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ABSTRACT

The research presented in this document extends the slice balance approach

(SBA) for solving the discrete ordinates neutral particle transport equations. The

extended slice balance approach (ESBA) formulated here improves the accuracy of

the underlying spatial discretization scheme in the presence of shadow-type discon-

tinuities by exploiting the new concept of a sub-slice.

This research also derives and employs the linear discontinuous finite element

(LDFE) spatial discretization scheme within the ESBA framework. Current codes

utilizing the SBA rely on low-accuracy discretization schemes, because the geometric

information required for higher accuracy schemes has been seen as too voluminous to

store and too computationally expensive to re-calculate each time it is needed. Here

we show that the judicious use of modern hardware such as the graphics processing

unit (GPU) can speed the re-calculation of geometric quantities by factors of a few

hundred compared to a single core, raising the possibility that more accurate SBA

and ESBA methods may become practical if such hardware is employed.

The re-definition of a slice such that no slice may straddle any arbitrarily placed

cut plane parallel to the discrete ordinate, leads to the region in between adjacent

cut planes being completely independent of any other such region during a transport

“sweep.” This provides the ability to divide the mesh into independent regions,

resulting in consequences that lead to two new parallel sweep strategies introduced

in this document.

When considering the LDFE discretization scheme, the ESBA is found to re-

duce the absolute error for smooth solutions and increase the convergence rate for

discontinuous solutions compared to the SBA, which similarly reduces the error and
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increases the convergence rate over the traditional cell balance approach (CBA). The

two parallelization strategies made possible by the ESBA exhibit weak-scaling results

similar to those obtained with a simple volume-decomposed parallel transport sweep

for both the SBA and CBA. The acceleration of the slice and sub-slice formation

process using GPUs is found to exhibit speedups of up to 400 times when compared

to a single core of the host CPU.
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1. INTRODUCTION

This chapter will provide necessary background material in the area of particle

transport, present the motivations and objectives for this research, and provide a

preview of the chapters to come. We begin by reviewing the fundamental equation

at the heart of nuclear engineering and particle transport. We also describe the two

common approaches to solving this equation, and briefly discuss their advantages

and disadvantages. We discuss the need for modern particle transport codes that are

able to run on the next generation of super-computers, and what capabilities should

be included in such codes.

1.1 Background

Many fields in science and engineering can point to a single equation, or set of

equations, that in theory could be used for predicting the outcomes of experiments

and improving the capability for innovative design. Fluid mechanics has the Navier-

Stokes equations, quantum mechanics has the Schrödinger equation, and particle

transport has the Boltzmann equation. These three equations have several things

in common; they result from a statement of conservation, approximations are often

made to make them more manageable, and even after many approximations are

made, they are still incredibly difficult to solve for any practical application. The

approximations typically made to the Boltzmann equation in the study of neutral

particle transport and nuclear reactor physics are listed below.[1]

• Particle motion between interactions is described by classical mechanics.

• Particles do not interact with each other, and only interact with the atoms and

nuclei of the material through which they pass.
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• Particles are not affected by external forces such as gravitational and electro-

magnetic forces.

• The thermal motion of the background atoms causes them to move isotropically,

allowing particle interaction cross sections to be direction independent.

When these approximations are valid, the Boltzmann equation can be re-written

in a form known as the linear Boltzmann equation, also known as the transport

equation, which is an appropriate starting point for many studies of neutral particle

transport:

(
1

v(E)

∂

∂t
+ Ω ·∇+ σt (r, E, t)

)
ψ (r,Ω, E, t) =

¨
4π

ˆ ∞
0

σs (r,Ω′ · Ω, E ′ → E, t)ψ (r,Ω′, E ′, t) dE ′dΩ′ + q (r,Ω, E, t) , (1.1)

where

r = spatial coordinate vector (cm) ,

Ω = particle unit directional vector ,

E = particle energy (MeV) ,

t = time (s) ,

v (E) = particle speed
(cm

s

)
,

ψ (r,Ω, E, t) = particle angular flux

(
particles

MeV · ster · cm2 · s

)
,

σt (r, E, t) = total interaction cross section

(
1

cm

)
,

σs (r,Ω′ · Ω, E ′ → E, t) = scattering cross section

(
1

cm ·MeV · ster

)
,
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and

q (r,Ω, E, t) = particle source rate density

(
particles

MeV · ster · cm3 · s

)
.

Equation 1.1 is an integro-partial differential equation for the angular flux, which

has a seven-dimensional phase space comprising 3 parameters to define a point in

space, two parameters to define a direction of flight, 1 parameter to specify particle

energy, and 1 parameter to specify time. Another useful quantity is the scalar flux

defined as

φ (r, E, t) =

¨
4π

ψ (r,Ω, E, t) dΩ .

This quantity is particularly important because it is the scalar flux that determines

reaction rates, and it is reaction rates that are usually measured experimentally and

sought for design purposes. The reaction rate in a given volume V over a specified

time interval t1 to t2 is given by

R =

ˆ t2

t1

˚
V

ˆ ∞
0

σR (r, E, t)φ (r, E, t) dE d3r dt , (1.2)

where σR (r, E, t) is the cross section for the reaction of interest.

The transport equation represents the conservation of particles within every phase

space volume. The left hand side contains the time rate of change of the particle

number density, the loss rate due to leakage, and the loss rate due to particle inter-

actions with the background material. The right hand side contains the gain rate

due to in-scatter and external sources. The angular flux represents the expected

value of the distribution of particles in space, direction, and energy as a function of

time. Since particle transport is an inherently stochastic process, this distribution

will have statistical noise associated with it. If the number density of particles is low,

this statistical noise will be significant, and the angular flux in reality may stray far
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from this average distribution. For many applications however, the number density

of particles is so large that there is very little deviation from this average distribution.

There exists a unique solution to equation 1.1 given appropriate initial and bound-

ary conditions.[2] The research presented here is focused on finding these solutions as

quickly, efficiently, and accurately as possible, while recognizing that these are often

competing motivations. Initial conditions take the form

ψ (r,Ω, E, t0) = ψinitial (r,Ω, E) , (1.3)

where ψinitial (r,Ω, E) is known. Several types of boundary conditions can lead to a

well-posed problem including an explicitly specified incident flux, specular or diffuse

reflection, and periodic or albedo boundaries conditions. These can be written as

ψ (r,Ω, E, t) = ψinc (r,Ω, E, t) for all Ω : n (r) · Ω < 0 for all r ∈ ∂Vinc , (1.4)

ψ (r,Ω, E, t) = ψ (r,Ωrefl, E, t) for all Ω : n (r) · Ω < 0 for all r ∈ ∂Vspec , (1.5)

ψ (r,Ω, E, t) =
1

π

¨
Ω′:n(r)·Ω′>0

n (r) · Ω′ ψ (r,Ω′, E, t) dΩ′

for all Ω : n (r) · Ω < 0 for all r ∈ ∂Vdiff , (1.6)

ψ (r,Ω, E, t) = ψ (r + d (r) ,Ω, E, t)

for all Ω : n (r) · Ω < 0 for all r ∈ ∂Vper , (1.7)

and
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ψ (r,Ω, E, t) =

¨
Ω′:n(r)·Ω′>0

α (r, E,Ω′ → Ω, t) ψ (r,Ω′, E, t) dΩ′

for all Ω : n (r) · Ω < 0 for all r ∈ ∂Valbedo , (1.8)

respectively, where n (r) is the outward pointing unit normal vector, ψinc (r,Ω, E, t)

is known, Ωrefl is the specular reflection of Ω, d (r) is a translation vector, α is known

as the albedo function, and ∂Vinc, ∂Vspec, ∂Vdiff , ∂Vper, and ∂Valbedo are the regions

of the domain boundary ∂V , on which each condition is specified.

Analytic solutions to the transport equation are rare except for the simplest of

problems. Such problems typically assume that the angular flux is energy indepen-

dent, time independent, and only spatially dependent in one dimension. Of course, in

reality such simplified problems either do not exist or are of little practical interest,

and numerical solutions to the transport equation are often sought. These numerical

solutions can be obtained via two distinct methodologies, deterministic and stochas-

tic. The research presented here is an example of the former, and Chapter 2 will

review some of the most common deterministic methods.

Deterministic methods attempt to find a solution to equation 1.1 by discretization

or functional expansion of the angular flux in order to replace the original integro-

partial differential equation with a system of algebraic equations. To discretize the

angular flux phase space, a spatial mesh of the problem domain is produced consisting

of non-overlapping cells. The energy domain is broken up into sub-domains, the

particle direction can be discretized by either collocation or functional expansion, and

the resulting discretized problem is solved at specified time intervals. To illustrate

the difficulty imposed by the large phase space of the angular flux, imagine if the

three spatial parameters, two directional parameters, and the particle energy were

discretized into 100 bins each. The system of equations to be solved at each time step
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in the solution would contain 1012 unknowns. This large phase makes it impossible

to store the entire solution in the memory of a single computer for even moderate

resolutions of each of the seven independent variables.

On the bright side, if the complete angular flux solution can be obtained, a wealth

of information becomes immediately available. The energy and angular distributions

of the particles can be obtained at various locations and times, reaction rates can be

determined in any spatial region of the domain, and these reaction rates can be used

as inputs to other codes such as volumetric heat generation rates for a heat transfer

calculation, or transmutation rates for an isotopic depletion calculation. This makes

deterministic methods attractive for multi-physics applications where solutions are

sought for multiple coupled partial differential equations simultaneously, perhaps

even sharing the same spatial mesh. Such applications arise in the study of radiation

hydrodynamics and nuclear reactor burnup calculations.

Of course, deterministic methods are not without their disadvantages. The most

significant of these is related to the discretization of the energy variable, especially

for neutron transport. The neutron interaction cross sections for many common

nuclides have extremely complex energy dependence. In addition, it is not atypical

for neutron energies to span eight orders of magnitude in many cases of interest.

This makes capturing the complex energy dependence of the neutron cross sections

with a reasonable number of energy groups impossible. The multi-group method

used in deterministic approaches uses weighted cross sections in each group, and

the calculation of the weighted cross sections to produce accurate results can be

extremely onerous, and has itself been the subject of many dissertations.

The discretization of the direction variable is also a source of error, and this error

can be challenging to quantify. To see why this is, consider an angular discretization

method based on collocation where the transport equation is solved for a particular
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set of directions. In this discretization scheme, the true physics being represented

is a physics in which particles can only travel in a discrete set of directions. This

causes a very specific type of error known as a “ray effect,” where the solution ap-

pears to have streaks along the discrete directions, most prominently in the vicinity

of localized sources. While scattering cross sections could be computed for scattering

from any direction to any other direction, it is more common to approximate the an-

gular dependence of scattering cross sections with a truncated Legendre polynomial

expansion.

Stochastic methods take a fundamentally different approach akin to a direct nu-

merical simulation of reality. In a stochastic method, individual particles are sim-

ulated from birth at a source location, to absorption or leakage from the problem

domain. Such simulations rely on pseudo-random numbers in order to sample from

the probability distributions for such things as the distance to the next interaction,

the interaction type, and the energy and direction of the particle at birth or after

each scattering interaction. Interactions of interest are tallied, and as the number

of simulated particles approaches the number of particles in the actual system, the

results of these tallies become more accurate.

For the most part, stochastic transport codes are easier to setup and run than

deterministic codes. Geometric models can be set up more easily and with higher

fidelity because the only geometric information needed when a particle streams

through a cell is the distance to the cell boundary. In addition, continuous energy

cross sections can be used rather than multi-group cross sections. Continuous energy

cross sections are easier to produce and are more accurate than multi-group cross

sections, and this leads to a significant advantage in the treatment of the energy vari-

able for stochastic methods. Finally, the directional dependence of scattering cross

sections can be accurately represented, and particles can stream in the continuum of
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directions on the unit sphere as in reality.

Stochastic methods can be highly efficient when used to calculate limited infor-

mation rather than the complete angular flux solution. Such limited information

may be the dose rate at a physical location in space, the eigenvalue of a reactor core,

or some other single quantity of interest (QoI). Consider the calculation of a detec-

tor response for instance. In such a calculation, a fine spatial mesh is unnecessary.

Particles can be simulated starting from the source, and tallied if they interact in the

detector volume. The geometric model only needs to delineate regions of different

materials in the domain, significantly easing memory demands. In addition, source

biasing techniques and importance sampling can be used to successfully steer more

particles towards interacting in the detector, decreasing the time to solution.

This simulation of reality can seem quite intuitive. Unfortunately, the number

of particles that can be simulated on even the most powerful super-computers in

any reasonable amount of time, is likely to be several orders of magnitude less than

the number of particles in the real system[1], leading to statistical errors in the

numerical solution. The primary disadvantage associated with stochastic methods

is this statistical error, and in particular the rate at which this error decreases as

the number of particles simulated increases. This convergence rate is proportional

to N−1/2, where N is the number of particles simulated. To illustrate how slow this

convergence rate is, note that in order to decrease the statistical error in any QoI by

one order of magnitude, the number of particles simulated would have to increase by

a factor of 100, and thus so would the computational resources.

In addition, the statistical error corresponding to a given tally is dependent upon

the number of particles that contribute to it. One could imagine a very fine spatial

mesh where the scalar flux is desired in each spatial cell, and interactions are then

binned according to neutron energy at the time of interaction. Such a scenario is
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common in nuclear reactor burnup calculations. In this scenario, the finer the spatial

and energy meshes, the fewer particles that will be tallied in each spatial and energy

bin pair, and this will lead to high statistical error in each tally. While it is true

that a finer spatial mesh increases the time to solution for deterministic methods as

well, the convergence rate associated with the spatial discretization error is generally

proportional to hp, where h is a measure of the size of the cells in the mesh, and p is

dependent upon the problem and spatial discretization method.

In pointing out the advantages and disadvantages of each type of method, it

should be noted that this section is not intended to make a definitive case for either

one over the other. If there were such a definitive case to be made, it is unlikely

that both methods would have survived over the past half-century of independent

research. Instead, the two approaches are complimentary, and sometimes one can be

used to mitigate the deficiencies of the other. For instance, stochastic methods have

been used to compute multi-group cross sections for deterministic methods[3], and

deterministic methods have been used to calculate weight windows for importance

sampling in stochastic methods.[4] In addition, which method is better is highly

problem dependent. Stochastic methods excel when a single QoI is desired, and a

significant fraction of the particles simulated can be made to contribute to this QoI,

making them ideal for eigenvalue and detector response problems. Isotopic depletion

problems on the other hand, may require the storage of cross sections for hundreds

of nuclides, and the storage requirements for continuous energy cross sections for

this many nuclides can become prohibitive, favoring less accurate multi-group cross

sections instead. Table 1.1 lists the advantages and disadvantages mentioned above,

with the disclaimer that a thorough review of the two approaches could not possibly

be condensed into so few pages or a table of this size.
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Table 1.1: Advantages and disadvantages of deterministic and stochastic methods.

Deterministic

Advantages Disadvantages

· A single simulation provides the nec-
essary information to calculate any QoI

· Well suited for multi-physics applica-
tions

· Multi-group cross sections reduce
computer memory demands

· Complex energy dependence of inter-
action cross sections cannot be accu-
rately represented

· Direction discretization causes ray ef-
fects

· Angular dependence of scattering
cross sections must be approximated,
sometimes crudely

Stochastic

Advantages Disadvantages

· Can use more accurate continuous en-
ergy cross sections

· Can more accurately treat scattering
cross section angular dependence

· Can more easily handle complex ge-
ometries

· Statistical error decreases slowly

· Continuous energy cross sections in-
crease computer memory demands

· Not well suited for computing the
complete angular flux solution on a fine
mesh

1.2 Motivation and Objectives

A primary objective when developing a new method or code to solve the trans-

port equation numerically, should be to implement it in such a way that it is able to

run efficiently on modern super-computers. This means writing code that can run

on many computers simultaneously, while minimizing idle time and communication

time. Such super-computers are becoming increasingly heterogeneous, containing
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different types of processing units, and hence a brief review of such computer archi-

tectures is warranted. This review will include a short historical perspective for why

such architectures have been chosen, and a glimpse into the current state of high

performance computing (HPC) systems around the world.

Until the later part of the last century, computational physicists relied primarily

on the computer science and engineering fields to produce faster central processing

units (CPUs) in order to decrease the run times of their codes. This dependence was

not unwarranted, given the impressive staying power of Moore’s Law, which stated

in 1965 that the number of transistors on a standard CPU would continue to double

every two years for at least the next decade, and has in fact continued to present day.

This led to a misconception that the CPU clock speed and hence overall performance

would double as well, which stopped being true in 2005. The explanation for this is

that as the clock speed and number of transistors increases, more heat is generated,

requiring more sophisticated cooling systems. In addition, an increase in clock speed

implied an increase in voltage (V ) since 2005 when Dennard scaling began to stall

due to current leakage, and the power consumption is proportional to V 3. Thus,

clock speeds could not continue to rise indefinitely without causing the CPU to melt

or consume unreasonable amounts of power.

The solution to these limitations was the multi-core processor. The idea is quite

simple; lowering the voltage to 70% of its original value, which equates to a sim-

ilar decrease in performance, the power consumption drops to 34% of its original

value given the cubic relationship between power and voltage. This means that if

instead there were two cores operating at 70% voltages, then you could conceivably

get 2×70% = 140% of the compute power of a single CPU operating at 100%, with

2×34% = 68% of the power consumption. In addition, the lower clock speeds will

result in less heat generation and ensure longer core lifetimes. It thus became ap-
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parent that there was no real need to increase the clock speed in favor of simply

including more cores on each CPU. The number of transistors per chip, maximum

clock speed, and thermal design power for CPUs since 1970 is shown in Figure 1.1.

While the transistor count continued its doubling since 2005, the clock speed and

thermal power did not. If there were a fourth curve on Figure 1.1 indicating the num-

ber of cores, it would be constant at one until roughly 2005, and would then quickly

rise to 4, 8, 12, and eventually into the 60’s for the Intel Xeon Phi processor. This

had profound effects for the theoretical peak performance of the standard CPU, but

unfortunately code written to run on a single core does not magically run on multiple

cores when they are available. To a programmer with no parallel programming ex-

perience, this meant that code written two years ago did not simply run twice as fast

as it did then, as had been the case in the past. Parallel programming, which had

been relegated to programmers working on computer clusters and super-computers,

was now a useful skill to all programmers.

This trend of increasing the core count while capping the clock speed and power

consumption was taken further in the graphics processing unit (GPU). Figure 1.2

shows the difference in architecture between a typical multi-core CPU and a GPU.

The arithmetic-logic unit (ALU) in this figure is the equivalent of a core. The GPU

was designed to take advantage of the concurrency of graphics processing, where

each pixel on a screen could be rendered independently. This is an example of what

has been termed single instruction, multiple data (SIMD) in Flynn’s taxonomy of

computer architectures[5], and is also known as embarrassingly parallel because no

communication between the different tasks is required. With the advent of gen-

eral purpose GPU (GPGPU) programming, these devices became useful for a wider

variety of applications including scientific computing.
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Figure 1.1: Transistors per chip, max clock speed, and thermal design power for
CPUs since 1970, re-printed from the Economist.[6]

Figure 1.2: Comparison of CPU and GPU architectures.
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While interest in GPGPU programming among the scientific community has in-

creased, such specialized computer architectures have introduced more complexity

into algorithm design. While the GPU may have thousands of cores, it also typically

has a much smaller cache and significantly less memory per core than a multi-core

CPU. This causes many applications to become more easily memory bound. There

is also the issue of getting data to and from the GPU, which is usually carried via

PCIe bus. All of these issues make the GPU ideal for some tasks, and less than ideal

for others. More responsibility lies on the programmer to make the implementation

of numerical methods more closely resemble the embarrassingly parallel process of

pixel rendering in order to get the most out of the GPU. For applications where this

is possible, significant performance gains can be achieved over the CPU as shown by

the theoretical peak performance plotted in Figure 1.3.

Figure 1.3: Comparison of CPU and GPU theoretical peak performance, re-printed
from NVIDIA.[7]
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Before multi-core CPUs and GPUs became common, parallel computing was an

active field of research taking place on clusters and super-computers world-wide.

While a multi-core CPU or a GPU incorporates shared memory, super-computers

were usually distributed memory machines where hundreds or thousands of CPUs

did not have access to the same memory, and instead had to send messages to

communicate with one another. When the clock speed limit of a single CPU was

realized, these super-computers became collections of nodes, each of which compris-

ing one or more multi-core CPUs. Cores shared a memory bank with other cores on

the same node, but had to send messages to cores on other nodes. More recently,

super-computers have also taken advantage of the GPU, attaching a number of these

devices to each node. Table 1.2 is a list of the world’s top 10 super-computers as

of June 2018 when ranked by maximal performance using the LINPACK benchmark

(Rmax), which is essentially a scalable dense matrix inversion problem.

Five of the top 10 super-computers in Table 1.2 incorporate at least one GPU

on each node. The second ranked super-computer uses processing elements that are

commonly referred to as many-core CPUs, such as the 260 core Sunway SW26010,

blurring the lines between the CPU and GPU classification. Two computers on

this list were recently procured by the United States Department of Energy (US

DOE), Summit and Sierra. These two super-computers have multiple GPUs on

each node, and have significantly higher performance than their predecessor Titan,

while consuming roughly the same amount of power.[7] The term “next generation

super-computers” used throughout this dissertation is specifically targeting these

two machines. Ideally, codes to solve the transport equation should be flexible and

be able to run efficiently on any of the machines listed in Table 1.2, however the

heterogeneity of these super-computers often require implementations that target a

specific architecture.
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Table 1.2: List of the world’s top 10 super-computers as of June 2018, re-printed from Top 500.[8]

Name (location) Rmax (PFlop/s) Power (MW) Node description

Summit (USA) 122.3 8.8 IBM POWER9 22C 3.07 GHz, Dual-rail Mellanox
EDR Infiniband interconnect, NVIDIA V100

Sunway TaihuLight (China) 93.0 15.4 Sunway SW26010 260C 1.45 GHz, Sunway inter-
connect

Sierra (USA) 71.6 5.2 IBM POWER9 22C 3.07 GHz, Dual-rail Mellanox
EDR Infiniband interconnect, NVIDIA V100

Tianhe-2A (China) 61.4 18.5 Intel Xeon E5-2692v2 12C 2.2 GHz, TH Express-2
interconnect

AI Bridging Cloud Infras-
tructure (Japan)

19.9 1.6 Intel Xeon Gold 6148 20C 2.4GHz, Infiniband
EDR interconnect, NVIDIA V100

Piz Daint (Switzerland) 19.6 2.3 Intel Xeon E5-2690v3 12C 2.6 GHz, Aries inter-
connect , NVIDIA P100

Titan (USA) 17.6 8.2 AMD Opteron 6274 16C 2.2 GHz, Cray Gemini
interconnect, NVIDIA K20x

Sequoia (USA) 17.2 7.9 Power BQC 16C 1.6 GHz, Custom interconnect

Trinity (USA) 14.1 3.8 Intel Xeon Phi 7250 68C 1.4GHz, Aries intercon-
nect

Cori (USA) 14.0 3.9 Intel Xeon Phi 7250 68C 1.4 GHz, Aries intercon-
nect
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In addition to the ability to efficiently run on the next generation of super-

computers, modern deterministic particle transport codes should have a number

of other desirable properties. One such property is the ability to handle arbitrary

polyhedral spatial meshes. Indeed, when Grove first introduced the Slice Balance

Approach (SBA) [9], which will be discussed in detail in Chapter 2 and which this

research builds upon, it was his view that one of the most useful properties of that

method was its ability to extend planar spatial differencing schemes to arbitrary

polyhedral meshes.

Unstructured spatial meshes used to model complex geometries are generally cat-

egorized by the shape of their cells. The simplest cell shape is the tetrahedron, having

4 points and four triangular faces. Because of this simplicity, tetrahedral meshes are

able to capture extraordinarily complicated geometric features quite well. The next

simplest cell shape is the hexahedron, comprised of 8 points and 6 quadrilateral faces.

Modeling complex geometric features with a hexahedral mesh can be very difficult,

especially if hanging nodes are not allowed. Of course, if the numerical method being

employed to solve the underlying partial differential equation is unaffected by the

cell shape or the presence of multiple shapes in the same mesh, greater freedom in

mesh construction is allowed. In this case, an arbitrary polyhedral mesh can be used

in which each cell can have any number of points and faces. Figure 1.4 shows part of

the interior of a three dimensional domain meshed with tetrahedra, hexahedra, and

arbitrary polyhedra.

The field of computational fluid dynamics (CFD) where the finite volume method

is quite prevalent, has recently made great strides in utilizing arbitrary polyhedral

meshes. Fluent, Star-CCM+, and OpenFOAM, three of the leading code packages for

CFD, all provide utilities for constructing meshes of this type. Recent studies have

shown increased accuracy and convergence rates for arbitrary polyhedral meshes in
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CFD.[10][11][12] This provides incentive for their use in particle transport solutions

as well, since coupling particle transport to fluid dynamics in multi-physics codes is

of great interest, and using the same mesh for each set of physics would be preferable.

(a) Tetrahedral (b) Hexahedral (c) Arbitrary polyhedral

Figure 1.4: Slice through the center plane of various meshes of a simple two-material
geometry.

Beyond the advantages that arbitrary polyhedral meshes may have in CFD, there

is potentially an even greater advantage for particle transport due to the seven di-

mensional phase space of the angular flux. The enormity of the angular flux solution

in computer memory is one reason why high fidelity particle transport calculations

cannot be performed on a typical desktop computer, and it is also a motivation to

pursue the highest possible ratio of accuracy to the number of unknowns. If the solu-

tion can be stored on a per cell basis, but the accuracy of the method is determined

by the number of faces in the mesh, the accuracy to unknown ratio can be improved

substantially. In face based methods, such as the SBA and its extensions proposed

here, this is indeed the case; the solution is stored on a per cell basis, while the
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accuracy of the calculation in a given cell increases as the number of faces in the cell

increases. Considering that polyhedral meshes will have roughly five times less cells

than a tetrahedral mesh for the same number of faces if the polyhedral mesh is the

Voronoi dual of the tetrahedral mesh, this means we could potentially get roughly

the same accuracy while storing five times fewer unknowns.

1.3 Dissertation Layout

The purpose of this chapter has been to introduce the reader to the transport

equation, motivate the need for its numerical solution, and briefly discuss how such

solutions are obtained. In addition, capabilities and properties that future methods

and implementations should exhibit have been discussed, and two of these capabil-

ities have been singled out for further examination in the research presented here.

Subsequent chapters are organized as follows.

Chapter 2 will be a review of some of the most common deterministic methods

for solving the transport equation. This includes discretization schemes for the seven

dimensional angular flux phase space. It will also include a discussion of the SBA,

which this research builds upon. The SBA was chosen as a starting point for this

research because of its ability to handle arbitrary polyhedral meshes, and because it

adds additional concurrency to traditional balance methods, leading to more oppor-

tunities for parallelization and perhaps acceleration via GPGPU programming.

Chapter 3 will discuss changes that this research applies to the traditional SBA.

This includes the addition of sub-slices in order to more accurately treat the stream-

ing term of the transport equation and the application of the linear discontinuous

finite element method on a per slice basis. At the end of this chapter, the capability

to handle arbitrary polyhedral meshes will have been treated, while improving the

accuracy of the traditional SBA given any underlying spatial discretization scheme,
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with relatively little added computation required.

Chapter 4 focuses on the capability to run efficiently on the next generation of

super-computers. While Chapter 3 focuses mainly on theory and derivations, Chap-

ter 4 is concerned with implementation. It will discuss two strategies to parallelize

the solution over many nodes, each with multiple cores and perhaps even a GPU.

These strategies can only be achieved through the framework of the extended SBA

which is the result of this research, and the implications of these strategies will be

discussed.

Chapter 5 will present results generated by the Slice-T code, which has been de-

veloped as a result of this research. These will include comparisons of the extended

SBA to the traditional SBA in both accuracy and scalability, for the linear discon-

tinuous finite element and diamond difference spatial discretization schemes. These

results will then be discussed in Chapter 6 where final conclusions will be drawn and

future work will be proposed.
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2. REVIEW OF DETERMINISTIC SOLUTION METHODS

The purpose of this chapter is to present some of the most common discretization

schemes and iterative methods for deterministic transport solutions. This includes

common discretization schemes for the seven-dimensional angular flux phase space,

in which time, energy, angle, and space are each discretized independently. It also

includes iterative techniques to account for particle scattering, and methods for ac-

celerating these iterative techniques when they are slow to converge. Finally, the

parallel transport sweep is introduced as a scalable way to parallelize the solution on

super-computers comprising hundreds of thousands, or even millions of cores. The

transport equation that these methods aim to solve is repeated below for convenience.

(
1

v(E)

∂

∂t
+ Ω ·∇+ σt (r, E, t)

)
ψ (r,Ω, E, t) =

¨
4π

ˆ ∞
0

σs (r,Ω′ · Ω, E ′ → E, t)ψ (r,Ω′, E ′, t) dE ′dΩ′ + q (r,Ω, E, t) (2.1)

2.1 Time Discretization

The temporal domain is typically discretized by solving for the angular flux

solution at discrete points in time tn, where n = 0, 1, . . . , N . The discretization

scheme is obtained by first integrating equation 2.1 from tn to tn+1, and dividing by

∆tn = tn+1 − tn, which is equivalent to time-averaging the transport equation over

the n-th time step. Using the notation ψn (r,Ω, E) = ψ (r,Ω, E, tn), the result of

this time averaging is
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ψn+1 (r,Ω, E)− ψn (r,Ω, E)

v(E)∆tn
+ Ω ·∇ψ (r,Ω, E) + σt (r, E)ψ (r,Ω, E) =

¨
4π

ˆ ∞
0

σs (r,Ω′ · Ω, E ′ → E)ψ (r,Ω′, E ′) dE ′dΩ′ + q (r,Ω, E) , (2.2)

where

ψ (r,Ω, E) =
1

∆tn

ˆ tn+1

tn

ψ (r,Ω, E, t) dt ,

q (r,Ω, E) =
1

∆tn

ˆ tn+1

tn

q (r,Ω, E, t) dt ,

σt (r, E) =

ˆ tn+1

tn

σt (r, E, t)ψ (r,Ω, E, t) dt

ˆ tn+1

tn

ψ (r,Ω, E, t) dt

,

and

σs (r,Ω′ · Ω, E ′ → E) =

ˆ tn+1

tn

σs (r,Ω′ · Ω, E ′ → E, t)ψ (r,Ω, E, t) dt

ˆ tn+1

tn

ψ (r,Ω, E, t) dt

.

