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ABSTRACT

Reverse-time migration (RTM) and full-waveform inversion (FWI) are widely used because

they are able to recover complex geological structures. However, these wave-equation based imag-

ing techniques also have a drawback, as they require significant computational cost. In both meth-

ods, wave modeling accounts for the largest part of the computing cost for calculating forward-

and backward-propagated wavefields before constructing an imaging condition or a model update

term. For this reason, I applied a model reduction technique, the generalized multiscale finite ele-

ment method (GMsFEM), which solves local spectral problems on a fine grid for fast simulation of

wave propagation on a coarser grid. This approach can enhance the speed of computation without

sacrificing accuracy by utilizing coarser grids for lower frequency waves. In the proposed method,

one can control the size of the coarse grid and level of heterogeneity of the wave solutions to tune

the trade-off between speedup and accuracy. As I increase the expected level of complexity of

the wave solutions, the GMsFEM wave modeling can capture more detailed features of waves by

applying a finer coarse grid and a larger number of basis functions. After computing the forward-

and backward-wavefield on the coarse grid, the coarse-scale solutions are projected onto the orig-

inal fine grid. Therefore, although wave solutions are computed on a coarse grid, it still provides

the images for RTM and FWI without reducing the image resolution by projecting coarse wave

solutions to the fine grid. In the multiscale finite element approach, one can apply flexible wave

modeling parameters (i.e., grid size, number of basis functions) according to the target frequency

components, which makes the method an attractive tool for the practical applications of the RTM

and FWI. I demonstrated the multiscale FWI using the BP and Marmousi-2 synthetic model. In

addition, I show FWI examples of the field data obtained in the Gulf of Mexico region. In the

field data examples, I demonstrate that applying the proposed multiscale RTM and FWI with a

relatively small number of basis functions can quickly construct a macro velocity model using low

frequency. I also propose a strategy to maximize the efficiency of the multiscale FWI by utilizing

frequency-adaptive multiscale basis functions based on the target frequency group.
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NOMENCLATURE

| | Absolute value

‖ ‖ L2- norm

� Element-wise multiplication

∂ The first partial derivative

∗ Complex conjugate

AT Transpose of matrix A

I Identity matrix

J Jacobian matrix

H Full Hessian matrix

Hα Approximated Hessian matrix

Hp Pseudo Hessian matrix

S Impedance matrix

M, K Mass and stiffness matrix

C Damping matrix

R Projection matrix

u, d Modeled and observed data (pressure field)

f Point source vector

v Virtual source vector

fv Virtual source matrix

r Residual vector

fmax Maximum frequency

h, H Fine-scale and coarse-scale mesh

Ki, ∂Ki Coarse neighborhood and its edge at i coarse node

Li The number of multiscale basis functions
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ns, nr The number of source and receiver

i, j, k Iteration index

α Step length for model update

ρ, v Density and velocity of medium

ψ Partition of unity

λ, ϕ Eigenvalue (or eigen-frequency) and eigenfunctions

ω Angular frequency

Φi Multisacle basis functions at ith coarse neighborhood

Ω, ∂Ω The whole computation domain and its boundary

R Real part of the complex number

diag Taking diagonal component of a matrix

FDM Finite Difference Method

CG FEM Continuous-Galerkin Finite Element Method

DG FEM Discontinuous-Galerkin Finite Element Method

GMsFEM Generalized Multiscale Finite Element Method

RTM Reverse-Time Migration

FWI Full-Waveform Inversion

PML Perfectly Matched Layer

LU Lower upper decomposition
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Research motivation

When we build a seismic image in the depth domain, constructing an accurate velocity model

is critical to resolve the complicated earth structures and to determine the correct location of each

stratum. A variety of research has been conducted to improve the velocity-building schemes such

as tomography or full-waveform inversion. Tomography (Chiu et al., 1986; Zhang and Toksöz,

1998; Murphy and Gray, 1999) has been broadly used to infer the subsurface velocity information

by using the travel-time of the seismic wave. However, in the tomography method, each key

reflection (or refraction) event needs to be interpreted manually. This is a non-trivial task when

we handle field seismic data, since multiple seismic events are associated each other and it is

not easy to distinguish a specific seismic event due to complicated constructive or destructive

interference among multiple seismic events. In addition, if the interpreted travel-time information

is not accurate, we might not be able to expect a good velocity model.

As an alternative, wave-equation based seismic imaging and waveform inversion methods have

drawn widespread attention by resolving complicated subsurface structure (Baysal et al., 1983;

McMechan, 1983; Whitmore, 1983; Biondi and Shan, 2002; Symes, 2007) by overcoming the

limits of asymptotic ray theory. The full-waveform inversion (FWI) and reverse-time migration

(RTM) have been greatly advanced by the enhancement of the back-propagation theory (Lailly

and Bednar, 1983; Tarantola, 1984) for the practical implementation. However, it still requires

considerable computational cost when dealing with large data volumes.

In the wave-equation based imaging method, the wave simulation accounts for the largest part

of the computing cost for calculating forward- and backward-propagated wavefields before apply-

ing an imaging condition or a model update term. Therefore, by accelerating the wave modeling,

we could expect the largest reduction of the computational cost. Thus, recent work has devel-

oped methods to accelerate the wave simulation. For example, Fomel et al. (2013) employed the
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low-rank approximation of a wavenumber matrix for a wavefield extrapolation. Another method is

proposed by Nunes and Minkoff (2014). They obtained the wave solution rapidly through subgrid

upscaling which makes the coarse grid represent the fine-scale heterogeneity.

In this research, to accelerate a waveform inversion and seismic imaging, I applied another

model reduction technique; Generalized Multiscale Finite Elements Methods (GMsFEM). The

idea of GMsFEM (Efendiev et al., 2011; Chung et al., 2014; Gibson and Fu, 2015) is somewhat

similar to Nunes and Minkoff (2014)’s work in that it utilizes multiscale grids; however, the key

difference is that GMsFEM directly computes the basis functions including fine-scale heterogene-

ity without performing a subgrid upscaling or a model homogenization. In GMsFEM, the basis

functions are computed only once for a specific model, and all simulations are computed on the

coarse grid. These basis functions incorporate the most dominant wave modes computed from the

local spectral problems, so utilizing them for the simulation on a coarse grid can greatly acceler-

ate computation by efficiently reducing the number of unknowns. This advantage manifests itself

when we simulate multiple shot and receiver sets such as the RTM or FWI cases.

There exist two different domains for the implementation of the wave-equation based imaging

tools: time- and frequency-domain. The time-domain is more widely used than the frequency do-

main due to its easiness of implementation and relatively light computing memory consumption.

However, working the frequency-domain also has advantages in that wavefields can be separated

into independent frequency components, which enable us to accelerate the computation by using

different wave simulation parameters for different frequencies. Most conventional numerical meth-

ods apply the same spatial grid for the entire target frequency band, which might be oversampled

for the modeling of low-frequency waves.

Therefore, I propose a method to improve the efficiency of the wave modeling by combin-

ing the frequency-domain wave modeling and the GMsFEM with flexible modeling parameters

(i.e., different sizes of a spatial grid for different frequency bands). For example, when combining

frequency-domain wave simulation with GMsFEM, I can assign a different number of basis func-

tions for different frequencies to tune the trade-off between accuracy and speed. In other words, in
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coarse grid simulation, I used a smaller number of basis functions to model low-frequency waves,

while I need to use a greater number of basis functions to capture all the detailed change of high-

frequency waves. Another advantage of utilizing the frequency-domain is that the dispersion error

can be suppressed in the frequency-domain with less effort. For instance, Hustedt et al. (2004)

proposed an extension of the mixed-grid method for accurate wave simulation. Chen (2012) in-

troduced an average-derivative optimal scheme to utilize a rectangular mesh with different grid

spacing. Another method, known as the compact high-order method (Turkel et al., 2013), is pro-

posed for an accurate and efficient solution of the Helmholtz equation. The compact high-order

approach can realize sixth-order accuracy by maintaining the sparsity of the numerical operator

(second-order finite difference method). In addition to the easiness of dealing with the disper-

sion condition, the frequency-domain has an advantage in that I can incorporate high-frequency

components without considering a reduced time step.

In the frequency-domain wave equation, a linear system can be formulated through a numerical

discretization of the given equation. There are two different methods for solving such a system: a

direct solver and an iterative solver. The direct solver is more accurate than the iterative solver and

can solve multiple sources (right-hand side, RHS) at one-time matrix inversion. Nevertheless, it re-

quires a significant computational cost, which becomes more critical when solving a 3-dimensional

or multi-parameter problems. Nowadays, however, recent advances in direct solvers can mitigate

the computational burden by applying low-rank simplifications (Wang et al., 2011; Ghysels et al.,

2016) which reduces the cost of LU decomposition. The iterative solver is feasible even in a ma-

chine with relatively small memory; however, it is sensitive to the preconditioner (Plessix, 2007).

In this research, I will focus on the method to reduce the computational cost of wave modeling for

the acceleration of the seismic imaging and waveform inversion using the direct solver (Parallel

direct sparse solver, PARDISO) (Lawson et al., 1979; Dongarra et al., 1988; Dodson et al., 1991).

1.2 Literature review

The main efforts of inferring subsurface information from the quantification of the physical

properties start from using travel-time information (Oldham, 1906; Rogers, 1914). The initial form
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of utilizing seismic wave modeling is to estimate the differential seismograms estimated through

the Born approximation, which could provide macro-scale upper-mantle tomography (Gilbert and

Dziewonski, 1975; Woodhouse and Dziewonski, 1984). Then, many techniques of exploration

seismology for developing the high-resolution seismic images have arisen as a consequence of

designing dense and multifold seismic acquisition system. However, recovering the earth structure

without having a good prior information is still a challenging problem.

Hence, many scientists used a two-step workflow: first, build a macro property model, and

then apply the amplitude projection by using various types of migration techniques (Claerbout

and Doherty, 1972; Gazdag, 1978; Stolt, 1978; Biondi and Symes, 2004). This approach might

be useful when dealing with relatively simple geological structures; however, as the demand for

seismic imaging with complicated earth structure such as salt, shale, volcanic diapirs, thrust belts,

karst, or foothills has been increased, Lailly and Bednar (1983) and Tarantola (1984) proposed a

local optimization problem, which aimed to minimize the misfit between the modeled and observed

seismic data combined with the back-propagation method. The back-propagation algorithm with

modern enhancement of the computing resources make both RTM and FWI feasible. They also

showed that the perturbation model which is calculated from the first iteration of the FWI is similar

to the RTM results. The only difference is that the RTM uses the time-reversed data for the source

of back-propagation, while the FWI back-propagates the data misfit.

Unlike the RTM case, FWI requires multiple iterations to obtain the final results, and it is

a more challenging problem due to 1) local minima, 2) sensitivity to the initial guess, and 3)

expensive computational cost. As a solution of local minimum and sensitivity problems, Shin

and Cha (2008) proposed the Laplace-domain FWI, which uses a zero frequency component by

fixing the real part of complex frequency to zero. Laplace FWI uses a damped wavefield which

dramatically reduces the possibility of converging to the local minimum. Given that the Laplace-

domain FWI can provide a robust initial velocity model, Shin and Cha (2009) proposed a FWI

which combines the Laplace- and frequency-domain termed the Laplace-Fourier-domain FWI to

improve the resolution of the FWI result. Ha et al. (2010) analyzed the difference of Laplace- and
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frequency-domain FWI by comparing two different approaches. For more practical application of

the Laplace-Fourier FWI, Shin et al. (2010) proposed a strategy to utilize a sequentially ordered

frequency to acquire high-resolution velocity model. For practical application of the Laplace-

Fourier-domain FWI, Koo et al. (2011) introduced a method for source estimation and direct wave

reconstruction, and Cho et al. (2016) showed an application of Laplace-Fourier FWI to the field

data which is obtained in the deep-sea area with limited offset.

As both techniques, RTM and FWI, require accurate simulation of the seismic waves for a

successful implementation, the techniques of full-waveform (or forward) modeling for solving a

partial derivative equation numerically have been actively studied. The methods that are used for

wave modeling varies according to the discretization schemes such as finite difference method

(Virieux, 1986; Levander, 1988), finite element method (Marfurt, 1984; Min et al., 2003), finite-

volume method (Brossier et al., 2008), spectral element method (Komatitsch and Vilotte, 1998;

Komatitsch and Tromp, 1999), and pseudo-spectral method (Danecek and Seriani, 2008).

In the frequency domain, the wave equation reduces to a linearized system (Marfurt, 1984).

The main task of solving this system is to solve an inverse of the impedance matrix, which has

a complex-valued symmetric geometry; however, in most of the practical implementation of the

wave modeling, the impedance matrix contains a damping term for the absorbing boundary con-

ditions, which makes the impedance matrix non-symmetric (Hustedt et al., 2004; Operto et al.,

2007). One can consider two different approaches to solve the linearized system: iterative and

direct solver. The iterative solver, which is implemented with Krylov subspace method (Saad,

2003), consumes little computing memory. Hence, it might be useful when we need to compute

3-dimensional waves. Nevertheless, in the iterative solver, it is a non-trivial task to obtain a good

preconditioning parameter for stable modeling (Plessix, 2007). In contrast, the direct solver has

limitations for applying to large-scale problems due to its memory complexities of LU factoriza-

tion (Virieux and Operto, 2009); however, for the 2-dimensional problem, the direct solver provides

robust and accurate wave solutions (Jo et al., 1996; Štekl and Pratt, 1998).

There have been many studies to improve the accuracy of wave modeling. For instance, Hustedt
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et al. (2004) proposed an extension of the mixed-grid method for accurate wave simulation. Chen

(2012) introduced an average-derivative optimal scheme to utilize a rectangular mesh with different

grid spacing. Another method, known as the compact high-order method (Turkel et al., 2013), is

proposed for an accurate and efficient solution of the Helmholtz equation. The compact high-order

approach can realize sixth-order accuracy by maintaining the sparsity of the numerical operator

(second-order finite difference method). In addition to the easiness of dealing with the dispersion

condition, the frequency-domain has an advantage in that we can incorporate high-frequency com-

ponents without considering a reduced time step. Also, the wave solutions of multiple sources can

be acquired by solving one-time matrix inversion (Wu and Alkhalifah, 2018).

Once we acquire accurate wave solutions, then speed becomes important to obtain the solutions

rapidly. Fomel et al. (2013) proposed a method for low-rank wave extrapolation using a two-step

time marching approach with a real-valued phase function. A low-rank scheme decomposes the

original wave propagation matrix into a small set of spatial locations with corresponding represen-

tative wavenumbers. Here the rank of the approximation tunes the tradeoff between accuracy and

computational efficiency. Sun et al. (2015) proposed a one-step wave extrapolation scheme which

applies a complex-values low-rank decomposition to approximate the space-wavenumber domain

waves. Another method which performs subgrid upscaling with seismic imaging was introduced

by Nunes and Minkoff (2014). The operator upscaling algorithm is widely used for the flow simu-

lation (Arbogast, 2003; Arbogast et al., 2002). Vdovina et al. (2009) applied the operator upscaling

method for 3-dimensional elastic wave propagation, and Nunes and Minkoff (2014) employed the

method for 2-dimensional acoustic wave simulation with the RTM examples.

Hou and Wu (1997) proposed the pioneering work, which solves the elliptic partial differential

equation. This work could be a first step of the GMsFEM to build a basis function in a coarse-mesh

by incorporating highly heterogeneous background properties. Efendiev et al. (2011) demonstrated

that using multiple basis functions could enhance the accuracy of the coarse-scale wave modeling.

Chen (2012) applied the multiscale method to the pressure-velocity formulation to solve the wave

equation, and Gibson et al. (2014) proposed discretization examples of the GMsFEM for solving

6



the acoustic wave equation to reduce the computational cost in time-domain modeling. Inspired by

Gibson et al. (2014)’s work, Gao et al. (2015) proposed an extension for solving the elastic wave

equation by using both CG- and DG-approximation of the multiscale method. Chung et al. (2016)

and Cho et al. (2017b) presented an application of the elastic wave modeling using GMsFEM in

fractured media, which includes fractures explicitly in the model. Considering wave simulations,

the GMsFEM (Efendiev et al., 2011; Chung et al., 2014; Gibson and Fu, 2015; Cho et al., 2017b)

can be considered as a method similar to that proposed by Nunes and Minkoff (2014) since we

also utilize multiscale grids; however, the key difference is that GMsFEM directly computes the

basis functions including fine-scale heterogeneity without performing any subgrid upscaling. For

the Helmholtz equation using GMsFEM (Fu and Gao, 2017), it becomes quite straightforward to

utilize various size of spatial grids.

Gibson and Fu (2015) demonstrated the first example of the RTM using the GMsFEM modeling

engine. They used the time-domain wave modeling with zero-lag cross-correlation imaging con-

dition, and Cho et al. (2017a) proposed a frequency-domain multiscale RTM with virtual-source

imaging condition. They showed that the multiscale RTM could have the flexibility to alter the

modeling parameters such as the number of basis functions according to the target frequency band.

Cho and Gibson (2018) expanded the frequency-domain RTM by employing a frequency adaptive

spatial grid, which uses multiple coarse-meshes to alter the grid size based on the frequencies. Cho

et al. (2018) presented the first application of the GMsFEM to the FWI and demonstrated that the

multiscale FWI could reduce the computational burden by accelerating the wave modeling.

1.3 Outline

In this dissertation, I introduce the first application of the multiscale methods to frequency-

domain RTM and FWI in isotropic acoustic media. Since the frequency-domain RTM is tanta-

mount to the first iteration of FWI, I will start the discussion with the multiscale RTM examples.

In Chapter 2, I will demonstrate the influence of the multiscale basis functions on the seis-

mic imaging via RTM. I first define the multiscale mesh which consists of fine- and coarse-scale

meshes. I also determine the local linear spectral problem for building the multiscale basis func-
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tions. Then, I investigate the trade-off between the accuracy and speedup in the wave modeling

via GMsFEM. In this research, the accuracy of the wave solution acquired by the GMsFEM is

validated by comparing it with the solutions obtained by the CG FEM (reference solution). After

showing that the GMsFEM with a few basis functions can calculate the low-frequency components

more rapidly than the reference solutions without sacrificing accuracy, I will show the multiscale

RTM examples by using the large-scale synthetic model (BP 2004 benchmark model). The mul-

tiscale RTM with a various number of multiscale basis functions will be presented to demonstrate

the influence of the number of multiscale basis functions to the final image quality.

In Chapter 3, I will further develop the frequency-domain multiscale RTM to improve the com-

putational efficiency. In the examples shown in Chapter 2 use the multiscale mesh which consists

of two different sizes of mesh: fine- and coarse-mesh. However, in Chapter 3, I superimpose

multiple coarse-scale meshes with corresponding projection matrices. Hence, the key idea of this

part is to utilize the flexible coarse-grid sizes with an appropriate number of basis functions to

accelerate the frequency-domain acoustic wave modeling without losing accuracy. Then, I will

apply the same technique to build the RTM imaging condition. For example, by separating the

frequency components, I calculate the low-frequency images in the larger size of coarse-grid, then

gradually reduced the size of the coarse-scale grid as the frequency increases. In the RTM with

the multiscale spatial grid, although wave solutions are computed on a coarse grid, it still provides

the RTM images without degrading the image resolution by projecting coarse wave solutions to

the reference grid. I will demonstrate the efficiency of the proposed imaging method using the

Marmousi-2 synthetic model.

In Chapter 4, I will show the first examples of multiscale FWI, which can reduce the runtime

of FWI through the fast wavefield calculation. In the frequency domain, the RTM algorithm can be

altered to the FWI algorithm by replacing the back-propagation source (complex conjugated data

vector) with the residual vector. In this chapter, in addition to the synthetic examples (Marmousi-

2), I will present the field dataset example using data obtained in the Gulf of Mexico area. Through

the field data examples, I will demonstrate the influence of the different number of basis functions
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by analyzing the forward and backward wavefields, then I will show that applying the proposed

multiscale FWI with a relatively small number of basis functions can quickly construct a macro-

velocity model using low frequency. I will also propose a strategy to maximize the efficiency of

the multiscale FWI by utilizing frequency-adaptive multiscale basis functions based on the target

frequency group.

