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Abstract

Limitations of the Quasiparticle Random Phase Approximation (QRPA) are

studied within an exactly solvable model, with a two body interaction of

Fermi type. A special attention is paid to the violation of the Pauli exclusion

principle (PEP) in solving the QRPA equation. A comparison of the exact

solution, obtained by the diagonalization of a schematic nuclear Hamiltonian

and those obtained within the standard QRPA, the renormalized QRPA, the

QRPA with pertubative treatment of the PEP and the QRPA with exact

consideration of the PEP, is presented. The agreement quality is judged in
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terms of the quasiparticle number operator matrix elements in the ground

state and in the first excited states, of the β transition amplitudes, of the

Ikeda sum rule and of the nuclear matrix element for the double beta decay.

We have found that restoring the PEP, the QRPA solutions are considerably

stabilized and a better agreement with the exact solution is obtained.
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I. INTRODUCTION

The Quasiparticle Random Phase Approximation (QRPA) has been found to be a pow-

erful method for describing many-body systems. Due to its simplicity, the proton-neutron

QRPA is the nuclear structure method which has been most frequently used to interpret

some nuclear structure aspects of the beta (β) and double beta (ββ) decay for open shell

systems [1]- [11]. The QRPA provides a description of excited states by including some

nucleon-nucleon correlations in the ground state.

The QRPA equations are derived directly from the equation of motion. In deriving the

QRPA equations two basic approximations are adopted: (i) The operator, which determines

the excited state, is taken as linear superposition of two creation and two annihilation

quasiparticle operators by considering the BCS basis as reference. (ii) The commutator of

bifermion operators is replaced by its expectation value in the BCS ground state. This is

usually called the ”quasiboson approximation” (QBA). The QBA violates the Pauli exclusion

principle (PEP) and this affects severely the theory. The terms which are left out by the QBA

become more and more important when the ground state correlations are increased which

results in a collapse of the QRPA solution. The approach based on the two approximations

mentioned above will be conventionally called ”the standard QRPA approach”.

Recently, the instability of the QRPA solution, caused by the PEP violation recieved

much attention from the experts in the field. In order to improve the reliability of the

standard QRPA description of the nuclear transitions, the renormalized version of the QRPA

(RQRPA), which take into account the PEP in an approximate way, has been formulated

[12,13] and applied to the β and ββ decay problems [14–16]. Indeed, the RQRPA does not

collapse within the physical range of the interaction strength parameters. However, avoiding

the collapse in the RQRPA a price had to be paid, namely the violation of the Ikeda sum

rule [17,18].

There is a constant interest in studying the physical consequences of violating the PEP

by the QRPA solutions. Some definite conclusions can be drawn by using solvable models,
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like, for example, the extensions [18,23] to proton-neutron systems of Lipkin or Moszkowski

models [20,21] , as they simulate the realistic cases either by analytical solutions or by a

minimal computational effort.

The improvement of the PEP obedience, within the QRPA, can be achieved in two ways:

(i) By a mapping technique the whole theory can be formulated in a boson picture. Such an

approach has been outlined for the proton-neutron monopole Lipkin model in Ref. [22]. (ii)

One can remain within the fermionic space and derive the elements of the QRPA equation,

at least, perturbatively.

The goal of this work is to discuss some limitations of the standard QRPA approach, con-

cerning the PEP violation. We shall follow the second possibility mentioned above and intro-

duce new extensions of the standard QRPA approach within the proton-neutron monopole

Lipkin model and point out some implications for realistic calculations. The newly intro-

duced approximations will be compared with the exact results, revealing, in this way, the

limits of the approximations.

The paper is organized as follows. In Sec. II, we describe the solvable model and specify

the corresponding solution. Section III describes the standard QRPA and RQRPA within

the chosen solvable model. In addition, new extensions of the standard QRPA approach,

which take into account the PEP in an approximate way and exactly are introduced, re-

spectively. In Sec. IV, the results obtained within the QRPA approaches are presented and

compared with the exact results. Finally in Sec. V, we summarize the results and draw

some conclusions.