The first approximation often made at this point is to assume that the total

and scattering cross sections have no time dependence over the time step, while

still allowing their values to change between time steps. This allows them to be

pulled out of the integrals in the definitions above. This is often a valid assumption,

especially if the time steps are small enough that the temperature and composition of

the background material does not have enough time to change significantly over the

time step duration. Even when this assumption is not valid, iterative methods can

be used wherein the cross section time dependence is ignored within each iteration.

With this assumption, we can write the time averaged transport equation as
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ψn+1 (r,Ω, E)− ψn (r,Ω, E)

v(E)∆tn
+ Ω ·∇ψ (r,Ω, E) + σt,n (r, E)ψ (r,Ω, E) =

¨
4π

ˆ ∞
0

σs,n (r,Ω′ · Ω, E ′ → E)ψ (r,Ω′, E ′) dE ′dΩ′ + q (r,Ω, E) , (2.3)

where σt,n (r, E) and σs,n (r,Ω′ · Ω, E ′ → E) are the total interaction and scattering

cross sections respectively during time step n.

The next approximation is to represent the time averaged angular flux as a

weighted average of the angular flux at the beginning and end of the time step.

This can be written as

ψ (r,Ω, E) = β ψn+1 (r,Ω, E) + (1− β) ψn (r,Ω, E) , (2.4)

where β is a weighting parameter that chooses the discretization scheme. A value of

β = 1 results in the implicit Euler scheme, a value of β = 0 results in the explicit

Euler scheme, and a value of β = 1/2 results in the Crank-Nicolson scheme. Both

Euler schemes are first order accurate in time, meaning that the error in the solution

is proportional to ∆t, while the Crank-Nicolson scheme is second order accurate with

error proportional to (∆t)2. Both the implicit Euler and Crank-Nicolson schemes are

unconditionally stable, while the explicit Euler scheme is likely to diverge for longer

time steps.[13]

Rearranging equation 2.4 to solve for ψn+1 (r,Ω, E) gives

ψn+1 (r,Ω, E) =
1

β
ψ (r,Ω, E) +

(β − 1)

β
ψn (r,Ω, E) , (2.5)

and plugging this into equation 2.3 gives
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ψ (r,Ω, E)− ψn (r,Ω, E)

v(E)∆tnβ
+ Ω ·∇ψ (r,Ω, E) + σt,n (r, E)ψ (r,Ω, E) =

¨
4π

ˆ ∞
0

σs,n (r,Ω′ · Ω, E ′ → E)ψ (r,Ω′, E ′) dE ′dΩ′ + q (r,Ω, E) . (2.6)

If we further define

σt,n,eff (r, E) = σt,n (r, E) +
1

v(E)∆tnβ

and

qeff (r,Ω, E) = q (r,Ω, E) +
1

v(E)∆tnβ
ψn (r,Ω, E) ,

we can rewrite equation 2.6 as

Ω ·∇ψ (r,Ω, E) + σt,n,eff (r, E)ψ (r,Ω, E) =

¨
4π

ˆ ∞
0

σs,n (r,Ω′ · Ω, E ′ → E)ψ (r,Ω′, E ′) dE ′dΩ′ + qeff (r,Ω, E) . (2.7)

Suppose for a moment that we were to make the following notational changes for

convenience:

ψ (r,Ω, E)→ ψ (r,Ω, E) ,

qeff (r,Ω, E)→ q (r,Ω, E) ,

σt,n,eff (r, E)→ σt (r, E) ,

and

σs,n (r,Ω′ · Ω, E ′ → E)→ σs (r,Ω′ · Ω, E ′ → E) .
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We would then be able to rewrite equation 2.7 as

Ω ·∇ψ (r,Ω, E) + σt (r, E)ψ (r,Ω, E) =

¨
4π

ˆ ∞
0

σs (r,Ω′ · Ω, E ′ → E)ψ (r,Ω′, E ′) dE ′dΩ′ + q (r,Ω, E) . (2.8)

This is an important result because equation 2.8 is the steady state version of equa-

tion 2.1 where the angular flux, particle source, and all cross sections are time-

independent. Thus, after discretizing the temporal domain in the time dependent

transport equation, we end up with a series of steady state problems to solve, one

for each time step. The solution proceeds in the following steps:

1. Evaluate σt,n,eff (r, E) and qeff (r,Ω, E) using the angular flux from the previous

time step, or the initial condition at the start of the problem.

2. Solve the resulting steady state equation (equation 2.7), for ψ (r,Ω, E).

3. Use equation 2.5 and ψ (r,Ω, E) to calculate ψn+1 (r,Ω, E).

4. Return to step 1 for the next time step until the end of the temporal domain

is reached.

2.2 Energy Discretization

With the important result at the end of the last section, that time dependent prob-

lems require only repeated solutions of steady state problems, energy discretization

via the multi-group method will be demonstrated using the steady state transport

equation which was given at the end of the last section as equation 2.8.

The first step is to divide the energy domain into G non-overlapping intervals

called groups, with the upper bound of the highest energy group being some max-

imum energy E0, above which it is assumed that there are no particles. Similarly,
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the lower bound of the lowest group is some minimum energy EG, below which it is

assumed that there are no particles. Note that the group numbering is in some sense

reversed, as the highest energy is E0 and the highest energy group is labeled group

1, while the lowest energy is EG, and the lowest energy group is labeled group G.

This non-intuitive convention is due to the fact that particles are typically born at

high energies, and slow down to lower energies via scattering interactions occurring

over their lifetime.

The discretization proceeds by integrating equation 2.8 over the g-th energy group

spanning from lower bound Eg to upper bound Eg−1. The result of this integration

is

Ω ·∇
ˆ Eg−1

Eg

ψ (r,Ω, E) dE +

ˆ Eg−1

Eg

σt (r, E)ψ (r,Ω, E) dE =

¨
4π

ˆ ∞
0

ψ (r,Ω′, E ′)

ˆ Eg−1

Eg

σs (r,Ω′ · Ω, E ′ → E) dEdE ′dΩ′+

ˆ Eg−1

Eg

q (r,Ω, E) dE . (2.9)

We then make the following definitions:

ψg (r,Ω) =

ˆ Eg−1

Eg

ψ (r,Ω, E) dE ,

qg (r,Ω) =

ˆ Eg−1

Eg

q (r,Ω, E) dE ,

and

σs (r,Ω′ · Ω, E ′ → g) =

ˆ Eg−1

Eg

σs (r,Ω′ · Ω, E ′ → E) dE ,
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in order to rewrite equation 2.9 as

Ω ·∇ψg (r,Ω) +

ˆ Eg−1

Eg

σt (r, E)ψ (r,Ω, E) dE =

G∑
g′=1

¨
4π

ˆ Eg′−1

Eg′

σs (r,Ω′ · Ω, E ′ → g)ψ (r,Ω′, E ′) dE ′dΩ′ + qg (r,Ω) , (2.10)

where the integral over all energies in the scattering term has been replaced by a

sum of integrals over each group in the energy domain. The next step is to define

σt,g (r,Ω) =

ˆ Eg−1

Eg

σt (r, E)ψ (r,Ω, E) dE

ˆ Eg−1

Eg

ψ (r,Ω, E) dE

and

σs,g′→g (r,Ω′ · Ω) =

ˆ Eg′−1

Eg′

σs (r,Ω′ · Ω, E ′ → g)ψ (r,Ω′, E ′) dE ′

ˆ Eg′−1

Eg′

ψ (r,Ω′, E ′) dE ′
,

in order to rewrite equation 2.10 as

Ω ·∇ψg (r,Ω) + σt,g (r,Ω)ψg (r,Ω) =

G∑
g′=1

¨
4π

σs,g′→g (r,Ω′ · Ω)ψg′ (r,Ω
′) dΩ′ + qg (r,Ω) , (2.11)

It is important to note that up to this point, no approximations have been made.

We have only integrated the steady state transport equation over group g and made

some convenient definitions. Unfortunately, even though the total interaction cross

section σt (r, E) was not dependent on angle, the weighted cross section σt,g (r,Ω)
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is angle dependent because it has been weighted by the angular flux which is angle

dependent. In addition, the weighted cross sections are defined using the angular

flux, which is the function we are trying to solve for. The approximation that makes

the multi-group method feasible is to assume first that the angular flux is separable

in energy within each group, which can be written as

ψ (r,Ω, E) = Ψ (r,Ω) fg(E) for Eg < E < Eg−1 , (2.12)

and that the energy shape functions fg(E) can be guessed with reasonable accuracy

to calculate the cross sections in each group. If these approximations are made, the

multi-group cross section definitions can be rewritten as

σt,g (r) =

ˆ Eg−1

Eg

σt (r, E) fg (E) dE

ˆ Eg−1

Eg

fg (E) dE

and

σs,g′→g (r,Ω′ · Ω) =

ˆ Eg′−1

Eg′

σs (r,Ω′ · Ω, E ′ → g) fg (E ′) dE ′

ˆ Eg′−1

Eg′

fg (E ′) dE ′
.

Using these definitions, we can now write down the steady state multi-group

transport equations as

Ω ·∇ψg (r,Ω) + σt,g (r)ψg (r,Ω) =

G∑
g′=1

¨
4π

σs,g′→g (r,Ω′ · Ω)ψg′ (r,Ω
′) dΩ′ + qg (r,Ω) , (2.13)
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where g = 1, 2, . . . , G. Performing this energy integration for each group results in

a set of G integro-partial differential equations, which are coupled by the scattering

term on the right. A common method for solving the multi-group equations is the

Gauss-Seidel iterative approach whereby each equation is solved, starting with group

1, using the most recent estimate of ψg (r,Ω) in the other groups. It is easy to see

that if there is no up-scattering, i.e. σs,g′→g (r,Ω′ · Ω) = 0 for g′ > g, this iterative

scheme will converge in a single iteration.

The number of energy groups typically used in deterministic neutron transport is

on the order of 102. The International Reactor Dosimetry and Fusion File (IRDFF)

group structure has only 640 energy groups, and this is considered to be on the

high end of energy resolution. Even with this many groups, the complex energy

dependence of neutron interaction cross sections, such as the total interaction cross

section for 238U, is difficult to represent accurately as shown in Figure 2.1. This is

primarily due to the presence of resonances in the neutron cross sections, where the

cross section varies wildly over small ranges in energy. In addition, the assumption

that the angular flux was separable in energy within each group becomes less valid as

the group widths get larger. It is also very difficult to quantify the error introduced

by the multi-group method since it does not show convergence with refinement until

the group count is impractically large, whereas convergence is observed with practical

spatial and temporal discretizations.

Of course, there is also the issue of where to get the shape functions fg(E).

Typically, some information about the problem will lead to an initial guess at the

shape function. For instance, in a nuclear power reactor, the energy spectrum of

neutrons can be crudely represented by the combination of a Maxwellian spectrum at

low energies, a 1/E spectrum at intermediate energies, and a Watt fission spectrum at

high energies. Multi-group cross section generation codes such as NJOY provide such
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Figure 2.1: Total interaction cross section for 238U.

spectra, and their relative magnitudes can be specified. Iterations can be performed

where more detailed spectra can be obtained from the solution, and used to refine

the postulated fg(E) to produce more accurate multi-group cross sections.

2.3 Angular Discretization

Before discussing the discrete ordinates (SN) and spherical harmonics (PN) an-

gular discretization schemes, we must first address the scattering term on the right

hand side of the multi-group equations. Any angular discretization scheme will in-

evitably restrict the directions in which particles can travel either explicitly or by

limiting the complexity of the solution’s angular dependence. While Ω′ ·Ω could be

computed for each pair of discrete directions, and the exact value of the scattering

cross section could be evaluated for each pair, it is more convenient for this discussion
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to approximate the angular dependence of the scattering cross sections. We begin

by defining µ = Ω′ · Ω and the scattering operator S as

Sψg′ (r,Ω
′) =

¨
4π

σs,g′→g (r, µ)ψg′ (r,Ω
′) dΩ′ ,

which appears inside the energy group summation in the scattering term of equa-

tion 2.13. Throughout this section we will be making use of the real spherical har-

monic functions, also known as the tesseral spherical harmonics, which are defined

here as

Y k
j (Ω) =


√
ckjP

k
j (ξ) cos(kω), 0 ≤ k ≤ j√

ckjP
|k|
j (ξ) sin(|k|ω), −j ≤ k < 0 ,

where ξ is the polar angle associated with Ω, ω is the azimuthal angle associated

with Ω, P k
j (ξ) are the associated Legendre polynomials, and

ckj = (2− δk,0)
(j − |k|)!
(j + |k|)!

.

In order to derive a useful result, we apply the scattering operator to the spherical

harmonic function Y k
j (Ω′)

SY k
j (Ω′) =

¨
4π

σs,g′→g (r, µ)Y k
j (Ω′) dΩ′ . (2.14)

We then perform a Legendre polynomial expansion of the scattering cross section to

arrive at

SY k
j (Ω′) =

¨
4π

∞∑
l=0

2l + 1

4π
σl,s,g′→g (r)P 0

l (µ)Y k
j (Ω′) dΩ′ , (2.15)

where

σl,s,g′→g (r) = 2π

ˆ 1

−1

σs,g′→g (r, µ)P 0
l (µ)dµ . (2.16)
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We can now use the addition theorem for spherical harmonics to replace the Legendre

polynomials by a sum of products of spherical harmonic functions

P 0
l (µ) = P 0

l (Ω′ · Ω) =
+l∑

m=−l

Y m
l (Ω′)Y m

l (Ω) , (2.17)

and plug this into equation 2.15 to arrive at

SY j
k (Ω′) =

∞∑
l=0

2l + 1

4π
σl,s,g′→g (r)

+l∑
m=−l

Y m
l (Ω)

¨
4π

Y m
l (Ω′)Y k

j (Ω′) dΩ′ . (2.18)

Using the orthogonality of the spherical harmonics

¨
4π

Y m
l (Ω)Y k

j (Ω) dΩ =
4π

2l + 1
δl,jδm,k , (2.19)

only a single term survives the infinite sum, giving the useful result we were seeking

SY k
j (Ω′) = σj,s,g′→g (r)Y k

j (Ω) . (2.20)

To use this result, we first expand ψg′ (r,Ω
′) in the spherical harmonic functions

ψg′ (r,Ω
′) =

∞∑
l=0

+l∑
m=−l

2l + 1

4π
φml,g′ (r)Y m

l (Ω′) , (2.21)

where

φml,g′ (r) =

¨
4π

Y m
l (Ω)ψg′ (r,Ω) dΩ . (2.22)
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We can now apply the scattering operator to both sides of equation 2.21 and use the

result in equation 2.20 to write

Sψg′ (r,Ω
′) =

∞∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φml,g′ (r)Y m

l (Ω) . (2.23)

Plugging this result into equation 2.13 gives

Ω ·∇ψg (r,Ω) + σt,g (r)ψg (r,Ω) =

G∑
g′=1

∞∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φml,g′ (r)Y m

l (Ω) +

∞∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ω) . (2.24)

where we have also expanded the external source rate density in the spherical har-

monic functions with expansion coefficients given by

qml,g (r) =

¨
4π

Y m
l (Ω) qg (r,Ω) dΩ . (2.25)

It is again important to note that thus far in this section, no approximations have

been made. We have simply used the properties of the Legendre polynomials and

spherical harmonics to obtain multi-group transport equations that no longer depend

directly on Ω′ in the scattering term. Of course, the integral in the scattering term

has now become an infinite sum, which is not exactly ideal either. The approximation

that must be made in order to use equation 2.24 is to truncate the infinite sums at

specified values L1 and L2
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Ω ·∇ψg (r,Ω) + σt,g (r)ψg (r,Ω) =

G∑
g′=1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φml,g′ (r)Y m

l (Ω) +

L2∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ω) . (2.26)

It should be noted that there are two scenarios that make this approximation valid

for the scattering term. The first is if the angular flux of the true solution is able

to be accurately represented by a spherical harmonic expansion up to degree L1.

The second is if the scattering cross section is able to be accurately represented by a

Legendre polynomial expansion up to degree L1. In each case, either φml,g′ (r) ≈ 0 for

l > L1, or σl,s,g′→g (r) ≈ 0 for l > L1 respectively, causing the true infinite summation

in the scattering term to effectively stop at degree L1. In addition, many sources

are likely to be isotropic, in which case the last summation in equation 2.26 can be

accurately represented by a single term, i.e. L2 = 0. Equation 2.26 is the form of

the multi-group transport equations that will be our starting point for discussing the

SN and PN angular discretization schemes.

2.3.1 Discrete Ordinates

The simplest description of the SN method is that the multi-group transport

equations given in equation 2.26 are solved for a particular set of angles, and all angle

integrated quantities are then estimated by quadrature summation. The transport

equation for group g then becomes a set of N equations, resulting in a total of

N × G equations, where N is the number of angles in the set. Using the notation

ψg,n (r) = ψg (r,Ωn), this can be written as
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Ωn ·∇ψg,n (r) + σt,g (r)ψg,n (r) =

G∑
g′=1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φml,g′ (r)Y m

l (Ωn) +

L2∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ωn) , (2.27)

where n = 1, 2, . . . , N . The accuracy of the SN method is then largely determined

by the quadrature rule chosen to select the angles in the set. The quadrature rule is

a set of nodes and weights {Ωn, ωn}Nn=1, such that

¨
4π

f (Ω) dΩ ≈
N∑
n=1

ωnf (Ωn) . (2.28)

For example, to compute the coefficients in the spherical harmonic expansion of the

angular flux in the scattering term, the integral would be approximated as

φml,g′ (r) =

¨
4π

Y m
l (Ω)ψg′ (r,Ω) dΩ ≈

N∑
n=1

ωnY
m
l (Ωn)ψg′,n (r) . (2.29)

While there is significant freedom in choosing the quadrature rule used, there are

some desirable properties that such rules should have. Three constraints typically

imposed are
N∑
n=1

ωnΩn = 0 ,

N∑
n=1

ωn = 4π ,

and
N∑
n=1

ωnΩ2
n,x =

N∑
n=1

ωnΩ2
n,y =

N∑
n=1

ωnΩ2
n,z =

1

3

N∑
n=1

ωn ,
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where Ωn,x, Ωn,y, and Ωn,z are the Cartesian components of Ωn. The first of these is

imposed in order to enable the use of reflecting boundary conditions, while all three

are imposed to guarantee exact integration of the zeroth and first angular moments

of the transport equation in the case of a linearly anisotropic angular flux.

As an example, consider the Gauss-Chebyshev product quadrature, where the

polar and azimuthal angles of the nodes Ωn are selected independently. The polar

angles are selected by using a Gauss-Legendre quadrature rule for the cosine of the

polar angle, while the azimuthal angles are chosen to be equally weighted and equally

spaced from 0 to 2π. Although not required, it is usually the case that each octant

contains equal numbers of polar and azimuthal nodes as shown in Figure 2.2 which

shows the S4 and S8 Gauss-Chebyshev product quadrature nodes. The subscript

denotes the number of nodes in the polar angle from 0 to π. While many other

quadrature sets exist, Gauss-Chebyshev quadrature sets are quite common, and are

used exclusively in this research.

(a) S4 (b) S8

Figure 2.2: Gauss-Chebyshev quadrature nodes.
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As discussed in Chapter 1, a significant drawback to the discrete ordinates method

which solves the transport equation for a specific set of angles is that it inherently

changes the physics represented by the equation. By discretizing in angle based on

collocation as is done above, particles are restricted to travel only in the directions

in the quadrature set. This leads to ray effects, which are most prominent when

there is very little scattering and in the vicinity of localized sources. Consider for

instance an isotropic point source in a vacuum. The scalar flux in this situation

should exhibit spherical symmetry, however in a discrete ordinates calculation, the

scalar flux would appear to have rays emanating from the source along the directions

of the quadrature set. This is demonstrated qualitatively in Figure 2.3 which shows

a small localized source of strength 10 p/cm3·s and the contour plot of where the

scalar flux has dropped to 0.04 p/cm2·s. Analytically, this contour plot would be a

perfect sphere.

(a) Source location (b) Contour surface

Figure 2.3: Localized source of strength 10 p/cm3·s placed at the center of a box of
side length 200 cm and a contour surface showing where the scalar flux drops to 0.04
p/cm2·s generated by Slice-T using an S4 quadrature set.
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2.3.2 Spherical Harmonics

The PN method proceeds from equation 2.24 by expanding the angular flux on

the left hand side in the spherical harmonics functions as was done for the scattering

term using equations 2.21 and 2.22, resulting in

(
Ω ·∇ + σt,g (r)

) ∞∑
l=0

+l∑
m=−l

2l + 1

4π
φml,g (r)Y m

l (Ω) =

G∑
g′=1

∞∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φml,g′ (r)Y m

l (Ω) +

∞∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ω) . (2.30)

We then multiply by Y k
j (Ω), integrate over all angles, and take advantage of the

orthogonality of the spherical harmonics to obtain

∞∑
l=0

+l∑
m=−l

2l + 1

4π

¨
4π

Ω ·∇φml,g (r)Y k
j (Ω)Y m

l (Ω) dΩ +

σt,g (r)φkj,g (r)−
G∑

g′=1

σj,s,g′→g (r)φkj,g′ (r) = qkj,g (r) . (2.31)

To simplify this further, we note that

Ω =
(√

1− ξ2 cos(ω),
√

1− ξ2 sin(ω), ξ
)T

where again, ξ is the polar angle associated with Ω and ω is the azimuthal angle

associated with Ω. Using this definition, we can write
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Ω ·∇ =
√

1− ξ2 cos(ω)
∂

∂x
+
√

1− ξ2 sin(ω)
∂

∂y
+ ξ

∂

∂z
, (2.32)

and the last remaining integral in equation 2.31 can be expanded as

¨
4π

Ω ·∇φml,g (r)Y k
j (Ω)Y m

l (Ω) dΩ =

∂

∂x

(
φml,g (r)

¨
4π

√
1− ξ2 cos(ω)Y k

j (Ω)Y m
l (Ω) dΩ

)
+

∂

∂y

(
φml,g (r)

¨
4π

√
1− ξ2 sin(ω)Y k

j (Ω)Y m
l (Ω) dΩ

)
+

∂

∂z

(
φml,g (r)

¨
4π

ξY k
j (Ω)Y m

l (Ω) dΩ

)
(2.33)

This is useful because we can take advantage of the recursion relations shown on the

next page with constants given by

Akj =

√
(j − k + 1)(j + k + 1)

(2j + 3)(2j + 1)
, Bk

j =

√
(j − k)(j + k)

(2j + 1)(2j − 1)
,

Ck
j =

√
(j + k + 1)(j + k + 2)

(2j + 3)(2j + 1)
, Dk

j =

√
(j − k)(j − k − 1)

(2j + 1)(2j − 1)
,

Ek
j =

√
(j − k + 1)(j − k + 2)

(2j + 3)(2j + 1)
, F k

j =

√
(j + k)(j + k − 1)

(2j + 1)(2j − 1)
.

This allows each integral on the right hand side of equation 2.33 to become a sum

of integrals whose integrands are products of spherical harmonics, which by orthog-

onality evaluate to constant values. The end result is that the streaming term in the

transport equations has become a linear combination of coefficient spatial derivatives.
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ξY k
j (Ω) = AkjY

k
j+1 (Ω) +Bk

j Y
k
j−1 (Ω) (2.34)

√
1− ξ2 cos(ω)Y k

j (Ω) =



1√
2

(
C0
j Y

1
j+1 (Ω)−D0

jY
1
j−1 (Ω)

)
, k = 0

1
2

(
Ck
j Y

k+1
j+1 (Ω)−Dk

jY
k+1
j−1 (Ω)

)
+


1
2

(
−Ek

j Y
k−1
j+1 (Ω)− F k

j Y
k−1
j−1 (Ω)

)
, k > 1

1√
2

(
−Ek

j Y
k−1
j+1 (Ω)− F k

j Y
k−1
j−1 (Ω)

)
, k = 1

1
2

(
Ek
j Y

k−1
j+1 (Ω)− F k

j Y
k−1
j−1 (Ω)

)
+


1
2

(
−Ck

j Y
k+1
j+1 (Ω) +Dk

jY
k+1
j−1 (Ω)

)
, k < −1

0, k = −1

(2.35)

√
1− ξ2 sin(ω)Y k

j (Ω) =



1√
2

(
C0
j Y
−1
j+1 (Ω)−D0

jY
−1
j−1 (Ω)

)
, k = 0

1
2

(
Ck
j Y
−k−1
j+1 (Ω)−Dk

jY
−k−1
j−1 (Ω)

)
+


1
2

(
Ek
j Y
−k+1
j+1 (Ω)− F k

j Y
−k+1
j−1 (Ω)

)
, k > 1

0, k = 1

1
2

(
−Ek

j Y
−k+1
j+1 (Ω) + F k

j Y
−k+1
j−1 (Ω)

)
+


1
2

(
−Ck

j Y
−k−1
j+1 (Ω) +Dk

jY
−k−1
j−1 (Ω)

)
, k < −1

1√
2

(
−Ck

j Y
−k−1
j+1 (Ω) +Dk

jY
−k−1
j−1 (Ω)

)
, k = −1

(2.36)
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This multiplication and integration is performed for every Y k
j (Ω) resulting in an

infinite set of equations for each energy group which can be written as

(
Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
+ σt,g (r)−

G∑
g′=1

σj,s,g′→g (r)

)
Φ (r) = Q (r) , (2.37)

where Ax, Ay, and Az are matrices whose elements are linear combinations of Akj ,

Bk
j , Ck

j , Dk
j , E

k
j , and F k

j , Φ (r) is a vector containing the coefficient functions φkj,g (r),

and Q (r) is a vector containing the coefficient functions qkj,g (r). Yet again, no ap-

proximations have been made in this section; we have simply used the orthogonality

and recursion relations of the spherical harmonics to write the transport equation

for group g as an infinite system of equations, which is not ideal either.

The approximation that must be made is the same as the one made when we

modified the scattering term, namely to truncate the expansion at some level by

setting φkN+1,g (r) = 0, or expressing φkN+1,g (r) in terms of lower-order moments.

While the higher-order moments may not be zero, you don’t need to know them in

order to find the lower-order ones, and we end up with a finite system of equations for

each energy group. To be exact, we end up with (N + 1)2 equations for each energy

group. By the same logic as before, the accuracy of this approximation is related to

how accurately the true angular flux can be represented by such a finite expansion. In

addition, if the angular flux can be accurately represented by a truncated expansion

whereN is small, the PN method is preferable over the SN method. This will typically

occur in optically thick problems with high scattering ratios, whereas problems that

are dominated by the streaming term will be more accurately treated by the SN

method. The research presented here uses the SN method for angular discretization,

and the PN method has only been presented in the interest of completeness and to

provide a more thorough review of deterministic methods.
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2.4 Spatial Discretization

For reasons that will become more clear later in this chapter when iterative meth-

ods are discussed, a discussion of spatial discretization methods will start from the

fixed-source, steady state, energy independent transport equation

Ω ·∇ψ (r,Ω) + σt (r)ψ (r,Ω) = q (r,Ω) . (2.38)

This can be justified by noting the following points

• Time dependent problems require only repeated solutions of steady-state prob-

lems as previously discussed.

• Iterative methods for the energy dependence result in iterations known as outer

iterations, where the contribution to the scattering term for each group from

all other groups is computed using information from a previous iteration. This

effectively removes all energy dependence within each iteration.

• Iterative methods for the scattering term result in iterations known as inner

iterations, where the contribution to the scattering term for each group from

itself is computed using information from a previous iteration. This effectively

converts the entire right hand side of the transport equation into a fixed source

q (r,Ω) within each iteration.

Furthermore, angle dependence can be discretized using the discrete ordinates method

so that equation 2.38 can be written as

Ωn ·∇ψn (r) + σt (r)ψn (r) = qn (r) , n = 1, 2, . . . , N. (2.39)
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2.4.1 Finite Volume Methods

Finite volume methods aim to solve partial differential equations such as equa-

tion 2.39 by volume averaging the differential equation over each cell in the spatial

mesh. Divergence or gradient terms are converted to surface integrals, and the flux

through each surface is determined by an interpolation scheme using the cell aver-

aged values for the cells on either side of the face. To illustrate this, we first integrate

equation 2.39 over cell i in the mesh and divide by that cell’s volume Vi, assuming

that the total interaction cross section is constant within each cell of the mesh and

denoted σt,i

1

Vi
Ωn ·

˚
Vi

∇ψn (r) d3r + σt,i
1

Vi

˚
Vi

ψn (r) d3r =
1

Vi

˚
Vi

qn (r) d3r . (2.40)

The next step is to define

ψn,i =
1

Vi

˚
Vi

ψn (r) d3r

and

qn,i =
1

Vi

˚
Vi

qn (r) d3r .

We also convert the first volume integral into a surface integral to rewrite equa-

tion 2.40 as

1

Vi
Ωn ·

‹
∂Vi

ψn (r) n (r) d2r + σt,iψn,i = qn,i , (2.41)

where n (r) is the outward pointing unit normal vector on the boundary of the cell.

In most cases, the cells of the mesh are polyhedra with planar faces, and hence the

surface integral can be expanded in a sum of integrals over each face of the cell, each

with a constant n (r). This allows us to write equation 2.41 as
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(
Fi∑
f=1

Ωn · nf
Vi

¨
∂Vi,f

ψn (r) d2r

)
+ σt,iψn,i = qn,i , (2.42)

where Fi is the number of faces in cell i, and nf is the outward pointing unit normal

vector on face f . At this point, some freedom is available in choosing how each

term in the summation is related to the values of ψn,i for the cells on either side

of face f via interpolation. Once the terms in the summation are expressed in

terms of the average values on either side of the face and every cell in the mesh is

volume averaged as given above, the result is a linear system of equations whose

solution is a vector containing the average value of the flux in each cell of the mesh.

Different interpolation schemes will lead to different accuracies for a given problem.

In general, the finite volume method works well for conservation equations with

smooth solutions, because conservation is preserved within each cell of the mesh, and

hence throughout the entire problem. While the transport equation is a conservation

equation, its solution is likely to have discontinuities, and this presents difficulties

for solving it using a finite volume method.