In Conclusions, I will summarize the multiscale RTM and FWI results, and will also propose

some potential applications and possible improvements for the future study.
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2. FREQUENCY-DOMAIN REVERSE-TIME MIGRATION WITH ACCELERATED WAVE

SIMULATION VIA GENERALIZED MULTISCALE FINITE ELEMENT∗

2.1 Introduction

Reverse-time migration (RTM), a wave-equation based imaging method, has been widely used

as a powerful tool to recover complex subsurface structure (Baysal et al., 1983; McMechan, 1983;

Whitmore, 1983; Biondi and Shan, 2002; Symes, 2007) by overcoming the limits of asymptotic ray

theory. However, RTM still requires considerable computational cost when applied to large data

volumes such as 3-dimensional or 4-dimensional seismic data. Thus, recent work has developed

methods to accelerate the wave propagation simulation. For example, Fomel et al. (2013) employed

a low-rank approximation of a wavenumber matrix for wavefield extrapolation. Another method is

proposed by Nunes and Minkoff (2014). They obtained the wave solution rapidly through subgrid

upscaling which makes the coarse grid represent the fine-scale heterogeneity.

We applied another model reduction technique, the Generalized Multiscale Finite Element

Method (GMsFEM), to accelerate RTM imaging. The idea of GMsFEM (Efendiev et al., 2011;

Chung et al., 2014; Gibson and Fu, 2015) is somewhat similar to that of Nunes and Minkoff (2014)

in that we utilize multiscale grids, though the key difference is that GMsFEM directly computes

the basis functions including fine-scale heterogeneity without subgrid upscaling. In GMsFEM, the

basis functions are computed only once for a specific model, and all simulations are computed on

the coarse grid. These basis functions incorporate the most dominant modes computed from local

spectral problems, so utilizing them for the simulation on coarse grid can greatly accelerate com-

putations. This advantage becomes more evident when we simulate multiple shots and receiver

sets such as the RTM case, since the basis functions are the same for different shot-receiver pairs

in the same model.

Frequency-domain wave simulation can accelerate computations using different wave simula-

∗Reprinted with permission from “Frequency-domain reverse-time migration with accelerated wave simulation
via generalized multiscale finite element” by Cho et al., 2019. Journal of Applied Geophysics, 160, 103-120, Copyright
2019 by Elsevier.
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tion parameters for different frequencies. For example, when combining frequency-domain RTM

with GMsFEM, we can assign a different number of basis functions for different frequency com-

ponents to tune the accuracy. In addition, in frequency-domain RTM, the solution can be obtained

by a one-time matrix inversion without incorporating reduced time stepping. At early stages of

velocity model delineation, we use only lower frequencies in RTM to construct a lower reso-

lution structural image to facilitate the structural interpretation, which requires fewer multiscale

basis functions and therefore shorter computation time. After several iterations, when the velocity

model has improved accuracy for imaging, we can both increase the number of basis functions and

the range of frequencies to enhance resolution.

There are several alternatives such as Kirchhoff or beam migration to resolve seismic images

rapidly during the earlier stage of a model construction. Nevertheless, RTM shows better per-

formance to resolve the images in complicated geological structures, although it requires more

computational cost. Therefore, to fully utilize the strength of the RTM, we are aiming to acceler-

ate the RTM imaging engines combined with the GMsFEM wave simulation. From our previous

work (Gao et al., 2015; Fu and Gao, 2017), we demonstrated that lower frequency components can

be simulated with the smaller number of multiscale basis functions without sacrificing accuracy.

Also, Artemyev et al. (2015) proposed a method to combine structured and unstructured mesh to

incorporate topography for elastic wave modeling using GMsFEM, and Cho et al. (2017b)’s work

showed that the GMsFEM can use triangular mesh to delineate complex fracture networks. As the

goal of this paper is demonstrating the application of GMsFEM wave modeling to RTM and ana-

lyzing the influence of coarse grid size and the number of basis functions on the final RTM images,

we did not include any numerical examples with complicate topography which may require local

refinement of the mesh.

In this paper, we will briefly illustrate the application of GMsFEM to solve the Helmholtz

equation, then we show a set of multiscale RTM examples to demonstrate how we can tune the

trade-off between the speed and accuracy. The application of multiscale frequency-domain RTM

helps optimize the velocity modeling and imaging workflow.
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2.2 Method

Seismic wave simulation in acoustic media is critical for RTM. Therefore, to begin with, we

introduce the acoustic Helmholtz equation as follows:

− ω2

ρv2
u = ∇ · (1

ρ
∇u) + f, (2.1)

where ρ is the density and v is velocity, and u and f denote pressure fields and a source term,

respectively. The angular frequency is represented by ω. We apply this Helmholtz equation to

simulate compressional waves in the frequency-domain.

2.2.1 Generalized multiscale finite element solver

The key idea of the generalized multiscale finite element method (GMsFEM) is to solve the

Helmholtz equation by utilizing a multiscale mesh Ω that consists of superposed coarse H and fine

h meshes as shown in Figure 2.1, where Ki (i = 1, · · · , N) refers to coarse neighborhood cells

of the ith coarse node. The GMsFEM, an efficient model reduction approach, includes two main

procedures, an offline and an online stage (Chung et al., 2014; Gao et al., 2015; Gibson and Fu,

2015). The detailed implementation of each stage will be described in the following subsections.

In the summary, the goal of each stage is as follows.

1. Offline stage: construction of multiscale basis functions by solving local spectral problems

for each coarse cell to represent the effects of fine scale heterogeneity.

2. Online stage: simulation of seismic waves (inversion of global impedance matrix) on the

coarse grid with multiscale basis functions

2.2.1.1 Offline stage

The offline stage is only computed once for a given velocity and density model and is inde-

pendent of source position. The basis functions are applied in the online stage to simulate wave

propagations for all sources on the coarse grid, reducing the number of unknowns and reducing

computation time while maintaining good accuracy.
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The offline stage starts with the following local eigenproblem in each coarse neighborhood

(Efendiev et al., 2011):

−∇ · (1

ρ
∇ϕ) = λκϕ, κ =

∫
K

1

ρ
|∇φ|2dx, (2.2)

ãĚĄwhere φ is the function satisfying the following condition with linear boundary condition on

Ki:

−∇ · (1

ρ
∇φ) = 0. (2.3)

The function φ satisfies the relation shown in equation 2.3, and at the same time it starts from zero

and increases linearly to one, or starts from one and decreases to zero at the boundary of coarse

cell ∂K. An example of this condition in a coarse neighborhood is displayed in Figure 2.2.

Figure 2.2(b) shows boundary functions with bilinear form on the edge of each coarse cell

which is under the procedure for constructing a partition of unity. Figure 2.3 shows the complete

shape of a partition of unity ψi at ith coarse neighborhood after applying equation 2.3 to compute

the inner part of the coarse neighborhood. After the calculation of the partition of unity, to solve

the local spectral problem in equation 2.2, we write the generalized eigenvalue problem in discrete

Figure 2.1: Schematic sketch of multiscale domain Ω (N = 25); fine grid in gray color and
coarse grid in black bold line. Bold points are coarse grid nodes, and grey zone Ki represents the
neighborhood of the ith coarse node.
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form as

Kϕ = λMϕ, (2.4)

where

M =

∫
K

κζξdx, K =

∫
K

1

ρ
∇ζ · ∇ξdx, (2.5)

where ζ and ξ are polynomial basis functions that are applied on the fine mesh. M and K denote

the mass and stiffness matrices for the given coarse cell’s neighborhood Ki. When we solve the

eigenvalue problem on the fine grid inK, the total number of eigenvalues is identical to the number

of the degrees of freedom in a coarse neiborhoodKi. Each matrix is written in the form of products

of first order polynomial basis functions, ζ and ξ, on the fine scale grid as presented in equation

2.5. We can calculate a set of eigenvalues with corresponding eigenvectors for each node’s coarse

neighborhood by solving equation 2.4 (Fu and Gao, 2017). As solutions of local eigenvalue prob-

lems for each coarse neighborhood are independent of the location of Ki, the calculation of offline

stage can be easily parallelized so it adds little effort to the total computational cost. After solving

the local spectral problem (equation 2.4), we order the eigenvalues with corresponding eigenfunc-

tions in an ascending way for each of Ki as:

λ1
i ≤ λ2

i ≤ · · · ≤ λLi
i ≤ · · · ≤ λ

Nf

i , (2.6)

where, Nf and Li are the number of fine nodes within a coarse neighborhoodKi and the number of

multiscale basis functions that are required for wave simulations, respectively. Given the spectral

problem defined in equation 2.4, each large eigenvalue corresponds to a high wave mode that incor-

porates higher level of heterogeneity of background models. Therefore, the first Li eigenfunctions

ϕji , (j = 1, · · · , Li) that we need to select in multiscale finite element solver are controlled by the

degree of model heterogeneity on the fine-scale grid. This is analogous to the modes of a vibrating

string with fixed ends (constant zero boundary condition on ∂Ki in Figure 2.2) where the funda-

mental mode is related to the lowest eigen-frequency. Therefore, if we know information about

the degree of required accuracy (i.e., appropriate wavelength for the given velocity model), we can
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select an appropriate number of basis functions Li to enhance the efficiency of wave simulations.

In other words, we can greatly accelerate the computation without sacrificing the accuracy by

choosing the eigenfunctions incorporating the details of heterogeneity which is under our desired

accuracy level.

We displayed the eigenfunctions from different eigenvalues (λ=3, 10, 29, 39). Each corre-

sponding eigenfunction represents different level of heterogeneity of the background properties

which are shown in Figure 2.4(a) and 2.4(b). For the construction of multiscale basis functions, we

defined a partition of unity since these eigenfunctions are not globally continuous, especially on

the boundary of the coarse neighborhoods, as presented in Figure 2.4. Hence, we obtain multiscale

basis functions Φj
i (Figure 2.5) through the element-wise multiplication of ϕji (Figure 2.4) with the

partition of unity ψi (Figure 2.3) as follows: Φj
i = ϕjiψi (Babuška et al., 1995). Combining the

partition of unity and eigenfunctions is one of the key parts to build the multiscale basis functions

for the coarse mesh.

In the GMsFEM, we define the coarse mesh approximation space which consists of multiscale

basis functions: V H = span{Φi
j | 1 ≤ i ≤ N, 1 ≤ j ≤ Li}. A set of multiscale basis functions

with different eigenvalues (λ = 3, 10, 29, 39) is presented in Figure 2.5.

2.2.1.2 Online stage

To solve the Helmholtz equation using GMsFEM on the coarse grid on the online stage, we

discretize the system. This discretization of Helmholtz equation follows the approach summarized

by Marfurt (1984). We applied the method to implement the wave simulation in coarse grid as

SHuH = fH ,

SH = KH + iωCH + ω2MH

(2.7)

where SH is the global impedance matrix on the coarse grid, and uH and fH are the frequency-

domain pressure field and source term on the coarse grid, respectively. KH and MH are stiffness

and mass matrices. The coarse impedance matrix incorporates the damping term CH to suppress
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the reflection of outgoing wavefield at the model boundary ∂Ω. In this study, we applied a Per-

fectly Matched Layer (PML) absorbing boundary condition, and the details of the discrete form to

implement CH are displayed in Appendix section. Note that we do not construct the coarse-scale

stiffness and mass matrices explicitly, but we apply multiscale basis functions to directly compute

the coarse-scale impedance matrix from the fine-scale one as detailed below.

The value of the global impedance matrix at the ith coarse node SH,i can be rewritten as

SH,i =
∑
k,l

∫
Ki

[
− ω2

ρv2
Φk
i Φ

l
i +

1

ρ
∇Φk

i · ∇Φl
i

]
dx, (2.8)

Similarly, the local source term fH,i is as follows:

fH,i =
∑
k

∫
Ki

fΦk
i dx, (2.9)

where ω is angular frequency. Φk
i and Φl

i are multiscale basis functions of the coarse neighbor-

hood Ki. In general, the Helmholtz equation requires a large computational cost even though the

matrices are sparse since we need to compute the inversion of the impedance matrix to obtain a

wave solution for the given source vector. However, when we construct the impedance matrix on

the coarse mesh using multiscale basis functions, the number of unknowns becomes dramatically

smaller compared to the fine-scale problem. To assemble the coarse-scale impedance and source

matrices, we first need to build the fine-scale matrices. Then we build a projection matrix R, where

the column of the R matrix consists of the discrete multiscale basis functions Φj
i from each coarse

node neighborhood Ki. The combination of multiscale basis functions in the R matrix for the se-

lected number of eigen-frequencies can be used to project fine-scale matrices onto the coarse mesh.

We can obtain the matrices SH and fH by multiplying with the projection matrix R as follows:

SH = RTShR,

fH = RTfh,

(2.10)

19



0 200 400 600 800 1000 1200 1400 1600
Column of Sh

0

200

400

600

800

1000

1200

1400

1600

Ro
w 

of
 S

h

Figure 2.6: Fine-scale impedance matrix Sh from 40 by 40 model.

where subscript H and h denote coarse and fine mesh, respectively. After obtaining final solutions

on coarse mesh, we can simply recover the fine-scale solutions through the multiplication of the

projection matrix: uh = RuH .

To demonstrate the dramatic reduction of the impedance matrix size graphically, we set the

dimension of the model as shown in Figure 2.4(a) and 2.4(b) which consists of 40 by 40 fine-scale

cells. Then, the size of impedance matrix for the fine grid can be expressed as the square of fine-

scale node points on each axis (41 × 41)2. In this study, we calculated the fine-scale solutions

by utilizing the continuous-Galerkin finite element method (CG FEM), and the fine-scale solution

will be considered as a reference to make comparisons between the fine- and coarse-scale wave

solutions. In the CG FEM, most of the non-zero values are located around the diagonal components

of the impedance matrix (Figure 2.6).

For computing a spectral problem on the coarse grid, we fix the dimension of the coarse mesh

to 4 by 4, 16 cells in total. In other words, one coarse cell incorporates 100 fine cells. When we
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calculate the coarse-scale impedance matrix by applying the projection matrix R (Figure 2.7), we

can appreciably reduce the size of impedance matrix to accelerate the forward modeling (equation

2.7). The number of rows of the projection matrix is identical to the total number of nodal points

of a fine mesh, while the number of columns is related to the number of multiscale basis functions

and the nodal points of the coarse mesh. We present the coarse-scale impedance matrices in Figure

2.8 that are obtained by applying equation 2.10. Provided the dimension and the geometry of

the fine-scale impedance matrix (Figure 2.6), the geometry of the coarse-scale impedance matrix

becomes more complicated as we applied the projection matrix. However, the dimension of the

impedance matrix is dramatically decreased in the coarse-scale grid. We calculated two different

projection matrices under the same coarse- and fine-mesh by varying the number of multiscale

basis functions. Each figure shows a coarse-scale impedance matrix with 10 (Figure 2.8(a)) and

20 (Figure 2.8(b)) basis functions, respectively. A larger number of basis functions increases the

size of projection matrix. Therefore, it consumes more computer memory; however, this might be

negligible when we consider the amount of reduction in the fine-scale impedance matrix size.

Given that the dimension of impedance matrices for the fine- and coarse-meshes, Sh(Nf , Nf )

and SH(NcLi, NcLi), as well as R(Nf , NcLi), we can roughly estimate how much we can reduce

the computational cost. Note that utilizing more multiscale basis functions increases the dimension

of coarse-scale matrices. However, we still can attain the impedance matrices which have much

smaller dimension than the fine-scale impedance matrix.

When we expand the GMsFEM to 3-D problem, we still solve the same local spectral problem

(equation 2.2∼2.4) to compute the multiscale basis functions in the offline stage. Accordingly, we

can apply the same algorithm to the 3-dimensional case as far as the computing device has enough

memory capacity. However, when the computing resources cannot handle the large impedance and

projection matrices duet to memory overflow, we can consider the other multiscale method. As

an alternative for reducing the consumption of the massive storage, we may employ high-order

multiscale finite element approach (Gao et al., 2018) which does not require any projection matrix

construction and explicitly compute the coarse-scale impedance matrices.
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Figure 2.7: Projection matrix with different number of multiscale basis functions (Li =10 and 20).
Note that the row dimension is same with the dimension of fine-scale mesh. Red dashed line shows
the outline of the projection matrix (Li =10) to guide the comparison of the matrix size.

22



(a) SH (Li = 10)

(b) SH (Li = 20)

Figure 2.8: Coarse-scale impedance matrix SH with different number of basis functions (Li =10
and 20), where the red dashed line shows the outline of the impedance matrix (Li =10) to guide
the comparison of the matrix dimension.
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2.2.2 RTM imaging conditions using GMsFEM

A conventional approach for imaging in reverse-time migration considers zero-lag crosscor-

relation between shot- and receiver-domain wavefield (Baysal et al., 1983), where the receiver

wavefield uses time-reversed observed data as a source. This imaging condition can be expressed

as

φk =
ns∑
i=1

∫ Tmax

0

ui(t)ur(Tmax − t) dt, (2.11)

where, ui and ur denote the forward- and backward-modeled data, respectively. φk means the

migration image for the kth model parameter, and Tmax means the data recording time. The in-

dex i indicates the shot number. However, in the frequency-domain, this imaging condition needs

additional computation due to repetitive forward and inverse Fourier transforms. As an alterna-

tive, the migration image can be given by zero-lag crosscorrelation between the partial derivative

wavefields (or Born wavefields) with respect to a model parameter (i.e. velocity or density) and

the receiver-domain observed data (Chavent and Plessix, 1999):

φk =
ns∑
i=1

∫ Tmax

0

[
∂ui(t)

∂mk

]T

di(t) dt, (2.12)

where di is observed data, and ∂ui(t)
∂mk

is the partial derivative of the wavefield with respect to the

model parameter mk. As mentioned above, using the frequency-domain can be advantageous

because it uses only one-time matrix inversion without incorporating reduced time stepping. In

addition, when using GMsFEM, different frequency components can easily utilize different input

parameters (i.e. number of bases or spatial grid size). Brigham (1988) showed that the migration

can be performed using the Fourier transform pairs in the frequency-domain as:

φk =
ns∑
i=1

∫ ωmax

0

R

{[
∂ui(ω)

∂mk

]T

d∗i (ω)

}
dω, (2.13)

where ui and d∗i indicate the forward modeled wavefield and measured data with complex conju-

gate in the frequency-domain, respectively. The partial derivative wavefield term shown in equation
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2.12 and 2.13 can be acquired from the forward modeling algorithm (Shin et al., 2007). Then, tak-

ing the partial derivative of wave equation in matrix form with respect to the model parameter in

fine grid gives the following result:

∂Sh
∂mk

uh + Sh
∂uh
∂mk

= 0, (2.14)

and
∂uh
∂mk

= S−1
h v, (2.15)

where v is the virtual source term which consists of Born modeling operator and fine-scale back-

ground wavefield as − ∂Sh

∂mk
uh. The virtual source required to generate the Born wavefield and be

written as 

v1
k

v2
k

...

vnk


= − ∂S

∂mk



u1

u2

...

un


. (2.16)

The discrete matrix notation of equation 2.15 at kth arbitrary model parameter can be expressed as



∂u1
∂mk

∂u2
∂mk

...

∂un
∂mk


= S−1



v1
k

v2
k

...

vnk


. (2.17)

Taking the transpose of equation 2.17 gives

(
∂u1

∂mk

∂u2

∂mk

· · · ∂un
∂mk

)
=
(
v1
k v2

k · · · vnk
) (

S−1
)T
. (2.18)
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The virtual source matrix can be acquired by generalizing the kth model parameter mk, where

k = 1, 2, · · · , p. Therefore, we can rewrite above equation as follows:

(
∂u1

∂m1

∂u2

∂m1

· · · ∂un
∂m1

)
=
(
v1

1 v2
1 · · · vn1

) (
S−1
)T

(
∂u1

∂m2

∂u2

∂m2

· · · ∂un
∂m2

)
=
(
v1

2 v2
2 · · · vn2

) (
S−1
)T

(
∂u1

∂m3

∂u2

∂m3

· · · ∂un
∂m3

)
=
(
v1

3 v2
3 · · · vn3

) (
S−1
)T

...(
∂u1

∂mp

∂u2

∂mp

· · · ∂un
∂mp

)
=
(
v1
p v2

p · · · vnp
) (

S−1
)T
.

(2.19)

The transpose matrix of the global virtual source matrix can be written as follows:

fT
v =



v1
1 v2

1 · · · vn1

v1
2 v2

2 · · · vn2
...

... . . . ...

v1
p v2

p · · · vnp


(2.20)

The size of the virtual source matrix fT
v depends on the number of model parameters that are

included in the model domain for imaging. Therefore, it is n×nmatrix provided that all parameters

of grid points (p→ n) are included in imaging area.