II. NUCLEAR HAMILTONIAN

We assume a model Hamiltonian which includes a single–particle term, proton–proton

and neutron–neutron pairing and a charge-dependent two-body interaction with particle–

hole and particle–particle channels included:

H = Hp +Hn +Hres, (2.1)
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where

Hτ = eτ
∑

m

a†τmaτm −GτS
†
τSτ (τ = p, n),

Hres = 2 χ β− β+ − 2 κ P− P+, (2.2)

with

S†
τ =

1

2

∑

m

a†τmã
†
τm,

β− =
∑

m

a†pmanm, β+ = (β−)†,

P− =
∑

m

a†pmã
†
nm, P+ = (P−)†, (2.3)

a† (a) being the particle creation (annihilation) operator and ∼ indicating the time reversed

states ã†τm = (−1)jτ−ma†τ−m.

The schematic Hamiltonian, given by Eqs. (2.1)–(2.3), reproduces well the QRPA results

of the realistic Hamiltonian containing G-matrix elements of the Bonn-OBEP potential for

the beta and double beta decay transitions [24–26]. The strength χ (κ) of the particle-hole

(particle-particle) interaction corresponds to the well-known parameter gph (gpp) commonly

used in literature [1–4] to parametrize the realistic ph (pp) interaction.

Performing the Bogolyubov transformation for protons (τ = p) and neutrons (τ = n)

α†
τm = uτa

†
τm − vτ ãτm, α̃τm = vτa

†
τm + uτ ãτm, (2.4)

which defines the quasiparticle representation, and neglecting the scattering terms α†
pαn and

α†
nαp, the model Hamiltonian acquires the form

HF = ǫC + λ1A
†A+ λ2(A

†A† + AA), (2.5)

with

C =
∑

m

α†
pmαpm +

∑

m

α†
nmαnm, A† = [α†

pα
†
n]

J=0,

λ1 = 4Ω[χ(u2
pv

2
n + v2pu

2
n)− κ(u2

pu
2
n + v2pv

2
n)]

λ2 = 4Ω(χ+ κ)upvpunvn. (2.6)
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For the sake of simplicity we used a single level case jp = jn ≡ j and Gp = Gn ≡ G which

implies equal energies for protons and neutrons quasiparticles: ǫ = ǫp = ǫn = Ω G/2. Ω

denotes the semi-degeneracy of the considered single level.

The model Hamiltonian in Eqs. (2.5) and (2.6), resembles the Hamiltonian of the Lipkin

model [20], when λ1 is taken equal to zero. We note that operators {A,A†, C} are generators

for an SU(2) algebra. Indeed their mutual commutators are:

[A,A†] = 1− C

2Ω
, [C,A†] = 2A†, [A,C] = 2A. (2.7)

This model Hamiltonian is expected to account qualitatively for some features of realistic

pn-QRPA calculations. Due to these expectations, it has been used to study the standard

QRPA, renormalized QRPA as well as the higher order QRPA approximations for the many-

body system, Refs. [27,22]. The salient feature of this Hamiltonian is that the stability of the

approximate solutions can be discussed in comparison with the exact solution determined

by diagonalizing HF in the space of states

|n >= (A+)n|0 >, 0 ≤ n ≤ 2Ω. (2.8)

Here |0 > denotes the vacuum state for the quasiparticle operators. The matrix to be

diagonalized can be easily calculated with the result:

< n|HF |n > = 2 ǫ nmn + λ1 ( mn+1 − mn +
n mn

Ω
),

< n− 2|HF |n > = λ2 mn, (2.9)

where

mn ≡< 0|An(A†)n|0 >=
n! (2 Ω)!

(2 Ω− n)! (2 Ω)n
(n ≤ 2Ω). (2.10)

For n > 2Ω, the norm overlaps mn are vanishing.

III. QUASIPARTICLE RANDOM PHASE APPROXIMATION

Another way to find an excited state for the model Hamiltonian (2.5), is to solve the

corresponding QRPA equation. In what follows we shall briefly describe the basic ideas
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underlying this method for our solvable model.