A common finite volume method used to solve the transport equation is the

diamond difference (DD) spatial discretization scheme. To illustrate this method,

consider the one dimensional discretized domain shown in Figure 2.4. This figure

uses the standard notation in which half integral indices are used at cell edges and

integral indices are used at cell centers. Denoting µn = Ωn,x, equation 2.39 for one

dimensional problems can be written as

µn
∂ψn
∂x

+ σt (x)ψn (x) = qn (x) . (2.43)

Volume averaging over cell i in this case is equivalent to simply integrating this

equation from xi−1/2 to xi+1/2, and dividing by ∆xi = xi+1/2 − xi−1/2, resulting in
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Figure 2.4: One dimensional spatial discretization.

µn
∆xi

(
ψn,i+1/2 − ψn,i−1/2

)
+

σt,i

(
1

∆xi

ˆ xi+1/2

xi−1/2

ψn (x) dx

)
=

1

∆xi

ˆ xi+1/2

xi−1/2

qn (x) dx . (2.44)

where ψn,i±1/2 = ψn
(
xi±1/2

)
and σt,i is the total cross section in cell i. We then

define

ψn,i =
1

∆xi

ˆ xi+1/2

xi−1/2

ψn (x) dx (2.45)

and

qn,i =
1

∆xi

ˆ xi+1/2

xi−1/2

qn (x) dx (2.46)

to rewrite equation 2.44 as

µn
∆xi

(
ψn,i+1/2 − ψn,i−1/2

)
+ σt,iψn,i = qn,i . (2.47)

Instead of interpolating between cell averaged angular fluxes to get the cell edge

angular fluxes, as is done in most finite volume methods, the DD scheme solves for

the cell edge angular fluxes, and linearly interpolates between these values to get the

cell averaged angular fluxes. The two approaches can be shown to be equivalent.

The interpolation is performed by adding the closing equation

ψn,i =
1

2

(
ψn,i−1/2 + ψn,i+1/2

)
. (2.48)
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2.4.2 Finite Element Methods

The finite element method aims to solve partial differential equations such as

equation 2.39 by first converting the differential equation to what is known as the

weak form, or variational form. This is accomplished by multiplying the equation

by a test function belonging to a certain function space, and then integrating over

the spatial domain. To illustrate this, we multiply equation 2.39 by test function

ω (r) ∈ W , where W is some infinite-dimensional function space, and integrate over

the spatial domain

˚
D

ω (r)

(
Ωn ·∇ψn (r) + σt (r)ψn (r)

)
d3r =

˚
D

ω (r) qn (r) d3r . (2.49)

The goal now is to find ψn (r) ∈ W such that equation 2.49 is satisfied for all

ω (r) ∈ W . If we could find such a ψn (r), it can be shown that this function will also

be the solution to equation 2.39.[14] No approximations have been made yet, but we

also have an infinite-dimensional space of functions for which to satisfy equation 2.49,

and this is clearly not ideal. The approximation comes in restricting the function

space W to a finite number of dimensions, with the restricted space denoted W̃ . This

finite-dimensional function space is typically a space of piece-wise polynomials that

are only non-zero in a single cell, or group of cells, in the mesh.

The finite element solution then proceeds by multiplying equation 2.39 by each

function in a basis set for the finite space W̃ , integrating over the domain, and

expanding ψn (r) as a linear combination of the basis functions in W̃ . The result is

a linear system of equations whose solution is a vector containing the coefficients of

the expansion. The finite element method therefore results in a solution that has a

functional form within each cell, rather than simply a piece-wise constant solution

matching the average of the solution in each cell as in the finite volume method.
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There is also a great deal of freedom in selecting the finite function space W̃ , which

may result in higher accuracy than a finite volume method could attain. It is also

the case that discontinuous test functions could be used, allowing for discontinuities

in the solution, for problems where such discontinuities are likely to exist.

Consider for example the linear discontinuous finite element (LDFE) spatial dis-

cretization scheme. To illustrate this method, we will again use the one dimensional

discretized domain shown in Figure 2.4. We begin by defining the test functions

ω1
i (x) =


1 for xi−1/2 < x < xi+1/2

0 otherwise

and

ωxi (x) =


6 (x− xi) /∆xi for xi−1/2 < x < xi+1/2

0 otherwise

for each cell in the mesh. It is easy to see that these test functions are discontinuous,

and hence any solution described by a linear combination of these test functions may

also be discontinuous. Since the test functions for cell i are only non-zero within cell

i, multiplying the transport equation by each of these test functions and integrating

over the problem domain is equivalent to multiplying by the test functions and

integrating over the cell. In addition, we divide by the cell width ∆xi in order to

express certain quantities as moments of the angular flux. This action results in the

following two equations:

µn
∆xi

(
ψn,i+1/2 − ψn,i−1/2

)
+ σt,iψn,i = qn,i , (2.50)

3µn
∆xi

(
ψn,i+1/2 + ψn,i−1/2 − 2ψn,i

)
+ σt,iψ

x
n,i = qxn,i , (2.51)
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where ψn,i±1/2, ψn,i, and qn,i are defined as in the DD example, and the superscripted

variables are defined as

ψxn,i =
1

∆xi

ˆ xi+1/2

xi−1/2

ωxi (x)ψn (x) dx (2.52)

and

qxn,i =
1

∆xi

ˆ xi+1/2

xi−1/2

ωxi (x) qn (x) dx . (2.53)

At this point, we must choose how to handle the boundary information. We choose

the upwind scheme in which the flux on the edge entering the cell in direction Ωn

is specified by the flux in the upwind cell. In this simple one dimensional example,

this means that for µn > 0, ψn,i−1/2 is known, and for µn < 0, ψn,i+1/2 is known. For

brevity, we restrict this example to the case where µn > 0. In this case, there are

three unknowns in equations 2.50 and 2.51: ψn,i, ψ
x
n,i, and ψn,i+1/2. The next step is

to express ψn (x) as a linear combination of the test functions

ψn (x) = ψn,i +
2 (x− xi)

∆xi
ψxn,i . (2.54)

It is easy to show that with this expansion, equations 2.45 and 2.52 are automatically

satisfied. We can now use this expansion to evaluate the angular flux at the right

boundary as

ψn,i+1/2 = ψn,i + ψxn,i . (2.55)

Plugging this result into equations 2.50 and 2.51 results in a system of two equations

and two unknowns, ψn,i and ψxn,i, for each cell i in the spatial mesh. The final result

is a lower triangular matrix equation consisting of two equations per spatial mesh

cell, for the Ωn direction.
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2.4.3 Method of Characteristics

The method of characteristics (MOC) was developed by Askew[15] as an integral

method to avoid negativities in the numerical angular flux solution, as well as to

handle complex geometrical models. Implementations of the MOC lie in two cate-

gories; the method of long characteristics and the method of short characteristics. In

the long characteristic method, the transport equation is solved analytically along

lines drawn through the entire spatial domain via the use of an integrating factor. As

each line crosses through a spatial cell, the particle source and material properties are

often assumed constant, and the average angular flux along the line segment is com-

puted. A volume is then associated with this line segment so that the contribution

of the angular flux to the scalar flux within the spatial cell can be computed. The

short characteristic method on the other hand treats each spatial cell individually,

as was done in the finite volume and finite element methods, with the solution in

each cell along short characteristic lines spanning the spatial cell, given analytically

via the use of an integrating factor.

The first step in any characteristic method is to make the characteristic trans-

formation to the transport equation. This is done by parameterizing the position

variable with respect to a reference position r0 by defining r = r0 + sΩn. The

streaming term in the transport equation then becomes

Ωn ·∇ψn (r) = Ωn,x
∂ψn
∂x

+ Ωn,y
∂ψn
∂y

+ Ωn,z
∂ψn
∂z

=

dx

ds

∂ψn
∂x

+
dy

ds

∂ψn
∂y

+
dz

ds

∂ψn
∂z

=
d

ds
ψn (r) . (2.56)
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Equation 2.39 can then be written as

d

ds
ψn (r0 + sΩn) + σt (r0 + sΩn)ψn (r0 + sΩn) = qn (r0 + sΩn) . (2.57)

To simplify this further, we switch to a one dimensional coordinate system where

r0 is at the origin, and the axis is in the direction of Ωn so that we can rewrite

equation 2.57 as

d

ds
ψn (s) + σt (s)ψn (s) = qn (s) . (2.58)

This equation can then be solved analytically through the use of the integrating

factor e−
´ s
0 σt(s

′)ds′ . The final result is

ψn (r0 + sΩn) = ψn (r0) e−
´ s
0 σt(s

′)ds′ +

ˆ s

0

qn (r0 + s′′Ωn) e−
´ s
s′′ σt(s

′)ds′ds′′ . (2.59)

It is important to note that up until this point, no approximations have been made.

Equation 2.59 is the exact solution to equation 2.39 along a given characteristic

line. Of course, the solution along a single line is not what is sought in most cases.

Approximations are made in combining the solutions along a large number of lines

to get the solution to equation 2.39 throughout the entire spatial domain. The more

lines used in the calculation, the more accurate the numerical solution will be. It

is also the case that sources and cross sections are assumed constant within spatial

cells of a mesh, and hence the accuracy of the calculation is also tied directly to

the resolution of the mesh. Finally, it is clear from equation 2.59 that as long as

the source function qn (r) is strictly positive, the solution will be as well. This is

an important quality, since finite volume and finite element methods are prone to

producing negative angular fluxes in optically thick cells.
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2.5 The Slice Balance Approach

The Slice Balance Approach (SBA) is yet another spatial discretization method

that warrants further discussion due to its relevance to the research presented here.

The SBA is a characteristic based, multiple balance scheme for solving the discrete

ordinates equations on unstructured meshes developed by Grove.[9] The multiple

balance scheme was defined by Morel and Larsen[16], where they state:

“We define any SN differencing scheme based on the use of whole-cell

and approximate subcell balance equations as a multiple balance scheme.

Note that this is a very general form of definition. This approach can

clearly be applied to any form of the transport equation. Furthermore,

there are infinitely many multiple balance schemes that can be defined

for the same form of the transport equation and the same phase-space

cell.”

The SBA solves for the angular flux in each spatial cell by first decomposing the cell

into what are called slices. A slice is the union of all points in a cell for which a line

drawn through the point in the discrete ordinate direction Ωn, intersects the same

inlet and outlet face of the cell. This is illustrated in Figure 2.5, which identifies slice

ij formed from inlet face i and outlet face j of a polyhedral spatial cell with 12 faces.

There are a total of 17 slices that can be made from the cell shown in Figure 2.5.

Since the slices within a cell are non-overlapping, and their union is the cell itself,

summing the volume integrated transport equation for all slices equals the volume

integrated transport equation for the cell. The goal of SBA is then to solve for the

flux within each slice and the flux on the outgoing boundary of each slice, and use

these quantities to solve for the flux within the cell and the flux on the cell’s outgoing

faces.
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Figure 2.5: Illustration of slice ij formed from inlet face i and outlet face j of a
polyhedral spatial cell.

To derive the SBA framework, consider the discrete ordinates transport equation

integrated over a polyhedral cell c with planar faces

Fi∑
i=1

Ωn · niAiψn,i +

Fj∑
j=1

Ωn · njAjψn,j + σt,cVc ψn,c = Vc qn,c , (2.60)

where

ψn,i =
1

Ai

¨
∂Vi

ψn (r) d2r ,

ψn,j =
1

Aj

¨
∂Vj

ψn (r) d2r ,

ψn,c =
1

Vc

˚
Vc

ψn (r) d3r ,

qn,c =
1

Vc

˚
Vc

qn (r) d3r ,
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i is an index used for inlet faces, j is an index used for outlet faces, A is an area,

F is the number of faces of each type, n is an outward pointing unit normal vector,

and V is a volume. The unknowns appearing in this equation are ψn,j and ψn,c since

the ψn,i are given via boundary conditions or the upstream cell. Further, we define

αn,i = Ωn · niAi and αn,j = Ωn · njAj

to rewrite equation 2.60 as

Fi∑
i=1

αn,iψn,i +

Fj∑
j=1

αn,jψn,j + σt,cVc ψn,c = Vc qn,c . (2.61)

Similarly integrating the transport equation over slice s yields

αn,inψn,s,in + αn,outψn,s,out + σt,cVs ψn,s = Vs qn,s , (2.62)

where each term is defined analogously to the terms appearing in equation 2.61.

The important thing to notice here is that each sum appearing in equation 2.61 has

reduced to a single term, since there are now only two faces for which Ωn · n 6= 0.

Obtaining the solution to equation 2.62 for each slice in the cell then allows the

reconstruction of the cell unknowns via the following two relations

Vc ψn,c =
∑
s

Vs ψn,s , (2.63)

Aj ψn,j =
∑
s∗j

As,out ψn,s,out , (2.64)

where the summation over s∗ j denotes a sum over all slices with outgoing faces that

are partial faces of cell outgoing face j.
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Solving equation 2.62 for each slice in Figure 2.5 results in 17 relatively simple

problems, each with two unknowns, instead of solving the more complicated single

problem for the cell with 7 unknowns. While more work must be done due to the

increase in the number of unknowns being solved for, there are some fairly significant

benefits. First, this method provides a general way to treat unstructured arbitrary

polyhedral meshes. In addition, equation 2.62 resembles the one dimensional volume

integrated transport equation encountered in the examples of the DD and LDFEM

schemes given previously, hinting that one dimensional spatial discretization schemes

can be applied to the three dimensional problem.

Second, the accuracy of the solution compared to the traditional cell balance

approach (CBA) is likely to increase due to two factors. The first factor is the

increased spatial resolution on which the solution is obtained, even if this solution

is then coarsened to represent the solution on the cells of the mesh rather than the

slices. The second factor is that the SBA leads to a more consistent representation

of particle streaming than the traditional CBA. To see why this is the case, consider

Figures 2.6 and 2.7, which show the two dimensional comparison between the solution

on a quadrilateral cell using the CBA and SBA respectively. In these figures, ψL,

ψR, ψB, and ψT are the fluxes on the left, right, bottom, and top edges of the cell

respectively, and ψk, ψk,out, and lk,out are the average flux in slice k, the average flux

on the outlet edge of slice k, and the width of the outlet edge of slice k respectively.

In the CBA, ψR is a function of ψL. However, given Ωn as oriented in these figures,

this should not be the case, as particles cannot stream from the left edge to the

right edge. With the SBA, this non-physical causality is avoided, and ψR is given

as the outlet flux of Slice 3, whose inlet flux is equal to ψB. This is reminiscent of

characteristic methods which use this sort of cell decomposition implicitly, while the

SBA uses it explicitly.
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Figure 2.6: A single quadrilateral cell and the relationship between the flux variables
using the CBA.

Figure 2.7: A single quadrilateral cell and the relationship between the flux variables
using the SBA.
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2.6 Iterative Methods

In the section discussing energy discretization, the Gauss-Seidel iterative method

was briefly discussed. Mathematically, the Gauss-Seidel method can be written as

Ω ·∇ψ(k+1)
g (r,Ω) + σt,g (r)ψ(k+1)

g (r,Ω) =

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g→g (r)φ

m(k+1)
l,g (r)Y m

l (Ω) +

g−1∑
g′=1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φ

m(k+1)
l,g′ (r)Y m

l (Ω) +

G∑
g′=g+1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φ

m(k)
l,g′ (r)Y m

l (Ω) +

L2∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ω) , (2.65)

where k is the iteration index. We can define

Qg (r,Ω) =

g−1∑
g′=1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φ

m(k+1)
l,g′ (r)Y m

l (Ω) +

G∑
g′=g+1

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g′→g (r)φ

m(k)
l,g′ (r)Y m

l (Ω) +

L2∑
l=0

+l∑
m=−l

2l + 1

4π
qml,g (r)Y m

l (Ω) (2.66)
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in order to rewrite equation 2.65 as

Ω ·∇ψ(k+1)
g (r,Ω) + σt,g (r)ψ(k+1)

g (r,Ω) =

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s,g→g (r)φ

m(k+1)
l,g (r)Y m

l (Ω) +Qg (r,Ω) . (2.67)

Each iteration of the Gauss-Seidel method requires the solution to equation 2.67

for g = 1, 2, . . . , G. The important thing to notice is that all coupling between

energy groups is now contained in the term Qg (r,Ω). This term can be computed

prior to solving equation 2.67 using angular flux moments φml,g′ (r) from either the

current iteration if g′ < g, or the previous iteration if g′ > g. After computing

Qg (r,Ω), equation 2.67 is a steady state, energy independent transport equation for

ψ
(k+1)
g (r,Ω). The result is that the solution for each group g must be obtained to a

transport equation of the form

Ω ·∇ψ (r,Ω) + σt (r)ψ (r,Ω) =

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s (r)φml (r)Y m

l (Ω) +Q (r,Ω) . (2.68)

Equation 2.68 requires its own iterative method to handle the within group scattering

term on the right hand side. Source iteration is a particularly simple and intuitive

method whereby the scattering term is evaluated from the previous iteration, or an

initial guess on the first iteration. With an initial guess of ψ(0) (r,Ω) = 0, each

iteration computes the angular flux due to particles which have scattered k times,

where k is again the iteration index. Mathematically, source iteration can be written

as

57



Ω ·∇ψ(k+1) (r,Ω) + σt (r)ψ(k+1) (r,Ω) =

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s (r)φ

m(k)
l (r)Y m

l (Ω) +Q (r,Ω) . (2.69)

Since all quantities on the right hand side are computed using the previous iteration,

equation 2.69 is a fixed source, steady state, energy independent transport equation

for ψ(k+1) (r,Ω). The result is that the solution for each iteration must be obtained

to a transport equation of the form

Ω ·∇ψ (r,Ω) + σt (r)ψ (r,Ω) = q (r,Ω) , (2.70)

which was our starting point for discussing spatial discretization schemes.

The source iteration method, while simple and intuitive, is rarely used in trans-

port codes due to its propensity to converge very slowly in problems for which par-

ticles scatter many times before absorption or leakage. Instead, efforts are made

to accelerate the convergence. One such acceleration method is diffusion synthetic

acceleration (DSA) in which each iteration consists of two steps. The first step is to

estimate the angular flux given the flux moments of the previous iteration, as was

done in source iteration. The second step is to estimate the error in the scalar flux

via the use of a diffusion operator, and to use this error to correct the scalar flux

estimate. Mathematically, DSA can be written as

Ω ·∇ψ(k+1/2) (r,Ω) + σt (r)ψ(k+1/2) (r,Ω) =

L1∑
l=0

+l∑
m=−l

2l + 1

4π
σl,s (r)φ

m(k)
l (r)Y m

l (Ω) +Q (r,Ω) , (2.71)
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φ(k+1/2) (r) =

¨
4π

ψ(k+1/2) (r,Ω) dΩ , (2.72)

−∇ ·
(

1

3σtr (r)
∇δφ(k+1/2) (r)

)
+ σa (r) δφ(k+1/2) (r) =

σs (r)
(
φ(k+1/2) (r)− φ(k) (r)

)
, (2.73)

φ(k+1) (r) = φ(k+1/2) (r) + δφ(k+1/2) (r) , (2.74)

where σa is the absorption cross section, σs is the scattering cross section, σtr =

σt − µσs, and µ is the average scattering angle cosine. For isotropic, or weakly

anisotropic scattering in the lab frame, and a consistent spatial discretization for

both the transport and diffusion operators, DSA is an unconditionally effective way

to accelerate the source iteration method. DSA is a special case of the angular multi-

grid strategy, where the diffusion operator represents the coarse grid solution used to

attenuate low frequency errors. It is effective because it is the low frequency errors

that the transport operator is ineffective at converging. Where source iteration has

a spectral radius equal to c = σs/σt, DSA if implemented consistently for problems

with isotropic scattering can reduce this to roughly 0.23c.

While many other iterative methods exist, the small subset discussed above share

a common feature that each inner iteration consists of the solution to the fixed source,

steady state, energy independent transport equation for the entire spatial domain

using previous-iterate values for the volumetric source information. They essentially

decompose a time dependent, energy dependent, and angle dependent problem into

a series of problems that have only spatial dependence. A desirable property of such

methods is that the iteration counts do not change with spatial mesh refinement,

which is an important consideration for high resolution transport problems.[17]
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2.7 The Parallel Transport Sweep

With iterative methods such as source iteration and DSA, which converge in

roughly the same number of iterations regardless of the spatial mesh resolution, the

time to solution is largely determined by the time required for each inner iteration to

solve the fixed source, steady state, energy independent transport equation for the

entire spatial domain. This places a considerable amount of emphasis on reducing

the time per inner iteration by parallelizing the solution on multiple CPUs.

Given the memory requirements to store the angular flux solution, high fidelity

transport calculations are carried out on super-computers and clusters, with each

node of the machine storing the solution on a subset of the problem geometry. The

solution to equation 2.39 is then obtained through what is known as a transport

sweep. The process starts by obtaining the solution on a subset of the geometry

for an angle for which all incoming fluxes are given by the prescribed boundary

conditions (typically a subset in the corner of the spatial domain). After this node

has obtained the solution for this angle, it sends messages to the neighboring nodes

so that they will receive the necessary boundary information to solve for this angle

as well. In this way, the sweep progresses in a plane that has one fewer dimension

than the problem geometry.

The transport sweep is illustrated in Figure 2.8 for a two dimensional domain with

each square representing a subset of the mesh owned by a single node of the machine

and each arrow representing communication between nodes. In this illustration,

four sweep planes are progressing simultaneously, each starting from a corner of the

spatial domain, and each using a different color for its arrows. The subsets colored

in gray denote angular collisions where a node has received boundary information

for multiple angles, and must decide which calculation to perform first. In reality, as
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soon as the corner subset completes the first angle and sends its outgoing fluxes to its

neighbors, it would begin solving the next angle in the quadrature set for which all

incoming fluxes are given by the prescribed boundary conditions, and then the next

angle after that and so on as shown in Figure 2.9. In this way, once the initial angle

swept reaches the inner most node, all nodes will be busy performing calculations

until there are no more angles to sweep. The parallel efficiency of the sweep is

largely determined by how long all nodes can be kept busy performing calculations

as opposed to waiting on boundary information to begin performing calculations.

Figure 2.8: Two dimensional illustration of the parallel transport sweep for four
angles emanating from the four corners of the spatial domain.

Figure 2.9: Two dimensional illustration of the parallel transport sweep for three
angles emanating from the same corner of the spatial domain.
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An alternative to the transport sweep is the parallel block Jacobi (PBJ) method

which is an iterative method whereby all nodes are actively performing calculations

using boundary information from the previous iteration. While this method has the

obvious advantage of exhibiting zero idle time and no angular collisions, the PBJ

method does not have the property that iteration counts for scattering iteration

methods are independent of mesh resolution.[18] In addition, despite the idle time

inherent in the parallel transport sweep, it has been shown to be scalable to over 106

cores.[19]

Aside from the inherent idle time associated with parallel transport sweeps, there

is another issue that arises in the case of arbitrary polyhedral meshes, or even tetra-

hedral meshes. This issue is that inter-node domain boundaries should be kept planar

to avoid ray re-entry. Consider Figure 2.10 for instance, which shows a jagged inter-

node domain boundary and an angle of the SN quadrature set, for a two dimensional

triangular mesh. During a sweep, node 1 would pass flux information to node 2, but

in order to compute the solution on the entirety of node 1, input flux information

is needed from node 2. In other words, node 2 is dependent on node 1, and node 1

is dependent on node 2. This complicates the sweep dependency graph and requires

further iteration within the parallel transport sweep. While work has been done

to remedy this issue [20][21], it is still preferable to have planar inter-node domain

boundaries. Unfortunately, such planar inter-node boundaries are not guaranteed to

exist in the problem geometry, and must be artificially introduced. Furthermore, it

is desired to have roughly the same number of cells in each subset in the interest

of load balancing, so such planar inter-node boundaries cannot be placed just any-

where. Recent work in load-balancing extruded triangular meshes has shown that

introduction of such inter-node domain boundaries in two dimensions can be a very

challenging task.[22]
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Figure 2.10: Two dimensional triangular mesh with a jagged inter-node boundary.

2.8 Overview

This chapter has discussed a few of the most common deterministic methods for

solving the transport equation. A more thorough review can be found in the book by

Lewis and Miller[2], and an extensive review of iterative methods for particle scatter-

ing can be found in the Progress in Nuclear Energy article by Adams and Larsen.[17]

To summarize, the full solution to equation 2.1 is obtained by discretizing the entire

phase space of the angular flux. Discretization of the temporal variable results in a

series for steady state problems to solve, while iterative methods result in a series

of fixed source, energy independent problems to solve. After applying the discrete

ordinates approximation, the inner-most problem to solve has only spatial depen-

dence for each angle in the angular quadrature set, and the solution to this problem
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is parallelized to take advantage of super-computers and clusters for high fidelity

transport calculations. This research is particularly focused on the solution to this

inner-most problem, and the accuracy and parallel efficiency of its implementation.
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3. DERIVATION OF AN EXTENDED SLICE BALANCE APPROACH

The Slice Balance Approach (SBA) presented in the previous chapter was the

starting point for the research presented here, which began as an attempt to imple-

ment the linear discontinuous finite element (LDFE) spatial discretization into the

SBA framework, which was outlined by Kennedy, Watson, and Grove in 2010[23],

but never implemented as of 2016. Along the path to such an implementation it was

discovered that with very little added cost, a gain in accuracy could be achieved via

a simple modification that fundamentally changes how facial angular flux variables

are computed and communicated to downstream cells. In addition to describing

this modification and the implementation of the LDFE spatial discretization in the

extended SBA framework, this chapter also describes a local face-based transport

sweep algorithm which solves for the angular flux throughout the spatial domain on

a single node for a given discrete ordinate.

3.1 Modifying the Traditional Slice Balance Approach

As discussed in the previous chapter, the SBA gains accuracy through a more

consistent representation of particle streaming in a way reminiscent of the Method

of Characteristics (MOC). Consider for example, the sliced quadrilateral cell shown

in Figure 3.1. In a cell balance method, the flux in the cell interior and the fluxes

exiting on the right and top edges would all be influenced by the fluxes entering on

the left and bottom edges. However, given Ωn as oriented in this figure, the flux

entering on the left edge should not influence the flux exiting on the right edge,

because particles cannot stream from the left edge to the right edge. With the SBA,

this non-physical causality is avoided.
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Figure 3.1: Example of a sliced quadrilateral cell.

The SBA solves for the interior and exiting fluxes of each slice using a prescribed

spatial discretization scheme, and uses these slice-wise fluxes to construct the interior

and exiting cell-wise fluxes. In the example shown in Figure 3.1, the cell interior flux

would be constructed from the interior fluxes of the three slices, the flux exiting the

cell on the top face would be constructed from the exiting fluxes of Slices 1 and 2,

and the flux exiting the cell on the right face would be the exiting flux of Slice 3.

On a per-cell basis, the non-physical causality noted above is avoided by the

SBA; however, on a per-face basis it is not. To see why, consider an identical cell

to that in Figure 3.1 placed on top of the depicted cell, composed of Slices 1′, 2′,

and 3′ as shown in Figure 3.2, ignoring the dotted line for the moment. In this new

cell, the flux entering on the bottom face is given by the flux exiting the top face of

the original cell, which was constructed from Slices 1 and 2. In the SBA, this flux

would be used as the incoming fluxes for Slices 2′ and 3′. Physically however, the

flux leaving Slice 1 should not influence the flux entering Slice 3′ because particles

cannot stream from Slice 1 to Slice 3′.
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Figure 3.2: Example of two adjacent cells illustrating the concept of a sub-slice.

It is this smearing of the facial fluxes that we attempt to reduce in the proposed

modification to the SBA by exploiting the concept of a sub-slice. Where a slice is

defined as the cell region bounded by a single inlet-outlet face pair, a sub-slice is

defined as the portion of a slice that is downstream of a single slice in the upstream

cell, as shown in Figure 3.2. While the streaming plus collision operator is still

inverted on each slice, and the cell interior flux is still constructed from the slice

fluxes, the cell facial fluxes are not. The incoming fluxes are stored on the sub-slices,

and the slice can be treated only after all of its contained sub-slices have received

67



their incoming flux information from their upstream slices. At this point the sub-slice

incoming fluxes are appropriately averaged for use in the parent slice. This should

further improve accuracy in problems exhibiting shadow type discontinuities, where

the flux may be discontinuous in neighboring slices. An example of such a problem

is the propagation of a single ray of particles.

The careful observer will note that this alteration to the SBA only serves to

propagate discontinuities into the cell immediately downstream, and further non-

physical causalities are indeed still present. For instance, placing a third cell on top

of the cells in Figure 3.2 composed of Slices 1′′, 2′′, and 3′′, we can see that the flux

entering Sub-Slice 2′′-2 would be determined by the flux exiting Slice 2′, which was

influenced by the exiting fluxes of Slices 1 and 2. However, the flux exiting Slice

2 should not influence the incoming flux in Sub-Slice 2′′-2. It should also be noted

that propagating discontinuities throughout the entire mesh in this fashion would

result in a much more computationally cumbersome beast than either the MOC or

traditional cell balance methods. One goal of this research is to determine what effect

this single cell downstream discontinuity propagation has on the numerical solution

with relatively little added cost to the traditional SBA.

Finally, consider if we were to draw cut planes parallel to Ωn through the spatial

mesh as shown in Figure 3.3 and refine the definition of a slice such that no slice

straddles a cut plane as shown in Figure 3.4. It is easy to see that the solution in

between consecutive cut planes would be independent of the solution in any other

such region. This will be an important result in the next chapter, and it is made

possible by the concept of the sub-slice, since facial fluxes (for faces which would

straddle the cut planes) are no longer needed to begin solving within a slice, making

each region between consecutive cut planes completely decoupled from all other such

regions.
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Figure 3.3: Decomposition of a meshed cubic spatial domain by five cut planes.

Figure 3.4: Re-definition of a slice such that it does not straddle a cut plane.
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3.2 Implementation of the Linear Discontinuous Finite Element Method

To illustrate how the LDFE spatial discretization scheme can be implemented in

the extended SBA framework, consider Figure 3.5 which singles out a single slice of

a spatial cell. By definition, the slice is aligned with the discrete ordinate Ωn, and

hence the only faces that are not parallel to the discrete ordinate are the faces labeled

∂Vs,in and ∂Vs,out, where the subscript s is used to denote quantities pertaining to

slice s. These two surfaces have outward pointing unit vectors labeled ns,in and ns,out

respectively.

Figure 3.5: Depiction of a single slice showing relevant vectors and surfaces.

