/

2015/ericsson-mobility-report-june-2015.pdf, 2015.

[22] H. Yeganeh, R. Kordasiewicz, M. Gallant, D. Ghadiyaram, and A. C. Bovik,

“Delivery quality score model for Internet video,” in Proceedings of IEEE ICIP,

2014.

[23] N. Eswara, K. Manasa, A. Kommineni, S. Chakraborty, H. P. Sethuram,

K. Kuchi, A. Kumar, and S. S. Channappayya, “A continuous QoE evaluation

framework for video streaming over HTTP,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. In press, 2017.

[24] D. Ghadiyaram, J. Pan, and A. C. Bovik, “Learning a continuous-time streaming

video QoE model,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp.

2257–2271, May 2018.

[25] R. Mok, E. Chan, and R. Chang, “Measuring the quality of experience of HTTP

video streaming,” in Proceedings of IFIP/IEEE IM, 2011.

39

[26] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz, “Quan-

tification of YouTube QoE via crowdsourcing,” in Proceedings of IEEE ISM,

2011.

[27] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts viewer

behavior: inferring causality using quasi-experimental designs,” IEEE/ACM

Trans. Network, vol. 21, no. 6, pp. 2001–2014, 2013.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[29] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning.” in AAAI, vol. 2. Phoenix, AZ, 2016, p. 5.

[30] CPqD, “OpenFlow Software Switch,” http://cpqd.github.io/ofsoftswitch13/,

2015.

[31] M. Schaarschmidt, A. Kuhnle, and K. Fricke, “Tensorforce: A tensorflow library

for applied reinforcement learning,” Web page https://github.com/reinforceio/

tensorforce, 2017.

[32] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, “Access-

network association policies for media streaming in heterogeneous environ-

ments,” in Proceedings of the IEEE Conference on Decision and Control, De-

cember 2010.

[33] R. Singh and P. Kumar, “Optimizing quality of experience of dynamic video

streaming over fading wireless networks,” in Decision and Control (CDC), 2015

IEEE 54th Annual Conference on. IEEE, 2015, pp. 7195–7200.

[34] I.-H. Hou and P.-C. Hsieh, “Qoe-optimal scheduling for on-demand video

streams over unreliable wireless networks,” in Proceedings of the 16th ACM In-

40

ternational Symposium on Mobile Ad Hoc Networking and Computing. ACM,

2015, pp. 207–216.

41