We can calculate the Born wavefield by taking the inverse of fine scale Sh impedance matrix

and combining it with the virtual source vector (Pratt et al., 1998). Substituting equation 2.15 into

equation 2.13 gives the final image condition for the kth model parameter as follows:

φk =
ns∑
i=1

∫ ωmax

0

R
[
vTRS−1

H RTd∗i (ω)
]
dω. (2.21)

The combination of impedance matrix and complex conjugate of Fourier transformed measured

data, S−1
H RTd∗i , represents the back propagation of the observed data in coarse grid. By convolving

it with the virtual source vector vT, we acquire the reverse-time migration image at the kth node.
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The virtual source vector v can be extended to matrix form fv to consider all image nodes.

In RTM, we need an additional term to enhance the imaging condition. To put it differently,

we are not able to recover the actual amplitude variation using only the condition shown in equa-

tion 2.21, especially in high contrast impedance cases. To solve this problem, Claerbout (1971)

suggested scaling the cross-correlation image by applying source illumination. Also, Chavent and

Plessix (1999) introduced that the migration image can be improved by multiplying the inverse of

the Hessian matrix. However, using the full Hessian matrix hinders the practical implementation

of migration due to excessive computational cost. Accordingly, we applied the diagonal of the

pseudo-Hessian matrix (Shin et al., 2001) as follows:

φ =

∑ns

i=1

∫ ωmax

0
R
[
fT
vRS−1

H RTd∗i (ω)
]
dω∑ns

i=1

∫ ωmax

0
R [diag(fT

v fv)] dω + λ
, (2.22)

where λ is a damping factor, and fT
v fv means the pseudo-Hessian matrix. Here we note that the

imaging condition φ means the RTM image for the entire spatial domain. By utilizing the final

imaging condition shown above, we normalize the RTM imaging condition to recover the true

amplitude variation with a reasonable computational burden. The advantage of working with the

frequency-domain is that we can separate the wavefield into independent frequency components,

which enables us to apply the inverse Hessian matrix frequency by frequency for the gradient

scaling.

2.3 Numerical examples

For simulation of waves and imaging, we used the BP benchmark model (Billette and Brandsberg-

Dahl, 2004) as shown in Figure 2.9. The model includes a large salt diapir with a complex bound-

ary, and the flank of salt is challenging to resolve due to its steep slope. Through multiple tests of

frequency-domain wave simulation and RTM on this model, we demonstrate how effectively the

coarse-grid simulation can resolve the image of detailed features with high impedance contrast. For

references, RTM examples of a classical approach of the RTM using time-domain modeling can

be found from other scientist’s work as follows: Liu et al. (2012); Foltinek et al. (2009); Pestana
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(a) Velocity model

(b) Density model

Figure 2.9: BP 2004 Benchmark model adapted from Billette and Brandsberg-Dahl (2004).
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and Stoffa (2010).

First, we demonstrate the simulation of wave propagation on the coarse grid. For the wave

simulation, we applied a single source which is located at the center of the free surface. The

corresponding modeling results are displayed from Figure 2.10 to Figure 2.12, and computation

time is displayed in Table 2.1. For each frequency, the reference solution is calculated by using the

CG FEM. We calculated the wave solution for the entire domain Ω, and displayed only the area

marked with dashed black line in Figure 2.9 to highlight the waves around the source location.

For the source wavelet, we used Ricker wavelet with three different frequencies (5 Hz, 10 Hz, and

15 Hz). The sizes of fine and coarse cell are 20 m and 100 m, respectively.

Each example shows waves from a different frequency but the same number of multiscale

basis functions: 5 and 10. We can observe that the smaller number of basis functions (Li = 5)

can model the low frequency waves accurately within a shorter amount of computational time

as shown in Figure 2.10(a), while the error increases as the frequency becomes higher (Figure

2.11(a) and 2.13(a)). Nevertheless, we can tune the accuracy by applying more basis functions

(Figure 2.13(b)), and multiscale forward modeling still gives the faster solution than the reference

solution. The set of results shows that the accuracy of GMsFEM solutions is highly correlated with

the number of basis functions Li and the corresponding frequency. For example, a smaller number

of basis functions can simulate low-frequency waves accurately, while more basis functions are

required to obtain accurate wave solutions with high-frequencies. In other words, a greater number

of basis functions incorporates more detailed wave modes, so we can capture the details of short

wavelengths.

In addition to the number of basis functions, the coarse cell dimension also has an influence

on the performance of multiscale wave modeling. To demonstrate this point, we performed the

wave simulation in two different sizes of coarse cell (100 m and 200 m) with the same range of

frequencies, and measured the l2-error for the different number of basis functions. As we solve

the eigenvalue problem (equation 2.4), the number of eigenvalues is equivalent to the degrees of

freedom in a coarse neighborhood Ki. Therefore, we assigned more basis functions for a larger
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(c) Reference solution (5 Hz)

Figure 2.10: GMsFEM solution vs. reference solution from 5 Hz source frequency.
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(c) Reference solution (10 Hz)

Figure 2.11: GMsFEM solution vs. reference solution from 10 Hz source frequency.
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Figure 2.12: GMsFEM solution vs. reference solution from 15 Hz source frequency.
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Figure 2.13: Comparison of waves from GMsFEM solution and reference (CG FEM) solution
from different source frequency: (a) 5 Hz, (b) 10 Hz, and (c) 15 Hz.
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coarse grid as shown in Table 2.1. Considering the 5 Hz case, a larger coarse grid with more basis

functions could simulate the waves more rapidly with higher accuracy. In contrast, the simulation

in the smaller coarse grid (100 m) performs better at higher frequency (15 Hz case) by employing

smaller number of basis functions.

The fine-scale mesh of the GMsFEM depends on the dimension of the background property.

In other words, in the GMsFEM, the fine grid cell size is fixed, and only coarse cell size is altered

to tune the computational speed and accuracy. However, utilizing too large grid size than the given

frequency band may cause dispersion error in wave simulations. The GMsFEM with a large coarse

cell (i.e., 100 m in 15 Hz) can have a better suppression of the dispersion error compared to the

other classical methods (i.e., finite-difference or finite-element method) with 100 m grid size by

applying multiple basis functions. Here the key difference of the GMsFEM is that it uses basis

functions which incorporate fine-scale heterogeneity information to enhance the accuracy of the

coarse-scale modeling.

In the GMsFEM, defining the dispersion condition and performing a stability analysis is still

challenging task since the multiscale approach is an approximation of a numerical method (CG

FEM in this case). Hence, it is difficult to build a direct relationship between numerical solutions

of the GMsFEM and analytic solutions. For this reason, the modeling parameters of the multiscale

method such as the size of coarse cell and required number of basis functions are somewhat em-

pirical parameters. Gibson et al. (2014) showed examples of the numerical analysis of dispersion

error for different GMsFEM parameters in the acoustic wave problem. In this study, we measured

the l2-relative errors to measure the accuracy of the multiscale wave solutions. The l2-error and ob-

served runtime with corresponding speedup are displayed in Table 2.1. We measured the runtime

using single computing processor unit.

We can take two examples of utilizing the multiscale RTM in velocity model building cycle.

1) First, when we combine this tool with salt plotting or horizon picking to delineate complex

salt structures, the multiscale RTM can provides the result rapidly. As the multiscale forward

algorithm performs the offline stage only once for the entire model and applies the same bases for
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Table 2.1: Runtime and l2-relative errors for the different number of basis functions. Runtime for
the fine-scale reference solution is 4.21 s. The number in parenthesis shows the speedup compared
to the reference (CG FEM) case.

H=100 m Time (s) ‖e5Hz‖ ‖e10Hz‖ ‖e15Hz‖
Li = 5 0.83 (4.96) 0.539 0.928 1.282
Li = 6 1.01 (4.08) 0.234 0.423 0.707
Li = 7 1.31 (3.13) 0.218 0.338 0.694
Li = 8 1.56 (2.64) 0.221 0.299 0.565
Li = 9 1.88 (2.19) 0.205 0.283 0.382
Li = 10 2.12 (1.94) 0.058 0.085 0.105

H=200 m Time (s) ‖e5Hz‖ ‖e10Hz‖ ‖e15Hz‖
Li = 10 0.72 (5.72) 0.092 1.408 1.156
Li = 12 0.82 (5.02) 0.062 1.151 1.382
Li = 14 1.08 (3.81) 0.057 1.065 1.163
Li = 16 1.27 (3.24) 0.047 0.645 0.875
Li = 18 1.53 (2.69) 0.041 0.113 0.423
Li = 20 1.83 (2.25) 0.038 0.061 0.227

multiple shots with different locations, the cost savings increase when we simulate a large number

of shots. In addition, given that applying GMsFEM with a smaller number of bases can capture

macro-scale features within a short period of time, applying this model reduction technique to

RTM will be beneficial by manipulating the level of accuracy adaptively according to the stage

of velocity updating. For instance, when a velocity model is actively updated and therefore less

accurate, we use a smaller number of basis to test the large-scale structural image. Once detailed

velocity structure is determined, we assign more basis functions to resolve the subtle variation of

stratigraphic features. 2) Another advantage of taking GMsFEM for a wave modeling is that we

can accelerate the wave calculation which directly contributes to acceleration of the wave-equation

based imaging technique such as FWI or least-squares migration. The amount of speedup in FWI

or least-square RTM can be greater than in RTM case since they requires multiple iterations of a

model or an image update.

To demonstrate the influence of multiscale wave modeling on the final migration image, we

applied the RTM with a varying number of basis functions to demonstrate these advantages of

multiscale RTM to optimize the velocity modeling workflow. We evaluated images using three
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Figure 2.14: Velocity models at different stage of model update: (a) velocity model without salt
diapir after intermediate model updating, and (b) accurate velocity model after finalizing the model
updating.

hypothetical velocity models representing different stages of model design. We started with a ve-

locity model (Figure 2.14(a)) with accurate strata. We then performed the RTM with the smoothed

velocity model (Figure 2.14(b)), which includes salt diapirs, to acquire the final image. When we

update a velocity model combined with the GMsFEM RTM, the multiscale basis functions need

to be updated when a certain velocity model update create a large velocity contrast. Therefore, we

need to regenerate the basis functions when the velocity model is altered from Figure 2.14(a) to

Figure 2.14(b). However, the offline stage adds little effort compared to the total computation of

RTM.

We generated synthetic data for the fine grid through a forward modeling with a Ricker wavelet
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Figure 2.15: An example of the synthetic shot gathers.
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(a) Gradient of fine-scale RTM image.
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(b) Reference (fine-scale) RTM image, Runtime=213.61 min.

Figure 2.16: Reference RTM images (fmax=15Hz) that are performed using fine-scale Continuous-
Galerkin finite element method: (a) the gradient image and (b) final RTM image after applying the
Laplacian filter. The average memory usage per processor unit is 861.52 MB.
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(central frequency = 15 Hz). The size of grid is 20 m. Receiver and shot interval are 20 m and

100 m, respectively. The length of the streamer is 15 km and 639 shots are applied at the fixed 20 m

depth, and the total recording time is 12 s. An example of a shot gather with the corresponding

spectrum is displayed in Figure 2.15. For the RTM on the fine-scale grid, we employed the CG

FEM and consider the result as a reference (Figure 2.16); however, we used GMsFEM for the

simulation of forward and backward wavefields in multiscale RTM. The imaging condition shown

in equation 2.22 yields a gradient image as presented in Figure 2.16(a). Accordingly, we applied a

Laplacian filter and made a correction for the geometrical spreading to obtain the final RTM image

(Figure 2.16(b)). The results from the multiscale RTM at different stages of the model update are

displayed in Figure 2.17 and 2.18. We also displayed the gradient image to observe any existence

of noisy signals since a clean gradient is important for earlier stages of velocity model building

for the model update. The gradient images show high contrast around the salt boundary, and it

does not include any artifact. Therefore, we can conclude that the artifacts becomes visible after

applying the Laplacian filter.

The runtime for the coarse-scale results measures the online stage, while values for the fine-

scale results are for the impedance matrix inversion (S−1
h ). The online time includes the time

taken for the coarse impedance matrix inversion (S−1
H ) and the large sparse matrices multiplica-

tion (RTS−1
h R and RTfh). In multiscale RTM, we need to perform additional matrix operations;

however, by reducing the size of impedance matrix significantly from (Nf ,Nf ) to (Nc,Nc), the

multiscale modeling approach rapidly calculates the matrix inversion.

We performed RTM on a coarse mesh which has the same grid size as the minimum wavelength

(≈ 100 m). For all the RTM examples with different background velocities, we applied the same

source frequency (15 Hz) and varied the number of basis functions (Li =5, 8, 10).

According to the table 2.2, when we applied 5 multiscale bases, we could obtain images with

CPU time reduced by 76% from the reference case; however, as commonly observed from the

different RTM examples with few multiscale basis functions (Li = 5), numerical artifacts that

are caused by the lack of basis functions contaminates the RTM image, especially the deeper part
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Figure 2.17: Multiscale RTM images obtained from the correct strata velocity (Figure 2.14(a)) with
different number of basis functions: (a, b) Li = 5, (c, d) Li = 7, and (e, f) Li = 9. Right panels
(b, d, f) show the corresponding gradient image of the RTM images shown in left panels (a, c, e).
Relative l2-errors are as follows: (a) ‖eLi=5‖=0.869, (b) ‖eLi=7‖=0.211, and (c) ‖eLi=9‖=0.087.

of the model. Although deeper part of the strata are not obvious, multiscale RTM with 5 basis

functions still can capture the large scale structures. As the goal of imaging in earlier stage of

velocity modeling is not defining all the detailed strata but locating macro geological structures

quickly, the multiscale RTM image with 5 basis functions is good enough for verifying the near

surface structures. Then, we apply more basis functions to resolve deeper part of the subsurface.

As presented in Figure 2.17, when we use the correct strata velocity model without salt diapir, the

multiscale RTM could successfully resolve the salt top even in the case with fewer basis functions

(Figure 2.17(a)). After defining the salt top and the shallower part of the model through several

iteration of velocity modeling using the multiscale RTM with small number of basis functions, we
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Figure 2.18: Multiscale RTM images obtained from the smoothed true velocity (FIgure 2.14(b))
with different number of basis functions: (a, b) Li = 5, (c, d) Li = 7, and (e, f) Li = 9. Right pan-
els (b, d, f) show the corresponding gradient image of the RTM images shown in left panels (a, c,
e). Relative l2-errors are as follows: (a) ‖eLi=5‖=0.859, (b) ‖eLi=7‖=0.236, and (c) ‖eLi=9‖=0.075.

then can apply more number of basis functions to delineate salt bottom and to resolve deeper part

of the models as pointed with red arrows in Figure 2.17(a) and 2.17(c). Comparing the cases with

7 and 9 basis functions, we can observe that the RTM images with an accurate background velocity

exhibit improvements on suppressing dispersion in the image with 9 basis functions, as indicated

with red arrows (Figure 2.18). Considering the multiscale RTM results shown in Figure 2.18(c), 9

multiscale basis functions could resolve the image in a shorter amount of time without sacrificing

the accuracy. The multiscale RTM with 9 basis functions could accelerate the imaging by reducing

computation time; 46% faster than the RTM with continuous CG FEM wave simulation engine.

In short, multiscale RTM can rapidly resolve the image of the salt boundary and capture the
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Table 2.2: Runtime of multiscale RTM, memory usage, and speedup for the different number of
basis functions.

Method # Basis functions (Li) RTM runtime Speedup Memory usage
CGFEM RTM - 213.61 min - 861.52 Mb

GMsFEM RTM 5 51.58 min 4.14 1157.96 Mb
GMsFEM RTM 7 101.52 min 2.11 1494.63 Mb
GMsFEM RTM 9 146.27 min 1.46 1743.07 Mb

large-scale geological structures by applying a small number of basis functions. Although multi-

scale RTM with few basis functions cannot capture the detailed variation of geological structures,

it can be useful when the velocity model is actively updated since it resolves macro structures

rapidly. Utilizing more basis functions (Li = 7), we could obtain more clear subsurface strata and

the salt boundary by suppressing numerical artifacts contaminating deeper part of the model. By

allocating additional basis functions (Li = 9), the signal to noise ratio in RTM image is enhanced,

and all the strata in deeper part are clearly interpretable. We may consider a flexible approach to

utilize the GMsFEM modeling engine for improving the efficiency of the wave modeling. For in-

stance, it is adequate to build only a low-resolution image using lower frequencies with a few basis

functions at early stage of model building. We then gradually increase the maximum frequency

and the number of basis functions as the velocity model becomes closer to the true velocity. Such

strategy can also save the computational time by applying the flexible frequency band and the

number of basis functions.

Note that multiscale RTM can be a rapid imaging solution, but it consumes more memory to

store the projection matrix (Table 2.2). Again, given that the early stage of velocity modeling does

not require high frequency to capture all the detailed stratigraphy due to active model updating,

we can apply a smaller number of basis with lower source frequency to build the macro structural

image. The images and corresponding runtime demonstrates how the frequency-domain multiscale

RTM can improve the efficiency of velocity modeling and geological structure imaging.
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2.4 Conclusions

The GMsFEM algorithm efficiently simulates waves in the frequency domain by reducing the

number of unknowns. We demonstrated the reduction of the impedance matrix size using a smaller

number of multiscale basis functions. The projection matrix which consists of multiscale basis

functions plays an important role to tune the trade-off point between the accuracy and the com-

putational speed. By allocating appropriate basis functions, the simulation on a coarse-grid can

still capture the influence of fine-scale heterogeneity without sacrificing accuracy. We introduced

the first results of applying frequency-domain wave modeling using the GMsFEM to RTM, and

the migration images show the influence of the number of basis functions to manipulate the cal-

culation speed. The proposed RTM with a small number of basis functions helps to accelerate

updating of velocity model by computing large-scale structural image within short amount of time.

In addition, using more basis functions directly contributes to enhance the quality of the final RTM

images. In this study, we considered the RTM using continuous-Galerkin FEM modeling engine

(fine-scale solution) as a reference case. The proposed multiscale RTM algorithm still obtains

images more rapidly than when performing the computations on the original fine-scale grid. As

a future study, robust performance comparisons between the different imaging algorithms such

as finite-difference implementation or ray-based method (i.e., beam-migration) and the GMsFEM

RTM need to be made for rigorous demonstration of the efficiency of the multiscale appoach.
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3. REVERSE-TIME MIGRATION VIA FREQUENCY-ADAPTIVE

MULTISCALE SPATIAL GRIDS∗

3.1 Introduction

Reverse-time migration (RTM) is a powerful tool to resolve images in complex subsurface

structure (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983; Biondi and Shan, 2002; Symes,

2007) such as salt diapirs, complex faults, or karst structures by overcoming the limits of asymp-

totic ray theory. However, the RTM, a wave equation based imaging tool, requires considerable

computational cost to model the wavefields. In the RTM, the wave simulation for computing both

forward and backward propagated wavefields takes the largest portion in computational cost. For

accurate imaging and stable wave solutions, the size of the spatial grid needs to satisfy the disper-

sion condition at the highest frequency component. Accordingly, there has been many research to

suppress the numerical dispersion error in the time-domain wave simulation. For instance, Fomel

et al. (2013) proposed a method for low-rank wave extrapolation using a two-step time marching

approach with a real valued phase function. A low-rank scheme decomposes the original wave

propagation matrix into a small set of spatial locations with corresponding representative wave

numbers. Here the rank of the approximation tunes the tradeoff between accuracy and computa-

tional efficiency. Sun et al. (2015) proposed a one-step wave extrapolation scheme which applies

a complex-values low-rank decomposition to approximate the space-wavenumber domain waves.

Another method which performs subgrid upscaling with seismic imaging was introduced by Nunes

and Minkoff (2014). The operator upscaling algorithm is widely used for the flow simulation (Ar-

bogast, 2003; Arbogast et al., 2002). Vdovina et al. (2009) applied the operator upscaling method

for 3-dimensional elastic wave propagation, and Nunes and Minkoff (2014) employed the method

for 2-dimensional acoustic wave simulation with the RTM examples.

Although the time-domain wave modeling is widely used, we can suppress the dispersion er-

∗Reprinted with permission from “Reverse time migration via frequency-adaptive multiscale spatial grids” by
Cho and Gibson, 2019. Geophysics, 84(2), Copyright 2019 by Society of Exploration Geophysicists.
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ror in the frequency-domain with less effort. For instance, Hustedt et al. (2004) proposed an

extension of the mixed-grid method for accurate wave simulation. Chen (2012) introduced an

average-derivative optimal scheme to utilize a rectangular mesh with different grid spacing. An-

other method, so called compact high-order method (Turkel et al., 2013), is proposed for an ac-

curate and efficient solution of the Helmholtz equation. The compact high-order approach can

realize sixth-order accuracy by maintaining the sparsity of the numerical operator (second-order

finite difference method). In addition to the easiness of dealing with the dispersion condition, the

frequency-domain has advantage in that we can incorporate high-frequency components without

considering a reduced time step. Also, the wave solutions of multiple sources can be acquired by

solving one-time matrix inversion.