We begin by writing the energy-independent, steady-state, fixed source transport

equation for angle n and slice s, assuming the total macroscopic cross section is

constant within each cell, and hence also constant over each slice

Ωn ·∇ψn,s (r) + σt,sψn,s (r) = qn,s (r) . (3.1)

The LDFE approximation is imposed by expanding the angular flux in the LDFE

basis functions which are linear in space with local support
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ψn,s (r) =
∑

i=c,x,y,z

bsi (r)ψin,s , (3.2)

bsc (r) =


1 for r ∈ Vs

0 otherwise

, (3.3)

bsx (r) =


(x− xs) /∆xs for r ∈ Vs

0 otherwise

, (3.4)

bsy (r) =


(y − ys) /∆ys for r ∈ Vs

0 otherwise

, (3.5)

bsz (r) =


(z − zs) /∆zs for r ∈ Vs

0 otherwise

, (3.6)

where xs, ys, and zs are the slice centroid coordinates, ∆xs, ∆ys, and ∆zs are the

differences between the maximum and minimum value for each coordinate among the

vertices of the slice, and ψin,s are the constant coefficients of the LDFE basis function

expansion. Next, we multiply equation 3.1 by each of the four basis functions,

resulting in the four equations

bsi (r) {Ωn ·∇ψn,s (r) + σt,sψn,s (r)} = bsi (r) qn,s (r) for i = c, x, y, z . (3.7)

We then convert the first term into two terms by acknowledging that

Ωn ·∇ (bsi (r)ψn,s (r)) = Ωn · bsi (r)∇ψn,s (r) + Ωn · ψn,s (r)∇bsi (r) , (3.8)
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and equations 3.7 become

Ωn ·∇ (bsi (r)ψn,s (r))−Ωn · ψn,s (r)∇bsi (r) +

σt,s b
s
i (r)ψn,s (r) = bsi (r) qn,s (r) for i = c, x, y, z . (3.9)

Integrating over the volume of the domain, which due to the local support of the

basis functions is equivalent to integrating over the volume of the slice, gives

Ωn ·
˚

Vs

∇ (bsi (r)ψn,s (r)) d3r −Ωn ·
˚

Vs

ψn,s (r)∇bsi (r) d3r +

˚

Vs

σt,s b
s
i (r)ψn,s (r) d3r =

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.10)

We then convert the first volume integral into a surface integral

Ωn ·
‹

∂Vs

n (r) bsi (r)ψn,s (r) d2r −Ωn ·
˚

Vs

ψn,s (r)∇bsi (r) d3r +

˚

Vs

σt,s b
s
i (r)ψn,s (r) d3r =

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.11)

Since Ωn · n (r) is zero on all faces except for ∂Vs,in and ∂Vs,out, this becomes

(Ωn · ns,in)

¨

∂Vs,in

bsi (r)ψn,s (r) d2r + (Ωn · ns,out)

¨

∂Vs,out

bsi (r)ψn,s (r) d2r −

Ωn ·
˚

Vs

ψn,s (r)∇bsi (r) d3r +

˚

Vs

σt,s b
s
i (r)ψn,s (r) d3r =

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.12)
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We now insert the linear approximation for ψn,s (r) into the volume integrals:

(Ωn · ns,in)

¨

∂Vs,in

bsi (r)ψn,s (r) d2r + (Ωn · ns,out)

¨

∂Vs,out

bsi (r)ψn,s (r) d2r −

Ωn·
˚

Vs

( ∑
j=c,x,y,z

bsj (r)ψjn,s

)
∇bsi (r) d3r +

˚

Vs

σt,s b
s
i (r)

( ∑
j=c,x,y,z

bsj (r)ψjn,s

)
d3r =

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.13)

We then re-arrange the summations and integrals to arrive at:

(Ωn · ns,in)

¨

∂Vs,in

bsi (r)ψn,s (r) d2r + (Ωn · ns,out)

¨

∂Vs,out

bsi (r)ψn,s (r) d2r +

∑
j=c,x,y,z

˚

Vs

(
−Ωn ·∇bsi (r) bsj (r)ψjn,s + σt,s b

s
i (r) bsj (r)ψjn,s

)
d3r =

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.14)

Finally, we divide the equation by the slice volume and multiply and divide each

surface integral by the corresponding surface area to arrive at:

As,in (Ωn · ns,in)

Vs

 1

As,in

¨

∂Vs,in

bsi (r)ψn,s (r) d2r

+

As,out (Ωn · ns,out)

Vs

 1

As,out

¨

∂Vs,out

bsi (r)ψn,s (r) d2r

+

∑
j=c,x,y,z

1

Vs

˚

Vs

(
−Ωn ·∇bsi (r) bsj (r)ψjn,s + σt,s b

s
i (r) bsj (r)ψjn,s

)
d3r =

1

Vs

˚

Vs

bsi (r) qn,s (r) d3r for i = c, x, y, z . (3.15)
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Next, we make the following definitions

ηn,s,in =
As,in (Ωn · ns,in)

Vs
,

ηn,s,out =
As,out (Ωn · ns,out)

Vs
,

ψin,s,in =
1

As,in

¨

∂Vs,in

bsi (r)ψn,s (r) d2r ,

ψin,s,out =
1

As,out

¨

∂Vs,out

bsi (r)ψn,s (r) d2r ,

qin,s =
1

Vs

˚

Vs

bsi (r) qn,s (r) d3r ,

M s
ij =

1

Vs

˚

Vs

bsi (r) bsj (r) d3r .

With these definitions, our 4 equations can be written a bit more succinctly as

ηn,s,inψ
c
n,s,in + ηn,s,outψ

c
n,s,out + σt,sψ

c
n,s = qcn,s , (3.16)

ηn,s,inψ
x
n,s,in + ηn,s,outψ

x
n,s,out −

1

∆xs
Ωn,xψ

c
n,s+

σt,s
(
M s

xxψ
x
n,s +M s

xyψ
y
n,s +M s

xzψ
z
n,s

)
= qxn,s , (3.17)

ηn,s,inψ
y
n,s,in + ηn,s,outψ

y
n,s,out −

1

∆ys
Ωn,yψ

c
n,s+

σt,s
(
M s

yxψ
x
n,s +M s

yyψ
y
n,s +M s

yzψ
z
n,s

)
= qyn,s , (3.18)
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ηn,s,inψ
z
n,s,in + ηn,s,outψ

z
n,s,out −

1

∆zs
Ωn,zψ

c
n,s+

σt,s
(
M s

zxψ
x
n,s +M s

zyψ
y
n,s +M s

zzψ
z
n,s

)
= qzn,s . (3.19)

Assuming that all variables obtained by integrating over the surface ∂Vs,in are known

either from boundary conditions or values passed by upstream slices, there are eight

unknowns in these four equations:

ψcn,s, ψ
x
n,s, ψ

y
n,s, ψ

z
n,s, ψ

c
n,s,out, ψ

x
n,s,out, ψ

y
n,s,out, ψ

z
n,s,out , (3.20)

and thus, we need four more equations to solve for all eight unknowns. The remaining

four equations come from the primary assumption that the angular flux is expanded

in the LDFE basis functions. If we multiply equation 3.2 by the four basis functions

and then integrate over the outlet surface and divide by the surface area, we arrive

at four more equations

ψin,s,out = ψcn,s

 1

As,out

¨

∂Vs,out

bsc (r) bsi (r) d2r

+

ψxn,s

 1

As,out

¨

∂Vs,out

bsx (r) bsi (r) d2r

+ ψyn,s

 1

As,out

¨

∂Vs,out

bsy (r) bsi (r) d2r

+

ψzn,s

 1

As,out

¨

∂Vs,out

bsz (r) bsi (r) d2r

 for i = c, x, y, z . (3.21)

If we define

αij =
1

As,out

¨

∂Vs,out

bsi (r) bsj (r) d2r ,

we can write these four equations as
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ψcn,s,out = αccψ
c
n,s + αcxψ

x
n,s + αcyψ

y
n,s + αczψ

z
n,s , (3.22)

ψxn,s,out = αxcψ
c
n,s + αxxψ

x
n,s + αxyψ

y
n,s + αxzψ

z
n,s , (3.23)

ψyn,s,out = αycψ
c
n,s + αyxψ

x
n,s + αyyψ

y
n,s + αyzψ

z
n,s , (3.24)

ψzn,s,out = αzcψ
c
n,s + αzxψ

x
n,s + αzyψ

y
n,s + αzzψ

z
n,s . (3.25)

Plugging these expressions into equations 3.16 through 3.19 gives our final system

of four equations and four unknowns, namely the coefficients of the LDFE basis

function expansion, for each slice

(ηn,s,outαcc + σt,s)ψ
c
n,s + (ηn,s,outαcx)ψ

x
n,s+

(ηn,s,outαcy)ψ
y
n,s + (ηn,s,outαcz)ψ

z
n,s = qcn,s − ηn,s,inψcn,s,in , (3.26)

(ηn,s,outαxc − Ωn,x/∆xs)ψ
c
n,s + (ηn,s,outαxx + σt,sM

s
xx)ψ

x
n,s+(

ηn,s,outαxy + σt,sM
s
xy

)
ψyn,s + (ηn,s,outαxz + σt,sM

s
xz)ψ

z
n,s =

qxn,s − ηn,s,inψxn,s,in , (3.27)

(ηn,s,outαyc − Ωn,y/∆ys)ψ
c
n,s +

(
ηn,s,outαyx + σt,sM

s
yx

)
ψxn,s+(

ηn,s,outαyy + σt,sM
s
yy

)
ψyn,s +

(
ηn,s,outαyz + σt,sM

s
yz

)
ψzn,s =

qyn,s − ηn,s,inψ
y
n,s,in , (3.28)
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(ηn,s,outαzc − Ωn,z/∆zs)ψ
c
n,s + (ηn,s,outαzx + σt,sM

s
zx)ψ

x
n,s+(

ηn,s,outαzy + σt,sM
s
zy

)
ψyn,s + (ηn,s,outαzz + σt,sM

s
zz)ψ

z
n,s =

qzn,s − ηn,s,inψzn,s,in . (3.29)

While these equations are sufficient to determine the spatial dependence of the an-

gular flux within slice s, eventually what we want is the spatial dependence of the

angular flux within the cell c from which slice s was formed. To do this, we first

define the LDFE basis functions for cell c, and expand the angular flux within the

cell in these basis functions as well

ψn,c (r) =
∑

i=c,x,y,z

bci (r)ψin,c , (3.30)

bcc (r) =


1 for r ∈ Vc

0 otherwise

, (3.31)

bcx (r) =


(x− xc) /∆xc for r ∈ Vc

0 otherwise

, (3.32)

bcy (r) =


(y − yc) /∆yc for r ∈ Vc

0 otherwise

, (3.33)

bcz (r) =


(z − zc) /∆zc for r ∈ Vc

0 otherwise

, (3.34)

where xc, yc, and zc are the cell centroid coordinates, ∆xc, ∆yc, and ∆zc are the

differences between the maximum and minimum value for each coordinate among the
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vertices of the cell, and ψin,c are the constant coefficients of the LDFE basis function

expansion. In order to find the expansion coefficients, we multiply equation 3.30 by

each of the cell basis functions and integrate over, and divide by, the volume of the

cell

1

Vc

˚

Vc

bci (r)ψn,c (r) d3r = ψcn,c

 1

Vc

˚

Vc

bci (r) bcc (r) d3r

+

ψxn,c

 1

Vc

˚

Vc

bci (r) bcx (r) d3r

+ ψyn,c

 1

Vc

˚

Vc

bci (r) bcy (r) d3r

+

ψzn,c

 1

Vc

˚

Vc

bci (r) bcz (r) d3r

 for i = c, x, y, z . (3.35)

Again, defining

M c
ij =

1

Vc

˚

Vc

bci (r) bcj (r) d3r ,

we can write this as

1

Vc

˚

Vc

bci (r)ψn,c (r) d3r =

M c
icψ

c
n,c +M c

ixψ
x
n,c +M c

iyψ
y
n,c +M c

izψ
z
n,c for i = c, x, y, z . (3.36)

This too is a system of four equations and four unknowns, namely the LDFE ex-

pansion coefficients for the angular flux in the cell, however it is not immediately

obvious how to obtain the left hand sides in order to solve this system for each cell

in the mesh. It turns out that as the angular flux in each slice is solved for, these

integrals on the left hand side can be accumulated. To illustrate this, consider first

the i = c case
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1

Vc

˚

Vc

bcc (r)ψn,c (r) d3r =
1

Vc

˚

Vc

ψn,c (r) d3r =
1

Vc

∑
s

˚

Vs

ψn,s (r) d3r , (3.37)

where the sum over s indicates a sum over all slices contained in cell c. Fortunately,

this case is relatively straightforward, since the integrals of the non-constant basis

functions over the slice volume equate to zero, and the integral inside the summation

reduces to Vsψ
c
n,s. Thus

1

Vc

˚

Vc

bcc (r)ψn,c (r) d3r =
1

Vc

∑
s

Vsψ
c
n,s . (3.38)

For i = x, y, or z, things are only slightly more complicated. Consider for example

the i = x case

1

Vc

˚

Vc

bcx (r)ψn,c (r) d3r =
1

Vc

∑
s

˚

Vs

bcx (r)ψn,s (r) d3r . (3.39)

If the basis function inside the integral inside the summation were the slice basis

function, this case would be obvious as well. Unfortunately it is not, and we must

express the cell basis function in terms of the slice basis function

bcx (r) =
(x− xc)

∆xc
=

(x− xs + xs − xc)
∆xc

∆xs
∆xs

=

∆xs
∆xc

(
(x− xs)

∆xs
+

(xs − xc)
∆xs

)
=

∆xs
∆xc

(
bsx (r) +

(xs − xc)
∆xs

)
. (3.40)

Substituting this expression for bcx (r) in the right hand side of equation 3.39 gives

79



1

Vc

˚

Vc

bcx (r)ψn,c (r) d3r =

1

Vc

∑
s

∆xs
∆xc

˚
Vs

bsx (r)ψn,s (r) d3r +
(xs − xc)

∆xs

˚

Vs

ψn,s (r) d3r

 =

1

Vc

∑
s

∆xs
∆xc

˚
Vs

bsx (r)ψn,s (r) d3r +
(xs − xc)

∆xs
Vsψ

c
n,s

 . (3.41)

Performing the same manipulations for the i = y and i = z cases result in similar

summations. While the quantities in parentheses still look quite complicated, it

should be noted that upon expansion of ψn,s (r) inside the last remaining integral,

this reduces to a linear combination of the slice LDFE basis function expansion

coefficients, with the multipliers being the M s
ij already computed. Therefore, this

sum can be accumulated into as the angular flux in each slice is solved for. After the

angular flux has been computed in all slices, and the left hand sides of equations 3.36

have all been accumulated, equations 3.36 can be inverted independently for each

cell in the mesh.

As a side note, for steady state problems, storing the entire angular flux solution

is unnecessary. In this case, it is sufficient to store the scalar flux moments

φml (r) =

¨

4π

Y m
l (Ω)ψ (r,Ω) dΩ . (3.42)

where Y m
l (Ω) are the tesseral spherical harmonics. These moments are expanded in

the same LDFE basis functions as the angular flux, and the integral over all angles

is performed by quadrature integration using the SN quadrature set
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(φml )cc =
∑
n

ωnY
m
l (Ωn)ψcn,c ,

(φml )xc =
∑
n

ωnY
m
l (Ωn)ψxn,c ,

(φml )yc =
∑
n

ωnY
m
l (Ωn)ψyn,c ,

(φml )zc =
∑
n

ωnY
m
l (Ωn)ψzn,c .

where ωn are the SN quadrature weights and Ωn are the SN are the quadrature

nodes. The number of moments necessary to store is dependent upon what order the

scattering source expansion is terminated at. It can therefore be very economical to

solve

∑
n

ωnY
m
l (Ωn)

1

Vc

˚

Vc

bci (r)ψn,c (r) d3r =

M c
ic (φml )cc +M c

ix (φml )xc +M c
iy (φml )yc +M c

iz (φml )zc for i = c, x, y, z , (3.43)

instead of equations 3.36 for each cell. The sums are accumulated in much the same

way, however fewer unknowns per cell must be solved for and stored than if the entire

angular flux were required.

After the angular flux in a slice has been determined, this information must be

passed to the downstream sub-slices. As alluded to earlier in this section, we are

using the upwind approximation, which is to say that the angular flux on the sub-

slice incoming face is determined by the expression for the angular flux in the slice

directly upstream of it. For instance, consider Figure 3.6 which shows a slice in red,

and the four sub-slices formed from its outlet face in green, yellow, blue and purple.

Each of these four sub-slices will use the LDFE expansion of the angular flux in the
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Figure 3.6: Three dimensional illustration of a slice, shown in red, and the four
sub-slices formed from its outlet face shown in green, yellow, blue, and purple.

upstream slice in place of ψn,ss (r) to evaluate the weighted integrals of the angular

flux on their incoming faces

ψin,ss,in =
1

As,in

¨

∂Vss,in

bssi (r)ψn,ss (r) d2r for i = c, x, y, z , (3.44)

where bssi (r) are the LDFE basis functions for the sub-slice, indexed ss, which are

defined similarly to those already given for the slice and the cell. In this way, all

incoming fluxes are communicated via the sub-slices, and not the cell faces as in

the traditional SBA. We further note that each slice, unless its inlet face is on the

incoming portion of the domain boundary, is composed of sub-slices that are non-

overlapping and fill the volume of the slice. A slice can be considered ready to

be solved when all of its contained sub-slices have received information from their

upstream slice and computed their ψin,ss,in.
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Once the sub-slices contained within a slice have received this information, the

incoming fluxes of these sub-slices can be appropriately coalesced to give the remain-

ing information on the right hand side of equations 3.26 through 3.29, namely ψin,s,in.

This is done in a similar manner as the LDFE coefficients for the angular flux within

slices were coalesced to give the LDFE coefficients of the angular flux throughout

the parent cell. To illustrate this, consider first the i = c case

ψin,s,in =
1

As,in

¨

∂Vs,in

bsc (r)ψn,s (r) d2r =
1

As,in

¨

∂Vs,in

ψn,s (r) d2r =

1

As,in

∑
ss

¨

∂Vss,in

ψn,ss (r) d2r =
1

As,in

∑
ss

Ass,inψ
c
n,ss,in , (3.45)

where the sum over ss indicates a sum over all sub-slices contained in slice s. Again,

while this case was relatively straightforward, the i = x, y, and z cases are only

slightly more complicated. Consider for example the i = x case

ψxn,s,in =
1

As,in

¨

∂Vs,in

bsx (r)ψn,s (r) d2r =
1

As,in

∑
ss

¨

∂Vss,in

bsx (r)ψn,ss (r) d2r (3.46)

Again, if the basis function inside the integral inside the summation were the sub-

slice basis function, this case would be obvious as well. Unfortunately it is not, and

we must express the slice basis function in terms of the sub-slice basis function

bsx (r) =
(x− xs)

∆xs
=

(x− xss + xss − xs)
∆xs

∆xss
∆xss

=

∆xss
∆xs

(
(x− xss)

∆xss
+

(xss − xs)
∆xss

)
=

∆xss
∆xs

(
bssx (r) +

(xss − xs)
∆xss

)
. (3.47)

Substituting this expression for bsx (r) in the right hand side of equation 3.46 gives
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ψxn,s,in =

1

As,in

∑
ss

∆xss
∆xs

 ¨

∂Vss,in

bssx (r)ψn,ss (r) d2r +
(xss − xs)

∆xss

¨

∂Vss,in

ψn,ss (r) d2r

 =

1

As,in

∑
ss

∆xss
∆xs

(
Ass,inψ

x
n,ss,in +

(xss − xs)
∆xss

Ass,inψ
c
n,ss,in

)
. (3.48)

Performing the same manipulations for the i = y and i = z cases result in similar

summations. In this way, sub-slice incoming flux information can be combined to

give the incoming flux information for the parent slice.

3.3 Local Sweep Description

In the previous chapter, the parallel transport sweep was discussed in the context

of a domain decomposed mesh in which each node of a super-computer or cluster,

stored and was responsible for computing, the solution on the cells contained in that

node’s subset of the mesh. The process of solving for the solution on the subset

was not mentioned, however this local solve can also be carried out via sweeping.

This local sweep is equivalent to solving a lower triangular matrix equation whose

solution is the angular flux or scalar flux moments on each cell of the subset of the

domain. In this section, we provide an algorithm for performing this local sweep

in the context of the extended SBA using the LDFE spatial discretization scheme

presented above. The full algorithm is described in detail in Algorithm 3.1. The

sweep can be viewed as a loop over stages, where a sufficiently high stage count

is chosen to ensure completion of the sweep, but to avoid infinite loops in case of

unforeseen errors.
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Algorithm 3.1: Local transport sweep for angle Ωn.

1: for k = 0 to Nmax stages − 1 do
2: if k = 0 then
3: for s = 0 to N slices − 1 do
4: f = inlet face index for slice s
5: if face f is on the incoming boundary then
6: get ψcn,s,in, ψ

x
n,s,in, ψ

y
n,s,in, and ψzn,s,in from the boundary conditions

7: add slice s to the Ready queue
8: mark slice s as done
9: end if

10: end for
11: end if
12: for l = 0 to NReady − 1 do
13: get slice index s from the Ready queue
14: solve equations 3.26 through 3.29 to get ψcn,s, ψ

x
n,s, ψ

y
n,s, and ψzn,s

15: atomic: contribute to LHS of equations 3.36 or 3.43
16: end for
17: for l = 0 to NReady − 1 do
18: get slice index s from the Ready queue
19: for i = 0 to N sub-slices downstream of slice s − 1 do
20: get sub-slice index ss
21: add sub-slice ss to the Pending queue
22: get slice index s∗ that sub-slice ss is contained in
23: increment the number of pending sub-slices contained in slice s∗

24: get ψcn,ss,in, ψ
x
n,ss,in, ψ

y
n,ss,in, and ψzn,ss,in from equation 3.44

25: end for
26: end for
27: empty the Ready queue
28: for s = 0 to N slices − 1 do
29: if the number of pending sub-slices contained in slice s is equal to
30: the number of sub-slices contained in slice s and slice s is not
31: done then
32: add slice s to the Ready queue
33: mark slice s as done
34: mark all sub-slices contained in slice s as done
35: get ψcn,s,in, ψ

x
n,s,in, ψ

y
n,s,in, and ψzn,s,in from equations 3.45 and

36: 3.48 (for i = x, y, and z)
37: end if
38: end for
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39: remove all sub-slices marked done from the Pending queue
40: if NReady = 0 then
41: break from the stage loop
42: end if
43: end for

To begin the sweep, when the stage index is equal to zero, a loop over the slices

determines which slices have their incoming faces on the domain boundary. For these

slices, the incoming flux integrals are determined from the boundary conditions of

the problem. Each of these slices is marked done, and their indices are added to a

“Ready” queue, signifying that they are ready to be solved. This is only done for the

first stage, as the Ready queue is emptied and refilled at the end of the stage loop.

With a filled Ready queue, each slice in the queue can be solved for independently,

using equations 3.26 through 3.29. This introduces an opportunity for parallelism

among the shared memory cores of the node on which the sweep is taking place.

After the solution is determined on each slice, the contributions to the left hand

sides of either equations 3.36 or 3.43 (depending upon whether the angular flux is

required, or whether the scalar flux moments will suffice) can be made. Care must

be taken to avoid race conditions in the case of slices of the same cell attempting to

add their contributions to the left hand sides simultaneously.

After all slices in the Ready queue have been solved, the slices in the Ready

queue are looped over again. For each slice in the queue, we loop over the sub-slices

downstream of the slice, and add each one to a “Pending” queue, signifying that

they have their incoming flux information. The number of pending sub-slices in the

parent slice is incremented, and the incoming flux integrals on each sub-slice are

computed using equation 3.44. Once this is completed, we empty the Ready queue,

and prepare to fill it back up for the next stage.
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To refill the Ready queue, we loop over the slices and check if the number of

pending sub-slices within the slice equals the total number of sub-slices within the

slice, while also checking to make sure the slice has not been marked done. If these

conditions are satisfied, then it is ready to be solved, and can be placed in the Ready

queue. We place it in the queue and mark it and all of its contained sub-slices as

done, and then use equations 3.45 and 3.48 for i = x, y, and z in order to coalesce

the incoming flux information for the contained sub-slices into the incoming flux

information for the slice.

Finally, we loop through the Pending queue and remove all sub-slices that have

been marked done. At the very end of the loop, we check the size of the Ready queue.

If the size of the Ready queue is zero, this means that all slices in the domain have

been solved, and the local sweep for angle Ωn is complete. Alternatively, one could

also add a loop to check that all slices and sub-slices have been marked as done if

one is overly suspicious that the entire domain has been swept.

87



4. PARALLELIZATION

Where the previous chapter emphasized the theory of the extended slice balance

approach (ESBA), this chapter will focus primarily upon its implementation and

parallelization strategies. As alluded to in the previous chapter, the extension of

the Slice Balance Approach (SBA) to include sub-slices allows for the division of

the spatial domain into regions separated by planes in which the solution in each

region is independent of the solution in all other such regions. This introduces

more concurrency which may be taken advantage of by parallel architectures such

as super-computers and clusters. Two parallelization options that are made possible

by this development will be discussed in this chapter. In addition, this chapter will

discuss the incorporation of graphics processing units (GPUs) into the SBA and

ESBA to make the linear discontinuous finite element (LDFE) spatial discretization

more viable.

4.1 Parallelization Option 1

The first parallelization option to be presented is quite similar to the traditional

transport sweep, in that each node is responsible for computing and storing the

transport solution on the subset of the mesh assigned to it, and fluxes are communi-

cated on the faces shared by neighboring nodes. As in traditional sweeps, this option

does require planar inter-node domain boundaries, and thus a method for decompos-

ing and load-balancing arbitrary polyhedral meshes into brick shaped domains has

been developed by building on previous work by Ghaddar, who developed a method

for load balancing extruded triangular meshes into brick shaped regions.[22] The

decomposition algorithm developed here is essentially a recursive analog to a one

dimensional version of Ghaddar’s algorithm, and is presented in Appendix A.
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4.1.1 Description

To illustrate parallelization option 1, consider the two dimensional mesh shown in

Figure 4.1a, where different colors represent different materials, each meshed with a

different resolution. After applying the load-balancing brick decomposition algorithm

to this simple mesh, the result is the mesh shown in Figure 4.1b, where each color

represents a different subset of the mesh assigned to a different node of a super-

computer or cluster. We note that “cut planes” have been introduced and that each

cut plane cuts some cells in two, adding to the cell count in the mesh.

(a) Original two material triangular mesh. (b) After decomposition.

Figure 4.1: Two dimensional triangular mesh to illustrate parallelization option 1.

Next, we define a patch as the set of boundary faces (or edges in this two dimen-

sional example) on each node which either lie on a planar portion of the problem

boundary, or are shared by a unique pair of nodes. Next, we define a task as an inlet

patch-angle pair, where each inlet patch is projected through the mesh on each node

in the direction of Ωn. This is illustrated in Figure 4.2.
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Figure 4.2: Illustration of tasks for angle Ωn.

The sweep ordering is depicted in Figure 4.3. To begin the sweep, we note that

there are six tasks colored in red that can begin solving in the first stage, since

their inlet patches lie on the problem boundary. As each task obtains the transport

solution in its region, it stores the fluxes on the outgoing patch faces, and once the

fluxes on all faces on an outgoing patch are computed, the node communicates this

patch’s worth of boundary fluxes to the node downstream of the outgoing patch. In

the second stage, the four tasks colored in blue have received their incoming boundary

information, and can begin computing in their regions. This continues through the

green, yellow, orange, purple, and finally pink stages.
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Figure 4.3: Tasks colored by order in the sweep for angle Ωn.

The end result is a reduction of idle time on the front end of the sweep due to

the additional concurrency that the concept of the sub-slice provides. This should

theoretically increase the ceiling for the parallel efficiency of the transport sweep,

while also increasing the accuracy of the solution over the traditional CBA. To de-

termine the order in which each node performs its tasks, each task is assigned a

weight based on the number of slices on downstream nodes that are dependent on

this task finishing. This heuristic task ordering aims to get information through

the mesh as quickly as possible. Also note, that this provides a natural way to use

multi-core nodes, since the tasks are completely independent and can be performed

simultaneously through shared memory parallelism with very little overhead.
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4.1.2 Algorithm

The global sweep algorithm for parallelization option 1 is shown in Algorithm 4.1,

which is to be executed on each node. The entire algorithm is enclosed in a threaded

region signifying shared memory parallelism by the cores on each node. Within this

threaded region, each thread performs a loop over the tasks on this node, which have

already been ordered heuristically as mentioned in the last section. Thus, task 0

will have the largest weight, corresponding to the number of slices on all other nodes

that rely on this task’s execution in order to receive incoming boundary information,

whether directly or indirectly.

At the beginning of the task loop, a query is made as to whether or not the

current task has already been executed. If so, a further check is performed to see if

this is the last task in the task list. If it is indeed the last task in the list, the loop

index is reset to −1 so that on the next iteration it will restart from zero, assuming

the loop index is incremented at the end of each iteration. A final check is then made

to determine whether all tasks have been executed, and if so, the thread breaks from

the task loop. If the task has been executed, and it is not the last task in the task

list, the rest of the task loop is bypassed to move on to the next task in the list.

The next step is to declare a map of slice flux communication structures. Such a

structure should contain the information defining a slice, namely the inlet and outlet

face indices on the node owning its parent cell, the energy group index to which the

flux belongs, and the incoming angular flux moments ψcn,s,in, ψ
x
n,s,in, ψ

y
n,s,in, and ψzn,s,in.

Entries in this map are accessed via a tuple of the inlet face, outlet face, and energy

group indices. A boolean used to signify whether this task is able to be executed is

initially set to false, and the inlet patch and angle indices for this task are stored.

With the task information gathered, and the incoming flux map declared, the
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Algorithm 4.1: Global transport sweep for parallelization option 1.

1: begin threaded region

2: for i = 0 to Ntasks − 1 do
3: if task i is done then
4: if i = Ntasks − 1 then
5: i = −1
6: if all tasks are done then
7: break from the task loop
8: end if
9: end if

10: continue to next task
11: end if
12: incoming = map<tuple<int, int, int>, commStruct>
13: gotTask = false

14: p = incoming patch index for task i
15: m = angle index for task i
16: begin critical region 1

17: if task i is not done then
18: if patch p is on an inter-node domain boundary then
19: probe for message with label m from node sharing patch p
20: if a message is waiting to be received then
21: receive a vector of commStructs called boundFluxes
22: for j = 0 to NboundFluxes − 1 do
23: inF = boundFluxes[j].inF
24: outF = boundFluxes[j].outF
25: g = boundFluxes[j].g
26: incoming[(inF, outF, g)] = boundFluxes[j]
27: end for
28: mark task i as done
29: gotTask = true

30: i = −1
31: end if
32: else if patch p is on the problem boundary then
33: mark task i as done
34: gotTask = true

35: i = −1
36: end if
37: end if
38: end critical region 1
39: if gotTask = true then
40: perform local sweep for task i using Algorithm 3.1
41: while sweeping, collect and count commStructs of slices in ghost cells
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42: into a 2-D vector of dimension Npatches ×Nslices per outlet patch

43: named tempOutgoing
44: begin critical region 2

45: for j = 0 to Npatches − 1 do
46: if outgoing[m][j].size = 0 then
47: for k = 0 to tempOutgoing[j].size −1 do
48: append tempOutgoing[j][k] to outgoing[m][j]
49: end for
50: else
51: for k = 0 to tempOutgoing[j].size −1 do
52: inF = tempOutgoing[j][k].inF
53: outF = tempOutgoing[j][k].outF
54: g = tempOutgoing[j][k].g
55: check if outgoing[m][j] already contains a commStruct

56: defined by the tuple (inF, outF, g)
57: if so then
58: add inlet fluxes for tempOutgoing[j][k] to the
59: matching entry in outgoing[m][j]
60: else
61: append tempOutgoing[j][k] to outgoing[m][j]
62: end if
63: end for
64: end if
65: end for
66: for j = 0 to Npatches − 1 do
67: patchSliceCount[m][j] += slicesPerOutPatch[j]
68: if patchSliceCount[m][j] = Nslices[m][j] and
69: outPatchDone[m][j] = false then
70: outPatchDone[m][j] = true

71: send outgoing[m][j] to node sharing patch p with label m
72: end if
73: end for
74: end critical region 2
75: end if
76: if i = Ntasks − 1 then
77: i = −1
78: if all tasks are done then
79: break from the task loop
80: end if
81: end if
82: end for
83: end threaded region
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algorithm then enters the first critical region. A critical region in this case simply

means that only one thread can enter the region at a time. Once inside this critical

region, a thread will once again check if the task has been executed, because it is

possible that since this thread has re-entered the task loop, the current task may have

been allocated to another thread. It is then determined whether the incoming patch

is on an inter-node domain boundary, or whether it lies on the problem boundary.

If it is on an inter-node domain boundary, the thread probes for a message from the

node on the other side of the patch with a label corresponding to the task angle. If a

message is indeed waiting, a vector of flux communication structures is received and

placed into the incoming flux map. If the inlet patch is on the problem boundary,

the incoming flux map will be populated via the boundary conditions as part of the

local sweep to be performed in the next step. In either case, the current task is

marked done, the boolean signifying whether a task ready for execution was found

is set to true, and the task loop index is reset to −1 so that on the next iteration it

will restart from zero, all while still inside the first critical region.

If the thread found a task that is ready for execution, it then performs a local

sweep of the slices in this task immediately after exiting the first critical region. What

is communicated between nodes is actually not cell face fluxes, but fluxes on incoming

faces of slices residing on the node sharing the patch. It is therefore necessary that

each node store the geometric information of the cells on the other side of the patch

faces, and these cells are referred to as “ghost” cells. While performing the local

sweep, the thread will keep count of the number of slices containing incoming flux

information contained within the ghost cells, and for each of these slices, it will build

a slice flux communication structure, and store these in a two dimensional vector

organized according to the patch on which their inlet face resides.

After the local sweep has been performed, the thread then enters the second crit-
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ical region. In this critical region, the slice flux communication structures gathered

during the local sweep are added to a three dimensional vector which collects these

structures accumulated by all tasks, and organizes them according to the angle in-

dex and patch index on which their inlet face resides. Since it is possible that two

different tasks could end up with two slice flux communication structures belonging

to the same slice on the node sharing the patch, care must be taken not to overwrite

one with the other, and instead merge them appropriately.

In the next step, while still inside the second critical region, the number of slice

flux communication structures collected during the local sweep is added to a slice

counter organized according to the angle index and patch index on which their inlet

face resides. It is then checked whether this count matches the total number of

slices which would constitute a complete outlet patch, in order to determine whether

a communication should be made. This total number of slices is determined at

initialization, for example as a by-product of testing the mesh for slicing as should

be done before beginning the simulation. In addition to checking whether the outlet

patch has a complete set of slice flux communication structures, it also must ensure

that the outlet patch has not previously been completed and communicated. If these

criteria are met, the outlet patch-angle pair is marked as complete so that no other

thread will subsequently try to communicate the patch-angle pair, and then the

current thread sends this patch’s worth of slice flux communication structures to the

node sharing the outlet patch, using the angle index as a label for the communication.

Finally, after exiting the second critical region, and before returning to the be-

ginning of the task loop, a final check is made to see if the current task index is

the final task index, and if so, whether all tasks have been executed. If so on both

counts, the thread will break from the task loop, and the global sweep is finished

once all threads reach either this point, or the similar check at the beginning of the
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task loop. Otherwise, the task loop index is reset yet again.

It should be noted that the critical regions, which take up much of Algorithm 4.1,

comprise a minuscule amount of the actual work being performed. By far, the

overwhelming majority of the work takes place in the local sweep in between the

two critical regions. Thus, the greatest efficiency is attained when all threads are

able to quickly be assigned tasks ready for execution, and proceed to perform local

sweeps in unison. The heuristic ordering and the frequent resetting of the task loop

index ensures that the highest priority tasks are completed first so that tasks on

other nodes become ready for execution as quickly as possible, and this tends toward

maximizing the efficiency.

4.2 Parallelization Option 2

The second parallelization option presented here strays further from the tradi-

tional transport sweep than the first parallelization option. This second option was

developed with two goals in mind; to eliminate the need for planar inter-node do-

main boundaries, and to eliminate idle time altogether. The first of these goals is

important because problem geometries rarely contain such natural planar divisions,

and even if they did, it is not guaranteed that these planes would be located such

that acceptable load-balancing metrics would be achieved. While planar divisions

can be achieved with acceptable load-balancing metrics as seen in the previous sec-

tion, depending on the mesh type this can introduce large numbers of poor-quality

cells and faces on the inter-node domain boundaries and increase the number of cells

in the global mesh significantly. Thus the brick decomposition and load-balancing

algorithm alluded to in the previous section is by no means a panacea. The second

goal is important because it removes a stringent upper limit on the parallel efficiency.
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4.2.1 Description

The second parallelization option aims to separate the connection between where

the solution is stored, and where it is obtained. For instance, just because node 1

“owns” a particular cell, node 1 does not necessarily have to calculate the solution on

that cell. This allows an arbitrary domain decomposition of the mesh onto nodes for

which to store the solution, and hence there is no longer a need for planar inter-node

domain boundaries. This also allows for a wealth of domain decomposition strategies

such as the Scotch algorithm[24], which have excellent load-balancing properties, and

are implemented in open-source software packages. Figure 4.4 shows the mesh in

Figure 4.1a decomposed using the Scotch algorithm into 8 sub-domains.

Figure 4.4: Scotch decomposition of the mesh depicted in Figure 4.1a.
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Once we have decomposed the mesh such that each node owns roughly the same

number of cells for which to store the solution, we can then proceed by drawing

cut planes through the entire global mesh for a given angle. These cut planes can

be positioned such that there are roughly the same number of slices to be solved

within each region, which will be called pipes. This is illustrated in Figure 4.5. The

solution in each pipe for the depicted angle would then be performed by a single

node, without any communication occurring during the sweep. Furthermore, since

the solution in each angle is independent of the solution in any other angle, several

angles can be solved for simultaneously, each with its own pipe decomposition. For

instance, if there were 16 nodes, 2 angles could be solved simultaneously, each with

a decomposition consisting of 8 pipes.

Figure 4.5: Pipe decomposition of Scotch decomposed mesh into 4 pipes.
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While no communication is necessary during each sweep, communication before

and after the sweep is necessary. With an arbitrary domain decomposition where

each node is assigned a region of the mesh for which to store the solution, each node

must communicate the source moments as well as the total cross section in each of

its local cells to the nodes whose pipes contain these cells. The nodes containing

these cells in their pipes will have to communicate the contribution to the solution

for these cells back to the node that owns these cells when the sweep is completed.

In this way, volumetric information is communicated between nodes instead of

boundary information, resulting in larger messages, but hopefully fewer of them. This

minimizes the cost of message passing latency which is typically orders of magnitude

higher than the cost of per byte communication. One notable drawback is that the

entire mesh geometry must be known by every node in order to construct the slices

and sub-slices within its pipe. The mesh can be described by the point coordinates,

point indices on each face, face indices on each cell, cell centroids and volumes, and

face normal vectors. This amounts to roughly 400 bytes per cell, depending on the

mesh type and complexity; however the global mesh is still likely orders of magnitude

smaller than the full transport solution on each subset of the mesh.

4.2.2 Algorithm

The global sweep algorithm for parallelization option 2 is shown in Algorithm 4.2,

which is to be executed on each node. This operation proceeds as a loop over angle-

sets, which are the angles to be swept simultaneously. For instance, with 16 nodes

we could use angle-sets of size 1, 2, 4, 8, or 16, with each angle consisting of a

pipe decomposition of 16, 8, 4, 2, or 1 pipes respectively. Within each iteration of

the angle-set loop, each node is responsible for performing a sweep for a prescribed

pipe-angle pair.
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Algorithm 4.2: Global transport sweep for parallelization option 2.

1: for a = 0 to Nangle−sets − 1 do
2: localCellSources = 2D vector of sourceStructs of dimension
3: Nlocal cells × (Nangles per angle−set ×Ngroups per group−set)
4: for i = 0 to Nlocal cells − 1 do
5: for j = 0 to Nangles per angle−set − 1 do
6: for b = 0 to Ngroups per group−set − 1 do
7: m = a×Nangles per angle−set + j
8: l = j ×Ngroups per group−set + b
9: s = source-set index(i)

10: g = energy group index(b)
11: localCellSources[i][l].gci = global cell index(i)
12: localCellSources[i][l].g = g
13: localCellSources[i][l].σt,g = total cross section(i, g)
14: localCellSources[i][l].qc, qx, qy, qz = ComputeSource(i, m, s, g)
15: end for
16: end for
17: end for
18: indexInSendTo = vector on ints of length Nnodes

19: for j = 0 to sendTo[a].size −1 do
20: indexInSendTo[sendTo[a][j]] = j
21: end for
22: sourceSendVec = 2D vector of sourceStructs of dimension
23: (sendTo[a].size +1)×Nsources going to nodes in sendTo[a] entries

24: for i = 0 to Nlocal cells − 1 do
25: for j = 0 to Nangles per angle−set − 1 do
26: for b = 0 to Ngroups per group−set − 1 do
27: m = a×Nangles per angle−set + j
28: l = j ×Ngroups per group−set + b
29: for k = 0 to Npipes per cell[i][m]− 1 do
30: p = pipeIndices[i][m][k]
31: n = nodeIndices[m][p]
32: if n 6= myRank then
33: s = indexInSendTo[n]
34: else
35: s = sendTo[a].size
36: end if
37: append localCellSources[i][l] to sourceSendVec[s]
38: end for
39: end for
40: end for
41: end for
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42: for i = 0 to sendTo[a].size −1 do
43: send sourceSendVec[i] to sendTo[a][i]
44: end for
45: mySources = vector of sourceStructs
46: for i = 0 to recvFrom[a].size −1 do
47: receive vector of sourceStructs from recvFrom[a][i] into
48: a vector named tempSources
49: for j = 0 to NtempSources do
50: append tempSources[j] to mySources
51: end for
52: end for
53: for i = 0 to sourceSendVec[sendTo[a].size].size −1 do
54: append sourceSendVec[sendTo[a].size][i] to mySources
55: end for
56: myFluxes = vector of fluxStructs of length mySources.size ×Nangles

57: s = 0
58: for i = 0 to mySources.size −1 do
59: for n = 0 to Nangles − 1 do
60: myFluxes[s].gci = mySources[i].gci
61: myFluxes[s].n = n
62: myFluxes[s].g = mySources[i].g
63: myFluxes[s].LHS3.36c,LHS3.36x,LHS3.36y,LHS3.36z = 0
64: s += 1
65: end for
66: end for
67: perform local sweep for slices in cells belonging to mySources,
68: while accumulating cell flux moments into myFluxes
69: indexInRecvFrom = vector on ints of length Nnodes

70: for j = 0 to recvFrom[a].size −1 do
71: indexInRecvFrom[recvFrom[a][j]] = j
72: end for
73: fluxSendVec = 2D vector of fluxStructss of dimension
74: (recvFrom[a].size +1)×Nfluxes going to nodes in recvFrom[a] entries

75: for i = 0 to myFluxes.size −1 do
76: c = myFluxes[i].gci
77: n = cellOwner[c]
78: if n 6= myRank then
79: r = indexInRecvFrom[n]
80: else
81: r = recvFrom[a].size
82: end if
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83: append myFluxes[i] to fluxSendVec[r]
84: end for
85: for i = 0 to recvFrom[a].size −1 do
86: send fluxSendVec[i] to recvFrom[a][i]
87: end for
88: resize myFluxes to zero
89: for i = 0 to sendTo[a].size −1 do
90: receive vector of fluxStructs from sendTo[a][i] into
91: a vector named tempFluxes
92: for j = 0 to NtempFluxes do
93: append tempFluxes[j] to myFluxes
94: end for
95: end for
96: for i = 0 to fluxSendVec[recvFrom[a].size].size −1 do
97: append fluxSendVec[recvFrom[a].size][i] to myFluxes
98: end for
99: for i = 0 to myFluxes.size −1 do
100: c = myFluxes[i].gci
101: l = globalToLocal[c]
102: n = myFluxes[i].n
103: g = myFluxes[i].g
104: LHS3.36c[l, n, g] += myFluxes.LHS3.36c

105: LHS3.36x[l, n, g] += myFluxes.LHS3.36x

106: LHS3.36y[l, n, g] += myFluxes.LHS3.36y

107: LHS3.36z[l, n, g] += myFluxes.LHS3.36z

108: end for
109: barrier
110: end for

103



At the beginning of the angle-set loop, each node builds a vector of source com-

munication structures representing the particle source within each of its local cells.

Such a structure should contain the information necessary to identify the cell, the

energy group, the corresponding total cross section, and the source spatial moments.

This should be done by each node on each of its local cells on which it is responsi-

ble for storing the solution, because the flux moments from the previous scattering

iteration are required to build the scattering source within a given cell. Communi-

cating the flux moments on a volumetric basis would be quite prohibitive, whereas

the complete description of the source for a given direction is contained in only four

values, namely qc, qx, qy, and qz.

Once the source spatial moments are computed on each local cell of each node,

they must be re-organized in order to send them to the nodes that require this

information in order to complete their local sweep in this particular iteration of the

angle-set loop. This requires some fairly complicated data structures which are built

during initialization, prior to the transport calculation as a by-product of the load

balancing step which determines the locations of the cut planes such that each pipe

for a given angle contains roughly the same number of slices. The first of these data

structures is a list of nodes for which each node must send data to for each iteration

of the angle-set loop, referred to in Algorithm 4.2 as sendTo. Similarly, each node

holds a data structure named recvFrom which contains a list of nodes for which it

must receive data from for each iteration of the angle-set loop.

The next data structure encountered is referred to in Algorithm 4.2 as pipeIndices

on line 30. This data structure is essentially a three dimensional vector in which the

first two dimensions are Nlocal cells×Nangles. Each entry in this two dimensional vector

is itself a variable length vector containing the pipe indices that each cell falls into

for a given angle index. For instance, if the given cell falls within a single pipe for a
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given angle’s pipe decomposition, this vector would be of length one, containing the

index of that pipe. If the cell is so large that parts of it lie in three different pipes for

a given angle’s pipe decomposition, this vector would be of length three, containing

the indices of these three pipes.

The last data structure referenced without explanation in Algorithm 4.2 is node-

Indices on line 31. This data structure is essentially a two dimensional vector of

dimension Nangles × Npipes. Each entry in this vector is the node index which is

responsible for computing the solution in the pipe-angle pair defined by the given

indices. Unlike the other data structures previously mentioned, which were unique on

each node, each node stores an identical copy of nodeIndices. These data structures

are used to package the source communication structures into vectors based on which

node, or set of nodes, each source structure should be sent to. Once these vectors are

constructed, they can be communicated easily by sending a single vector of source

communication structures between nodes.

With the messages sent, each node loops over the nodes in its recvFrom vector for

the particular angle-set index, receives a vector of source communication structures,

and appends them to a local vector named mySources. It must also append to this list

any sources from cells that the node owns for both storage and computation. Once all

messages have been received, each node then builds a vector of flux communication

structures, which contain the global cell index, angle index, group index, and the

contributions to the left hand sides of equations 3.36, which will be computed during

the local sweep in its designated pipe-angle pair. After performing this local sweep,

these flux communication structures will be sent back to the nodes owning each cell.

To do this, the flux communication structures are re-organized in much the same way

that the source communication structures were so that the communication step can

be done easily by sending a single vector of flux communication structures between
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nodes. Once the flux communication structures have returned to the nodes owning

their cells, the left hand sides of equations 3.36 are updated, and a barrier is placed

before the end of the angle-set loop so that all nodes start the next iteration together.

4.3 GPU Acceleration of the LDFE Extended SBA

Up until now, the theory and implementation of the LDFE spatial discretization

into the extended SBA, and the parallelization strategies that such an approach

makes possible, have not addressed the legitimate concern of memory requirements.

One must remember that the slices and sub-slices of the mesh are unique to each

angle in the SN angular quadrature set, with the exception that the slices for angles

in opposite directions are geometrically the same. This means that the number of

slices and sub-slices will be on the order of Nlocal cells ×Nangles for each node.

For angular quadrature sets with thousands of angles and meshes in which each

node contains tens or hundreds of thousands of cells, this makes storage and re-use

of all quantities unique to each slice or sub-slice unrealistic, and the consequence of

this is that these quantities must be re-computed each time they are needed, or more

precisely once per transport sweep. As discussed in Chapter 2, while one goal of

iterative methods for particle scattering is to reduce the number of sweeps needed to

arrive at the numerical solution, for most problems of interest it is unavoidable that

a non-trivial number of transport sweeps will be required, and this is the motivation

for focusing so much attention on the parallel efficiency of the transport sweep itself.

If we consider the traditional and extended SBA using the LDFE spatial dis-

cretization, we can immediately note that many quantities are needed for each slice

(and sub-slice in the extended SBA), and that these quantities are mostly geomet-

ric ones that can be computed independently in an embarrassingly parallel fashion.

Even so, if the time spent computing this information before each sweep is much
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greater than the time required for the sweep itself, we would essentially be spending

most of our time computing the same exact values over and over again. If this is

indeed the case, it is clearly not ideal, but perhaps we can look to the GPU to remedy

this. First, let us state concretely the necessary quantities that must be computed

and stored throughout the sweep for each slice and sub-slice. We begin with the

quantities required for each slice, which have been tabulated in Table 4.1, assuming

1 byte per boolean, 4 bytes per integer, and 8 bytes per float.

Table 4.1: List of quantities required to compute on each slice of the mesh.

Quantity Purpose Bytes

c, fin, fout identifying information 12

xs, ys, zs for use in eqs. 3.3 - 3.6 24

∆xs, ∆ys, ∆zs for use in eqs. 3.3 - 3.6 24

Vs, As,in, As,out basic geometric information 24

M s
ij ; i, j = x, y, z for use in eqs. 3.26 - 3.29 48

A reduced coefficient matrix of eqs. 3.26 - 3.29 128

D boolean for if slice is done 1

G boolean for if slice is in ghost cell 1

σt,s for use in eqs. 3.26 - 3.29 8 × N †

ψin,s,in ; i = c, x, y, z for use in eqs. 3.26 - 3.29 32 × N

qin,s ; i = c, x, y, z for use in eqs. 3.26 - 3.29 32 × N

f, Sx, Sy, Sz communicating flux to downstream sub-slices 32 × N

†N is the number of groups per group-set in the sweep. In the Gauss-Seidel iterative method,
this would be equal to one, while in the Jacobi iterative method, this would be equal to the number
of energy groups.
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The first entry in Table 4.1 references the identifying information of the slice,

namely the inlet and outlet face indices, fin and fout, but also the index of the parent

cell c, for the purpose of computing source moments and contributing to the left hand

sides of equations 3.36. It could be argued that if this were the only information to be

stored permanently in memory about each slice in the mesh, the present discussion

would be unnecessary. Indeed, not much more information than this is required in

existing implementations of the traditional SBA in which the spatial discretizations

are limited to diamond difference and characteristic-like schemes. It is only when a

higher order scheme like the LDFE spatial discretization is used that one is confronted

with the unfortunate reality that storing all slice-dependent information is simply too

costly. It is quite possible however, that storing just this information permanently

in memory may improve the performance of the current method significantly, since

identifying each slice in the mesh is no small feat to perform before each sweep.

The next two entries in Table 4.1 reference the centroid coordinates and extents of

the slice used in the definition of the slice basis functions, equations 3.3 through 3.6.

It should be noted that the basis functions could be defined without these quan-

tities, however their definition as given in Chapter 3 simplifies the math involved

in computing volumetric integrals over the slice and reduces their round-off error.

In other words, the memory could be saved at the expense of more floating point

operations and less accuracy in the calculation of volumetric integrals. The next two

items in the list are the most basic geometric information for the slice (the volume

and inlet and outlet areas) and the mass matrix entries M s
ij for i, j = x, y, z. These

quantities are stored in addition to the reduced coefficient matrix A appearing next

on our list, so that the last remaining integral in equation 3.41 can be computed as

a simple linear combination of the angular flux variables obtained by solving equa-

tions 3.26 through 3.29.
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The reduced coefficient matrix A is simply the coefficient matrix of equations 3.26

through 3.29, minus all terms that are energy group dependent. These would include

all terms in which the total cross section appears, which conveniently also contain

the M s
ij’s. This is done because it will inevitably be the case that one will want to

sweep more than one energy group at a time given the considerable amount of effort

needed to prepare the slices of the mesh, which are the same for all energy groups.

In such a case, we want a base coefficient matrix that we can simply add terms to

in order to get the full coefficient matrix for the given energy group and slice index.

The next two items in the list are trivial in the discussion of the memory footprint

of each slice, and are used in the local sweep to keep track of slices that have been

done and slices that are inside ghost cells.

The remaining terms in Table 4.1 are those that are unique for each energy group,

and hence must be stored for each slice and each group in the set of groups being

swept simultaneously, hereafter referred to as a group-set. These include the total

cross section, incoming facial flux moments, and volumetric source moments. In

addition, we will need to represent the flux in the slice in linear form

ψn,s (r) = f + Sxx+ Syy + Szz , (4.1)

in order to evaluate the integrals in equation 3.44 for each sub-slice downstream of

each slice. Each of these coefficients is simply a function of the angular flux variables

obtained by solving equations 3.26 through 3.29.

We can now focus our attention on those quantities that must be computed

for each sub-slice, thus restricting the conversation to the extended SBA. These

quantities are tabulated in Table 4.2, again assuming 1 byte per boolean, 4 bytes

per integer, and 8 bytes per float. As in Table 4.1, the first entry in Table 4.2 is the
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identifying information for each sub-slice. These include the inlet and outlet face

indices, fin and fout, the parent cell index c, the upstream slice index u, and the

parent slice index p. With this identifying information, each slice can build a list of

sub-slices that are downstream of the slice, and a list of sub-slices that are contained

within the slice.

Table 4.2: List of quantities required to compute on each sub-slice of the mesh.

Quantity Purpose Bytes

c, fin, fout, u, p identifying information 20

xss, yss, zss for use in sub-slice basis functions 24

∆xss, ∆yss, ∆zss for use in sub-slice basis functions 24

Vss, Ass,in, Ass,out basic geometric information 24

γij ; i, j = c, x, y, z for use in evaluating equations 3.44 72

D boolean for if sub-slice is done 1

G boolean for if sub-slice is in ghost cell 1

ψin,ss,in ; i = c, x, y, z for use in evaluating equations 3.45 and 3.46 32 × N

As in Table 4.1, the next two entries in Table 4.2 reference the centroid coordinates

and extents of the sub-slice used in the definition of the sub-slice basis functions,

defined similarly to equations 3.3 through 3.6, followed by the most basic geometric

information for the sub-slice. The next quantities in the list are the first and second

order integrals over the inlet face of the sub-slice

γij =

¨
∂Vss,in

xixj d
2r , (4.2)

where xi and xj are replaced with all combinations of 1, x, y, and z, resulting in nine
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values, since γcc is simply the sub-slice inlet area. These are required because the

result of using equation 4.1 for ψn,ss (r) in equation 3.44 is a linear combination of the

γij’s. The next two items in Table 4.2 are analogous to their counterparts in Table 4.1.

Finally, the values resulting from the evaluation of equation 3.44 must be stored in

order to evaluate the incoming flux to the parent slice via equations 3.45 and 3.46.

Now that we have an exhaustive list of the quantities required for each slice and

sub-slice, we can discuss how to obtain them, and specifically how to organize these

tasks in a way to utilize the GPU most effectively. As stated in Chapter 1, a GPU

is most effective at single instruction, multiple data (SIMD) algorithms, in which

the same function (or kernel in GPU coding terminology) is applied to each item in

a large data set. This is because GPU’s are essentially vector processors in which

groups of cores of the GPU perform the same operation simultaneously on different

data elements. For this reason, it is proposed here to organize the work that must

be done during each local sweep into the following eight functions

1. count slices (GPU target)

2. build slice bases

3. slice integration (GPU target)

4. count sub-slices (GPU target)

5. build sub-slice bases

6. sub-slice integration (GPU target)

7. assign downstream and contained

8. stages
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where the functions that have the most potential to benefit from GPU acceleration

are identified. Those that are not thus labeled are either not SIMD or are likely to

take so little time on the CPU that GPU acceleration would be unnecessary.

We begin with the function count slices which identifies all of the slices in the

mesh for the given ordinate. Since slices can be identified for each cell in the mesh

in an embarrassingly parallel fashion, this task seems well-suited for the GPU where

each kernel function is given a cell index to work on. To identify the slices in the

cell, we first loop over the faces of the cell and determine if each face is an incoming

face for the given ordinate. If it is an incoming face, we again loop over all the faces

of the cell and determine if each face is an outgoing face. If it is an outgoing face, we

then use the Separating Axis Theorem (SAT)[25] in a two dimensional coordinate

system to which the given ordinate is perpendicular, in order to check if the faces

overlap. If so, we have found a slice, and its identifying information is stored.

The next function in the list, build slice bases, is relatively simple. It es-

sentially just takes the information returned from the count slices function and

uses it to initialize the slice objects with their identifying information. This function

is so simple that it its run-time is expected to be negligible compared to those of

the other functions in the list, and hence has not been targeted for acceleration by

the GPU. While the action of this function could have been performed inside the

previous function, separating the two functions makes the GPU implementation of

count slices far simpler.

With the slice objects initialized with their identifying information, the next

step is to compute the geometric quantities in Table 4.1, which include the centroid

coordinates, extents, volume, inlet and outlet areas, mass matrix entries, and reduced

coefficient matrix entries. This is performed by the slice integration function.

The first step is to find the vertices of the inlet and outlet faces of the slice. This

112



is done by translation to a two-dimensional coordinate system to which the given

ordinate is perpendicular, followed by the application of the Sutherland-Hodgman

algorithm for polygon clipping[26] in order to find the intersection of the inlet and

outlet faces. This locates the vertices in this rotated two-dimensional coordinate

system, which can then be projected back onto the planes in which the inlet and

outlet faces reside. Once the vertices of the slice are obtained, the surface and volume

integrals can be calculated analytically or with quadrature integration capable of

integrating the required polynomials exactly. Since this can be done for each slice

in an embarrassingly parallel fashion, this task seems well-suited for the GPU where

each kernel function is given a slice index to work on.

Next in the list is the count sub-slices function. This is the sister function to

the count slices function, and indeed works quite similarly. Since the sub-slices

can be identified from the outlet of each slice in an embarrassingly parallel fashion,

this task seems well-suited for the GPU where each kernel function is given a slice

index to work on. To identify the sub-slices downstream of each slice, we first must

have the vertex coordinates of the slice outlet, and the index of the downstream cell.

We then loop over all the faces of the cell and determine if each face is an outgoing

face. If it is an outgoing face, we again use the SAT in a two dimensional coordinate

system to which the given ordinate is perpendicular, in order to check if the face

overlaps with the slice outlet. If so, we have found a sub-slice, and its identifying

information, excluding its parent slice index, is stored.

Next we encounter the build sub-slice bases function, which is again quite

similar to its sister function build slice bases. This function simply initializes

the sub-slice objects with their inlet and outlet face indices, parent cell index, and

upstream slice index. Its run-time is again expected to be negligible, and as a result

it is not targeted for acceleration by the GPU. It is also the case that in a pure
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CPU implementation, the action of this function would have been performed in the

count sub-slices function.

The next step is to calculate the geometric quantities in Table 4.2, which in-

clude the centroid coordinates, extents, volume, inlet and outlet areas, and the

first and second order integrals over the sub-slice inlet. This is performed by the

sub-slice integration function, which is almost identical to its sister function

slice integration, with fewer geometric quantities to compute. Since this task

can be performed for each sub-slice in an embarrassingly parallel fashion, this task

seems well-suited for the GPU where each kernel function is given a sub-slice index

to work on.

With the slices and sub-slices formed, the only work left to do before performing

the local sweep is to assign parent indices to each sub-slice, build a list of sub-slices

contained within each slice, and build a list of sub-slices downstream of each slice.

This action is performed by the next function in the list, assign downstream and

contained. It works by looping over the sub-slices and adding the sub-slice index to

the downstream list of its upstream slice. While inside this loop over the sub-slices,

it also loops over the slices within the parent cell of the sub-slice, and checks each

one for a matching inlet and outlet face index pair. When a match is found, the slice

index is stored as the sub-slice’s parent slice, and the sub-slice index is added to the

list of sub-slices contained within the slice. This function is not targeted for GPU

acceleration because its run-time is expected to be negligible compared to those of

the other functions in the list.

The final function on the list, stages, is where the actual local sweep is performed.