In the frequency-domain wave equation, we can formulate a linear system through a numerical

discretization of the given equation. We can take two different methods for solving such a sys-

tem: a direct solver and an iterative solver. The direct solver is more accurate than the iterative

solver, and it can solve multiple sources (right-hand side) at one time. Nevertheless, it requires

significant computational cost, which becomes more critical when we solve a 3-dimensional or

multi-parameter problems. These days, however, recent advances in direct solvers could mitigate

the computational burden by applying low-rank simplifications (Wang et al., 2011; Ghysels et al.,

2016) which reduces the cost of LU decomposition. The iterative solver is feasible even in a ma-

chine with relatively small memory; however, it is sensitive to the preconditioner (Plessix, 2007).

In this research, we will focus on the method to reduce the computational cost of wave modeling

and imaging using the direct solver.

Most conventional numerical methods apply the same spatial grid for the entire target frequency

band, which might be oversampled for the modeling of low frequency waves. Therefore, in this

paper, we applied a model reduction technique, so called Generalized Multiscale Finite Elements

Method (GMsFEM), to apply different sizes of spatial grid for different frequency bands. For

example, we apply larger spatial grid size to simulate wavefields with long wave length, while

applying a finer grid to simulate higher frequency wavefields. The key idea of the proposed method
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is that we superpose multiple coarse grids for simulation onto a fixed fine imaging mesh to maintain

the dimension of the final RTM image. The GMsFEM carries out simulations on the coarse grid

using a small number of finite element basis functions computed on the fine grid for a given earth

model.

Considering wave simulations, the GMsFEM (Efendiev et al., 2011; Chung et al., 2014; Gib-

son and Fu, 2015; Cho et al., 2017b) can be considered as a method similar to that proposed by

Nunes and Minkoff (2014) since we also utilize multiscale grids; however, the key difference is

that GMsFEM directly computes the basis functions including fine-scale heterogeneity without

performing any subgrid upscaling. We solve the wave problem in the frequency-domain to make

each frequency component independent. For the Helmholtz equation using GMsFEM, it becomes

quite straightforward to utilize various size of spatial grids. In addition, the advantage of working

with the frequency-domain is that we can apply different number of eigenfrequencies to capture the

detailed feature of wavefields at different frequencies. For example, when we solve a local spectral

problem, we consider a smaller number of eigenfrequencies for large wavelengths, and examine a

larger number of eigenfrequencies for shorter wavelength features. In the frequency-domain, we

can also compute the wave solution through the one-time matrix inversion without considering a

reduced time step.

Our previous work (Gao et al., 2015), the time-domain elastic wave modeling using the GMs-

FEM, shows that lower frequency components can be simulated with a smaller number of multi-

scale basis functions without sacrificing accuracy. Also, Cho et al. (2017a) showed that GMsFEM

approach can enhance the efficiency of seismic imaging by accelerating the wave modeling. Thus,

a key goal of this study is to apply GMsFEM wave modeling using frequency-adaptive multiscale

spatial grids to compute the RTM image condition. In this paper, we will briefly illustrate an ap-

plication of GMsFEM to solve the Helmholtz equation by varying the eigenvalue and the coarse

grid size, then we show a set of multiscale RTM examples using the Marmousi-2 synthetic model

to show how the frequency-adaptive spatial grids can contribute to enhance the efficiency of the

RTM.
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3.2 Theory and method

To begin, we introduce the acoustic Helmholtz equation as follows:

− ω2

ρv2
u = ∇ · (1

ρ
∇u) + f, (3.1)

where ρ and v are the density and velocity, respectively. u is pressure, and f denotes the source

term. The angular frequency is represented by ω. The Helmholtz (equation 3.1) models compres-

sional waves in the frequency domain. The key idea of the proposed method is that we vary the

sizes of grid cells based on frequency to enhance the efficiency of wave modeling. In the multi-

scale method, a coarse grid is superposed onto the fine-scale grid occupying the same domain, and

material properties are specified on the fine-scale grid.

3.2.1 Generalized multiscale finite element method

We applied the GMsFEM to handle the multiscale mesh Ω that consists of a fine grid h and

coarser grids Hi (i = 1, · · · ,M) as shown in Figure 3.2, where M is the number of coarse grids.

In GMsFEM, first, we need to make a link between the fine grid and the coarse grids by calculating

basis functions in each coarse cell solving local spectral eigenvalue problems to represent fine scale

heterogeneity of the property models. The calculation of the basis functions, which is called the

offline stage in GMsFEM, need to be performed for each coarse grid that is superposed on the fine

grid. The basis functions are determined by the coarse mesh and the material properties, and they

are independent of the source and receiver locations. Therefore, we can keep applying the same

basis functions once the velocity and density model are determined. To put it differently, the offline

stage is performed only once for the given model, and it accounts for a small portion of the total

computational effort. Also, the multiscale basis functions are built in each coarse neighborhood

Ki (i = 1, · · · , N) at ith coarse node, a shaded area of the mesh, in Figure 3.2. Then, for the actual

wave simulation, each coarse grid utilizes the multiscale basis functions to calculate forward and

backward wavefields during the online stage. In summary, the GMsFEM, an efficient model re-

duction approach, includes two main procedures: offline and online stage. In the offline stage, we
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Background property model RTM image

Low-frequency waves

Mid-frequency waves

HIgh-frequency waves

Figure 3.1: Conceptual sketch of the multiscale RTM using the frequency-adaptive spatial grids.
Note that the gradient image construction in the box with dashed line is performed independently
depends on the frequencies, so we applied different size of coarse mesh for the different frequency
bands. The dimension of the background property model, the RTM image, and the gradient images
at different frequencies are all identical with the dimension of the fine mesh.
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(a) (b)

Figure 3.2: The grids in GMsFEM for different frequency band: (a) A grid for low frequency band,
and (b) a grid for high frequency band.

calculate the multiscale basis functions incorporating the heterogeneity of the background prop-

erty model. These basis functions incorporate the most dominant modes computed from local

spectral problems, so utilizing them for the simulation on coarse grid can significantly enhance

the computational efficiency. After the construction of multiscale basis functions, in the frequency

domain, we implement an impedance matrix inversion to compute the wave solution during the

online stage. The amount of reduction in computational cost becomes greater as the frequency

decreases since we apply a coarser spatial grid for longer wavelengths. In addition, wave modeling

using GMsFEM is more beneficial when we deal with multiple shot-receiver pairs as in RTM case

as the basis functions are independent of the source and receiver locations.

3.2.1.1 Construction of multiscale basis functions: Offline stage

The offline stage starts by solving the local spectral problem in each coarse neighborhood Ki

(Efendiev et al., 2011) as follows:

−∇ · (1

ρ
∇ϕ) = λκϕ, κ =

∫
Ki

1

ρ
|∇φ|2dx, (3.2)
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where λ and ϕ are the eigenvalue and corresponding eigenfunctions, respectively. When we solve

the eigenvalue problem on the fine grid in a coarse neighborhood Ki, the total number of eigen-

values is identical to the number of the degrees of freedom in Ki. φ is the function satisfying the

condition −∇ · (1
ρ
∇φ) = 0 inside of each coarse cell Hi, while the function φ is a linear function

which starts from 0 and increases linearly to 1, or starts from 1 and decreases to 0 at the boundary

of coarse cell ∂Hi. To enhance the accuracy of wave solutions, Fu and Gao (2017) proposed an

alternate form of the eigenvalue problem that includes an additional term ψ2:

−∇ · (ψ
2
i

ρ
∇ϕ) = λκ′ϕ, κ′ =

∫
Ki

ψ2
i

ρ
|∇φ|2dx, (3.3)

where ψ indicates the element-wise partition of unity (Figure 3.3(a)). Given the solutions for the

function φ, from either equation 3.2 and 3.3 we can rewrite the generalized eigenvalue problem

(equation 3.3) in discrete form as

Kϕ = λMϕ, (3.4)

where

M =

∫
Ki

κζξdx, K =

∫
Ki

ψ2
i

ρ
∇ζ · ∇ξdx, (3.5)

where M and K are the mass and stiffness matrices for the given coarse neighborhood Ki. ζ

and ξ are the first order polynomial basis functions that are applied on the fine mesh. Below we

will compare results for both approaches for computing basis functions. We can calculate a set of

eigenvalues with corresponding eigenvectors for each node’s coarse neighborhood Ki by solving

equation 3.4. After solving the local spectral problem, to define the most dominant wave modes

with corresponding eigenfunctions, we sort the eigenvalues in an ascending way for each of Ki as

follows:

λ1
i ≤ λ2

i ≤ · · · ≤ λLi
i ≤ · · · ≤ λNh

i , (3.6)

where, Nh and Li are the number of fine nodes within a coarse neighborhood Ki and the number

of multiscale basis functions that are required for wave simulations, respectively. The key idea of
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(a) (b)

Figure 3.3: Partition of unity being discretized in different method: (a) Element-wise partition of
unity, and (b) nodal point-wise partition of unity.

GMsFEM is that we only consider a small number of modes to capture the details of wavefields

more efficiently without loosing accuracy. Therefore, when we simulate waves in a low frequency

band, we can reduce the computational cost by applyingLi basis functions that is enough to capture

the macro variation of the waves with long wavelength. In high frequency bands, however, we

can tune the accuracy by increasing the number of basis functions Li since larger eigenvalues

correspond to higher modes that incorporate more detailed variation of the wave solutions. In

short, the first Li eigenfunctions ϕji , (j = 1, · · · , Li) that are required in the GMsFEM solver are

controlled by the level of heterogeneity on the fine-scale grid. As a final step of building basis

functions at Ki, we defined a nodal point based partition of unity ψ′i (Figure 3.3(b)) since the

eigenfunctions are not globally continuous. We obtain multiscale basis functions Φi through the

multiplication of ϕi with the partition of unity ψ′i as follows: Φi = ϕi � ψ′i (Babuška et al., 1995),

where � denote the element-wise multiplication. The above equations illustrate the method to

calculate basis functions in a fixed coarse grid. We apply the same relations for computing the set

of multiscale basis functions for the different coarse grids as well. To do so, we define a multiscale
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basis space in the coarse grid as

V H
k = span

{
Φi
j|1 ≤ i ≤ N, 1 ≤ j ≤ Li

}
, (3.7)

where V H
k is the coarse mesh approximation space in the kth coarse grid. In a fixed fine-scale

dimension of Ω, the total number of basis functions N becomes smaller as the size of coarse cell

Hi becomes larger. Also, we can apply smaller number of multiscale basis functions Li in a smaller

size of coarse cell.

3.2.1.2 Wave modeling in the coarse grids: Online stage

In the online stage, we perform the actual wave modeling, and the multiscale basis functions

being built in the offline stage are used for the wave simulation. We follow the approach summa-

rized by Marfurt (1984) for the discretization of the Helmholtz equation,

SHk u
H
k = fHk , (3.8)

where the impedance matrix SHk at the kth coarse grid can be expanded as follows: SHk = KH
k +

iωCH
k + ω2MH

k . KH
k and MH

k are stiffness and mass matrices. uHk and fHk are the pressure

field and source term, respectively. The coarse impedance matrix also includes the damping term

CH
k to suppress the reflection of outgoing wavefield at the model boundary ∂Ω. In this paper,

we employed a Perfectly Matched Layer (PML) absorbing boundary condition, and the detailed

implementation of the damping term in the GMsFEM is introduced by Fu and Gao (2017).

We can conceptually express the coarse-scale impedance matrix and the source term at the ith

coarse node in an arbitrary coarse grid by using the multiscale basis functions Φi as

SHi =
∑
p,q

∫
Ki

[
− ω2

ρv2
Φp
iΦ

q
i +

1

ρ
∇Φp

i · ∇Φq
i

]
dx,

fHi =
∑
p

∫
Ki

fΦp
i dx,

(3.9)
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where ω is angular frequency. However, instead of building the coarse-scale mass and stiffness

matrices explicitly, we define a projection matrix to R by using the multiscale basis functions and

coarse grid information. It makes the coarse grid simulation represent the fine-scale heterogeneity,

and the global projection matrix R can be expressed as

R = (R1,R2, . . . ,RN)T ,

Ri = (Φ1,Φ2, . . . ,ΦLi
) ,

(3.10)

where the column of the Ri matrix are the discrete multiscale basis functions Φj from eachKi. The

row dimension of the global R matrix represents the total number of nodal points in the fine grid,

while column dimension is identical to the product of the number of multiscale basis functions

and the nodal points in the coarse mesh. Note that the projection matrix R is determined by the

coarse space V H
k and the number of basis functions Li. Thus, we need to obtain the projection

matrix for each kth coarse grid, then directly calculate the coarse-scale mass and stiffness matrices

from the fine-scale matrices. Therefore, we can rewrite the ith multiscale basis function Φi in the

space domain with coarse grid V H
k as Φi =

∑
j rijφj , where rij is the coefficient and φj is a piece-

wise linear basis functions in the fine-scale domain V h. The coarse impedance matrix then can be

written as

SHi,j =

∫
Ω

[
− ω2

ρv2
ΦiΦj +

1

ρ
∇Φi · ∇Φj

]
dx,

=
∑
m,n

rmi

[∫
Ω

− ω2

ρv2
φmφndx +

∫
Ω

1

ρ
∇φm · ∇φndx

]
rjn,

(3.11)

and the source vector can be set as

FH
j =

∫
Ω

fΦjdx =
∑
l

rjl

∫
Ω

fφldx, (3.12)

where, rij is the component of the projection matrix R. We can express the fine-scale impedance
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matrix as Sh = shmn and smn = s(φm, φn), we then have

SH = RTShR,

fH = RTfh.

(3.13)

After obtaining final solutions in the coarse mesh, we can simply recover the fine-scale solutions

through the multiplication of the projection matrix: uh = RuH . In general, wave modeling in

the frequency domain requires a large computational cost due to saving a large impedance matrix

in a memory space and calculation of the matrix inversion. As an alternative, when we construct

the impedance matrix on the coarse grid using multiscale basis functions, we can dramatically

reduce the number of unknowns in matrix operations compared to the fine-scale problem. When

we deal with 3-dimensional problems in the GMsFEM, we still solve the same local eigenvalue

problems to obtain the multiscale basis functions. However, the memory consumption might in-

crease significantly when we store the multiple projection matrices Ri. Hence, in this case, we

may consider an alternative proposed by Gao et al. (2018), which is a high-order multiscale finite

element approach. This method helps reduce the memory consumption since it does not require

matrix projection since it computes the coarse-scale matrices explicitly.

When we build the mass and stiffness matrices, the size of the grid satisfying the dispersion

condition is controlled by the maximum frequency, as it requires a larger number of sampling

points per wavelength. Therefore, when we use a conventional approach with a fixed size of spa-

tial grid for the entire frequency band, the simulation of low frequency waves is performed in

the mesh that is too fine compared to the wavelength. To overcome this problem, we designed a

multiscale mesh (Figure 3.2) by varying the size of the spatial grid depending on the frequency

bands. A central task in utilizing the frequency-adaptive spatial grid is that we construct a different

projection matrix R for each pair of the coarse- and fine-scale meshes. We consider a fine grid

h with 101 by 101 dimension (10 m interval) to demonstrate the reduction of the impedance ma-

trix size obtained by this adaptive approach. We also compare two coarser grids H1 and H2 for

different frequency bands on the fine grid h, where H1 (100 m) and H2 (50 m) are for simulating
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waves in low- and mid-frequency band, respectively. In this case, the dimension of the fine-scale

impedance matrix Sh is 10, 2012. Given the size of each coarse grid, the dimension of the projec-

tion matrix for each grid can be as R1[10, 201 × 121Li] and R2[10, 201 × 2, 601Li], respectively.

After applying these projection matrices for each coarse grid (equation 3.13), we then acquire the

coarse-scale impedance matrices. The dimension of SH1 and SH2 become (121Li)
2 and (2, 601Li)

2,

respectively. Setting an appropriate number of multiscale basis functions Li plays an important

role to effectively reduce the numerical error in a fixed size of coarse grid. Considering the amount

of reduction in matrix size, we can roughly estimate how much we can enhance the efficiency of

the computation. Note that utilizing more multiscale basis functions Li increases the dimension

of coarse-scale matrices, but we still can attain the impedance matrices which have much smaller

dimension than the fine-scale impedance matrix (Cho et al., 2017a). To obtain accurate solutions

from the GMsFEM, we need to apply a sufficient number of basis functions to incorporate detailed

feature of wavefields into the solutions; however, this number decreases as the cell size decreases.

For example, if 10 basis functions are required to obtain accurate solution in H1, we can calculate

accurate wave solutions in H2 only by using 6 or 7 basis functions.

3.2.2 Multiscale RTM imaging condition

A popular imaging condition for RTM is to calculate zero-lag cross correlation between shot-

and time reversed receiver-domain wavefields (Baysal et al., 1983). However, this imaging condi-

tion results in additional computational cost when we work in the frequency-domain because of the

repeated Fourier transform. Thus, we used an imaging condition using zero-lag cross-correlation

between the Born wavefields and the observed seismic data (Chavent and Plessix, 1999). Brigham

(1988) showed that the RTM imaging condition can be obtained throughout the Fourier transform

pairs in the frequency domain as follows:

φk =
Ns∑
i=1

∫ ωmax

0

R

{[
∂ui(ω)

∂mk

]T

d∗i (ω)

}
dω, (3.14)
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where φk denotes the image value at the kth model parameter. ui and d∗i indicate the forward mod-

eled wavefield and measured data, and superscript ∗ means the complex conjugate in the frequency

domain.

Before deriving the imaging condition using a coarse grid wave simulation, we first take the

partial derivative of the Helmholtz equation with respect to the kth model parameter mk in the

fine-scale grid as
∂Sh

∂mk

uh + Sh
∂uh

∂mk

= 0, (3.15)

then we can rearrange above equation as

∂uh

∂mk

= [Sh]−1

[
− ∂S

h

∂mk

uh
]
, (3.16)

where we can rewrite the term consisting of the Born modeling operator and the background wave-

fields as v for conciseness, which is referred to as a virtual source vector. Therefore, the Born

wavefield can be also expressed as [Sh]−1v. The Born wavefield ∂uh

∂mk
can be calculated by using

the forward modeling algorithm, which is an impedance matrix inversion (Pratt et al., 1998; Shin

et al., 2007) in the frequency domain. By applying the projection matrix R, we define the Born

wavefield in the coarse grid as
∂uH

∂mk

= [RTShR]−1v. (3.17)

We can derive the final multiscale imaging condition by plugging in equation 3.17 into equation

3.14 as

φk =
Ns∑
i=1

∫ ωmax

0

R
[
vTR(SH)−1RTd∗i (ω)

]
dω, (3.18)

where Ns is the total number of shots. We can calculate the image value for the kth model param-

eter by applying equation 3.18. Note that even though we performed the wave simulation in the

coarse grid, the dimension of the RTM image is the same as that of the background property model

(or fine mesh). After calculating the wave solutions, we project the coarse grid wavefields to the

fine grid by using R before applying the virtual source vector. Therefore, the final multiscale RTM
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result would have the same resolution with the reference RTM image. Based on equation 3.18,

we can develop the imaging condition which includes multiple coarse grids and corresponding

projection matrices as

φk =
Ns∑
i=1

Nb∑
j=1

∫ ωj

ωj−1

R
[
vTRj(S

H)−1RT
jd
∗
i (ω)

]
dω, (3.19)

where φk denotes the image value at kth model parameter. Ns is the total number of shots. Nb is the

selected number of frequency bands – for example, when we simply divide the target frequency

band into low, middle, and high frequencies, then Nb is three. Also, each frequency band will

be allocated to a different coarse grid. The imaging condition (equation 3.19) does not take into

account incident wave energy, and this problem becomes more critical when we consider cases with

large impedance contrast such as salt diapir or karst structures. As a solution, Claerbout (1971)

proposed a source illumination term to recover clearer images at larger depth by scaling the RTM

image. In addition, inspired by Chavent and Plessix (1999)’s work showing the migration image

can be improved by dividing with the Hessian matrix, we applied a diagonal of the pseudo-Hessian

matrix (Shin et al., 2001) to reduce the computational cost as follows:

φ =

∑Ns

i=1

∑Nb

j=1

∫ ωj

ωj−1
R
[
fT
vRj(S

H)−1RT
jd
∗
i (ω)

]
dω∑Ns

i=1

∑Nb

j=1

∫ ωj

ωj−1
R [diag(fT

v fv)] dω + λ
, (3.20)

where fv is a matrix form of the virtual source vectors v to represent the entire target image

domain. λ is a damping factor to stabilize the numerical operation, and fT
v fv is the approximated-

Hessian matrix. By taking the diagonal component of the approximated-Hessian, we implement

the pseudo-Hessian matrix. By applying equation 3.20, we calculate the RTM imaging condition

more efficiently combined with a frequency-adaptive multiscale spatial grids.