For details on this local sweep, please refer to Algorithm 3.1. This function is not

targeted for GPU acceleration because it is not SIMD, and the prospects for making

it SIMD are not promising. This does not mean the GPU needs to sit idly by. One
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could imagine a pipe-lining strategy where the GPU is tasked with preparing the

slices and sub-slices for the next task in the task list while this local sweep is being

performed by the CPU. If the time for the GPU to prepare the slices and sub-slices

is less than the time for the CPU to perform the local sweep, this means the time

required to prepare the quantities that could not be stored in memory could be

effectively hidden altogether. Hence, it could be the case that the LDFE spatial

discretization applied to the traditional and extended SBA, may only be feasible on

the next generation of super-computers, where each node has at least one GPU and

the burden of having to recompute the quantities in Tables 4.1 and 4.2 for each sweep

can be effectively hidden.
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5. RESULTS AND ANALYSIS

The research described in the preceding chapters has culminated in the develop-

ment of a computer code named Slice-T. In this chapter, results generated using this

code will be presented. The Slice-T code provides the user with an option to per-

form transport sweeps using the cell balance approach (CBA), slice balance approach

(SBA), or extended slice balance approach (ESBA). When using the ESBA, the user

also has the option to choose between the two parallelization strategies presented

in Chapter 4. Outer iteration options include Gauss-Seidel and Jacobi iteration,

while the inner iteration method is limited to source iteration. The input file and

mesh are given in OpenFOAM[27] format. While Slice-T was not written using the

OpenFOAM libraries, the choice of OpenFOAM format for the input to the Slice-T

code was chosen due to the large user base of OpenFOAM, as well as the wealth of

pre-processing and post-processing utilities provided with the OpenFOAM software.

All transport cross-sections are supplied in the matxs format provided by the NJOY

nuclear data processing code[28], developed by Los Alamos National Laboratory.

To begin this chapter, we will focus on the accuracy of the CBA, SBA, and ESBA.

For the SBA and ESBA, we will apply both the linear discontinuous finite element

(LDFE) and diamond difference (DD) spatial discretization schemes, while for the

CBA we only apply the LDFE spatial discretization scheme. After discussing the

accuracy of the methods, we will discuss the parallel efficiency of the paralleliza-

tion options presented in Chapter 4 for the ESBA, while for the CBA and SBA we

will apply a volumetric decomposition parallelization strategy. As transport is an

inherently memory bound problem due to the large number of dimensions in the

solution’s phase-space, we will primarily be concerned with the weak scaling of the
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parallelization strategies. We will then examine the GPU acceleration of the slice

and sub-slice generation process in order to make the LDFE spatial discretization

scheme in the SBA and ESBA more viable, and in the process take a closer look at

the GPU architecture. Finally, in order to demonstrate the efficacy of the Slice-T

code, we will apply the ESBA using the LDFE spatial discretization to a real-world

problem, as well as a not-so-real-world problem.

5.1 Accuracy

The accuracy of a given method is largely determined by the rate at which the

numerical solution approaches the exact solution as the spatial resolution of the mesh

is increased. If the exact solution is known, various metrics can be used to measure

this error. The metrics used here are as follows

εL2 =

√√√√˚
D

(φc (r)− φe (r))2 d3r , (5.1)

ε〈L2〉 =

√√√√ Nc∑
i=1

Vi (〈φc〉i − 〈φe〉i)2 , (5.2)

εR =

Nc∑
i=1

Vi (〈φc〉i − 〈φe〉i)˝
D

φe (r) d3r
, (5.3)

where φc (r) is the numerical solution for the scalar flux, φe (r) is the exact solution

for the scalar flux, Nc is the number of cells in the spatial mesh, Vi is the volume

of cell i, 〈φc〉i is the volume averaged scalar flux for the numerical solution in cell i,

〈φe〉i is the volume averaged scalar flux for the exact solution in cell i, and D is the

spatial domain.
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Each of these error metrics should converge as ε = Chn, where C is some coef-

ficient, h is a measure of the cell size in the mesh, and n is the convergence order.

The most strict measurement of the error among these metrics is the L2 norm εL2 .

When it is stated that the LDFE spatial discretization is formally second order, it is

with respect to a true norm such as εL2 that this statement refers. While the other

two metrics are not true norms in the mathematical sense, since they are not derived

from a formal inner product of a function space, they do possess significance as it is

the cell average flux that is used to compute reaction rates

Ri =

˚

Vi

σR φ (r) d3r = Vi σR 〈φ〉i , (5.4)

where Ri is the reaction rate in cell i, σR is the response function for the reaction

of interest and is assumed constant over the volume of cell i, and 〈φ〉i is the volume

averaged scalar flux in cell i. With reaction rates often computed given the simpler

relation on the right side of equation 5.4, one can immediately see the value in

measuring the error according to equations 5.2 and 5.3.

In this section, we will measure the convergence rates of each combination of

balance approach and spatial discretization scheme for both continuous and discon-

tinuous solutions. For discontinuous solutions, we will also make some qualitative

statements about the different combinations in two dimensions, by propagating a

single ray of particles, leading to two sharp discontinuities. Finally, we will take a

closer look at the DD schemes and explain why the DD schemes appear to be only

first order accurate for a smooth solution, given that the DD scheme using the CBA

on uniform Cartesian meshes is known to be second order.
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5.1.1 Convergence Orders Given a Continuous Solution

In order to measure the convergence rates for the different combinations of balance

approach and discretization scheme for continuous solutions, we will need an exact

solution for which to compare. This can be obtained via the method of manufactured

solutions. The manufactured solution used here is

ψ (r) = sin
(πx
L

)
sin
(πy
L

)
sin
(πz
L

)
, (5.5)

for a cubic spatial domain of side length L. A slice through the center of this

manufactured solution is shown in Figure 5.1. Also note that the manufactured

solution is isotropic, and hence the scalar flux is simply 4π times equation 5.5.

Figure 5.1: Manufactured smooth solution used to measure convergence rates.
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We plug this manufactured solution into the steady-state, energy-independent,

discrete-ordinates transport equations, assuming isotropic scattering and uniform

cross sections

Ωn ·∇ψn (r) + σt ψn (r) =
σs
4π
φ (r) + qn (r) , (5.6)

in order to derive the source term that leads to this manufactured solution. After a

bit of algebra, we end up with

qn (r) =
π

L

[
Ωx cos

(πx
L

)
sin
(πy
L

)
sin
(πz
L

)
+

Ωy sin
(πx
L

)
cos
(πy
L

)
sin
(πz
L

)
+

Ωz sin
(πx
L

)
sin
(πy
L

)
cos
(πz
L

)]
+

(σt − σs)
(

sin
(πx
L

)
sin
(πy
L

)
sin
(πz
L

))
. (5.7)

The results that follow use a cubic domain with L = 200, uniform material

properties, various scattering ratios (c = σs/σt) up to c = 0.5, σt = 0.1, isotropic

scattering, an S4 Gauss-Chebyshev angular quadrature consisting of 32 total angles,

and a single energy group. In all of the figures to follow, we will be measuring

the above metrics for various mesh resolutions on a uniform Cartesian mesh with

∆x = ∆y = ∆z = h. For h = 1, this results in a mesh containing 8 million cells.

Figure 5.2 shows the results of using equation 5.1 to measure the error as a

function of h. The size of the data points are enlarged for some methods so that the

data for one method does not block the data for another. Without this enlargement,

only the data last plotted for each discretization scheme would be visible. The

only information that can be gleaned from this figure is that all balance approaches

using the same spatial discretization scheme have identical convergence rates n, and

coefficients C, when using equation 5.1 to measure the error. For the LDFE scheme,
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all balance approaches are second order as expected. For the DD scheme however,

both the SBA and ESBA appear to be only first order, whereas the DD scheme

applied to a uniform Cartesian mesh using the standard CBA is known to be second

order. This discrepancy will be the topic of a later section.

Figure 5.2: Error as a function of cell edge length for the continuous manufactured
solution using the error metric given by equation 5.1.
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Figure 5.3 shows the results of using equation 5.2 to measure the error as a

function of h. Using this error metric, it appears that the DD scheme is first order

for both the SBA and ESBA again, however the LD scheme for all balance approaches

has a convergence order of 2.6. In addition, it appears that the coefficients are no

longer indistinguishable, with CESBA−LD < CSBA−LD < CCBA−LD and CESBA−DD <

CSBA−DD. This is the expected behavior, since the ESBA should be more accurate

Figure 5.3: Error as a function of cell edge length for the continuous manufactured
solution using the error metric given by equation 5.2.
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than the SBA, which should be more accurate than the CBA; however, since the

solution is smooth, all combinations using the same spatial discretization scheme

exhibit the same convergence order.

There are a few outlier data points for the SBA-LD case that are puzzling. These

outliers occur only for the lower scattering ratios, which suggests that they are not

a result of a coding error or of inadequately converging the scattering iterations.

Perhaps we can gain a better understanding of these outliers by examining the final

error metric, which is shown in Figure 5.4. In this figure, it appears that all the data

points for c = 0, 0.1, and 0.2 using the SBA-LD are exhibiting strange behavior.

Further, in order to plot the data on a logarithmic scale, we cannot see the sign of

the εR values from Figure 5.4. For completeness, the signs of the εR values for the

SBA-LD case are tabulated in Table 5.1. It should be noted that the sign of εR is

negative for all data points of all other combinations of balance approach and spatial

discretization scheme.

It appears that the outlying data points correlate with the cases where the nu-

merical solution over-estimates the exact solution. The cases with higher scattering

ratios seem to avoid this issue, perhaps because the solution is being approached

from below in smaller steps due to the higher number of scattering iterations needed

to converge. We have been unable to find a convincing explanation for the anomalous

behavior of SBA-LD for this problem. We note that this research is not focused on

the traditional SBA, but on the ESBA, and the ESBA cases are behaving exactly as

expected. We therefore leave the solution of the SBA-LD mystery to future work.
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Figure 5.4: Error as a function of cell edge length for the continuous manufactured
solution using the error metric given by equation 5.3.

Table 5.1: Sign of the SBA-LD εR values for the smooth solution convergence study.

h\c 0 0.1 0.2 0.3 0.4 0.5

2 + + + - - -

5 + + + - - -

10 + + + - - -

20 + + - - - -
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5.1.2 Qualitative Differences in Two Dimensions for a Discontinuous Solution

Before moving on to perform a similar analysis for discontinuous solutions as was

done in the previous section, it is instructive to make some qualitative observations

of the behavior of the numerical approximations to such solutions. To compare the

accuracy of the CBA, SBA, and ESBA for the DD and LDFE spatial discretization

schemes, consider the propagation of a single ray in two dimensions. This problem

was motivated by Matthews[29] where several finite element, finite volume, nodal,

and characteristic methods were compared for their ability to reduce numerical diffu-

sion and lateral oscillations, while also maintaining the correct propagation direction,

even for low resolution spatial meshes. While this analysis will not go into nearly

as much depth as the cited study, we use the same propagation angle, mesh, and

material properties

Ωx = 0.3500212, Ωy = 0.868890 ,

∆x = 0.5, ∆y = 0.5 ,

σ = 0.02, σs = 0 ,

and compare the solutions for each of the six combinations of balance approach and

spatial discretization scheme. The problem examines the propagation of a single

ray initiated from a single face on the x = 0 boundary nearest the origin. The

analytic solution is a decaying exponential ray of width ∆x, and zero everywhere

else, exhibiting two sharp shadow-type discontinuities. Figure 5.5 shows numerical

solutions for the six combinations of balance approach and discretization scheme.
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CBA-DD CBA-LD

SBA-DD SBA-LD

ESBA-DD ESBA-LD

Figure 5.5: CBA, SBA, and ESBA solutions using DD and LDFE spatial discretiza-
tions for propagating a single ray in two dimensions.
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Figure 5.5 reveals several important results. It shows that the SBA reduces

the lateral oscillations present in the CBA for both discretization schemes. This is

incredibly effective for the DD scheme due to that methods known propensity for

producing large lateral oscillations. These oscillations, and the fact that the CBA-

DD combination produces a ray that veers slightly off the propagation direction, led

Matthews to recommend that while DD is inexpensive, it is extremely unphysical,

and we should abandon it and all of its offspring.[29] This analysis shows that the

unphysical oscillations can indeed be fixed with very little extra computation via the

SBA.

If we further apply the ESBA to the DD scheme, the results improve even more,

producing a sharper ray with less numerical diffusion. Both the SBA and ESBA also

steer the DD ray closer to the true propagation direction. The same improvements

are obtained for the LDFE scheme; however in this case, the lateral oscillations

in the cell balance approach are much less severe, so there is less of a problem to

correct. Applying the ESBA to the LDFE scheme produces the sharpest ray of all

six, traveling in a direction indistinguishable from the true propagation direction

with the given mesh resolution. If the extra computational cost can be afforded, it

is clear that the ESBA with the LDFE scheme is the best choice for problems with

shadow-type discontinuities.

5.1.3 Convergence Orders Given a Discontinuous Solution

In order to measure the convergence rates for the different combinations of balance

approach and discretization scheme for discontinuous solutions, we will need an exact

solution for which to compare. In order to accomplish this, we will simply assign

an incoming boundary condition for a single angle, to a single boundary patch of

the same spatial domain as was used in the continuous convergence study. This
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produces a decaying exponential in the region of the mesh lying in the projection of

the boundary patch in the direction of the chosen angle, and a zero solution elsewhere

if we assume no scattering. For the angle, we choose an angle from the S4 Gauss-

Chebyshev angular quadrature set used in the continuous convergence study Ωb =

(0.469676, 0.194546,−0.861136)T , and for the uniform material properties we choose

σt = 0.005. This discontinuous solution can be seen in Figure 5.6. The top boundary

patch in the figure that is either solid black or solid red is the boundary patch opposite

of where the incoming boundary condition was specified. The incoming boundary

condition assigned is ψinc(Ωb) = 1.0.

Figure 5.6: Discontinuous solution used to measure convergence rates.
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Figure 5.7 shows the results of using equation 5.1 to measure the error as a

function of h. The first thing to notice from this figure is that the convergence rates

with respect to a formal norm like εL2 have decreased significantly. If we look first at

the combinations using the LDFE discretization scheme, we note that CESBA−LD <

CSBA−LD < CCBA−LD, as expected, and that the ESBA-LD has a convergence rate

of 0.5, while the CBA-LD has a convergence rate of 0.38. The convergence rate of

the SBA-LD is not well defined since there appears to be some curvature to the data

points, but the error appears to be firmly in between that of the CBA-LD and the

ESBA-LD data points. Again, this is to be expected since the ESBA should be more

accurate than the SBA, which should be more accurate than the CBA.

If we focus on the two combinations using the DD discretization scheme, we

notice that both the ESBA-DD and ESBA-LD exhibit some curvature, so that their

convergence rates cannot be clearly identified. While it is still the case that the

ESBA appears more accurate than the SBA, as we should expect, the curvature

in both is certainly unexpected. It is possible that more data points with h < 1

might be required to see the convergence rates clearly. If a line is drawn through the

two data points with the smallest values of h for each of the DD combinations, the

ESBA-DD appears to have the same convergence rate as the ESBA-LD, while the

SBA-DD appears to have the same convergence rate as the CBA-LD.

Discontinuous solutions are known to reduce the convergence rates of numerical

methods. Fractional convergence rates are indeed to be expected, but the primary

takeaway is that for a discontinuous solution, not only does the ESBA out-perform all

other balance approaches in the convergence coefficient as was the case for continuous

solutions, but also in the fractional convergence rate. This makes the ESBA-LD the

obvious choice when such discontinuities are expected to occur and the computational

cost associated with the ESBA can be afforded.
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Figure 5.7: Error as a function of cell edge length for the discontinuous solution using
the error metric given by equation 5.1.

Figure 5.8 shows the results of using equation 5.2 to measure the error as a

function of h. The most interesting thing to note from this figure is that all the CBA

and SBA combinations appear not to converge at all, while the ESBA combinations

appear to converge at nearly the same rate as they did for continuous solutions. This

is a surprising result that we will attempt to explain after we describe the other error

measures.
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Figure 5.8: Error as a function of cell edge length for the discontinuous solution using
the error metric given by equation 5.2.

Figure 5.9 shows the results of using equation 5.3 to measure the error as a

function of h. In this figure, all combinations appear to be converging, and even

more interestingly, they appear to be converging with the same rate as they did

for continuous solutions, with the exception of the SBA-LD. Again, in order to plot

this on a logarithmic scale, we are not able to see the signs of εR. When the sign is

analyzed however, the SBA-LD appears to be an outlier from the other combinations
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in that all of the εR values are negative, whereas for the four other combinations,

all of the εR values are positive. While we will not venture an explanation for

this discrepancy in sign, we shall attempt an explanation for why the non-ESBA

combinations appear to converge for εR, and not for ε〈L2〉. In addition, it appears

that CCBA−LD < CESBA−LD, and this is certainly unexpected.

Figure 5.9: Error as a function of cell edge length for the discontinuous solution using
the error metric given by equation 5.3.
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In order to understand the difference between Figures 5.8 and 5.9, and in partic-

ular why CCBA−LD < CESBA−LD in Figure 5.9, we must look again to Figure 5.5. In

Figure 5.5, it is apparent that all balance approaches using the LDFE discretization

scheme exhibit lateral oscillations to some degree. Since these lateral oscillations

cause the numerical solution to oscillate around the exact solution, the εR error met-

ric, which takes the sign of (〈φc〉i − 〈φe〉i) into account, is bound to lead to cancella-

tions of the errors in cells where the numerical solution is above the exact solution,

with the errors in cells where the numerical solution is below the exact solution. This

could lead methods with less damped lateral oscillations to achieve lower values of

εR than methods in which the lateral oscillations are more highly damped, and in

particular this would explain why CCBA−LD < CESBA−LD in Figure 5.9.

Of course, a negative value of 〈φc〉i is technically unphysical. It is not possible to

have a negative scalar flux. When calculating reaction rates, such values are prob-

lematic. An error metric that is strictly positive like εL2 or ε〈L2〉 is more meaningful

when negative fluxes are present. The fact that the ε〈L2〉 error metric measures the

absolute value of the difference between the numerical and exact solutions may also

explain why the CBA and SBA combinations do not appear to converge in Figure 5.8.

It is possible that these methods are converging (or at least would be if smaller values

of h were included in the study), albeit very slowly, and perhaps we can prove this.

We can start by noting that a function f (r) can be written as

f (r) = 〈f〉+ a (r) where 〈a〉 = 0 . (5.8)

The difference of two functions can then be written as

f (r)− g (r) = (〈f〉 − 〈g〉) + (a (r)− b (r)) . (5.9)
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We can now consider the integral of the square of this difference

˚

D

(f (r)− g (r))2 d3r =

˚

D

((〈f〉 − 〈g〉) + (a (r)− b (r)))2 d3r =

˚

D

(〈f〉 − 〈g〉)2 d3r + 2 (〈f〉 − 〈g〉)
˚

D

(a (r)− b (r)) d3r+

˚

D

(a (r)− b (r))2 d3r . (5.10)

Using the fact that the averages 〈a〉 = 〈b〉 = 0, this can be written as

˚

D

(f (r)− g (r))2 d3r =

˚

D

(〈f〉 − 〈g〉)2 d3r +

˚

D

(a (r)− b (r))2 d3r . (5.11)

Finally, we can treat the integrals over the domain on the right hand side as a sum

of integrals over all of the cells in the mesh

˚

D

(f (r)− g (r))2 d3r =
Nc∑
i=1

Vi (〈f〉i − 〈g〉i)2 + γi , (5.12)

where

γi =

˚

Vi

(a (r)− b (r))2 d3r ≥ 0 . (5.13)

We can thus state definitively that

˚

D

(f (r)− g (r))2 d3r ≥
Nc∑
i=1

Vi (〈f〉i − 〈g〉i)2 , (5.14)

and hence

εL2 ≥ ε〈L2〉 . (5.15)

This is indeed the case in Figures 5.7 and 5.8, at least for the ranges of h considered
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in this study. The result derived above however indicate that if εL2 is converging at

a rate of p, then ε〈L2〉 must be converge at the same rate eventually, which leads one

to believe that the ε〈L2〉 values for the CBA and SBA cases would begin to converge

for h values lower than those considered in this study. This convergence however

would be at the fractional rate shown in Figure 5.7, and not at the much higher rate

obtained by both ESBA combinations in Figure 5.8.

5.1.4 Investigating the First Order Convergence for the SBA and ESBA Diamond

Difference Schemes

In order to understand why the DD spatial discretization scheme is only first order

in the SBA and ESBA, we should first explain why the DD scheme is second order

for uniform Cartesian meshes using the CBA. Consider for instance Figure 2.6, which

shows a two dimensional quadrilateral cell. When using the CBA with the DD spatial

discretization scheme, there are three variables to solve for on each quadrilateral cell.

In Figure 2.6, these are the average flux on the top edge ψT , the average flux on the

right edge ψR, and the cell averaged flux 〈ψ〉. In addition, we must also keep in mind

that for a method to be second order, it must be able produce the exact solution

with no error, if the exact solution is linear. The DD scheme for this quadrilateral

cell reduces to the following three equations which must must be solved for each cell

to calculate the three unknowns

ηLψL + ηRψR + ηBψB + ηTψT + σt〈ψ〉 = 〈q〉 , (5.16)

〈ψ〉 = 0.5 (ψB + ψT ) , (5.17)

〈ψ〉 = 0.5 (ψL + ψR) , (5.18)
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where ψL is the average flux on the left incoming edge and is known, ψB is the

average flux on the bottom incoming edge and is known, the η’s contain the dot

product of the edge outward pointing normal with Ω, times the edge length divided

by the cell area, and 〈q〉 is the cell averaged source. The first equation is simply the

transport equation integrated over the cell area, and then divided by the cell area.

With some geometric reasoning, it is easy to show that the two closing equations are

indeed correct for a linear solution if the quadrilateral cell is rectangular.

We first state without proof that the average of a linear solution along an edge

is the value of the linear solution at its midpoint. Similarly, the average of a linear

solution over an area is the value of the linear solution at its centroid. For a rect-

angle, it is also true that the centroid of the rectangle is the midpoint of the line

connecting the midpoints of two opposite edges, and the value of a linear function

at the midpoint of a line is the average of its value at the line’s endpoints, hence

equations 5.17 and 5.18.

To be perfectly clear then, the DD scheme in two dimensions using the CBA on

a per cell basis is a system of three equations for three unknowns, whose solution

is exact if that solution is linear. We should therefore have every reason to expect

second order convergence. The method also easily translates to three dimensions in

which edges become faces, quadrilateral cells become hexahedral cells, and one more

closing equation is added to the system that states that the volume averaged flux is

the average of the face averaged fluxes on the front and back faces. We then have

four equations with four unknowns, whose solution is still exact if that solution is

linear and the hexahedral cells are brick shaped, and is hence still second order. This

is then the reason to be concerned with the SBA and ESBA DD schemes exhibiting

only first order convergence, but perhaps this can at least be explained.

When the SBA was first proposed by Grove[9], it was postulated that given the
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form of the balance equation on a slice, simple spatial discretizations that work in

one dimension could easily be extended to three dimensions in the SBA framework.

Consider for example the following two balance equations, first for a one dimensional

cell, and second for a three dimensional slice

µn
∆xi

(
ψn,i+1/2 − ψn,i−1/2

)
+ σt,iψn,i = qn,i , (5.19)

αn,inψn,s,in + αn,outψn,s,out + σt,cVs ψn,s = Vs qn,s . (5.20)

Recall that these equations appeared in Chapter 2 as equations 2.47 and 2.62. These

two equations have very similar forms since αn,in is negative by definition. Where

the DD spatial discretization scheme in one dimension is defined by the addition of

the closing equation

ψn,i = 0.5
(
ψn,i−1/2 + ψn,i+1/2

)
, (5.21)

the scheme is defined in the SBA framework by the addition of the closing equation

ψn,s = 0.5 (ψn,s,in + ψn,s,out) . (5.22)

For the DD scheme in the SBA then, we must solve a system of two equations

with two unknowns for each slice. The second equation is not correct for a linear

solution, and thus there is no reason to expect second order convergence. This is

because for a slice in two or three dimensions, it is not necessarily true that the

slice centroid lies at the midpoint of the line connecting the inlet and outlet face

centroids. To see this, consider a triangular slice in two dimensions. The centroid

of a triangle is the intersection of the triangle’s three triangle medians, as shown in

Figure 5.10. Thus, in this case not only does the centroid not lie at the midpoint
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of the line connecting the inlet and outlet edge midpoints, it does not even lie on

this line, eliminating the possibility for some sort of weighted DD scheme in which

ψn,s = γ ψn,s,in+(1−γ)ψn,s,out, where 0 ≤ γ ≤ 1, to restore second order convergence.

Figure 5.10: Centroid location of a triangle.

Having explained why the simple DD closure to the SBA framework is not second

order convergent, Grove’s initial hope that one dimensional schemes could work in

the three dimensional SBA framework was not entirely wrong. As we have seen in

previous sections, the SBA and ESBA using the DD scheme do indeed converge to

the true solution, even if the convergence rate of the one dimensional scheme did not

translate to the three dimensional SBA framework. A fruitful line of future research

might be to seek a simple modification to the DD closure relation that will cause the

modified SBA-DD and ESBA-DD methods to achieve second-order truncation error.

We explored two ideas for this, without success.

Both attempts were characteristic in nature, attempting to find the average flux

on the outlet face of the slice given the average flux on the inlet face of the slice, and
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then to use this outlet flux in the balance equation to determine the slice average

flux. The first attempt defined the optical depth 〈τ〉 between the inlet face centroid

rc,in, and outlet face centroid rc,out

〈τ〉 = σt |rc,in − rc,out| . (5.23)

This optical depth was then used in the characteristic solution along the line connect-

ing the inlet and outlet face centroids, after inserting the Padé (1,1) approximation

for the resulting exponential terms

ψn,s,out = ψn,s,in

(
2− 〈τ〉
2 + 〈τ〉

)
+
qn,s
σt

(
1−

(
2− 〈τ〉
2 + 〈τ〉

))
. (5.24)

The second attempt was slightly more complicated, and attempted to solve for the

average flux on the outlet face as a linear combination of the characteristic solutions

along the line connecting each pair of corresponding vertices of the inlet and outlet

faces

ψn,s,out =
Nv∑
j=1

βj ψ
j
n,s,out , (5.25)

where Nv is the number of vertices on the inlet or outlet face, and ψjn,s,out is calculated

using equation 5.24 after substituting τj for 〈τ〉, which is defined similarly to 〈τ〉

τj = σt |rj,in − rj,out| . (5.26)

The only loose end is then how to come up with a suitable set of {βj}Nv
j=1. This is

done by determining what linear combination of the face vertices leads to the face
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centroid, and the result is

βj =
Aj−1/2 + Aj+1/2

2Aout

, (5.27)

where Aj−1/2 is the area of the triangle formed by rj, rj−1, and rc,out, and Aj+1/2 is

the area of the triangle formed by rj, rj+1, and rc,out. Again, it should be noted that

both of these attempts resulted in first order convergence, and are only included here

for the sake of anyone attempting a similar fix in the future.

5.2 Scaling

Parallel performance can be measured in at least two ways based on the applica-

tion under consideration. One could imagine a problem that can fit into the memory

of a single computer relatively easily, but is so computationally complex that it takes

a long time to reach a satisfactory answer. In this case, super-computers and clus-

ters are useful because more computational resources can be used to bring the time

required to arrive at the solution down to a reasonable value. The second application

type is one which is memory-bound rather than compute-bound. In this case, the

problems of interest require so much memory that a single computer would not be

sufficient. In this case, super-computers and clusters are useful because the problem

can be subdivided into manageable portions such that each node of the machine is

assigned a part of the problem that can fit into that node’s memory. High fidelity

transport calculations fit firmly into the second category due to the high dimension-

ality of the phase space.

To measure the parallel performance of a memory-bound application, a weak

scaling study is typically performed. In this type of computational experiment, the

size of the problem is kept proportional to the number of processing elements being

used to solve it. For instance, if one node of a super-computer was used to solve a

problem of a given size, eight nodes of the same machine would then be used to solve
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a similar problem with eight times the number of unknowns. The similar problem

could be the same as the original problem but with a higher spatial resolution leading

to eight times the number of spatial cells, or a higher angular resolution with eight

times the number of angles in the SN angular quadrature set, etc. The time taken

to solve each problem is recorded as tN , where N is the number processing elements

used. For each data point in the study, the parallel efficiency is the ratio of t1 to tN . It

is important to note that this ratio will be less than unity due to the communication

time for distributed memory machines.

The weak scaling study performed in this research can be described as follows. For

each core used, the resolution of the mesh is increased such that each core contains

a subset of the global mesh with 1,000 cells. These 1,000 cells are arranged in a

brick grid with ten divisions in each Cartesian dimension. The angular quadrature

set is a S20 Gauss-Chebyshev angular quadrature consisting of 800 angles in total,

and is kept constant throughout the study, as is the energy discretization with 12

groups. The group-to-group scattering scheme is Jacobi, so that all 12 groups are

swept simultaneously. The domain is cube-shaped, and homogeneously filled with

hydrogen at 1024 atoms/cm3 and a unit strength volumetric source of particles in

all 12 energy groups. The inner iteration scheme is source iteration, although full

convergence of the inner iterations was not needed for this study of parallel sweeping.

This is because the time measured in the scaling study is the time required for a

single inner iteration, and therefore the number of iterations is irrelevant except for

statistical variations in the individual data points. Each recorded time is taken to be

the average of four inner iteration durations. Finally, the spatial discretization used

in this study is the LDFE scheme. The results using the ESBA with parallelization

option 1, alongside traditional transport sweeps for the SBA and CBA, are shown in

Figure 5.11. The data points in this figure occur at 1, 8, 64, and 512 cores.
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Figure 5.11: Weak scaling study results for parallelization option 1.

The results in Figure 5.11 are admittedly less than stellar, but the basic trend in

which the SBA shows higher parallel efficiency than the CBA, which shows higher

parallel efficiency than the ESBA with parallelization option 1, can be easily ex-

plained. We begin by noting that it is the computation to communication ratio

which predominantly effects the parallel efficiency of this application. Thus, in order

to increase the parallel efficiency, the biggest gains will be achieved by reducing the

time spent communicating, or increasing the amount of work being done without

also increasing the amount of communication required.

The difference in parallel efficiency between the CBA and SBA can thus be ex-

plained by examining how much work and how much communication is required by
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each. We begin by noting that in both the CBA and SBA, the same type of informa-

tion is being communicated between nodes. For each face shared by two neighboring

nodes, a data structure containing the facial flux moments on that face (four double

precision floating point numbers), the global index of the face (one integer), and

the energy group index (one integer), must be communicated to the neighboring

node. This equates to 40 bytes per face assuming eight bytes per double precision

floating point number and four bytes per integer. With each set of faces shared by

neighboring nodes consisting of 100 faces, and all 12 groups being communicated

together, each message contains 100 × 12 × 40 B = 48 kB. This is true for both

the CBA and SBA, and therefore the time spent communicating is expected to be

equal between the two approaches. What changes between the two is the amount of

work performed for each cell in the local mesh. This amount of work is much higher

for the SBA than the CBA for the simple reason that the streaming plus collision

operator is inverted on each slice rather than on each cell, but also because of the

added work necessary to compute the necessary geometric information on each slice.

This increase in work while keeping the communication time constant between the

two approaches accounts for the higher parallel efficiency of the SBA relative to the

CBA.

If we further consider the ESBA in relation to both the SBA and CBA, we note

that the amount of work required by the ESBA is larger than for the SBA due to

the addition of the sub-slice. While the streaming plus collision operator is still only

being inverted on each slice, the work required to compute the geometric information

on each sub-slice is not insignificant. The type and amount of information commu-

nicated by the ESBA using parallelization option 1 is quite different from the CBA

and SBA. In the ESBA, we are no longer communicating angular flux moments on

the faces shared by the two neighboring nodes, but the angular flux moments on the

143



inlet facets of each slice residing on the faces shared by the neighboring nodes. For

the Cartesian mesh considered in this study, and the angular quadrature set chosen,

each boundary face will contain the inlet facets to three slices. Thus, without even

considering the difference in the type of data structure that must be communicated,

our communication costs have already tripled. As it turns out, the data structure

being communicated by the ESBA with parallelization option 1 is only 4 bytes larger

than the data structure used to communicate facial flux moments. This is because

the face index alone is no longer sufficient to define a slice. We must also com-

municate the outlet face index on the neighboring processor, since any slice can be

identified by an inlet outlet face pair. Thus, the data structure communicated in the

ESBA is larger than that for the CBA and SBA by one integer value. The size of

each message to be communicated is then 3×100×12×44 B = 158.4 kB. As can be

gleaned from the data in Figure 5.11, this more than tripling of the communication

cost significantly outweighs the modest increase in work, leading to lower parallel

efficiencies for the ESBA with parallelization option 1.

Given these general trends, it should be noted that the parallel efficiencies shown

in Figure 5.11 are much lower than expected for any of the three approaches. In

particular, transport codes in existence today using the CBA with the LDFE spatial

discretization scheme show parallel efficiencies of over 0.9 when considering cores

counts in the thousands and even hundreds of thousands.[18] This less than ideal

performance of the Slice-T code has been examined, and many changes to the code

have produced negligible changes in these results. We leave the improvement of the

parallel efficiency of all three approaches to future work, while reminding the reader

that the Slice-T code is still in its infancy. Having said this, at the end of this section,

we will still attempt to calculate the amount of time spent communicating using the

specifications of the machine used to perform this study.
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Next we consider a similar weak study using the ESBA with parallelization option

2. The results of this study are shown in Figure 5.12. Parallelization option 2 is more

complex because given a number of cores, the problem can be solved with different

numbers of angles per angle-set. For instance, consider the data point at 8 cores.

Using parallelization option 2, we could solve this with a single angle per angle-set,

in which case the spatial domain would be divided into 8 pipes, and each node would

obtain the solution in a single pipe. If we were to use 2 angles per angle-set, the

spatial domain would be split into 4 pipes for each of the two angles, resulting in 8

pipes in total for each of the eight cores to obtain the solution within. Finally, we

could use 8 angles per angle-set, in which case the domain would remain undivided,

and each of the eight cores would obtain the solution throughout the entire spatial

domain for one of the 8 angles.

Parallelization option 2, yet again yields disappointing results, although the trend

of higher parallel efficiencies for higher angle counts per angle-set can be seen clearly.

To make sense of this, lets imagine the extreme case in which the number of angles

per angle-set equals the total number of angles in the SN angular quadrature set. Of

course, this would require there to be as many cores as there are angles, so we will

assume this. In this limit, each core must communicate the volumetric information

of every single one of its local cells to every other core. This is because each core

must sweep the entire spatial domain for a given angle. If we consider the case in

which the number of angles per angle-set equals half the number of angles in the

SN angular quadrature set, the solution then proceeds in two steps, one for each

angle-set. For each angle, the spatial domain is divided into two pipes, and the local

cells residing along the division plane must be communicated to two other cores

instead of just one as before. This increases the communication cost, leading to

lower parallel efficiencies.
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Figure 5.12: Weak scaling study results for parallelization option 2.

In an attempt to understand the low parallel efficiencies of the two weak scaling

studies presented above, we will now attempt to estimate the theoretical communi-

cation time for the CBA with 8 cores, and compare this to the actual inner iteration

durations recorded to determine exactly how far from optimal the performance actu-

ally is. On the machine used to perform these studies, the message passing latency

is reported to be 1 µs, while the bandwidth is reported to be 20 GB/s. Using the

48 kB message size for the CBA, this equates to 0.002401 s per message sent. In the

case of the 8 core run, there are 12 such messages occurring for each angle, with 800

angles in total. This leads to a total communication time of 0.033 s. For reference,

the measured inner iteration duration for this case was 24.44 s. Thus, if the com-
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munication costs in the research code were as small as the latency and bandwidth

suggest they could be with an optimal implementation, these costs would be a tiny

fraction of the sweep time and efficiency would be close to unity. We leave such

implementation improvements in Slice-T code to be pursued as future work.

5.3 GPU Acceleration

Before presenting the results of accelerating the slice and sub-slice formation

process, we should more closely examine the GPU architecture and the specific GPUs

used in this study, in order to gain a better understanding of how these devices work.

In an attempt to explain such an architecture to the author, someone once posed

the question “if you had to plough a field, would you use one ox, or a thousand

chickens?” After a few years of experience and contemplation, the author has been

convinced that the answer depends on the field, as previously discussed, but it also

depends in large part on the chickens. How fast are they? How smart are they? Can

they communicate with one another? As we will see, the answers to these questions

are slow, stupid, and maybe, but there are a thousand of them.

The modern GPU is a collection of devices which NVIDIA has named streaming

multi-processors (SMs). These SMs are different from the lowest level processing

elements performing the computations, sometimes referred to as CUDA cores. A

comparison is often made between the cores of a typical CPU and the processing

elements of a GPU, which can number in the thousands. This analogy is flawed in

the sense that each core of a CPU is much faster than each processing element of a

GPU, each CPU core has access to its own cache, or set of caches, and each CPU

core can work independently of the other cores on the CPU as long as care is taken

to maintain cache coherency and avoid race conditions. The processing elements of

a GPU operate much differently, and the better comparison to the CPU core is the
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SM, not the individual processing elements.

Each processing element of the GPU works on a thread that executes the same

kernel function with a different thread index. The work sent to the GPU is therefore

a collection of threads, and these threads are organized into thread blocks, where

each thread block is allocated to an SM. Within each thread block, the threads are

further grouped into warps of 32 threads. The warps execute each instruction in

the kernel function simultaneously. For example, if within the kernel function there

is a line a = b + 1, all 32 threads will execute this instruction at the same time.

This presents issues for branching statements, which should be kept to a minimum.

For instance, if there is an if-else statement where half of the threads branch to

a = b + 1 and the other half branch to a = b + 2, these two instructions will be

performed serially with half of the threads in the warp executing the first branch

simultaneously, and only after these threads finish will the other threads execute the

second branch simultaneously.

Complications for communication between threads arise from the different mem-

ory spaces that are available. The first of these is global memory which is typically

between 10 and 20 GB, and is analogous to the RAM on the motherboard of the

CPU. This global memory is one mechanism that threads can use to communicate

with each other, but it is also quite slow to access (typically a bandwidth of a few

hundred GB/s). For this reason, programmers are encouraged to make use of the

shared memory of each SM, which can be accessed much faster (typically a band-

width of 1-2 TB/s). Shared memory is essentially just a section of the L1 cache on

each SM that the user can control, and it is yet another mechanism for communica-

tion between threads, but only for threads on the same SM, or alternatively between

threads of the same thread block. To complicate things further, if synchronization is

important, barriers can only be enforced between threads of the same thread block,
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which all reside on the same SM.

The end result is that the work to be performed on the GPU should be organized

into thread blocks which are completely independent of each other, and there should

be at least as many thread blocks as there are SMs on the GPU, but preferably

many more. It is this coarse level of parallelism that achieves the first chunk of the

speedup of any application. For instance, for thread blocks of the same size, running

any number of thread blocks less than or equal to the number of SMs on the GPU

would finish in roughly the same amount of time. Running one more thread block

than the number of SMs on the device, on the other hand would take twice as much

time, as would running twice as many thread blocks as there are SMs on the device.

Thus, the number of thread blocks should be a multiple of the number of SMs if

possible.

Figures 5.13 through 5.18 are diagrams of three GPUs closely resembling the

GPUs used in this study, namely the NVIDIA K40, P100, and V100. The letters

K, P, and V, stand for Kepler, Pascal, and Volta, and these names represent the

“generation” of NVIDIA GPU technology. The difference between GPUs of different

generations lies almost entirely in the SMs, and hence Figures 5.14, 5.16, and 5.18

examine the SMs of each of the three GPUs in detail. Different GPUs of the same

generation mostly differ only in the number of SMs they contain, the amount of

global memory they contain, and how they are connected to the host CPU, among

other minor differences. Figures 5.13, 5.15, and 5.17 show the layouts of the GK110,

GP100, and GV100, of which the K40, P100, and V100 respectively, are minor

variations of. For instance, the P100 has only 56 SMs compared to the 60 shown in

Figure 5.15.

Examining Figures 5.13 through 5.18, one trend is immediately obvious. This

trend is the reduction in the number of processing elements per SM in favor of more
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Figure 5.13: Streaming multiprocessor layout of the full GK110 GPU.[30]
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Figure 5.14: Core layout of the GK110 streaming multiprocessor.[30]

SMs per GPU. In addition, while the ratio of double precision or floating point 64

(FP64) processing elements to single precision or floating point 32 (FP32) processing

elements in the K40 was only 1:3, the same ratio increased to 1:2 for the P100 and
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Figure 5.15: Streaming multiprocessor layout of the full GP100 GPU.[31]
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Figure 5.16: Core layout of the GP100 streaming multiprocessor.[31]

V100. This is particularly important for scientific computing where double precision

arithmetic is the standard. Another trend is the heterogeneity of the SM cores them-

selves, utilizing different cores for different purposes such as the load-store (LD/ST)

units, special function units (SFUs), and in the case of the V100, even cores spe-

cialized to handle integer (INT) and FP32 arithmetic, where these were handled by

the same cores in previous generations. Also new in the V100 is the presence of

the tensor cores, which is a fancy term for a vector processor optimized to handle

mixed precision matrix arithmetic. While these tensor cores will not be utilized in

this study, their effect on the theoretical peak performance is very intriguing. The

specifications of the three GPUs used in this study are summarized in Table 5.2. As
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Figure 5.17: Streaming multiprocessor layout of the full GV100 GPU.[32]
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Figure 5.18: Core layout of the GV100 streaming multiprocessor.[32]
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Table 5.2: Comparison of the three GPUs used in this study.[30][31][32]

K40 P100 V100

Number of SMs 15 56 80
FP32 Cores / SM 192 64 64
FP32 Cores / GPU 2880 3584 5120
FP64 Cores / SM 64 32 32
FP64 Cores / GPU 960 1792 2560
Max clock rate (MHz) 875 1480 1530
Memory (GB) 12 16 16
L2 cache (kB) 1536 4096 6144
Thermal design power (W) 235 300 300
Peak FP32 performance (TFLOPS) 5.0 10.6 15.7
Peak FP64 performance (TFLOPS) 1.7 5.3 7.8

can be seen in this table, the difference between the P100 and V100 is not quite as

drastic as the difference between the K40 and the P100, however the increased core

count and clock rate of the V100 compared to the P100 while maintaining the same

thermal design power is truly amazing.

As mentioned in the previous chapter, four functions utilized in the local sweep

to build the slices and sub-slices have been targeted for GPU acceleration. These

four functions are count slices, slice integration, count sub-slices, and sub-

slice integration. GPU kernel functions for these were written and optimized in

terms of the number of threads per thread block and the amount of local memory

used, and the results are shown in Figure 5.19. Each reported time is the average

of 20 runs. This figure shows the run time for each function stacked on top of one

another, and compares the GPU run times to the host CPU run times. In all three

cases, the host CPU was an IBM POWER processor. The last case in the figure

utilizing the IBM POWER9 and NVIDIA V100 is actually the exact combination

that the Summit and Sierra systems feature.
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The exact speedups between GPU and host CPU for the four functions targeted

for GPU acceleration can be seen in Table 5.3. It can be seen that the speedups

obtained over the host CPU increase from the K40 to the P100, and again from

the P100 to the V100. Also, the speedups obtained for the counting functions are

significantly higher than for the integration functions. In any case, Figure 5.19 shows

that the time required for the slice and sub-slice preparation can be made vanishingly

small compared to the actual local sweep, which was the desired outcome that could

make the LDFE discretization viable within the SBA and ESBA frameworks. The

dramatic speedups obtained are a direct result of the single instruction multiple data

(SIMD) nature of the slice and sub-slice preparation process. Each slice and sub-slice

can be worked on by a single thread, and no thread requires communication with

any other thread. This is the type of application for which these devices are known

to excel.
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Figure 5.19: Comparison of the run times for each function in the local sweep for
three CPUs and three GPUs.

Table 5.3: Speedups over host CPU for each GPU in the study and for each function
targeted for GPU acceleration.

K40 P100 V100

count slices 214.4 313.5 362.9
slice integration 25.1 43.0 44.1
count sub-slices 223.0 330.7 400.9
sub-slice integration 38.6 88.7 130.8
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5.4 Application

No description of a code or numerical method would be complete without a

demonstration of its abilities to solve actual problems of interest as opposed to simple

manufactured solutions. To this end, two such problems are chosen to demonstrate

the capabilities of the Slice-T code. The first problem is the steady state solution

for a small localized source surrounded by a much larger volume of homogeneous

dry air, using the DLC-31 unclassified thermonuclear neutron energy spectrum.[33]

This problem was chosen due to one of the original motivations to write the Slice-

T code, which was to generate transport libraries for the Neutron Gamma Energy

Transport (NuGET)[34] fratricide and hostile environment code developed at Sandia

National Laboratories (SNL). NuGET uses precomputed air transport libraries and

mass integral scaling to compute the survivability of nuclear weapon components.

The second problem of interest is chosen to demonstrate the method’s ability

to handle complex geometries, and if we are being honest, because it is amusing.

The problem is to solve for the scalar flux resulting from a one-group, steady state,

volumetric particle source in the shape of my dog Jethro. This is the not-so-real-world

problem referenced at the beginning of this chapter, and while there is no compelling

application behind this problem, the complexity of the geometry is meant to test the

algorithm for slice and sub-slice formation.

5.4.1 Unclassified Thermonuclear Point Source in Homogeneous Dry Air

The Slice-T code was used to compute the steady state neutron scalar flux solution

due to a small localized source in homogeneous dry air. The neutron energy spectrum,

given in Table 5.4 and plotted in Figure 5.20, was taken from the DLC-31 unclassified

thermonuclear neutron energy spectrum,[33] and re-binned into the NuGET energy

group structure. This group structure contains 89 groups, as well as all of the group
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boundaries contained in the DLC-31 group structure. In Figure 5.20, the peak at

the upper end of the energy range represents the 14.1 MeV D-T fusion neutron

source, while the broader spectrum represents neutrons occurring from fast fission.

Table 5.5 gives the composition of dry air used in the simulation. All cross sections

were obtained using NJOY with a uniform shape function, a temperature of 296

K, and a P8 Legendre angular expansion. Raw data for these cross sections were

retrieved from the ENDF/B-VII.1 library of incident-neutron data. Only elastic

scattering events were considered due to the current limitations of the Slice-T code.

Figures 5.21 through 5.25 attempt to highlight certain aspects of the spatial mesh.

The mesh boundary is a square prism spanning from -2,828.4271 cm to 2,828.4271 cm

in the x and y dimensions, and -4,000.0000 cm to 4,000.0000 cm in the z dimension.

Figure 5.21 shows the top face of the mesh looking down the z axis. This figure

attempts to show how the mesh changes from Cartesian near the outer boundary,

to cylindrical as we move towards the z axis. The radial bins then decrease in

size logarithmically as we move closer to the z axis, as do the vertical bins as we

approach the source location at z = 0 as shown in Figure 5.22, until once again the

mesh becomes a Cartesian grid centered on the z axis with ∆x = ∆y = 1 cm, shown

in Figure 5.25. Cells with centroids inside a sphere centered at the origin with radius

r = 5 were deemed source cells resulting in the source shape shown in Figure 5.24.

160



Table 5.4: Tabulated values for the DLC-31 unclassified thermonuclear neutron en-
ergy spectrum.

Group number Lower bound (eV) Upper bound (eV) φ(E)
(

n
cm2·s·eV·steridian

)
1 1.7× 107 2.0× 107 0.0

2 1.5× 107 1.7× 107 0.0

3 1.3× 107 1.5× 107 2.47678576 × 105

4 1.2× 107 1.3× 107 2.57097795 × 105

5 1.0× 107 1.2× 107 1.30346444 × 105

6 7.8× 106 1.0× 107 8.03793852 × 104

7 6.1× 106 7.8× 106 1.02173042 × 105

8 4.7× 106 6.1× 106 1.32190668 × 105

9 3.7× 106 4.7× 106 2.10085941 × 105

10 2.9× 106 3.7× 106 2.70538896 × 105

11 2.2× 106 2.9× 106 4.09202272 × 105

12 1.7× 106 2.2× 106 5.98775729 × 105

13 1.4× 106 1.7× 106 8.96337237 × 105

14 1.2× 106 1.4× 106 8.95900691 × 105

15 1.1× 106 1.2× 106 1.16193799 × 106

16 9.3× 105 1.1× 106 1.58509204 × 106

17 8.2× 105 9.3× 105 1.58445146 × 106

18 7.2× 105 8.2× 105 1.58755106 × 106

19 6.4× 105 7.2× 105 1.58559563 × 106

20 5.6× 105 6.4× 105 1.58379792 × 106

21 5.0× 105 5.6× 105 2.17084326 × 106

22 4.4× 105 5.0× 105 2.32710427 × 106

23 3.9× 105 4.4× 105 2.32688941 × 106

24 3.0× 105 3.9× 105 2.32786289 × 106
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25 2.4× 105 3.0× 105 2.32933373 × 106

26 1.8× 105 2.4× 105 2.33331027 × 106

27 1.4× 105 1.8× 105 2.39192103 × 106

28 1.1× 105 1.4× 105 2.49282536 × 106

29 8.7× 104 1.1× 105 1.89426240 × 107

30 6.7× 104 8.7× 104 1.89421308 × 107

31 5.2× 104 6.7× 104 1.89430086 × 107

32 4.1× 104 5.2× 104 1.94912897 × 107

33 3.2× 104 4.1× 104 1.95053429 × 107

34 2.8× 104 3.2× 104 1.95450187 × 107

35 2.6× 104 2.8× 104 1.95407241 × 107

36 2.5× 104 2.6× 104 1.95593780 × 107

37 2.2× 104 2.5× 104 1.95038517 × 107

38 1.9× 104 2.2× 104 8.02332944 × 107

39 1.7× 104 1.9× 104 8.02626543 × 107

40 1.5× 104 1.7× 104 8.02439560 × 107

41 1.3× 104 1.5× 104 8.02793318 × 107

42 1.2× 104 1.3× 104 8.02520205 × 107

43 1.0× 104 1.2× 104 8.02403343 × 107

44 9.1× 103 1.0× 104 1.66272690 × 108

45 8.0× 103 9.1× 103 1.66273915 × 108

46 7.1× 103 8.0× 103 1.66273689 × 108

47 6.3× 103 7.1× 103 1.66289430 × 108

48 5.5× 103 6.3× 103 1.66259742 × 108

49 4.9× 103 5.5× 103 1.66298400 × 108

50 4.3× 103 4.9× 103 1.66252249 × 108

51 3.8× 103 4.3× 103 1.66288639 × 108
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52 3.4× 103 3.8× 103 1.66260600 × 108

53 3.0× 103 3.4× 103 3.48100457 × 108

54 2.6× 103 3.0× 103 3.48192064 × 108

55 2.3× 103 2.6× 103 3.48120521 × 108

56 2.0× 103 2.3× 103 3.48157807 × 108

57 1.8× 103 2.0× 103 3.48103011 × 108

58 1.6× 103 1.8× 103 3.48115545 × 108

59 1.4× 103 1.6× 103 3.48113212 × 108

60 1.2× 103 1.4× 103 3.48174559 × 108

61 1.1× 103 1.2× 103 3.56420690 × 108

62 9.6× 102 1.1× 103 3.56376465 × 108

63 7.5× 102 9.6× 102 3.56394450 × 108

64 5.8× 102 7.5× 102 3.56399408 × 108

65 4.5× 102 5.8× 102 4.22756650 × 108

66 3.5× 102 4.5× 102 4.22779825 × 108

67 2.8× 102 3.5× 102 4.22714523 × 108

68 1.7× 102 2.8× 102 4.21843363 × 108

69 1.0× 102 1.7× 102 4.21790323 × 108

70 6.1× 101 1.0× 102 2.62963771 × 108

71 3.7× 101 6.1× 101 2.62949454 × 108

72 2.3× 101 3.7× 101 1.47831890 × 108

73 1.4× 101 2.3× 101 0.0

74 8.3 1.4× 101 0.0

75 5.0 8.3 0.0

76 3.1 5.0 0.0

77 1.1 3.1 0.0

78 8.0× 10−1 1.1 0.0
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79 6.0× 10−1 8.0× 10−1 0.0

80 4.1× 10−1 6.0× 10−1 0.0

81 2.0× 10−1 4.1× 10−1 0.0

82 1.5× 10−1 2.0× 10−1 0.0

83 1.0× 10−1 1.5× 10−1 0.0

84 7.0× 10−2 1.0× 10−1 0.0

85 3.0× 10−2 7.0× 10−2 0.0

86 1.0× 10−2 3.0× 10−2 0.0

87 5.0× 10−3 1.0× 10−2 0.0

88 1.0× 10−3 5.0× 10−3 0.0

89 1.4× 10−4 1.0× 10−3 0.0

The solution was obtained using the ESBA-LDFE combination of balance ap-

proach and spatial discretization, source iteration for the inner iterations, Gauss-

Seidel for the outer iterations. and a S20 Gauss-Chebyshev angular quadrature con-

sisting of 800 angles in total. The mesh contained 887,040 hexahedral cells. A sample

of the results obtained from the simulation is shown in Figures 5.26 through 5.32.

The first three figures show the scalar flux solution in group 19 from three different

viewpoints. The next two figures show the scalar flux in group 60 from two different

viewpoints. The last two figures show the scalar flux in groups 76 and 89. Each of

these figures show contour plots of the scalar flux at various representative values.
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Figure 5.20: Plot of the DLC-31 unclassified thermonuclear neutron energy spectrum.

Table 5.5: Isotopic description of dry air used in the point source problem.

Material Atomic density (atoms/cm3)

C (natural abundances) 6.4024000×1015

14N 3.3138780×1019

15N 1.2105200×1017

16O 8.9140064×1018

17O 2.1708800×1016

36Ar 6.7840000×1014

38Ar 1.2720000×1014

40Ar 1.9728720×1017
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Figure 5.21: Top view of the mesh used in the point source problem.

Figure 5.22: Side view of the mesh used in the point source problem.
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Figure 5.23: Tilted view of the mesh used in the point source problem.

Figure 5.24: Close up view of the approximation to a point source used in the point
source problem.
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Figure 5.25: Close up view of the top of the mesh near the cylindrical axis for the
mesh used in the point source problem.

Figure 5.26: Cutaway view of the scalar flux contours for group 19.
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Figure 5.27: Rear view of the scalar flux contours for group 19.

Figure 5.28: Zoomed in cutaway view of the scalar flux contours for group 19.
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Figure 5.29: Cutaway view of the scalar flux contours for group 60.

Figure 5.30: Rear view of the scalar flux contours for group 60.
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Figure 5.31: Cutaway view of the scalar flux contours for group 76.

Figure 5.32: Cutaway view of the scalar flux contours for group 89.
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The results from Figures 5.26 through 5.32 show several interesting characteris-

tics, some of which were anticipated. The first such characteristic is the presence of

ray effects in the higher energy groups from which source particles are emitted. This

is a well known deficiency of discrete ordinate methods for which there exists some

remedies, however none have been implemented into the Slice-T code to date. These

ray effects are the result of the small localized source and the discrete nature with

which the angular variable is treated via collocation. Accurate spatial discretization

methods on fine spatial meshes will reveal ray effects in their full severity in prob-

lems like this. Coarse meshes or diffusive discretization methods will smear out the

ray effects. The fine radial mesh here allows the ESBA-LD scheme to resolve the

“rays” that correspond to discrete polar directions, but the coarse azimuthal mesh

smears out the rays that correspond to discrete azimuthal directions. A less accurate

method would smear out the polar “rays” even though the radial mesh is relatively

fine.

As we examine the solution for lower energy groups for which no source particles

are emitted, we begin to see a more reasonable looking solution, namely a smoothly

decreasing scalar flux with distance from the localized source. The smooth nature of

the solution is due to the fact that all particles in the higher energy groups arrived

there via energy decreasing scattering reactions, and hence are influenced less by the

location of the source as by the spatial distribution of the scalar flux in the higher

energy groups. It is well known that scattering tends to decrease the severity of ray

effects in discrete ordinates calculations, because the scattering source is distributed

over a large volume instead of being localized. The elliptical shape of the contours in

the last two images are nevertheless concerning, as they should in theory by perfectly

spherical.

This elliptical stretching of the solution in the lower energy groups is almost cer-
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tainly due to the cylindrical nature of the mesh, and in particular to the difference in

radial and axial mesh spacing. With the benefit of hindsight, the mesh should have

attempted to mimic the spherical nature of the solution rather than the cylindrical

nature of the problem. While the problem as stated may not be cylindrical in nature,

the ultimate goal of this type of simulation is to add an air-ground interface. Af-

ter the introduction of this interface, the problem does indeed become cylindrically

symmetric, and this was the reason for the design of the mesh.

5.4.2 The Jethro Problem

It is often the case that even when a numerical method or code has the ability

to handle arbitrary polyhedral meshes, results are only presented on Cartesian or

purely hexahedral meshes as has been done up to this point in this document. For

this reason, and admittedly for fun, we now consider a volumetric, isotropic, unit

strength radiation source in the shape of the my dog, Jethro. The simulation uses

an S4 quadrature set, consisting of 32 total angles, isotropic scattering, and a single

energy group. Jethro is depicted in Figure 5.33, the geometric model used in the

simulation is shown in Figure 5.34, and the scalar flux solution at one mid-plane of

the cubic bounding domain is shown in Figure 5.35.
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Figure 5.33: Jethro.

While it is obvious that such a problem has no analytical solution for which

to compare, it is the author’s hopes that such a complicated geometry could be

used in the future to test other codes’ abilities to handle complicated tetrahedral

meshes in which the cell volume changes drastically over relatively short distances.

One possible use for this mesh that is currently under discussion is the use of the

Jethro Problem as a criticality safety benchmark. For instance, one could ask if

Jethro were composed of solid plutonium, what density would be required to cause

criticality? Various different codes would provide different answers, and reasons for

these discrepancies could then be explored.
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Figure 5.34: Jethro-shaped volumetric source.

Having acknowledged that no analytical solution exists, the numerical solution at

the mid-plane seems reasonable. For instance, the large barrel-shaped chest region

produces a significant bulge in the scalar flux as one would expect, and the scalar flux

drops quickly just outside the surface of the source. Aside from qualitative observa-

tions such as these, complicated problems lead to relatively few conclusions about

the accuracy of a code without experimental evidence, of which there is obviously

none. However, the code was able to handle this complicated mesh with its highly

varying mesh density, forming slices and sub-slices and executing slice-based sweeps,

as it was designed to do.
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Figure 5.35: Scalar flux at the mid-plane of the Jethro-shaped source.
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6. CONCLUSION

The motivations for performing the research presented in this document were

presented in Chapter 1. These motivations were primarily the need for determinis-

tic transport methods capable of handling arbitrary polyhedral spatial meshes, and

the ability for implementations of such methods to take advantage of the heteroge-

neous nature of the next generation of super-computers. Chapter 2 presented a brief

overview of the most common deterministic transport methods, and in particular

highlighted the slice balance approach (SBA). The SBA was singled out for further

examination due to its capability to handle extraordinarily complex meshes in a

way that few other methods could. Existing implementations of the SBA however,

utilized simple extensions of planar one dimensional spatial discretization schemes

with relatively low accuracy. While more accurate schemes have been postulated, no

evidence of their being implemented could be found as of the date of this writing.

This research began as an attempt to implement the linear discontinuous finite

element (LDFE) spatial discretization scheme into the SBA framework. Along the

way, two things became apparent; higher accuracy schemes would require more infor-

mation on a per-slice basis than could reasonably be stored in computer memory, and

a minor modification to the SBA framework itself could potentially increase accuracy

in the presence of shadow-type discontinuities with relatively little added computa-

tional cost. Chapter 3 presented the extended slice balance approach (ESBA), and

within the this new framework, the LDFE scheme. A face-based algorithm to per-

form the local sweep was presented and a slight re-definition of the slice provided

the capability to divide the global mesh into independent regions, and this division

resulted in the development of two new parallelization strategies.
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Chapter 4 described these new parallelization strategies in detail, providing com-

prehensive algorithms and noting the postulated advantages and disadvantages of

each. The first parallelization strategy hoped to increase scalability via added con-

currency, while still keeping with the traditional method of mesh decomposition

where each node of a super-computer is assigned a subset of the mesh for which it is

responsible for computing and storing the angular flux solution. The second paral-

lelization strategy strayed further from convention in that it severed the link between

the node computing the solution and the node storing the solution. Chapter 4 also

highlighted the dilemma imposed by the LDFE scheme, namely the large amount

of information required on a per-slice basis. Storing this information in memory for

arbitrary mesh and angular quadrature sizes was seemingly no longer an option as

it had been for simpler differencing schemes employed by previous implementations

of the SBA, such as the diamond-difference (DD) scheme.

Chapter 5 presented results generated using the Slice-T code which was written

during the course of this research. The first part of Chapter 5 analyzed the accuracy

of the ESBA, SBA, and the traditional cell balance approach (CBA) using the LDFE

scheme and the DD like scheme presented in Grove’s original implementation of the

SBA.[9]. After analyzing the approaches and schemes for accuracy, the scalability of

the two parallelization options made possible by the ESBA framework was examined.