3.3 Numerical examples

In this section, we first demonstrate how the GMsFEM performs wave modeling by varying the

number of basis functions and the size of the coarse mesh. Then we show the RTM examples using
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Figure 3.4: A small size (40× 40) property model; (a) velocity and (b) density, to demonstrate the
difference of local spectral problems in accuracy.

GMsFEM for the forward- and backward-modeling with various combinations of coarse and fine

meshes. For generating a synthetic dataset to test the RTM, we applied the continuous-Galerkin

finite element method (CG FEM), while GMsFEM is employed to calculate the imaging condition

of the multiscale RTM.

3.3.1 Comparison of the local spectral problems

We created a heterogeneous property model (nx = ny = 40) that includes an anticline struc-

ture (Figure 3.4). When the model consists of 40 × 40 elements, the dimension of the fine-scale

impedance matrix Sh becomes 1681× 1681 as shown in Figure 3.5. We compared the impedance

matrices that are generated from the finite difference method (FDM) and the finite element method

(FEM). We used the second-order FDM and FEM in each case. The FDM operator utilizes four

grid points (above, below, left and right of grid point of interest) to solve the PDEs. In contrast,

the continuous-Galerkin FEM also utilizes the grid points located on diagonals passing through the

grid point of interest, so that values on a total of eight locations are used. Therefore, the impedance

matrix of FEM has more off-diagonal components (Figure 3.5(b)) than that of FDM case (Figure
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3.5(a)).

As the model size becomes larger, the size of the fine-scale impedance matrix exponentially

increases. Therefore, in this research, we apply GMsFEM to reduce the number of unknowns in

the impedance matrix inversion. We superposed a 4 × 4 coarse mesh onto the fine mesh, where a

single coarse cell has 100 fine cells. We then need to build a projection matrix which consists of

the multiscale basis function that are obtained by solving the local eigenvalue problems (equation

3.3). Figure 3.6 exhibits the projection matrices (equation 3.10) from different local spectral prob-

lems. The multiscale basis functions that are calculated by equation 3.2 yield the projection matrix

shown in Figure 3.6(a), while equation 3.3 provides the projection matrix which is displayed in

Figure 3.6(b). The projection matrix that is calculated from the local eigenvalue problem incorpo-

rating the squared partition of unity has a more evenly distributed variation of values than the other

one. The influence of this on the numerical performance will be shown below. The row dimension

of the projection matrix follows the total number of fine-scale nodes, while the column dimen-

sion is governed by the coarse mesh nodes (HN = 25). In this case, we used 10 basis functions

(Li = 10). As we apply more basis functions to capture more detailed wavefields, the column

dimension (HNLi) of the projection matrix increases. In Figure 3.7, the inset detailed image of

the coarse-scale impedance matrix is displayed for each case. In addition to the evenly distributed

magnitudes, when we applied the projection matrix from the spectral problem including the parti-

tion of unity, the coarse impedance matrix has more weight on the diagonal components (Figure

3.7(b)). In contrast, the diagonal components of the coarse-scale impedance matrix shown in Fig-

ure 3.7(a) are hidden by the surrounding values. We utilize the Marmousi-2 model (Figure 3.8)

for calculating frequency-domain wavefields to show how the two approaches to solve the local

spectral problems affect the wave solution. For a mono-frequency source at 15 Hz, we calculated

a reference wavefield (Figure 3.9(a)) using fine-scale impedance matrices, which took 1.273 s in

run-time with a single processor unit. The wave solutions from the GMsFEM are displayed in

Figure 3.9(b) and 3.9(d), which took 0.194 s for computing time. Through the GMsFEM, we

could compute the solution 6.5 times faster than the reference (CG-FEM). The speedup does not
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(a)

(b)

Figure 3.5: The fine-scale impedance matrices Sh from the property models shown in Figure 3.4
using two different discretization method: (a) FDM and (b) FEM. The impedance matrix built via
FEM contains a greater number of off-diagonals.
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Figure 3.6: The projection matrices that are calculated from different eigenvalue problems: (a)
−∇ · (1

ρ
∇ϕ) = λκϕ and (b) −∇ · (ψ

2
i

ρ
∇ϕ) = λκ′ϕ.
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(a)

(b)

Figure 3.7: The coarse-scale impedance matrices from the different projection matrices incorpo-
rating distinct local spectral problems: (a) SH = RT

1/ρS
hR1/ρ and (b) SH = RT

ψ2/ρS
hRψ2/ρ.
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Figure 3.8: Marmousi-2 model: (a) Velocity, and (b) density models.
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proportionally increase as the dimension of the coarse impedance matrix decreases, because we

use a sparse direct solver which takes only non-zero values and coordinates of the components into

consideration. One might argue that the coarse impedance matrix requires longer computational

time to factorize the matrix, as it has more a complicated geometry than the fine-scale one which

is almost tridiagonal. Nevertheless, as the matrix factorization is required only once when we con-

struct the coarse-scale matrices, and we can compute results for multiple source locations (or RHS)

with a single matrix inversion. Therefore, this task contributes little effort to the total computation.

When we compare the run time between Figure 3.9(b) and 3.9(d), there is no difference since

the size of the matrix is the same; however, we demonstrate that the spectral problem incorporating

the element-wise partition of unity yields a more accurate solution by subtracting the GMsFEM so-

lutions from the reference solution as shown in Figure 3.9(c) and 3.9(e). Note that the magnitudes

of the difference are displayed in the 5% of the color scale of the snapshots in Figure 3.9. Most

of the error is located around the source location, and the oscillatory numerical artifacts diminish

as the horizontal distance becomes further from the source point. This numerical error which is

smaller than 1% of the original amplitude of the waves is negligible when we apply the GMsFEM

to the RTM case due to destructive interference among the multiple sources. Given that including

the partition of unity in the spectral problem puts more weight on the diagonal component of the

coarse impedance matrix, we also tried to apply the weight (lumped matrix) by force; however,

weighting the diagonal component of the coarse-scale matrix did not result in any meaningful en-

hancement of the accuracy. Cho et al. (2017a) introduced the multiscale RTM examples by using

the GMsFEM with the basis functions from equation 3.2 (used in Figure 3.9(b)); however, in this

research, we applied the local eigenvalue problem including the partition of unity (Figure 3.9(d))

term as it helps to improve the accuracy of the GMsFEM solutions.

Before applying the frequency-adaptive spatial grid to the frequency-domain wave modeling,

we first made comparisons between the performance of different numerical methods: FDM, FEM,

and GMsFEM, for the waves from a mono-frequency single shot. For each approach, we located

the wave source at the center of the model, and calculated wavefields by applying two different
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Figure 3.9: The wave solutions of a mono-frequency source (15 Hz) that are calculated from (a)
fine-scale impedance matrix and coarse-scale impedance matrix shown in (b) Figure 3.7(a) and in
(d) Figure 3.7(b). Figure (c) and (e) exhibit the difference between the reference and Figure (b)
and (d), respectively. The eigenvalue problem including the partition of unity term (equation 3.3)
provides a better projection matrix for calculating more accurate wave solutions.
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source frequencies (5 Hz and 15 Hz) as displayed in Figure 3.10. In the 5 Hz examples (Figure

3.10(a), 3.10(c), 3.10(e), and 3.10(g)), all the wavefield snapshots are almost identical (εL2 <

0.03). In contrast, for the 15 Hz case, we obtain dispersive artifacts in the snapshot from the

GMsFEM with seven basis functions (Figure 3.10(f)), which means that seven basis functions are

not enough to capture all the details of the waves with 15 Hz frequency. Nevertheless, we can

suppress the artifacts by applying more basis functions, and the GMsFEM (Li = 9) still provides

the solutions faster than the reference case. The key strategy of the GMsFEM is to utilize the

basis functions and grid size flexibly according to the frequencies of interest. The corresponding

L2-error is displayed in Table ?? to demonstrate the accuracy of the solutions. Here, we used the

fine-scale FEM solution as a reference. To quantify the computational efficiency, we presented

the run-time of each numerical method in Table ??. The run-time is divided into three parts:

matrix factorization, matrix projection, and matrix inversion. Note that the process of the matrix

projection (equation 3.13) is only performed in the GMsFEM case. As demonstrated in Figure

3.5, as the FEM implies more off-diagonals than the FDM, the FEM shows slower computing

speed than the FDM. Given the total computing time, the FDM could simulate a single shot 30 %

faster than the FEM. The GMsFEM, however, provides the fastest solutions even though it requires

additional matrix operations. Comparing only the run-time of the matrix inversion, the GMsFEM

(Li = 9) can achieve significant speedup (21 and 11 times faster than FEM and FDM, respectively)

due to the substantially reduced dimension of the impedance matrices.

3.3.2 Wave modeling using frequency-adaptive grids

Here we demonstrate how the numerical error of the GMsFEM behaves differently depending

on the given parameters: the size of the cell in the coarse mesh, frequency bands, and the number of

multiscale basis functions. First, we generated a shot gather by using the CG FEM (h = 10 m) as

shown in (Figure 3.11). By taking this shot profile as a reference, we compared differences between

the reference spectrum and the frequency spectra of the GMsFEM solutions for different numbers

of basis functions (Li =6, 8, 10 and H = 100 m) as displayed in Figure 3.12. Note that the size of

coarse cell is fixed to 100 m in this example. We measured the run-time using a single computing
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Figure 3.10: Comparisons of the wavefields from varied numerical methods: FDM (a, b), FEM (c,
d), GMsFEM with Li = 7 (e, f), and GMsFEM with Li = 9 (g, h). The waves in left and right
panel of the figure shows 5 Hz and 15 Hz waves, respectively. The dashed red circle in Figure (f)
points the area with dispersive artifacts caused by the insufficient multiscale basis functions.
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Method tF tP tI ttotal ε5Hz ε15Hz

FEM 7.6818 - 2.3246 10.006 - -
FDM 5.9371 - 1.3408 7.2779 - -

GMsFEM (Li = 7) 1.2578 1.8697 0.0075 3.2025 0.029 0.178
GMsFEM (Li = 9) 2.3756 2.6576 0.1129 5.1461 0.014 0.033

Table 3.1: Comparison of run-time (sec) and L2-errors for simulating a mono-frequency single
shot using different numerical schemes: FDM, FEM, and GMsFEM (Li = 7 and 9), where tF and
tP denote the run-time took for the matrix factorization and matrix projection, respectively. tI is
the time for the actual matrix inversion.

processor (Figure 3.12). Given the run-time being displayed in Figure 3.12, the corresponding

speedup for each choice of the number of basis functions is 6.07 (Li = 6), 4.15 (Li = 8), and 2.82

(Li = 10), respectively. Fewer basis functions can simulate the low frequency wave (10 Hz), and

we can also calculate the high frequency waves by applying more basis functions. For example, in

30 Hz case, we can compute the solutions using 10 basis function (Figure 3.12(c)), while 6 basis

functions are enough to get accurate solutions in 10 Hz wave (Figure 3.12(a)).

We presented the frequency spectra calculated from FEM and GMsFEM in Figure 3.13. Though

both of the frequency spectra seem to be identical, the numerical error from GMsFEM is concen-

trated in the high frequency part. To make a clear comparison, we subtracted the frequency spectra

of the GMsFEM from the reference one as presented in Figure 3.14. While the fine-scale cell is

fixed to 10 m, we performed wave simulations in different sizes of coarse grids: 100 m and 50 m,

to observe the relationship between the size of coarse cell and the number of basis functions in

GMsFEM.

We measured the difference of the frequency spectra from the reference result for the mesh

with 100 m coarse cell with 6, 7, and 8 basis functions (Figure 3.14(a), 3.14(c), and 3.14(e)). We

can observe that the wavefields below 20 Hz are accurate in spite of the fewer basis functions.

However, at the higher frequency band (over 20 Hz), the wavefields are sensitive to the number of

basis functions. We found that 8 basis functions are enough to suppress the numerical errors over

the entire frequency bands as presented in Figure 3.14(e). Similarly, in the spectra examples from
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Figure 3.11: Synthetic seismic data (15 Hz central frequency) that are generated by using the
continuous-Galerkin finite element method: (a) A seismogram from the source at the center point
of the surface with (b) corresponding frequency spectrum of the shot gather.
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Figure 3.12: Cross-section of the spectra at frequencies of (a) 10 Hz, (b) 20 Hz, and (c) 30 Hz,
where the runtime for each case is 26.1 s, 38.3 s, and 56.9 s. It took 158.4 s to simulate the waves
in fine-scale mesh.
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(a)

(b)

Figure 3.13: Comparison of the frequency spectra: (a) Reference frequency spectrum that is calcu-
lated only by using fine-scale grid, and (b) frequency spectra from GMsFEM (Li = 6) with 100 m
coarse grid.
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the 50 m coarse cell (Figure 3.14(b), 3.14(d), 3.14(f)), the error decreases as we applied more basis

functions; however, in this case, we could achieve an acceptable level of accuracy only by using 5

basis functions. In short, the GMsFEM with smaller coarse mesh can calculate the solutions using

fewer basis functions.

In GMsFEM, as there exists a trade-off between the speedup and accuracy, we can define an

optimized set of parameters: number of basis functions Li and coarse cell size H , according to

the target frequency band. For example, at lower frequency, we utilize a coarser mesh with an

appropriate number of basis functions Li,flow , while using a finer mesh at higher frequencies with

Li,fhigh bases. Note that we allocate more basis functions in the coarser mesh at lower frequency

(Li,flow > Li,fhigh). We will harness this feature of GMsFEM in the RTM by varying the size of

coarse mesh at different frequency bands.

3.3.3 Multiscale RTM examples

The Marmousi-2 model is used to demonstrate the RTM using multiscale grids. To generate

synthetic seismic data, we applied a source with 15 Hz central frequency, and the total recording

time is 5 s. The receivers are located on the entire surface of the model every 10 m. The source

interval is 50 m, and 338 sources are applied at 10 m depth. We divided the target frequency

band into three parts: 0 ∼ 10 Hz, 10 ∼ 20 Hz, and 20 ∼ 25 Hz. Then different sizes of coarse

meshes are applied for each frequency band with an appropriate number of basis functions: 200 m

(Li = 12), 100 m (Li = 8), and 50 m (Li = 6), while the fine mesh is fixed to 10 m. The RTM

gradient images for each frequency band are presented in Figure 3.15. The gradient image from the

lowest frequency band builds macro geological structures, and the image from the higher frequency

bands can capture the detailed strata. Therefore, by using GMsFEM combined with multiscale

spatial grids, we could successfully construct the gradient images without any contamination of

numerical artifact. The key part of this method is to utilize appropriate number of basis functions

for each frequency band to maximize the efficiency of the computation. We sum all the gradient

images in Figure 3.15 to obtain the final RTM gradient images. Then, we applied the Laplacian

filter to get the final RTM images.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Difference between the reference frequency spectrum and the spectra from GMsFEM
with different coarse grid: H = 100 m (a, c, e) and H = 50 m (b, d, f), varying the number of
basis functions: (a) Li = 6, (c) Li = 7, (e) Li = 8 and (b) Li = 3, (d) Li = 4, and (f) Li = 5.
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Run-time in sec. (speedup)
Method Grid size 0∼10 Hz 10∼20 Hz 20∼25 Hz 0∼25 Hz

FEM 10 m 373.71 (-) 380.42 (-) 203.11 (-) 957.24 (-)
FDM 10 m 250.39 (1.48) 266.11 (1.43) 138.26 (1.47) 654.76 (1.46)

GMsFEM 100 m 104.63 (3.57) 107.17 (3.55) 57.21 (3.55) 269.01 (3.56)
GMsFEM Adaptive 146.23 (2.56) 162.74 (2.34) 117.83 (1.72) 426.80 (2.24)

Table 3.2: Run-time for calculating RTM gradient image at each frequency band. In the GMsFEM
with 100 m coarse grid size, eight basis functions are applied. We used 200 m (0∼10 Hz), 100 m
(10∼20 Hz), and 50 m (20∼25 Hz) coarse grid for calculating the waves at each corresponding
frequency band. Through the frequency-adaptive spatial grid and GMsFEM, we can achieve the
RTM results 2.24 times faster than the reference case. For the measurement of run-times, we used
100 processor units.

We present the run-time of the RTM in Table 3.2 to compare the computational speed among

different numerical schemes. We used 100 computing cores to perform the imaging. Comparing

the run-times, the FDM computes the imaging conditions 46 % faster than continuous-Galerkin

FEM. Also, when we applied the GMsFEM with constant coarse meshes (100 m, Li = 8), the

RTM result could be obtained more rapidly as a factor of 3.56. Note that the FEM is the refer-

ence to compute the speedup of the FDM and the GMsFEM RTM examples. In the GMsFEM

with frequency-adaptive approach, however, the speedup of GMsFEM varies upon the size of

coarse grid size. For example, the speedup becomes larger at lower frequency due to the reduc-

tion of the total number of unknowns in the online stage. Observing the run-time in Table 3.2,

the RTM method using frequency-adaptive GMsFEM could compute the imaging condition faster

(speedup≈1.53) than the finite-difference approach. However, note that the magnitude of speedup

varies with the order of numerical method and the performance of the direct solver. We used the

PARDISO (Lawson et al., 1979; Dongarra et al., 1988; Dodson et al., 1991) solver in this study. We

made comparison between the RTM results from different wave modeling engines. The results of

RTM with CG FEM modeling (Figure 3.16(c) and 3.16(d)) delineate more detailed strata than the

images with FDM modeling engine (Figure 3.16(a) and 3.16(b)). This is attributed to the number

of points that are considered to compute a wavefield at a certain grid points.

To put it differently, the FEM uses a greater number of points (8) than the FDM (4), so it
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Figure 3.15: Multiscale RTM gradient (h = 10 m) from different size of coarse mesh for cor-
responding frequency bands: (a) low-frequency band; 0∼10 Hz (H = 200 m, Li = 12), (b)
mid-frequency band; 10∼20 Hz (H = 100 m, Li = 8), and (c) high-frequency band; 20∼25 Hz
(H = 50 m, Li = 6).
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Figure 3.16: The gradient images (left panels) and final RTM images (right panels) from various
numerical method for wave modeling: FDM (a, b), FEM (c, d), GMsFEM with Li = 8 (e, f), and
GMsFEM with frequency-adaptive grids (g, h). The run-time of each RTM images are presented
in Table 3.2.
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calculates the solution more accurately compared to the same order of FDM. The results with

fixed and adaptive meshes are compared in Figure 3.16(f) and 3.16(h). Despite the fact that the

multiscale RTM with a fixed mesh can capture the large-scale variations of the geological struc-

tures more rapidly than the reference image, it is hard to resolve the fine strata that are located

between the major layers. In addition, after we applied the Laplacian filter to the gradient image,

dispersive numerical artifacts are appeared (Figure 3.16(f)). We can apply different solutions to

suppress the dispersive artifacts. Reducing the target frequency might be helpful to decrease the

contamination of the image; however, eliminating high-frequency components also hinders to re-

solve the small-scale geological features. Therefore, we applied a flexible spatial grid according to

the target frequencies. Figure 3.16(g) and 3.16(h) exhibit the gradient and the final RTM images,

respectively, that are calculated by using the frequency -adaptive multiscale spatial grids, and it can

resolve all the detailed geological features of the Marmousi-2 model. It also computes the imaging

conditions 2.24 times faster than the CG FEM case.

3.4 Conclusions

The GMsFEM algorithm combined with flexible multiscale grids can efficiently simulate waves

in the frequency domain. We demonstrate that the GMsFEM using the newer local spectral prob-

lem including the partition of unity term provides the multiscale basis functions which can enhance

the accuracy of the solutions. We then show the relationship between the size of coarse cell and

the number of basis functions in GMsFEM to maximize the speedup. The results show that the

coarser mesh requires more basis functions to capture the influence of fine-scale heterogeneity,

but we may use a smaller number of basis functions as the coarse mesh becomes finer. We also

applied a different size s of coarse mesh and corresponding number of multiscale basis to enhance

the computational efficiency of the wave modeling in the RTM. When we compared the multiscale

RTM results with a fixed mesh and a flexible mesh, the RTM result with the frequency-adaptive

meshes produces better images than the other one.
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4. ACCELERATING FULL-WAVEFORM INVERSION VIA GENERALIZED

MULTISCALE FINITE ELEMENT METHOD

4.1 Introduction

Full-waveform inversion (FWI) has drawn wide attention for constructing an earth model with

high resolution. As a wave-equation based imaging technique, FWI also helps to resolve complex

geological structure with corresponding earth properties such as velocity or acoustic impedance.

Since Lailly and Bednar (1983) and Tarantola (1984) proposed a back propagation algorithm to

perform waveform inversion more efficiently, scientists have been developing FWI algorithms

with enhanced robustness (Virieux and Operto, 2009). However, FWI still requires significant

computational cost, and many studies also consider efficient implementations of FWI.

There exist two different approaches to implement FWI in terms of the domain of wave model-

ing: time- and frequency-domain. Time-domain is widely used due to its advantage in computing

memory consumption. Also, we can parallelize the time-domain wave modeling by considering

sub-domain decomposition. However, working in the frequency domain has its own advantages

as well (Pratt, 1999; Wu and Alkhalifah, 2018). For example, in terms of wave modeling, we

can obtain the wave solutions by applying a one-time impedance matrix inversion without reduc-

ing time stepping. Therefore, if we can reduce the size of impedance matrix, the speed of wave

simulation could be greatly enhanced. Also, we do not need to consider a reduced time-step to

simulate high frequency waves. Moreover, in the frequency domain FWI, we can improve gradient

scaling which helps accelerate convergence of the solution by applying the inverse Hessian at each

frequency independently.

To enhance the computational efficiency of FWI, we can consider several different approaches:

1) selection of a suitable sequence of frequency groups, 2) applying a technique for fast model

convergence, or 3) accelerating wave modeling. Selecting frequency components which have a

large contribution to the final inversion results can reduce the computational burden by removing
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unnecessary forward- and backward-modeling. Sirgue and Pratt (2004) presented a FWI strategy

with selective frequency components. In their approach, the total number of frequency could be

reduced by eliminating redundant information in the wavenumber coverage of the target offset.

Sirgue and Pratt (2004) proposed a new strategy of discretization which is determined by the

maximum offset presented in the seismic survey. Kwon et al. (2017) applied the same strategy

to the Laplace domain FWI by selecting the Laplace constants to minimize the redundancy of the

imaginary wavenumber while reserving the continuity of the imaginary wavenumber of the local

wave path. However, utilizing a large number of frequency components can help to enhance the

signal to noise ratio, especially when we deal with a field data.

Xue et al. (2017) introduced a method to accelerate the convergence rate of the FWI pro-

cess by replacing the attenuated gradient with a Q-compensated gradient. In this approach, they

employed a visco-acoustic wave equation to formulate a Q-compensated FWI. Pan et al. (2017)

applied a new preconditioning schemes for the conjugate-gradient method to compute the Hessian-

free Gauss-Newton method rapidly. In addition, for more effective wave modeling, Fomel et al.

(2013) employed a low rank approximation of a wavenumber matrix for wavefield extrapolation.

The low rank method decomposes the initial wave propagation matrix into a small sets with repre-

sentative wave numbers. Another method for acceleration of wave modeling is proposed by Nunes

and Minkoff (2014), which uses a subgrid upscaling technique.

In this paper, the proposed method concentrates on the acceleration of FWI via rapid compu-

tation of the wavefield. We apply the Generalized Multiscale Finite Element Method (GMsFEM)

(Efendiev et al., 2011; Chung et al., 2014; Gibson and Fu, 2015), which is similar to Nunes and

Minkoff (2014)’s approach. However, the key point of the GMsFEM is to reduce the dimension of

impedance matrix without performing any upscaling or model homogenization. From our previous

work (Gao et al., 2015; Fu and Gao, 2017; Cho et al., 2017b), we demonstrated that the GMsFEM

with fewer basis functions can accelerate the simulation of low frequency waves without sacrificing

accuracy. Also, Cho et al. (2017a) introduced the first application of GMsFEM forward model-

ing to frequency domain RTM, showing that the GMsFEM wave modeling engine could resolve
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images of complex salt structure rapidly. As FWI requires multiple iterations of model updates,

applying the GMsFEM to FWI for resolving subsurface geological structures has the potential of

even greater benefit from the accelerations provided by the GMsFEM.

In this paper, we will briefly describe the theory of GMsFEM to solve the Helmholtz equation in

acoustic media, then we illustrate the model update term in FWI using multiscale wave modeling.

A sensitivity kernel analysis is also presented with FWI results from the Marmousi-2 model. The

examples of the sensitivity kernel demonstrate that the correct model update is still maintained

even if we apply the coarse scale wave simulation. Also, we will demonstrate the multiscale FWI

approach by using field seismic data acquired in the Gulf of Mexico offshore area.

4.2 Method

We start the application of the GMsFEM wave modeling to full-waveform inversion with the

following acoustic wave equation:

− ω2

ρv2
u = ∇ · (1

ρ
∇u) + f, (4.1)

where v and ρ are the velocity and density, respectively. u is the pressure, and f is the source term.

In GMsFEM, we use a mesh which includes two different sizes of grids (Figure 4.1(a)). The wave

simulation via GMsFEM consists of two main steps: 1) construction of basis functions on the fine

grid, and 2) wave modeling in the coarse grid.

4.2.1 Computation of multiscale basis functions

The process for the construction of the basis functions on the coarse grid is termed the “offline

stage". The offline stage is performed only once, since the multiscale basis functions depend only

on the given velocity and density model. In other words, these basis functions are independent

of the acquisition geometry such as source and receiver locations. Therefore, the offline stage

adds little effort to the total computation. We present the mesh which is used for the GMsFEM

implementation in Figure 4.1(a). In the GMsFEM, the domain Ω consists of three factors: 1)

fine-scale mesh, 2) coarse-scale mesh, and 3) a coarse node’s neighborhood. The fine mesh (gray
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(a) A spatial mesh for GMsFEM.
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(b) Partition of unity at a coarse neighborhood.

Figure 4.1: (a) Fine meshes incorporate the properties (v and ρ), and the actual wave simulation is
performed in the coarse mesh. Gray area shows a coarse neighborhood with the corresponding (b)
partition of unity.

solid line) stores all the background properties and has the same dimension as the properties (i.e.,

velocity and density). The coarse mesh is highlighted with bold solid line in Figure 4.1(a), which

contains all the nodal points to compute the wave solutions. When we calculate wave solutions

at ith coarse node, we need to use the multiscale basis functions, which are built in the ith coarse

neighborhood (surrounding coarse cells of ith coarse node) as colored with gray (Figure 4.1(a)).

The offline stage starts with a local spectral problem for each coarse neighborhood. Efendiev

et al. (2011) proposed a method of solving the local eigenvalue problem (equation 4.2) for building

multiscale basis functions to incorporate the fine-scale heterogeneity of the background properties,

which can be expressed as follows:

−∇ ·
(

1

ρ
∇ϕ
)

= λ
1

ρ
ϕ,

1

ρ

∂ϕ

∂n
= 0. (4.2)

Fu and Gao (2017) then introduced the following form of eigenvalue problem by including the
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partition of unity (Babuška et al., 1995) (Figure 4.1(b)) for more accurate wave solutions:

−∇ ·
(
ψ2
i

ρ
∇ϕ
)

= λ
ψ2
i

ρ
ϕ,

ψ2
i

ρ

∂ϕ

∂n
= 0, (4.3)

where ψ is the partition of unity, and n is the outward-pointing normal vector of K. Cho and Gib-

son (2018) demonstrated that the local spectral problem including the partition of unity enhances

the accuracy of the wave solutions due to the well-balanced distribution of the impedance matrix

components and properly weighted diagonal components. To solve the local spectral problems in

each coarse neighborhood, we discretize equation 4.3 as

Kϕ = λMϕ, (4.4)

where

M =

∫
Ki

1

ρ
ζξdx, K =

∫
Ki

1

ρ
∇ζ · ∇ξdx, (4.5)

where ζ and ξ are the first order polynomial basis functions that are applied on the fine mesh. M

and K are the mass and stiffness matrices for the given coarse neighborhood Ki, and the coarse

neighborhood is highlighted with gray color in Figure 4.1(a). Solving the local eigenvalue prob-

lems for each coarse neighborhoods yields a set of eigenvalues with corresponding eigenfunctions.

We then sort the eigenvalues in ascending order for each of Ki as:

λ1
i ≤ λ2

i ≤ · · · ≤ λLi
i ≤ · · · ≤ λ

Nf

i , (4.6)

where Nf is the degrees of freedom for the given coarse neighborhood, and Li denotes the number

of multiscale basis functions that is selected for actual wave modeling. By considering higher

order wave modes, the basis functions used in the GMsFEM capture the influence of more detailed

heterogeneity of the wave solutions. The first Li eigenfunctions ϕji , (j = 1, · · · , Li) that we chose

in the GMsFEM solver are controlled by the degree of heterogeneity of the fine-scale background

properties and the level of desired accuracy. We obtain the final multiscale basis functions by
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multiplying the eigenfunctions and partition of unity (Φj
i = ϕjiψi), since the defined eigenfunctions

are not globally continuous (Babuška et al., 1995). A detailed procedure for building multiscale

basis functions using a continuous-Galerkin formulation is illustrated by Gao et al. (2015); Fu and

Gao (2017).

4.2.2 Wave modeling in coarse mesh

The Helmholtz equation incurs a large computational cost to compute the inverse of the global

impedance matrix at every frequency component, which can be expressed as

Su = f , (S = ω2M + iωC + K). (4.7)

In the finite element method, this impedance matrix S is a combination of the mass M, stiffness

K, and damping C matrices (Marfurt, 1984). For the implementation of the absorbing boundary

conditions at the model edge, we applied a Perfectly Matched Layer (PML) boundary condition.

The detailed description for the implementation of the damping matrix in coarse-scale modeling

is illustrated by Fu and Gao (2017). By taking the inverse of the impedance matrix, we acquire

the wave solutions u at the given frequency ω. For the matrix inversion, we can take two different

methods to solve the system (equation 4.7): direct solver or iterative solver. Although the itera-

tive solver might be useful in term of computing memory consumption, accuracy of the solver is

sensitive to choice of preconditioner (Plessix, 2007), so it hinders computing accurate solutions

especially in high-frequency components. In contrast, a direct solver yields an accurate solution

and it is more robust than an iterative solver in terms of stability; however, it requires significant

computational cost. In this case, since accurate wave modeling is critical in FWI, we need to use a

direct solver (Pardiso from MKL library) (Lawson et al., 1979; Dongarra et al., 1988; Dodson

et al., 1991).

Therefore, a key goal of this study is to reduce the computational burden working with a direct

solver. To achieve this goal, we aim to reduce the dimension of the fine-scale impedance matrix Sh.

In our proposed method, we do not construct the mass and stiffness matrices in the coarse mesh
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explicitly. Instead, we compute the coarse-scale impedance matrix from the fine-scale impedance

matrix by using a projection matrix R, where the column i of the R matrix is the discrete multiscale

basis functions Φj
i from each coarse node neighborhood Ki. The projection matrix is expressed as

R = (R1,R2, . . . ,RN)T ,

Ri = (Φ1,Φ2, . . . ,ΦLi
) .

(4.8)

The row dimension of the projection matrix is identical to the total number of fine-scale nodes, and

the column dimension is equal to the product of the number of multiscale basis functions Li and the

total number of coarse-scale nodes. A primary focus of our approach is that we accelerate the wave

simulation (online stage) in the frequency domain by dramatically reducing the size of impedance

matrix via this projection. To compute the coarse-scale impedance matrix SH and source vector

fH , we apply the projection matrix R to the existing fine-scale impedance matrix Sh and source

vector fh, which can be written as follows:

SH = RTShR, fH = RTfh. (4.9)

After applying the projection matrix, we can express the system shown in equation 4.7 in a coarse-

scale formulation as

∑
m,n

rmi

[∫
Ω

− ω2

ρv2
φmφndx +

∫
Ω

1

ρ
∇φm · ∇φndx

]
rjn
∑
k

rjk

∫
Ω

uφkdx =
∑
l

rjl

∫
Ω

fφldx,

(4.10)

where rij is the component of projection matrix and φj is a piece-wise linear basis function in

the fine-scale finite element formulation. After obtaining final solutions on the coarse mesh, we

reapply the projection matrix (uh = RuH) to recover the original dimension of the solution in

fine-scale mesh. Note that even though the wave modeling is performed in the coarse mesh, we

still acquire the wave solution which has the same dimension as the fine-scale (reference) mesh.
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4.2.3 FWI using GMsFEM

The goal of FWI is to update the property model in the direction which can minimize the misfit

of observed and modeled data. Therefore, we applied a steepest descent method to minimize the

l2 objective function, which can be written as

E(m) =
1

2

ns∑
i=1

nr∑
j=1

‖ (uij − dij)2 ‖, (4.11)

where m is the model parameter. uij and dij are the modeled and observed wavefield at ith source

and jth receiver pairs, respectively. By taking the partial derivative of equation 4.11, the steepest

descent direction can be determined as

∂E(m)

∂mk

=
ns∑
i=1

nr∑
j=1

R

[
∂uij
∂mk

(uij − dij)∗
]
, (4.12)

where the asterisk denotes a complex conjugate. To compute the Born (or partial derivative) wave-

field ∂mk
uij , we used the differentiating form of the Helmholtz equation (equation 4.7). Taking the

partial differential of the system with respect to a kth model parameter yields the following:

∂Sh
∂mk

uh + Sh
∂uh
∂mk

= 0, (4.13)

or
∂uh
∂mk

= S−1
h v, (4.14)

where v = − [∂mk
Sh]uh is the virtual source term which is required to perturb the model pa-

rameter. By substituting equation 4.14 into equation 4.12, we obtain the gradient of the objective

function as
∂E(m)

∂mk

=

∫ ωmax

0

ns∑
i=1

R
[
vTS−1

h r∗i (ω)
]
dω, (4.15)

where r∗i denotes the complex conjugate of the residual. The fine-scale impedance matrix Sh has

a symmetric form and satisfies the reciprocity condition. R indicates the real part of the complex
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number. As calculating the Born wavefields explicitly requires considerable computational cost,

we employed the adjoint-state method (Tarantola, 1984; Plessix, 2006). Equation 4.15 expresses

the gradient term using fine-scale wave modeling results. By applying the projection matrix R, we

calculate the multiscale gradient using the coarse-scale wave modeling as

∂E(m)

∂mk

=

∫ ωmax

0

ns∑
i=1

R
[
vTRS−1

H RTr∗i (ω)
]
dω. (4.16)

In FWI, applying an appropriate gradient scaling is important to resolve the deeper part of the

subsurface. In the steepest descent method, we consider the Hessian matrix for the gradient scaling,

which can be written as

Hij =
∂2E(m)

∂mi∂mj

, (i, j = 1, 2, · · ·n), (4.17)

where Hij denote the component of the Hessian matrix, and n is the total number of model param-

eters. Using the complete form of the Hessian (equation 4.17) requires significant computational

cost. The Hessian matrix for the iterative solution termed the full-Newton method, which can be

expressed as

Hij =
∂

∂mi

∂E(m)

∂mj

=
∂

∂mi

R

[(
∂u

∂mi

)T

r∗

]

= R

[(
∂u

∂mi

)T(
∂u

∂mi

)∗
+

∂2u

∂mi∂mj

r∗

]
.

(4.18)

The equation above can be rewritten in matrix from as

Hij = R


[
∂u1
∂mi

∂u2
∂mi

· · · ∂un
∂mi

]


∂u∗1
∂mj

∂u∗2
∂mj

...

∂u∗n
∂mj


+

[
∂2u1

∂mi∂mj

∂2u2
∂mi∂mj

· · · ∂2un
∂mi∂mj

]


r∗1

r∗2
...

r∗n




. (4.19)
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Equation 4.19 can be simplified as

Hi.j = R
{
JTJ∗

}
+ R

{[
∂JT

∂m1
r∗ ∂JT

∂mw
r∗ · · · ∂JT

∂mn
r∗
]}

= Ha + R,

(4.20)

where the R term can be ignored for the simplification, and we call the left term Ha as the approx-

imated Hessian. The method which only considers the term R {JTJ∗} is named the Quasi-Newton

method; however, this method also consumes a great deal of computing resources. Therefore, for

practical implementation of the gradient scaling, Shin et al. (2001) proposed an efficient scheme

called a pseudo-Hessian matrix. The pseudo-Hessian Hp only considers the diagonal components

of the approximated Hessian Ha to reduce the memory consumption. The derivation of the pseudo-

Hessian begins with an approximated Hessian as

Ha(i,j) = R
{
JTJ∗

}
= R

[
vT

1 vT
2 · · · vT

n

] (
S−1

)T
S−1

[
v∗1 v∗2 · · · v∗n

]
,

(4.21)

where v means the virtual source, and the product of the Green’s function (S−1)
T
S−1 can be

approximated by the identity matrix I, then the matrix form of equation 4.21 can be expressed as

Ha(i,j) = R



vT
1v
∗
1 vT

2v
∗
1 · · · vT

nv
∗
1

vT
1v
∗
2 vT

2v
∗
2 · · · vT

nv
∗
2

...
... . . . ...

vT
1v
∗
n vT

2v
∗
n · · · vT

nv
∗
n


. (4.22)

By selecting the diagonal components from the approximated Hessian, we can construct the pseudo-

Hessian as follows:

Hp = diagHa =

[
vT

1v
∗
1 vT

2v
∗
2 · · · vT

nv
∗
n

]
. (4.23)
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Hence, the final term for the update of the kth model parameter results from applying a pseudo-

Hessian matrix, which can be written as

∆m = −
∫ ωmax

0

∑ns

i=1 R
[
vTRS−1

H RTr∗i (ω)
]∑ns

i=1 R [diag(vTv)] + λ
dω, (4.24)

where λ is a damping factor which stabilizes the singularity of the pseudo-Hessian matrix. In

the proposed method, we performed the gradient scaling independently at each frequency, then

summed the normalized model updates over the target frequency band. In this study, we used a

fixed step length (α = 0.02). Thus, at kth model parameter, the final form of the model update can

be expressed as

mk+1 = mk − α
∫ ωmax

0

∑ns

i=1 R
[
vTRS−1

H RTr∗i (ω)
]∑ns

i=1 R [diag(vTv)] + λ
dω. (4.25)

4.2.4 Source estimation

For practical implementation of the FWI, estimating accurate source wavelets is critical for

successful FWI results. In this research, I estimate the source wavelet using a full-Newton method

with a L2-norm objective functions (Lines and Treitel, 1984; Pratt, 1999; Shin et al., 2007). The

source estimation can be started by expressing the source wavelet in complex form as follows:

g = e+ if , where e and f denote its real and imaginary part, respectively. Similarly, the complex

wavefield at jth receiver location can be expressed as

uj = (cj + idj)(e+ if),

= (cje− djf) + i(cjf + dje), (j = 1, 2, · · · , nr),
(4.26)

where cj + idj) is the Green’s function computed at jth receiver location. Supposing that the

observed data as sj = aj + ibj , the residual at each receiver location can be written as

δrj = uj − sj

= cje− djf − aj + i(cjf + dje− bj), (j = 1, 2, · · · , nr).
(4.27)
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Given the full-Newton method begins with the following equation:

δp = −H−1∇Esrc, (4.28)

where δp means the update term of the source wavelet, and∇Esrc is the steepest-descent direction.

As I use L2-norm in this derivation, the objective function Esrc can be expressed as

Esrc =
1

2

∑
j

δrjδr
∗
j ,

=
1

2

∑
j

{
(cje− djf − aj)2 + (cjf + dje− bj)2

}
.

(4.29)

The full Hessian matrix is given by

H =

∂2Esrc
∂e2

∂2Esrc
∂e∂f

∂2Esrc
∂f∂e

∂2Esrc
∂f2

 , (4.30)

Substituting equation 4.30 into equation 4.28 gives

δp = −

∂2Esrc
∂e2

∂2Esrc
∂e∂f

∂2Esrc
∂f∂e

∂2Esrc
∂f2


−1∇eEsrc

∇fEsrc

 (4.31)

By taking differentiation of the objective functions with respect to the real part e and imaginary

part f of the source wavelet yields

∇eEsrc =
∑
j

{
e(c2

j + d2
j)− ajcj − bjdj

}
,

∇fEsrc =
∑
j

{
f(c2

j + d2
j) + ajdj − bjcj

}
.