The acceleration of the slice and sub-slice formation using various graphics processing

units (GPUs) was then reported, and finally the Slice-T code was used to solve

problems of interest beyond simple manufactured solutions on uniform Cartesian

hexahedral meshes. This chapter will discuss the results presented in Chapter 5, as

well as highlight potential areas of future work.
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6.1 Discussion

With regards to the accuracy of the ESBA compared to the SBA and CBA, the

first section of Chapter 5 produced several compelling results. When the LDFE

spatial discretization was used with the CBA, SBA, and ESBA, the same order of

convergence was observed for a test problem with a smooth solution. With the DD

scheme however, the SBA and ESBA exhibited first-order convergence, while the DD

scheme with the CBA is known to be second order convergent. The absolute error

however, was smaller for the ESBA than the SBA, and was smaller for the SBA than

the CBA. This was the expected result for the LDFE scheme since its convergence

rate for smooth solutions is independent of the shape of the volume to which it

is applied, whether a slice or a cell. The fact that the convergence absolute error

decreased from the CBA to the SBA is primarily a result of the increased resolution

with which the solution is obtained, even though these sub-cell based solutions are

combined to give the final solution on the same resolution mesh. The increase in

accuracy from the SBA to the ESBA is entirely due to the resolution at which

facial fluxes are computed and communicated to downstream cells and slices. In any

case, the anticipated result was obtained, namely an increase in accuracy without

improvement upon the rate at which the numerical solution approaches the true

solution for the LDFE scheme, while the first-oder convergence of the DD scheme

was determined to be a result of the shape of the slice and the location of its centroid

relative to the centroids of its inlet and outlet faces.

When considering discontinuous solutions such as the propagation of a single ray

or otherwise discontinuous boundary condition, the differences between the combi-

nations of balance approach and discretization scheme were much more prominent.

In this case, the ESBA outperformed the SBA and CBA in both rate of convergence
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and convergence coefficient when measured with a strict point-wise L2 norm. When

measuring the error in cell-averaged solution values using the absolute difference be-

tween numerical and analytical values, the SBA and CBA seemed to not converge at

all, and if they were converging, it was very slowly, at least for the mesh resolutions

that were practically achievable in this work. The ESBA schemes on the other hand

exhibited the same convergence rates as in the case of the continuous solution. This

result leads to the following conclusion; if the problem at hand is likely to exhibit

shadow-type discontinuities such as particle transport through a series of ducts or

various other shielding applications, and the computational resources are available,

the ESBA with the LDFE scheme is likely to produce the most accurate result.

In the second section of Chapter 5, weak scaling results for the two parallelization

strategies given in Chapter 4 were presented. Focusing on the first parallelization

option, it seems that the added concurrency on the front end of the sweep is not

enough to overcome the increase in the amount of information being communicated

between adjacent nodes. This is especially true for quadrature sets containing many

angles, in which case the upper limit on the parallel efficiency imposed by the idle

time on the front and back ends of the sweep is already quite high. The end result

in this parallelization option is that the amount of work increases over the CBA

and SBA, but not by as high of a factor as the amount of data communicated, thus

increasing the communication to work ratio and lowering the parallel efficiency.

The second parallelization option shows more promise. This option shows greater

scalability as the number of angles per angle-set is increased. This makes sense due to

the fact that the limit of placing all angles in a single angle-set results in each node

performing a sweep for each angle, and the solution in each angle is independent

of the solution in any other angle. This parallelization in angle only is typically

not possible since in traditional methods, each node only has access to a subset of
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the mesh and angular flux solution, and hence cannot compute the solution for a

given angle over the entire domain. Further, if there are more nodes than angles per

angle-set, the amount of work is increased by increasing the overall slice count. Still,

better scaling results can be obtained using this option than the first option and the

volumetric decomposition method for the SBA and CBA.

When considering the next generation of super-computers where each node has

access to one or more GPUs, Chapter 5 showed that the slice and sub-slice formation

process can be greatly accelerated by these devices. This type of work-intensive,

embarrassingly parallel application showed speedups as high as 400 for the function

which identifies all the sub-slices in the mesh. Speedups as high as 130 were achieved

for the sub-slice integration routine. The highest speedups were obtained using the

NVIDIA V100 GPU, which is precisely the GPU used by the Sierra and Summit

super-computers. Even for the NVIDIA K40 GPU used by the Titan super-computer,

speedups of 223 and 38 were obtained for the sub-slice identification and integration

routines respectively, and these speedups are much larger than could be obtained by

multi-threading on the 16 cores of the AMD Opteron which is the CPU on each node

of Titan.

Finally, Chapter 5 showed how Slice-T using the ESBA and the LDFE scheme

could be used to solve more complicated problems. The first problem was a small

localized source in a large volume of homogeneous dry air. This problem was used to

demonstrate the method’s ability to produce air transport libraries for problems ex-

hibiting cylindrical symmetry such as air transport with a ground interface, although

the interface was not included in the test problem. The other problem considered

was used as a test of the method to handle a more complicated geometry. For the

Jethro mesh in particular, there are plans to use this geometry as a criticality bench-

mark problem for codes with the capability handle such complicated geometries. One
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could consider the question, what density of plutonium would be required to make

the Jethro mesh critical?
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6.2 Future Work

In this section, we will discuss two potential areas of future work, and only briefly

mention a third. The first such topic is somewhat disconnected from the SBA and

ESBA, but is very much relevant to transport solutions on the next generation of

super-computers. This topic is the GPU acceleration of CBA local transport sweeps

using extruded prismatic meshes. During the course of this research, a similar algo-

rithm to the one presented here was implemented for uniform Cartesian meshes and

obtained speedups of roughly 30 over a single core of an Intel i7 processor using an

NVIDIA GeForce GTX 870M. These results were considered promising enough that

we present the more general algorithm here in hopes that it will be of interest to

another researcher in the future.

The second topic of interest is the elimination of negative fluxes within the SBA

and ESBA framework. Negative fluxes are the result of insufficient resolution in the

spatial mesh. Since the SBA and ESBA are already resolving the mesh below the

cell size and calculating a great deal of geometric information for each slice, it is

thought that further refinement in the streaming direction or more creative methods

requiring this geometric information could be implemented relatively easily.

A third topic that deserves further exploration is the development of a second-

order DD-like spatial discretization in the SBA and ESBA frameworks. The first-

order convergence of the DD scheme in the SBA and ESBA was examined in detail

in Chapter 5, and it is postulated by the author that such a second-order linear

method may exist. Such a method could be quite useful if for no other reason

than the impressive performance of the DD scheme in the ESBA framework when

applied to discontinuous solutions. If such a method could be made to converge

at the second-order rate of the DD-CBA combination, it could be preferable to the
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standard CBA-LD treatment found in many transport codes in use today.

6.2.1 GPU Transport Sweeps for Extruded Prismatic Meshes

Why did we focus so much attention on accelerating the slice and sub-slice for-

mation process and not the actual local sweep in Chapter 5? We did this because

the preparation steps more closely resembled the SIMD nature of pixel processing,

and hence were more likely to obtain the dramatic speedups that general purpose

GPU (GPGPU) programming enthusiasts sometimes like to boast about. These

speedups can be on the order of 102 or 103 for the right application and the right

GPU. However, performing actual transport sweeps on GPUs is an active area of

research[35][36], and in this section we aim to add to this discussion with a GPU

implementation of the traditional CBA local transport sweep for extruded prismatic

meshes. While such an application may not be likely to achieve speedups in the

hundreds, a speedup of roughly 50 over a single core operating at 3 GHz would

still be a big improvement, even assuming perfect linear speedup via shared memory

threading on the cores of a typical 16 core node.

When it comes to the local transport sweep using the CBA, there are several

possibilities for how to assign independent thread blocks on the GPU. For instance,

the sweep in each energy group in the group-set is completely independent, and thus

each energy group could be swept in its own thread block on its own streaming-

multiprocessor (SM). This of course would require at least 15 energy groups per

group-set for the NVIDIA K40 GPU, and the current trend is to make the SMs

smaller and to include more of them as seen in Chapter 5. Since this seems like too

stringent a requirement, we could also look to the angles, since the sweep in each

angle is independent of any other. Each thread block could then be responsible for

performing the sweep of a single energy group and a particular set of angles. With
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this in mind, we can design a kernel function to perform a sweep algorithm that

could be contained to a single thread block and SM for a single energy group and

angle-set.

The inspiration for the algorithm presented here is the pipe-lined Koch-Baker-

Alcouffe (KBA) scheduling algorithm for orthogonal hexahedral meshes.[37] This

scheduling algorithm was designed for the global sweep of a distributed mesh in which

each node of the super-computer owns a columnar subset of a purely hexahedral

mesh. This mesh decomposition is shown in Figure 6.1. If we further divide the

mesh in the vertical dimension to obtain tasks, and index these vertical bins by h,

the algorithm can be depicted as in Figure 6.2. This figure shows the first 12 stages of

the sweep where each box represents a column of the mesh, divided into four vertical

bins, and owned by a single node. Different angles are represented by different colors.

The algorithm is said to be pipe-lined because once the sweep plane reaches the

top of the domain and the lower left node has no more work to do for the given angle,

it starts on the next angle in the angle-set, which restricts all angles in the angle-set

to be in the same octant of the unit sphere. Communication to the neighboring nodes

in the upward and rightward direction as depicted in Figure 6.2 is required between

each stage; however, communication in the vertical dimension is unnecessary because

the neighboring vertical bin to each task is owned by the same node.
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Figure 6.1: Mesh decomposition for the pipe-lined KBA scheduling algorithm. Thick
lines indicate inter-processor domain boundaries while thin lines represent cell bound-
aries.
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Figure 6.2: First 12 stages of the pipe-lined KBA scheduling algorithm for a sweep
with 16 nodes.
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The KBA scheduling algorithm for the global sweep of a distributed mesh has

influenced the algorithm presented here for the local sweep on a single node with an

extruded prismatic mesh. The idea is for each thread of the kernel function on the

GPU to be responsible for computing the solution in a column of cells. The sweep

then proceeds exactly as in Figure 6.2, with the obvious exception that the cells

are no longer required to be quadrilaterals as depicted in the figure. This further

restricts which angles can be included in the angle-set because all angles in the angle-

set must have the same sweep dependency graph. This restriction can be satisfied

for all angles in the same octant sharing the same azimuthal component.

Assigning each thread to a column of the local mesh also places a restriction on

the size of the local mesh, because the GPU does not allow for an infinite number

of threads per thread block. On the K40 GPU, the limit is 1,024 threads per thread

block, and hence if each thread were responsible for a single column of cells, the

local mesh could only contain 1,024 columns. This limitation could be removed by

allowing each thread to be responsible for a group of columns.

The algorithm for the local sweep is given in Algorithm 6.1. As in most GPU

kernel functions, the first step is to retrieve the thread block index b, along with the

thread index within the thread block t. These are supplied via built-in functions in

the CUDA C language, which is the language kernel functions are written in. The

column index c can then be accessed via the thread index, since each thread will

own a single column, and the energy group index g can be accessed by the thread

block index, since each thread block will be performing a sweep for a single energy

group. Finally the number of stages Nstages, can be accessed by the thread block

index corresponding to the sweep of a given energy group and angle-set. Obtaining

these values will require specific data structures to be passed to the GPU from the

CPU.
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With the thread block index, thread index, column index, energy group index,

and stage count obtained, each thread then enters the stage loop. The first step of

each stage is for each thread to obtain the vertical bin index h, and the angle index

m, which it will be working on in this stage. These are obtained by data structures

that will be supplied to the GPU by the CPU, and the values will be retrieved by

providing the stage index s, the thread block index (since each thread block may

have a different sweep dependency graph), and the column index. If the there is

no work for the thread to do during this stage, these data structures will return an

index of −1.

With the vertical bin index and angle index obtained, the next step is to build

the coefficient matrix A, and right hand side vector b. This step should only be

done by threads that have work to do during the current stage, and hence the code

to perform this action is contained within an if statement to exclude threads that

should be idle. While the A matrix can be built relatively easily, building the right

hand side vector requires looping over all the incoming faces and adding to the vector

the incoming flux moments on each incoming face.

This transfer of information from one cell to another via the face that they share

in common, should ideally be through the shared memory of the SM. Unfortunately,

this memory space is quite small (by default 49 kB per SM on the Kepler generation

of GPUs), and hence we should make every possible effort to conserve it. Thus if

there is a choice between storing a set of values for every face in the mesh, versus

storing a set of values for every column of faces in the mesh, which appear as edges

when viewed from above as in Figure 6.2, the choice is quite clear. Thus, we also

require a data structure that can return an edge index e given a face index f , and

access the angular flux coefficients from shared memory using the edge index. Once

the coefficients are obtained, the angular flux moments on the incoming face can be
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Algorithm 6.1: Local sweep kernel function for extruded prismatic meshes.

1: b = GetThreadBlockIndex()
2: t = GetThreadIndex()
3: c = GetColumnIndex(t)
4: g = GetGroupIndex(b)
5: Nstages = GetStageCount(b)
6: for s = 0 to Nstages − 1 do
7: h = GetVerticalBinIndex(s, b, c)
8: m = GetAngleIndex(s, b, c)
9: if (h 6= −1) and (m 6= −1) then

10: Build A matrix
11: Build base of b vector with volumetric source moments
12: for i = 0 to Ninlet faces − 1 do
13: Retrieve face index f
14: e = GetEdgeIndex(f)
15: Retrieve flux coefficients from shared memory location e
16: Add to b vector the incoming flux moments
17: end for
18: end if
19: barrier
20: if (h 6= −1) and (m 6= −1) then
21: Solve Ax = b; a 4× 4 system for the flux coefficients in the cell
22: atomic: add volumetric angular flux moments to
23: global memory scalar flux moments
24: for i = 0 to Noutlet faces − 1 do
25: Retrieve face index f
26: e = GetEdgeIndex(f)
27: Store flux coefficients in shared memory location e
28: end for
29: end if
30: barrier
31: end for
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obtained and added to the right hand side vector b.

Before going on to solve the system Ax = b, we should ensure that all values

from shared memory have been accessed before they are overwritten after solving

the system. Thus, a barrier is encountered before the next if statement is used

to ensure threads that should be idle during this stage do not attempt to solve

their systems. Within this if statement, each thread solves its 4 × 4 system, and

atomically adds the volumetric angular flux moments to the corresponding volumetric

scalar flux moments via the quadrature integration rule. The final step within this if

statement is to store the angular flux coefficients on the edge indices corresponding

to each outlet face of the cell. This is again performed by looping over the outlet

faces, obtaining the face index f , using the supplied data structure to convert the

face index to an edge index e, and then storing the flux coefficients in shared memory

using the edge index. Finally, before moving on to the next stage, we again enforce

a barrier to ensure that all values have been written to shared memory before any

attempt to access them in the next stage are made.

6.2.2 Negative Flux Treatment

It has long been known that linear methods such as the LDFE and DD spatial

discretization schemes have the propensity to produce negative fluxes for cell sizes

large compared to the mean free path of the particle. Thus, if one wants to eliminate

the possibility of negative fluxes, they can either refine the mesh or tweak the numer-

ical method. The first option often leads to adaptive mesh refinement (AMR), while

the second option leads to unique methods that avoid negative fluxes mathematically

within the system of equations in each cell. Both avenues have been the subject of

much research over the years, and it occurs to the author that the SBA provides a

unique opportunity to pursue either of these strategies.

191



If we consider the option of mesh refinement, we should first think about why

such negative fluxes occur in one-dimension. We should consider this because the

one-dimensional nature of a slice that led Grove to postulate that one dimensional

planar differencing schemes may be extensible to three dimensions through the SBA

also leads the current author to believe that simple one-dimensional AMR techniques

may be extensible as well. To illustrate why these schemes produce negative fluxes,

consider Figures 6.3 through 6.6 which show the LDFE and DD approximations,

alongside the exact solution, to a one-dimensional cell with an incoming unit flux on

the left face and no internal source for cell sizes equal to one, two, three, and four

mean free paths respectively. What these figures show is how each of these schemes

attempts to approximate a decaying exponential with a simple linear function. When

the range over which this approximation is made is small compared to the inverse of

the exponential coefficient (i.e. 1/σt which is the mean free path), this approximation

is made with relatively decent accuracy. As this range is increased however, the

approximations become worse, and eventually fall below zero at the right boundary.

The LDFE scheme is less prone to produce negative fluxes because it does not

require the flux at the left boundary to match the incoming boundary condition.

Even with this benefit, it is still a linear method, and in order to preserve the

zeroth and first moments of the transport equation with respect to x, it will produce

negative fluxes eventually as shown in Figure 6.6. So how would one remedy this in

one dimension? The simple answer is to refine the mesh until all cells are adequately

small to avoid negative fluxes. How would one remedy this in three dimensions? The

answer to this question is not so clear because not only would the cells need to be

refined in every discrete direction, there are also the transverse slopes in the linear

approximation that make the answer a little more elusive, not to mention that the

refined mesh may be unnecessary for any other physics considered in the simulation.
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Figure 6.3: LDFE and DD approximations alongside the exact solution for a incident
unit flux on the left face and no internal source for a cell of width equal to one mean
free path.

Figure 6.4: LDFE and DD approximations alongside the exact solution for a incident
unit flux on the left face and no internal source for a cell of width equal to two mean
free paths.
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Figure 6.5: LDFE and DD approximations alongside the exact solution for a incident
unit flux on the left face and no internal source for a cell of width equal to three
mean free paths.

Figure 6.6: LDFE and DD approximations alongside the exact solution for a incident
unit flux on the left face and no internal source for a cell of width equal to four mean
free paths.

194



The SBA and ESBA provide a rather simple solution to this problem given the

one dimensional nature of a slice. One could simply further divide the slice via planes

perpendicular to the discrete ordinate into segments short enough to avoid negative

outgoing fluxes. This is shown in Figures 6.7 and 6.8 which depict a typical slice,

and the same slice partitioned into five segments respectively. The streaming plus

collision operator could then be inverted on each partition, and then the partition

flux coefficients could be combined to give the slice flux coefficients in the same way

slice flux coefficients were combined to give cell flux coefficients in Chapter 3. Fur-

ther, as in the slice and sub-slice formation process, this mesh refinement would be

done on the fly, and would not require any actual changes be made to the global

mesh which may be used by other physics which do not require such fine resolution.

It is of course still possible that negative fluxes could occur in extreme cases due to

the transverse slopes in the LDFE linear approximation, but it is thought that this

method would be highly effective at reducing the prevalence of negative fluxes. While

this technique could eliminate negative exiting fluxes, we recognize that it would not

by itself prevent the cell-wise solution, which is formed from slice-wise spatial mo-

ments, from having negative values. This in turn could cause a negative collisional

source, resulting in negative solutions regardless of within-slice refinement. Never-

theless, the adaptive refinement scheme outlined here might significantly reduce the

frequency and severity of negative fluxes in many transport applications of practical

interest.
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Figure 6.7: Depiction of a typical slice.

Figure 6.8: Depiction of the partitioning of the slice in Figure 6.7 into five segments
along the discrete ordinate.
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If we consider the second option of mathematically altering the method to avoid

negative fluxes altogether, many techniques exist which either enforce a strict max-

imum principle or introduce an artificial viscosity. A more straightforward option

might be an extension of Maginot’s work[38] in which the linearity of the solution is

set aside in favor piece-wise linearity with a portion of the cell flux, or slice flux in

this case, set to zero, while still preserving the zeroth and first moments of the trans-

port equation. Whichever method is chosen, it is likely to require many geometric

quantities for each slice, which are already being computed.
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APPENDIX A

BRICK DECOMPOSITION AND LOAD BALANCING

As mentioned in Chapter 2, one drawback to the traditional transport sweep is

the requirement for inter-node domain boundaries to be planar in order to avoid ray

re-entry. Non-planar inter-node domain boundaries will likely introduce cycles in the

sweep dependency graph, requiring further iteration inside the inner-most iterations,

where parallelism is employed to solve high resolution transport problems. One

might ask, why is this requirement a bad thing? The answer comes from anyone

who has ever tried to mesh a complex geometry. It is simply not the case that such

planar separations will always exist within the problem geometry, and hence they

must be introduced by the user of the meshing software. Further, even if there are

such naturally occurring planar separations in the geometry of interest, there is no

guarantee that these planes will separate the mesh such that the number of cells in

each subset of the mesh is roughly equal or load-balanced.

Load-balancing is extremely important for the scalability of parallel deterministic

transport solutions. If one node contains a portion of the mesh that is much larger

than the portions given to any other node, it is likely that the other nodes will finish

sooner than the load-bearing node, leading to idle time as they wait for this node to

finish. Thus, the problem is really two-fold. The first objective is to divide the mesh

such that all inter-node domain boundaries are planar, while the second objective is

to divide the mesh as equally as possible such that all nodes receive roughly the same

number of spatial cells. To this end, Ghaddar [22] has implemented a load-balanced

meshing algorithm for triangular extruded meshes using the Triangle[39] software for

use in the transport code Parallel Deterministic Transport (PDT).[19]
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The algorithm presented in this appendix is simply a recursive analog of a one

dimensional version of Ghaddar’s algorithm. The primary difference between the

two implementations is how the planar separations are placed into the mesh. In

Ghaddar’s work, these separating planes are used to define the geometry that is

re-meshed at each iteration of the load-balancing algorithm, while in this work the

original mesh is simply refined by the inserted planes which cut through the original

cells of the mesh. This has the drawback of possibly creating some very poorly shaped

cells, but has the advantage of being independent of the mesh type and requiring no

re-meshing. Having said this, we will assume that the user is able to perform this

insertion, while recognizing that it is by no means a trivial task, and is likely the

most difficult part of the algorithm to implement. One reason this plane insertion is

not described in detail is that the algorithm to do so greatly depends upon how the

mesh is stored in computer memory.

To illustrate how to choose the location of the dividing planes, consider the

cumulative density function given in Figure A.1. This function represents the fraction

of cells that have any portion of their volume below a given x value. This plot

is an idealization, and in reality the cumulative density function in any Cartesian

dimension is unlikely to be quite so smooth, but it is at least guaranteed to be

monotonically increasing. If we knew this density function, choosing the location of

the separating planes would be quite simple. For instance, if we wanted to divide the

mesh into three regions with equal numbers of cells, we would find the x locations

that correspond to F (x) = 0.3 and F (x) = 0.6 as shown in Figure A.2. Of course, we

don’t know this density function, and we must approximate it somehow. One could

simply calculate F (x) for many values of x, or guess the separating plane locations

and iteratively adjust them until a suitable load-balancing metric is achieved. We

choose the second option.
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Figure A.1: Cumulative density function for the number of cells in the x dimension.

Figure A.2: Illustration of how to choose the locations of the dividing planes using
the cumulative density function from Figure A.1.
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To illustrate how the iterative procedure works, consider the following problem.

We want to split the mesh into four bins in the x dimension. We first assume that

the cells of the mesh are equally distributed so that the three internal separating

planes are equally spaced between xmin and xmax, and then calculate the value of

F (x) at each location. We then connect these data points via linear interpolation,

and use this piecewise linear function to simply read off the x values corresponding

to F (x) = 0.25, 0.5, and 0.75. This is shown in Figure A.3. We then move the

separating planes to these new locations, and iterate the process until a suitable

load-balancing metric is achieved. It should be noted that the complicated process

of inserting the separating planes into the mesh only needs to be started once the

iterative process has converged. The second iteration is depicted in Figure A.4, and

the algorithm to perform this iterative procedure is given in Algorithm A.1.

Figure A.3: Illustration of choosing the separating plane locations in the first itera-
tion given a uniform initial guess.
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Figure A.4: Illustration of the second iteration choosing new separating plane loca-
tions.

Now that we have described how to load balance in a single dimension via the

iterative procedure described above, we must confront the reality that in nearly all

cases of interest, division of a three dimensional mesh in a single Cartesian dimension

is not the desired goal. The desired goal is to divide the three dimensional mesh into

brick-shaped sub-domains, each containing roughly equal numbers of cells. The trick

to extending this algorithm to three dimensions is recursion. We first divide the mesh

in the x dimension into Nx bins. We then take each of these Nx sub-domains and

divide each one in the y dimension into Ny bins. At this point we will have Nx×Ny

sub-domains, each of which is then divided into Nz bins in the z dimension. Also

note that there is no reason to separate and load-balance in the order x, y, and then

z. The order could have just as easily been reversed, and in any implementation

should be left as an option for the user.
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Algorithm A.1: Iterative procedure for choosing the separating plane locations in
order to load balance the mesh in the x dimension.

1: Set initial plane locations evenly spaced between xmin and xmax

2: Label these values x0 = xmin, x1, x2, . . . xNbins
= xmax

3: fideal = 1/Nbins

4: for k = 0 to NMax iterations − 1 do
5: for b = 0 to Nbins − 1 do
6: Count the number of cells residing in bin b: Nc,b

7: end for

8: Nc,sum =
Nbins−1∑
b=0

Nc,b

9: if Load-balancing metric is acceptable then
10: break from the k loop
11: end if
12: F0 = 0
13: for b = 0 to Nbins − 1 do
14: Fb+1 = Nc,b/Nc,sum + Fb
15: end for
16: for b = 0 to Nbins − 1 do
17: mb = (Fb+1 − Fb)/(xb+1 − xb)
18: end for
19: ζ0 = x0 ; ζNbins

= xNbins

20: for b = 1 to Nbins − 1 do
21: f = b fideal

22: for j = 1 to Nbins do
23: if f < Fj then
24: ζb = xj + (f − Fj)/mj−1

25: break from the j loop
26: end if
27: end for
28: end for
29: for b = 0 to Nbins do
30: xb = ζb
31: end for
32: end for
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The full algorithm for dividing the three dimensional mesh into brick shaped sub-

domains, each containing roughly equal numbers of cells is given in Algorithm A.2.

The algorithm begins by defining two sets of cell groups, Gold and Gnew. At the

beginning of the process, Gnew is empty and Gold contains the indices of all cells in

the mesh. The algorithm then enters a loop over the three dimensions, and chooses

which dimension to load-balance in during each iteration based on user input. The

next step is to get the number of bins to split the mesh into for the given dimension,

Nbins,i also based on user input. The next step is to loop over the old cell groups,

which for the first dimension will be of size one. At this point, Algorithm A.1 is used

to determine the location of the separating planes within this group. Once the plane

locations are chosen, the algorithm builds a list of all cells that straddle these planes,

and uses the planes to cut these cells, with all newly formed cells placed into the

current group g. With the cells in the current group split by the separating planes,

the algorithm then determines which bin each cell of the old group belongs to, and

places them in the new cell groups. Finally, before moving onto the next dimension,

the new groups are copied into the old groups, and the new groups are removed and

resized to zero.

In order to demonstrate the efficacy of the algorithm described above, we will be

using the very complicated geometry shown in Figure A.5. This figure shows a mesh

of a Star Wars X-Wing inside of a bounding box, with the inside and outside of the

ship meshed with different resolutions. The mesh contains 2,513,629 cells ranging in

volume from 6.138× 10−12 to 3.955, and was produced using the Tetgen tetrahedral

meshing software.[40] The geometry in Figure A.5 is chosen specifically to illustrate

the difficulty of the task at hand. The only obvious plane of separation which would

lead to two load-balanced subsets is the plane of symmetry through the center of the

ship, and even this plane does not exist in the original mesh.
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Algorithm A.2: Separation of a three dimensional mesh into load-balanced brick
shaped sub-domains.

1: Gold,0 = a group of the indices of all cells in the mesh, called a cell group
2: Gnew = an empty array of cell groups
3: for i = 0 to 2 do
4: d = ith dimension in which to load-balance = x, y, or z
5: Nbins,i = the number of bins in which to divide the mesh in the ith dimension
6: for g = 0 to NG,old − 1 do

7: Use Algorithm A.1 to get the plane locations {ξk}
Nbins,i

k=0 , in dimension d
8: Build a list of cells which straddle each of the planes
9: Use the planes to split these cells, adding each new cell index to Gold,g

10: N = NG,new

11: Resize Gnew to be of size N +Nbins,i

12: for j = 0 to Nc,old,g − 1 do
13: Get the cell index and determine which bin b it belongs to
14: Add the cell index to Gnew,N+b

15: end for
16: end for
17: Copy Gnew to Gold

18: Resize Gnew to size 0
19: end for

210



Figure A.5: Mesh of a Star Wars X-Wing used to demonstrate the load-balancing
brick decomposition algorithm. The upper left shows the X-Wing inside of the
bounding box with the space around the X-Wing removed. The upper right shows
the surrounding mesh clipped half-way through the X-Wing to show the difference
between the X-Wing mesh resolution and the surrounding space resolution. The
bottom shows a clip of the surrounding mesh through the tip of the wings to show
the range of mesh resolution from coarsest to finest.

Figures A.6, A.7, and A.8 show the separating planes introduced after load-

balancing in the x, y, z dimensions respectively, using four bins in each dimension.
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Each subset in these figures is represented by a different color. The final result is a

division of the original mesh into 64 brick-shaped subsets with roughly equal numbers

of cells. The load-balancing metric used in this case was to take the subset with the

largest number of cells and determine how much larger this number of cells is than

the average number of cells in each subset. The result for this metric in the case of

the X-Wing mesh was 18.9% above the average. This is by far the highest metric

encountered for any mesh up to the point of this writing, however considering the

geometry at hand, this is considered quite phenomenal.

Figure A.6: Mesh after division in the x dimension. Different colors represent differ-
ent subsets of the mesh assigned to nodes of a cluster or super-computer.
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Figure A.7: Mesh after division in the y dimension. Different colors represent differ-
ent subsets of the mesh assigned to nodes of a cluster or super-computer.

After separating in the x dimension, the algorithm correctly locates the plane of

symmetry through the center of the ship, as expected. The other two internal sepa-

rating planes appear to separate the tips of the wings, where the highest resolution

is located, from the body of the ship, which makes intuitive sense as well. After

separating in the y dimension, a similar theme is encountered, and the separating

planes appear to be located near refined features of the ship that lead to high local

cell densities. This is expected because a local high cell density should be partitioned

to different subsets if the final mesh is to be load-balanced. This trend is not as ob-

vious after separating in the z dimension from Figure A.8, but it is certainly still

occurring.
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Figure A.8: Mesh after division in the z dimension. Different colors represent differ-
ent subsets of the mesh assigned to nodes of a cluster or super-computer.
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