(4.32)
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The element of the full Hessian matrix H can be calculated by taking the second derivative of the

objective functions as follows:

∂2Esrc
∂e2

∂2Esrc
∂e∂f

∂2Esrc
∂f∂e

∂2Esrc
∂f2

 =

∑j(c
2
j + d2

j) 0

0
∑

j(c
2
j + d2

j)

 . (4.33)

Thus, by performing the matrix operation in equation 4.31, the final update term of the source

wavelet can be expressed as

δp =

δe
δf

 =

−e+
∑

j(ajcj+bjdj)∑
j(c2j+d2j )

−f −
∑

j(ajdj−bjcj∑
j(c2j+d2j )

 . (4.34)

4.3 Numerical examples: synthetic data

4.3.1 Performance analysis with multiple sources

We used the Marmousi-2 model (Figure 4.2) (Martin et al., 2006) to demonstrate the proposed

FWI with the GMsFEM wave modeling engine. We applied smoothing by using 1.5 km by 1.5 km

window to construct an initial model (Figure 4.2(c) and 4.2(d)). To generate a synthetic dataset,

we located 188 shots with 100 m interval, and the receiver interval is fixed to 20 m. The total

recording time and the central frequency are 5 s and 20 Hz, respectively.

In the GMsFEM, we can accelerate the wave modeling by tuning the number of multiscale basis

functions and coarse-scale grid size. (Gibson et al., 2014; Gao et al., 2015; Fu and Gao, 2017; Cho

et al., 2017b). However, as we solve the frequency-domain wave equation by using the direct

solver, the number of RHS values (the number of sources to solve at the same time via one-time

matrix inversion) also has an influence on the computational speed. Thus, we varied the number of

RHS in the direct solver to measure the amount of speedup in the coarse-scale modeling. Figure

4.3 presents the measured average runtime per iteration (mono-frequency) with various number of

RHS and multiscale basis functions. In this example, we tested with 100 (maximum number of

RHS) shots under a single iteration. According to the graph, in the GMsFEM, we can compute
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(a) Marmousi-2 velocity (v) model
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(b) Marmousi-2 density (ρ) model

0 3 6 9 12 15
Distance (km)

0

1

2

3

De
pt

h 
(k

m
)

2.0

2.5

3.0

3.5

(km/s)

(c) Initial guess (v)

0 3 6 9 12 15
Distance (km)

0

1

2

3

De
pt

h 
(k

m
)

1.2

1.4

1.6

1.8

2.0

2.2

2.4
(g/cm3)

(d) Initial guess (ρ)

Figure 4.2: True velocity model and initial estimate.

the wave solutions more rapidly than the reference case (CG FEM); however, as we increase the

number of RHS, the amount of speedup also decreases. In the case with 5 RHS, the GMsFEM wave

modeling with 5 basis functions could compute the solution 2.98 times faster than the reference

case. As we apply more basis functions (Li = 9), the GMsFEM provides the results 1.58 times

faster. In contrast, when we increase the number of RHS to 100, in both cases (Li = 5 and Li = 9),

the speedup reduces to 1.8 and 1.18, respectively. Although the level of speedup decreases, we can

still accelerate the wave modeling by using the GMsFEM wave modeling engine.

Since there exists a tradeoff between the accuracy and speedup in GMsFEM (Chung et al.,

2011, 2014; Gibson et al., 2014; Gao et al., 2015), we also investigated the accuracy of the wave

modeling as presented in Figure 4.4 and 4.5. We first generated the frequency-domain data ma-

trix (Figure 4.4) using 7 Hz mono-frequency source. Observing the differences (Figure 4.4(b) and

4.4(d)) between the GMsFEM and the reference (CG FEM) case, we can conclude that both cases

of the GMsFEM (Li = 5 and 9) could perform the forward modeling without sacrificing accu-

racy. However, considering the difference of the data matrices from 13 Hz mono-frequency source
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Figure 4.3: Performance analysis of the GMsFEM wave modeling as a function of number of
sources included in the right hand side of the system of equation 4.7. The runtime and correspond-
ing speedup presented in bar and line format, respectively.
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(Figure 4.5(b)), we can infer that the five basis functions are not enough to capture all the detailed

variation of the given frequency. Because of this insufficient basis functions with large coarse-scale

grid size (200 m), a dispersive artifact is observed around the source locations (nearby the diago-

nal components of the data matrix) from Figure 4.4(a). Nevertheless, the noise that are originated

from the coarse-scale modeling can be suppressed by applying a larger number of basis functions

(Figure 4.5(d)). In short, the GMsFEM with fewer basis functions can accelerate the simulation of

waves with low frequency. Also, we can model the high frequency waves accurately by increasing

the number of basis functions.

4.3.2 Sensitivity kernel analysis

To demonstrate the influence of the changes in resolution and accuracy of the coarse scale

modeling on the calculation of partial-derivative wavefields, we compared the sensitivity kernels

that are calculated from the GMsFEM and conventional continuous-Galerkin (CG) FEM (the ref-

erence solution). In this test, we computed monochromatic sensitivity kernels for a homogeneous

velocity (2.0 km/s). Those sensitivity kernels are generated from a single source (1 km, 2 km)

with a single receiver (3 km, 2 km) at a single frequency. Figure 4.6 and 4.7 present the sensitivity

kernels that are acquired for 5 Hz and 15 Hz, respectively. As shown in the previous examples with

data matrices, we need to incorporate additional basis functions at higher frequencies to correctly

simulate the details of high frequency waves. Similar patterns that are observed in the forward

modeling using the GMsFEM can be found from the sensitivity kernel. Examining the sensitivity

pattern with 5 Hz frequency (Figure 4.6), the GMsFEM with five basis functions (Li = 5) can

generate a result almost identical to that generated by the reference solution. Therefore, we can

conclude that five basis functions are enough to capture the details of 5 Hz waves and can compute

the partial-derivative wavefields rapidly without sacrificing accuracy. In contrast, for the 15 Hz

source frequency, the sensitivity kernel of the GMsFEM with five basis functions still maintains

the right general pattern; however, the sensitivity kernel is contaminated by numerical artifacts

(Figure 4.7(b)). These artifacts can be suppressed by increasing the number of basis functions to

over seven (Li > 7), as shown in Figure 4.7(c) and 4.7(d).
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Figure 4.4: Mono frequency (7 Hz) data calculated by using the GMsFEM: (a, b) Li = 5 and (c, d)
Li = 9, and the corresponding L2-error is as follows: εLi=5 ≈ 0.08 and εLi=9 ≈ 0.02. Left panel
(a, c) represents the real part of the Fourier components of the modeled data, and right panel (b, d)
shows the difference between the reference (CG FEM) and modeled wave from the GMsFEM.
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Figure 4.5: Mono frequency (13 Hz) data calculated by using the GMsFEM: (a, b) Li = 5 and (c,
d) Li = 9 and the corresponding L2-error is as follows: εLi=5 ≈ 0.87 and εLi=9 ≈ 0.06. Left panel
(a, c) represents the real part of the Fourier components of the modeled data, and right panel (b, d)
shows the difference between the reference (CG FEM) and modeled wave from the GMsFEM.
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Figure 4.6: Comparison of sensitivity kernels (5 Hz).
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Figure 4.7: Comparison of sensitivity kernels (15 Hz).
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4.3.3 Marmousi-2 FWI results

The results of the frequency-domain multiscale FWI are presented in Figure 4.8. The FWI is

started from the initial guess which is displayed in Figure 4.2. We applied 500 iterations to acquire

the final inversion results. The runtime is measured with 400 processor units. In the GMsFEM, in

addition to the number of multiscale basis functions, the coarse-scale grid size can also be altered

to enhance the computational efficiency. Figure 4.8(a), 4.8(c), and 4.8(e) present the results of

the multiscale FWI with 200 m coarse-scale grid. Although the FWI with five basis functions

(Figure 4.8(a)) is contaminated with the trace of coarse mesh, all these artifacts can be attenuated

after considering a greater amount of wave modes (Figure 4.8(e)). In this example, we applied the

same amount of basis functions to demonstrate the influence of coarse grid size. Given the results

shown in Figure 4.8(b), 4.8(d), and 4.8(f), as we expected, a smaller size of coarse grid (100 m)

could resolve better subsurface structures with the same basis functions as the larger coarse mesh.

In Figure 4.8(b), although the FWI result with five basis functions (Li = 5) is contaminated by

numerical artifacts, it can still delineate the macro velocity structure. By utilizing the multiscale

FWI approach with nine basis functions (Figure 4.8(f)), we could get the final solutions more

rapidly (14,650 s) than the reference case (16,050 s).

The corresponding error curve as a function of runtime is displayed in Figure 4.9. The error

curves with 100 m coarse mesh (Figure 4.9(b), 4.9(d), and 4.9(f)) converge faster than the reference

error curve which uses the CG FEM as a modeling engine, though the multiscale FWI with 200 m

coarse mesh (Figure 4.9(a), 4.9(c), and 4.9(e)) ended up with a larger error than the reference

curve. However, this tool for rapid macro velocity model construction may be useful when we need

to quickly construct a background model for the reverse-time migration as it requires smoothed

background model. It can also be utilized as an initial guess for the waveform inversion. As Lailly

and Bednar (1983) showed that RTM is tantamount to the first iteration of FWI, we can consider

the model update in FWI as multiple realizations of gradient computation in RTM. Thus, with this

approach we can expect higher speedup in FWI than in the RTM case.

When we need more accurate and detailed earth models, we apply more basis functions as
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(c) Li = 7 (Total runtime = 8,614 s)
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(d) Li = 7 (Total runtime = 10,105 s)
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(e) Li = 9 (Total runtime = 10,210 s)
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(f) Li = 9 (Total runtime = 14,650 s)

Figure 4.8: GMsFEM FWI results with different numbers of basis functions (reference runtime =
16,050 s).

displayed in Figure 4.8(f). Utilizing nine basis functions (Li = 9) successfully enhances the

resolution of the velocity model and helps to capture more detailed geological features. Given

the error curve shown in Figure 4.9(d) and 4.9(f), as we achieve the higher accuracy, there is less

speedup with GMsFEM. Thus, in GMsFEM, we can enhance the efficiency by tuning the tradeoff

between the accuracy and speedup according to the purpose of the FWI.
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Figure 4.9: l2 error versus runtime. Captions also note average runtime per iteration (reference
time = 32.1 s). Note that both axes are displayed in log scale, so the actual convergence rate is
faster than the apparent slope of the error curve.
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4.4 Numerical examples: field data

We demonstrated the multiscale FWI by using the Marmousi-2 synthetic data. However, even

though a certain inversion scheme could recover the subsurface properties successfully, applying

the same algorithm to the field dataset is still a challenging problem. Moreover, when the acqui-

sition region includes complicated structure such as karst, salt or volcanic diapirs, constructing a

velocity model via FWI becomes more difficult. In this section, we applied the multiscale FWI

method to the field data collected on the the Gulf of Mexico. The seismic survey incorporates a

salt diapir located the middle of area. The field dataset consists of 399 shots with 408 channels.

The shot and receiver intervals are 50 m and 25 m, respectively. The maximum offset is 10,292 m.

The total recording time is 12 s with 4 ms of sampling interval. As a part of pre-processing, we

applied high-pass frequency filter by removing the frequency components under 4 Hz. We also

muted the noise arriving before the first break. We displayed the near-offset gather in Figure 4.10.

Provided that the salt is intruded up to the near surface, the main goal of the multiscale FWI would

be resolving the flank of the salt dome more rapidly than the reference case without degrading the

accuracy or image resolution.

A robust and ideal FWI algorithm might be able to make the solution converge to the global

minimum from a simple starting model such as homogeneous or linearly increasing 1-D model.

However, in real world problems with FWI, it is hard to recover the velocity model without having

a good prior information due to geophysical non-uniqueness problem and issue on the signal to

noise ratio. In addition, since we eliminated the low frequency part (∼4 Hz) which might be

critical to infer the macro velocity structure, the lack of low frequency information hinders the

solution converging to the global minimum. Figure 4.11(b) shows the results of frequency-domain

FWI starting from the 1-D velocity model (Figure 4.11(a)). Although the model could roughly

delineate the location of salt top and the shape of strata, it could not update the velocity of the salt

dome and suffering from the local minimum. There are alternatives to build a good priori model

such as RMS velocity picking, travel time tomography, or salt plotting. In this research, before

performing the actual frequency-domain FWI, we applied the Laplace-domain FWI (Shin and Cha,
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Figure 4.10: Near-offset gather of the field data acquired from Gulf of Mexico region.
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2008) to determine an initial velocity model. One notable feature of the Laplace-domain FWI is

that it utilizes damped wavefields to enhance the converging rate by generating a smoothed forward

and backward modeling results. Also, as the Laplace-domain FWI uses coarser mesh due to a

generous dispersion condition, it requires less computational costs compared to the conventional

frequency domain FWI. We applied 6, 8, and 10 (1/s) Laplace damping constants combined with

low temporal frequencies (0.1∼5 Hz), and acquired smoothed initial velocity model as presented

in Figure 4.12(a).

In the GMsFEM approach, we also need to incorporate the density information for comput-

ing the multiscale basis functions (Chung et al., 2011; Gibson et al., 2014; Fu and Gao, 2017).

Therefore, after obtaining the velocity information through the Laplace-domain FWI, we applied

the Gardner’s relation (Gardner et al., 1974) to define the density of the clastic sediments. We then

assigned a constant density value to the salt body based on the velocity information as presented

in Figure 4.12(b). We build the multiscale basis functions by solving the local spectral problems

(equation 4.3) based on the given initial model.

4.4.1 Forward & Backward modeling analysis

Many scientists have demonstrated the accuracy and speedup of the GMsFEM scheme using

synthetic models (Gao et al., 2015; Cho et al., 2017a; Cho and Gibson, 2018); however, in this

paper, we are to evaluate the GMsFEM through comparisons with field data in forward and back-

ward wave modeling. We first investigated the forward modeled wavefields (Figure 4.13). In the

previous examples with Marmousi-2 data, we showed data matrices to measure the overall error

of the forward modeling; however, in these examples, we present two different mono-frequency

solutions to observe the variation of the wavefield as the velocity model updated. In Figure 4.13,

left (a, c, e) and right (b, d, f) panels show the amplitude of wavefields from 6 Hz and 12 Hz,

respectively. Figure 4.13(a) and 4.13(b) make comparisons between the observed wavefield (gray

line) and the modeled wavefield from the initial property models which is shown in Figure 4.12.

The offset of amplitude is attributed to the Green’s function at the first iteration, which is computed

from the point source with amplitude of 1. Since estimation of a source signature to match the am-
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Figure 4.11: (a) Linearly increasing 1-D velocity model, and (b) conventional frequency-domain
FWI results after 500 iterations.
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Figure 4.12: (a) Initial velocity model acquired from the Laplace FWI, and corresponding (b)
density model inferred from the velocity model.
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plitude between observed and modeled data is a critical process which can directly contribute to the

success of the FWI (Pratt, 1999), we estimated the source wavelet at every iteration based on the

updated models. In this research, we implemented the source estimation by separating the ampli-

tude and the phase of a complex source function by following Shin and Min (2006)’s formulation.

The major update of the source amplitude is occurred during the first iteration, and Figure 4.13(c)

and 4.13(d) show the wavefield after the first round of source estimation. After fitting the source

signature, the FWI starts the actual procedure to update the velocity model. The wavefields after

500 iterations are presented in Figure 4.13(e) and 4.13(f). As presented in the synthetic examples,

similarly, the GMsFEM with fewer basis functions (Li = 5, black solid line) could simulate the

low frequency wave accurately in shorter amount of time (5.81 s) than the reference case (9.45 s).

In contrast, there occurs a greater amount of offset between the observed and modeled data using

the GMsFEM (Li = 5 and 7) in higher frequency wavefields. Therefore, we apply more basis

functions (Li = 9) to simulate 12 Hz wavefield correctly. In this case, the GMsFEM still can

compute the wavefield more rapidly (9.09 s) than the reference case (9.44 s).

Cho et al. (2017a) proposed the RTM method combined with the GMsFEM wave modeling,

and they demonstrated the seismic imaging examples with the analysis on the wave modeling. In

the RTM case, the source of the back-propagation would be a time-reversed observed data. Hence,

when we apply the GMsFEM, the inherited numerical artifacts that are generated from the coarse

modeling will only have an influence on the forward modeling part. In contrast, in the case of

FWI with the GMsFEM, since the misfit of the observed and simulated wavefield would be the

source of the back-propagation, we also need to perform the analysis on the errors which might be

generated from the wave modeling in the coarse-scale mesh. In this regards, the residual spectra

are presented in Figure 4.14 which are obtained in the frequency domain at frequencies of 6 Hz

(Figure 4.14(a)) and 12 Hz (Figure 4.14(b)). Since the error values for the two different frequencies

are plotted with the same scale, we see that the the magnitude of error is greater in 12 Hz wave

example than in 6 Hz one. According to Cho and Gibson (2018)’s work, when the L2 norm of the

numerical error caused by GMsFEM is smaller than 10 %, the GMsFEM error would have little

105



0 2 4 6 8 10
Offset (km)

10 3

10 2

10 1

100

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(a)

0 2 4 6 8 10
Offset (km)

10 3

10 2

10 1

100

101

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(b)

0 2 4 6 8 10
Offset (km)

10 1

100

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(c)

0 2 4 6 8 10
Offset (km)

10 1

100

101

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(d)

0 2 4 6 8 10
Offset (km)

10 1

100

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(e)

0 2 4 6 8 10
Offset (km)

10 1

100

101

Am
pl

itu
de

GMsFE (Li = 5)
GMsFE (Li = 7)
GMsFE (Li = 9)
FE (reference)
Observed data

(f)

Figure 4.13: Comparisons between the modeled wavefield using the GMsFEM (Li = 5, 7, 9) and
observed data (200th shot). Left (a, c, e) and right (b, d, f) panel display 6 Hz and 12 Hz wavefields.
Upper panel (a, b) shows the waves before applying the source estimation (after the first iteration),
and middle panel (c, d) presents the wavefield after the first round of source estimation. The
wavefields after 500 iterations are displayed in lower (e, f) panel.
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influence on the final gradient image for the model update due to destructive interference among

multiple shot and receiver pairs. To demonstrate the impact of the modeling artifact to the FWI in

GMsFEM, the result of multiscale FWI will be presented in the following section.

4.4.2 FWI results analysis

For the frequency-domain FWI, we used 50 frequency components with an increment of 0.2 Hz.

The minimum and maximum frequencies are 4 Hz and 13.8 Hz, respectively. The fine-scale grid is

25 m, and we superimposed the coarse-scale grid (125 m) on the fine mesh. We applied 500 itera-

tions to acquire the final FWI results and used a fixed step length to update the model (α = 0.02).

Figure 4.15 presents the comparisons of the gradient images that are calculated from the multiscale

modeling scheme with different numbers of basis functions. The left panel shows the gradient of

earlier stage of the model update (50 iterations), and the right panel displays the gradient images of

the last (500) iterations. Because all the gradient images are plotted under the same color scale, we

see that the amount of model update reduces as the FWI proceeds. Figure 4.16 exhibits the error

curve as a function of runtime. As observed in the previous Marmousi-2 examples, even though

the multiscale FWI with few basis functions (Li = 5, black curve in Figure 4.16) could complete

the computation more rapidly than other cases, it could not reduce the error sufficiently due to dis-

persion error in wave modeling. The dispersive waves generate a chaotic pattern inside of the salt

diapir as shown in Figure 4.15(a) and 4.15(b). The chaotic patterns become reduced as we apply

a greater number of basis functions. The multiscale FWI results with nine basis functions (Figure

4.15(e)) could produce almost identical gradient images with the reference case (Figure 4.15(g)),

and it still provides the FWI results 12 % faster than the reference as displayed in Figure 4.16 with

the green curve.

The final results of multiscale FWI are displayed in Figure 4.17. All of the multiscale FWI

results show similar macro velocity structures. However, in Figure 4.17(a), due to an insufficient

number of basis functions, the location of coarse mesh appears as highlighted with a red dashed cir-

cle. Also, the velocity model shows chaotic patterns around the salt body. In these FWI examples,

we used the entire frequency band to demonstrate the influence of the number of basis functions
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(a)

(b)

Figure 4.14: Residual spectrum of the 200th shot after 500 iterations, which are calculated from
the wave examples displayed in Figure 4.13(e) and 4.13(f). In each subfigure, lower panel shows
the residual spectrum, and upper panel shows the error of the GMsFEM modeling with different
number of basis functions.
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Figure 4.15: Comparisons of the gradient images at different iterations: left and right panels show
the gradient of 50 and 500 iterations, respectively. Each row exhibits the gradients computed with
different number of basis functions: (a, b) Li = 5, (c, d) Li = 7, (e, f) Li = 9, and (g, h) reference
case.
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Figure 4.16: Comparison of the error curves from different multiscale FWI (500 iterations).

on the final FWI results. Hence, the results contain incomplete features such as migration artifacts

(pointed with white arrow), high-frequency noise around the salt top, and cyclic skipping effect

as pointed with the red arrow. Regarding the noisy patterns, all the noise and aliasing errors are

attributed to the reason that we tried to simulate high frequency waves by using a coarse mesh with

few basis functions which is not sufficient to capture the detailed variation of the high frequency

waves. To put it differently, in the multiscale FWI, we can compute the low frequency gradient

images more rapidly without sacrificing the accuracy. Therefore, we propose a strategy to opti-

mize the computation speed of the FWI through the multiscale modeling scheme. For example,

we divide the target frequency band (4∼13.8 Hz) into multiple bands and tune the number of basis

functions according to the frequency components. In detail, we apply more basis functions as we

move on to the other band with higher frequencies. Table 4.1 shows the strategy that we used for

applying multiple frequency groups which accumulate the frequency components by maintaining

the low frequency band. By applying more iterations to the groups with low frequency compo-

nents (4∼8 Hz), the multiscale FWI builds the macro velocity structures at early stages of the

model update. Also, at low frequency group, since we can use few basis functions, we achieve

higher speedup compared to the high frequency group. Figure 4.18 displays the normalized error
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Frequency group Temporal frequencies (Hz) Basis functions (Li) Iterations
1 4.0 · · · 5.8 5 150
2 4.0 · · · 7.8 6 150
3 4.0 · · · 9.8 7 100
4 4.0 · · · 11.8 8 100
5 4.0 · · · 13.8 9 300

Table 4.1: Strategy for utilizing complex frequencies in the multiscale FWI.

curve of the frequency-adaptive multiscale FWI. At the transition point of each frequency group,

there occurs a jump on the error curve since we newly incorporate more frequencies in inverse

problem. Also, as we move on to the last frequency group, the rate of convergence becomes slow.

We displayed the error curve as a function of iterations (Figure 4.18(a)) to compare the accuracy

of multiscale FWI with the reference FWI. According to error curve shown in Figure 4.18, the

L2-error diminishes more rapidly at the first and second frequency groups with the multiscale FWI

(red line) than the reference case (black line). The final FWI result of the frequency-adaptive ap-

proach is presented in Figure 4.19. As we put more weight on the lower frequency, all the issues

that are raised in the examples shown in Figure 4.17 such as noisy salt top and migration artifact

are resolved.

For the validation of the FWI results, we performed the Kirchhoff depth migration using final

FWI result (Figure 4.19) as a background velocity. Comparing the results with the near-offset

gather (Figure 4.10), the Kirchhoff depth migration (Figure 4.20(a)) could resolve the salt bound-

ary and the strata with steep slope which terminate around the salt flank. To make comparisons

between the location of reflectors and the velocity structure, we superposed the FWI results on

the migration section as presented in Figure 4.20(b)). For further validation of the velocity model,

we sampled a number of common-image-gathers (CIG) as displayed in Figure 4.21. Provided that

the third CIG gather from the left penetrates the salt diapir, some of the reflectors and multiples

associated with the salt body and sea bottom are not well flattened compared to other reflectors.

Nevertheless, most of the reflectors are flattened, and it represents that the velocity acquired from
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Figure 4.17: The multiscale FWI results varying the number of basis functions: (a) Li = 5, (b)
Li = 7, and (c) Li = 9.
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Figure 4.18: Normalized error curves as a function of (a) iterations and (b) runtime.
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Figure 4.19: (a) Velocity model acquired from the multiscale FWI with multiple frequency loop
and adaptive multiscale basis functions, and (b) difference of velocity model between the multi-
scale FWI and reference FWI.
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Figure 4.20: (a) Kirchhoff depth migration section, and (b) the migration section superimposed on
the FWI result shown in Figure 4.19.
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Figure 4.21: Common image gathers (CIG) from the Kirchhoff depth migration. The sampled
points are as follows: 1.25, 3.75, 6.25, 11.25, 13.75, 16.25 (km) from the left.

the multiscale FWI is reliable. Since the flattened CIGs do not always guarantee that the velocity

is accurate, we also generated shot gathers at three different points (13962.5; 17962.5; 20462.5 m)

as presented in Figure 4.13. Although the shot gathers (Figure 4.22(a)) that are calculated from

the initial velocity model (Figure 4.12(a)) could generate the major events which might originated

from the salt body, it could not create all the detailed reflections. In contrast, the shot gathers (Fig-

ure 4.22(b)) from the multiscale FWI result (Figure 4.19(a)) could simulate the wavefields which

are kinematically close to the observed data (Figure 4.22(c)). Therefore, we can conclude that the

GMsFEM could not only accelerate the wave modeling procedure but also could provide a reliable

earth structure by applying it to the frequency-domain FWI.

4.5 Conclusions

FWI, which requires many iterations of model updates, can benefit from the application of

GMsFEM to enhance its efficiency by selecting the number of basis functions appropriately. We

introduced the first example of applying the GMsFEM wave modeling engine to the frequency
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Figure 4.22: Wave modeling results from the (a) initial velocity model (Figure 4.12(a)) and (b)
inverted velocity model (Figure 4.19(a)) with corresponding (c) observed data.
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domain FWI, and demonstrated the effect of wave modeling in a coarse grid through an analysis of

data matrices and sensitivity kernels. We demonstrated the multiscale FWI using the Marmousi-2

model, and the FWI results show how varying the number of basis functions can control the tradeoff

between the accuracy and computational speed. In addition, we showed FWI examples of the field

data which is obtained in Gulf of Mexico region. In the field data examples, we demonstrated

that the tradeoff between the accuracy and the speedup can be tuned by analyzing the forward,

backward wavefield, and corresponding FWI results. As applying the proposed multsicale FWI

with a relatively small number of basis functions can quickly construct a macro velocity model

using low frequency, we proposed a strategy to optimize the FWI procedure by utilizing frequency-

adaptive multiscale basis functions based on the target frequency group. Through this approach,

we use few basis functions at low frequency group from which we could achieve a greater amount

of speedup than in the high frequency groups. Thus, we could obtain the final velocity model

which can be used for a background model for subsequent depth migration. We also validated the

final multsicale FWI by investigating the CIGs of the Kirchhoff depth migration. The multsicale

FWI could provide the results 78% and 8% faster than the reference case at the lower and highest

frequency group, respectively. In overall, we could reduce the runtime up to 30% through the

application of the GMsFEM wave modeling to the FWI.
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5. SUMMARY AND CONCLUSIONS

5.1 Conclusions

In the preceding sections, I investigated the application of the multiscale wave modeling method

using GMsFEM to seismic depth imaging and full-waveform inversion in the frequency-domain.

I first proposed a method to efficiently simulate seismic waves in the frequency domain by

reducing the number of unknowns, and this enhancement on the computational efficiency directly

contribute to the acceleration of the depth seismic imaging via RTM. In the first application of the

GMsFEM to the RTM, tuning the number of multiscale basis functions plays an important role

to manipulate the trade-off between the accuracy and the speedup for the best performance of the

multiscale RTM. In the proposed method, I applied the multiscale mesh consisting of fine- and

coarse-scale meshes. In the multiscale method, I first built the basis functions which incorporate

fine-scale heterogeneity in the offline stage, then applied these multiscale basis functions to sim-

ulate the acoustic waves in the coarse-scale mesh. By doing so, I was able to achieve significant

computational speedup when solving the inversion of the large impedance matrix. Although the

multiscale RTM with larger coarse-grid with few basis functions could not resolve all the detailed

subsurface structure, it could provide the RTM images showing macro structures more rapidly than

the reference case, which uses the CG FEM for the wave modeling engine. To put it differently,

the proposed RTM with a small number of basis functions helps to accelerate updating of velocity

model by computing a large-scale structural image within a short amount of time. Applying more

basis functions enabled the multiscale RTM to resolve the fine-scale strata without sacrificing ac-

curacy. In addition, the proposed multiscale RTM algorithm still obtained images more rapidly

than when performing the computations on the original fine-scale grid.

After demonstrating the RTM using the multiscale wave modeling engine, I proposed a method

which utilizes multiple coarse-meshes and corresponding projection matrices to improve the effi-

ciency of the wave modeling in the frequency-domain. The key strategy of the proposed method
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was to apply different modeling parameters such as coarse-grid size and the number of basis func-

tions according to the desired frequency bands. The GMsFEM algorithm combined with flexible

multiscale grids efficiently simulated waves in the frequency domain. Also, I showed that the

GMsFEM using the newer local spectral problem including the partition of unity term provides

the multiscale basis functions which can enhance the accuracy of the solutions. I then presented

the relationship between the size of the coarse cell and the number of basis functions in GMsFEM

to maximize the speedup. The results show that the coarser mesh required more basis functions

to capture the influence of fine-scale heterogeneity, but one can use a smaller number of basis

functions as the coarse mesh becomes finer. I also applied a different sizes of coarse mesh and

the corresponding number of multiscale basis to enhance the computational efficiency of the wave

modeling in the RTM. When the multiscale RTM results were compared with a fixed mesh and a

flexible mesh, the RTM result with the frequency-adaptive meshes produces better images than the

other one.

One of the advantages of using frequency-domain RTM is that it can be converted to the FWI

with ease by replacing the back-propagation source from the observed data to residual vector.

Since the FWI requires multiple iterations of model updates, it is expected that we can save com-

putational cost by considering the GMsFEM wave modeling. In this dissertation, I introduced the

first example of applying the GMsFEM wave modeling engine to the frequency domain FWI, and

demonstrated the effect of wave modeling in a coarse grid through an analysis of data matrices and

sensitivity kernels.

To demonstrate the robustness and efficiency of the multiscale FWI, I presented two different

examples: one synthetic example using Marmousi-2 model and one field dataset which is obtained

from the Gulf of Mexico area. From the synthetic examples, the FWI results show how varying

the number of basis functions can control the tradeoff between the accuracy and computational

speed. In the field data examples, I demonstrated that the tradeoff between the accuracy and the

speedup can be tuned by analyzing the forward, backward wavefield, and corresponding FWI re-

sults. As applying the proposed multiscale FWI with a relatively small number of basis functions
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can quickly construct a macro-velocity model using low frequency, I proposed a strategy to op-

timize the multiscale FWI procedure by utilizing frequency-adaptive multiscale basis functions

based on the target frequency group. Through this approach, I used few basis functions at the

low-frequency group from which we could achieve a greater amount of speedup than in the high-

frequency groups. Thus, I was able to obtain the final velocity model which can be used for a

background model for subsequent depth migration.

Given all the numerical examples which are presented in this paper, it can be concluded that

the GMsFEM can reduce the computational burden of the wave-equation based seismic imag-

ing techniques RTM and FWI by dramatically reducing the dimension of the impedance matrix.

Furthermore, in the multiscale approach, it is flexible in terms of applying the modeling parame-

ters according to the desired frequency components that one needs to simulate, which makes the

method an attractive tool for other practical applications.

5.2 Further Study

There are a number of seismic problems which could take benefit from the multiscale method

by reducing the computational burden.

First, applying the GMsFEM wave modeling engine to the imaging tool incorporating multiple

parameters such as elastic, poro-elastic, or anisotropy waves modeling could provide significant en-

hancement on the computational efficiency. Also, for more accurate simulation of the phenomena

in the real world, considering more modeling parameters (i.e., attenuation, viscosity, or fluid-solid

interaction) would be helpful to enhance the result of seismic imaging and waveform inversion.

Second, the multiscale approach will be more attractive when it applies an unstructured mesh.

When we only deal with the structured mesh as shown in this paper, the advantage of FEM could

not exceed that of FDM due to its speed and easy implementation. For example, by employing the

unstructured triangular mesh, we can include the complicated topography to the wave simulation,

which may be critical when we handle the elastic wave problem. In addition, utilizing unstructured

mesh enable us to delineate complex geological structures (i.e., the edge of salt, shale diapir, or

karst), which might create a large impedance contrast on the seismic response. Therefore, defining
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an accurate geological interface (or structural boundary) can directly contribute to the accurate

simulation of the seismic waves.

Finally, expanding the current 2-dimensional RTM and FWI code to the 3-dimensional problem

can provide practical perspectives for defining the subsurface structure. Even in the 3-dimensional

case, we can still solve the same local spectral problem to construct the multiscale basis func-

tions in a more straightforward manner based on the theory which is presented in this dissertation.

Nevertheless, in 3-dimensional problems, especially in the frequency-domain, the size of global

impedance matrix would be significantly larger than 2-dimension case. Therefore, one might need

to consider a memory efficient sparse-matrix solver such as Multifrontal massively parallel sparse

direct solver (MUMPS) (Amestory et al., 2000; Amestoy et al., 2001, 2003).
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APPENDIX A

PML FOR THE MULTISCALE HELMHOLTZ SOLVER

For most of the wave propagation models, we assume an infinite (or half infinite with free

surface) space. Thus, an absorbing boundary condition plays an important role in wave equation

based seismic imaging by suppressing the outgoing wavefield at the boundary of computational

domain ∂Ω. There are several ways to implement the absorbing boundary numerically, such as the

one-way wave equation method (Clayton and Engquist, 1977; Higdon, 1986), Hybrid absorbing

boundary (Liu and Sen, 2012), and Perfectly Matched Layer (PML) (Berenger, 1994; Collino and

Tsogka, 2001; Martin and Komatitsch, 2009). Effective absorbing boundaries need to suppress the

outgoing wavefield without a large amount of memory consumption. In this regard, we employed

PML due to its superior absorption effect and ease of implementation in the frequency-domain.

The PML damping function g(x) can be defined as:

g(x) =

(
1 + i

d(x)

ω

)−1

, (A.1)

where x denotes the horizontal and vertical direction of spatial variables. Given the domain size as

Ω = (0, p)2, the damping parameters in the PML zone can be:

d(x) =


C
ξ

(
x−ξ
ξ

)2

, x ∈ [0, ξ],

C
ξ

(
x−1+ξ

ξ

)2

, x ∈ [p− ξ, p],
(A.2)

where C is a positive constant independent of the frequency ω. Collino and Tsogka (2001) pro-

posed a way to define an appropriate value of the constant. The constant C can be written as a

function of model as: log
(

1
R

) 3vp
2ξ

, where ξ means the thickness of the PML zone and R is a small

number (≈ 0.001) which is applied to stabilize the calculation. The thickness of PML zone (ξ)

varies with the velocity model; however, it approximates to a wavelength which is similar to one
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coarse cell size. We applied 10 elements (200 m) on the edge of the density and velocity models

to pad the PML zone. The Helmholtz equation can be rewritten by including the damping factors

as follows: [
− ω2

ρv2g1g2

u− ∂

∂x1

(
g1

g2

1

ρ

∂

∂x1

)
− ∂

∂x2

(
g2

g1

1

ρ

∂

∂x2

)]
u = f (A.3)

The above Helmholtz equation can be expressed in a weak formulation through finding uH ∈ V H
0

such that

∫
Ω

[
− ω2

ρv2g1g2

uHwH +−1

ρ

g1

g2

∂uH
∂x1

∂wH
∂x1

wH −
1

ρ

g2

g1

∂uH
∂x2

∂wH
∂x2

wH

]
dx =

∫
Ω

fwHdx, (A.4)

where ∀wh ∈ V H
0 . The corresponding impedance S and source f matrices can be calculated with

this equation, and we then incorporate them into the discrete system to acquire the frequency-

domain wavefields without artifacts reflected from the model boundaries.
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APPENDIX B

LAPLACE-DOMAIN FWI FOR BUILDING AN INITIAL MODEL

B.1 Logarithmic objective function & gradient

The key concept of the FWI involves reducing the residual between the observed data and the

modeled data based on the objective function. The approach introduced in the main text of this

paper used the L2 objective function, which can be expressed as

E(m) =
1

2

ns∑
i=1

nr∑
j=1

‖ (uij − dij)2 ‖. (B.1)

However, the sensitivity to noise and the nonlinearity of the wave equation hinders practical ap-

plication of the FWI to the field data without having a good priori information. As an alternative,

we can perform the FWI in the Laplace-domain, which has distinctive features in terms of the con-

vergence rate to the global minimum through the damped wavefield. After applying the damping

functions, the Green’s function exhibits singularity around the source location. Except for the area

nearby the source position, the magnitude of the wavefields becomes too small to compute accurate

residuals. Therefore, in the Laplace-domain FWI, we employ the logarithmic objective function

(Shin and Min, 2006), which can be presented as

E(m) =
1

2

ns∑
i=1

nr∑
j=1

(
ln
|uij|
|dij|

)2

. (B.2)

Above logarithmic objective function at an arbitrary angular frequency ω can be written as

E(m) =
1

2

ns∑
i=1

nr∑
j=1

(
ln
|uij|
|dij|

)(
ln
|uij|
|dij|

)∗
, (B.3)

where the asterisk ∗ means a complex conjugate, and the term ln
|uij |
|dij can be named as the residual

r. The gradient term to reduce the amount of residual can be obtained by applying the following
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equation:
∂E(m)

∂mk

= R

[
ns∑
i=1

nr∑
j=1

1

uij

∂uij
∂mk

(
ln
|uij|
|dij|

)∗]
. (B.4)

As presented in equation 3.19, the general form of the gradient involving the virtual source v can

be written as
∂E(m)

∂mk

=

∫ ωmax

0

ns∑
i=1

R
[
vTS−1

h r∗i (ω)
]
dω, (B.5)

where the residual r with logarithmic objective function can be expressed as

r =

[
1
u1

ln u1
d1

1
u2

ln u2
d2
· · · 1

unr
ln unr

dnr
0 0 · · · 0

]T

. (B.6)

Similarly, as shown in the previous case, we can obtain the final model update term by applying

the pseudo-Hessian matrix (equation 4.25).

B.2 Laplace-domain vs. Frequency-domain wavefield

By employing the Laplace-domain for waveform inversion, we obtain several advantages: 1)

avoiding convergence to local minimum, 2) reducing dependency on an initial model, 3) obtaining

smoothed macro-velocity model that can be directly used as a migration velocity model. These

advantages are attributed to the characteristics of Laplace-domain which uses a zero frequency

component (Shin and Cha, 2008). Also, we can implement the Laplace-transform by using com-

plex Fast-Fourier Transform (FFT). Equation B.7 proves the characteristic of Laplace-domain:

zero-frequency component and relationship with frequency-domain.

∫
f(t)e−iω

∗t dt =

∫
f(t)e−st dt, ω∗ = r − si (B.7)

where ω∗ means complex angular frequency. In frequency-domain FWI, we use only real part of

the angular frequency; however, when we work in Laplace-domain we replace the real part r to

zero and only use the imaginary part s for calculating damped wavefield. This is the reason why

Laplace-domain can be considered as a zero-frequency wavefield, and it helps FWI converge to
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global minimum by generating extremely smooth wavefields (Figure B.1).
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Figure B.1: Comparison of wavefields in different domain. Wavefields in Laplace-domain shows
extremely smoothed waves, and it contributes to converge to global minimum and build a long-
wavelength velocity model.

136


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and literature review
	Research motivation
	Literature review
	Outline

	FREQUENCY-DOMAIN REVERSE-TIME MIGRATION WITH ACCELERATED WAVE SIMULATION VIA GENERALIZED MULTISCALE FINITE ELEMENT*
	Introduction
	Method
	Generalized multiscale finite element solver
	Offline stage
	Online stage

	RTM imaging conditions using GMsFEM

	Numerical examples
	Conclusions

	Reverse-time migration via frequency-adaptive  multiscale spatial grids*
	Introduction
	Theory and method
	Generalized multiscale finite element method
	Construction of multiscale basis functions: Offline stage
	Wave modeling in the coarse grids: Online stage

	Multiscale RTM imaging condition

	Numerical examples
	Comparison of the local spectral problems
	Wave modeling using frequency-adaptive grids
	Multiscale RTM examples

	Conclusions

	Accelerating full-waveform inversion via generalized multiscale finite element method
	Introduction
	Method
	Computation of multiscale basis functions
	Wave modeling in coarse mesh
	FWI using GMsFEM
	Source estimation

	Numerical examples: synthetic data
	Performance analysis with multiple sources
	Sensitivity kernel analysis
	Marmousi-2 FWI results

	Numerical examples: field data
	Forward & Backward modeling analysis
	FWI results analysis

	Conclusions

	Summary and conclusions
	Conclusions
	Further Study

	REFERENCES
	APPENDIX PML for the multiscale Helmholtz solver
	APPENDIX Laplace-domain FWI for building an initial model
	Logarithmic objective function & gradient
	Laplace-domain vs. Frequency-domain wavefield