Within the QRPA, an excited state |Q > is created by applying a phonon creation

operator Q† on a state |rpa > having the properties:

|Q >= Q†|rpa >, Q|rpa >= 0. (3.1)

The simplest form for the phonon operator, in the fermionic space, is

Q† = XA† − Y A, (3.2)

where X and Y are called forward- and backward- going free variational amplitudes and

satisfy the QRPA equation:








A B

B A

















X

Y









= EQRPA









U 0

0 −U

















X

Y









, (3.3)

where

A = < rpa|[A, [HF , A
†]]|rpa >,

B = − < rpa|[A, [HF , A]]|rpa >,

U = < rpa|[A,A†]|rpa > . (3.4)

It is useful to introduce the notation:

X = U1/2X, Y = U1/2Y, (3.5)

A = U−1/2AU−1/2, B = U−1/2BU−1/2. (3.6)

Then the QRPA eigenenergy EQRPA and the new amplitudes X and Y are given by:

EQRPA = (A2 − B2
)1/2,

X =
A+ EQRPA

√

(A+ EQRPA)2 − B
2
,

Y =
−B

√

(A+ EQRPA)2 − B
2
. (3.7)
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From the definition of the QRPA ground state |rpa > (3.1), it follows that elements A, B

and U of the QRPA equation are function of the X and Y amplitudes. Due to this fact this

non-linear eigenvalue problem could be solved only numerically by an iteration process. The

functional dependence of A, B, U on X and Y is specific to the approximation scheme and

influences crucially the final results. Below, we shall discuss, seperately, several approaches.

The standard QRPA: The simplest approximation scheme to calculate of A, B and U is

the quasiboson approximation (QBA), which assumes [A,A†] ≈< |[A,A†]| >= 1, i.e. A and

A† are considered to be boson operators. Here | > denotes the uncorrelated BCS ground

state. In this case, one finds the expressions:

A = 2ǫ+ λ1, B = 2λ2, U = 1, (3.8)

which determine the excited state eigenenergy and wavefunction with normalization X2 −

Y 2 = 1. The drawback of this approximation scheme is the collapse of the standard

QRPA solution within the physically acceptable interval for the nucleon-nucleon interac-

tion strength.

The renormalized QRPA: The renormalized QRPA (RQRPA) approach avoids the col-

lapse of the QRPA solution for physical parameters of the nuclear Hamiltonian. Within the

RQRPA the commutator, [A,A†] is replaced with its expectation value in the ground state

D =< rpa|[A,A†]|rpa > (renormalized QBA). This modifies the matrices A, B, U in the

following way [14,15]:

A = 2ǫD + λ1D
2, B = 2λ2D

2, U = D = (1 +
Y

2

Ω
)−1. (3.9)

Note that the fermionic structure of the A, A† operators is taken into account only in an

approximate way. In the limit of D = 1, i.e. the |rpa > ground state is replaced by the BCS

one | >, one gets the standard QRPA approach.

It is worth to remark that in both the standard QRPA and the RQRPA, the elements

A, B and U are evaluated by using some approximate schemes for the commutator [A,A†].

If the commutator is exactly considered, i.e. the PEP is fulfiled, the matrices A, B and U

take the form:
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A = (2ǫ+ λ1)− (ǫ+ λ1)
< rpa|C|rpa >

Ω
+ λ1

< rpa|CC|rpa >

4Ω2
−

λ1

< rpa|A†A|rpa >

Ω
− 2λ2

< rpa|A†A†|rpa >

Ω
, (3.10)

B = λ2(2−
1

Ω
)− λ2(2−

1

2Ω
)
< rpa|C|rpa >

Ω
+ λ2

< rpa|CC|rpa >

2Ω2
−

2λ2

< rpa|A†A|rpa >

Ω
− λ1

< rpa|AA|rpa >

Ω
, (3.11)

U = 1− < rpa|C|rpa >

2Ω
. (3.12)

The calculation of the involved matrix elements requires the knowledge of the |rpa > ground

state, determined by the condition in Eq. (3.1). The analytical form for |rpa > is known

within QBA and renormalized QBA. For the phonon operator given by the Eq. (3.2), one

obtains:

|rpa >
QBA

= ne−dA†A†| >, d = − Y

2X
, (3.13)

where n stands for the normalization factor.

In general, it is not possible to find an explicit expression for |rpa > unless some addi-

tional approximation is adopted. Fortunately, this can be achieved in the case of the solvable

model considered in the present paper. By solving the Eq. (3.1), one obtains

|rpa >
exc.

= N
Ω
∑

0

βl(
Y

X
)l(A†A†)l| >, (3.14)

with

βl = (2Ω)l
Ω!

(2Ω)!

(2Ω− 2l)!

l!(Ω− l)!
, N−2 =

Ω
∑

0

β2
l (
Y

X
)2lm2l. (3.15)

By using the approximate |rpa >
QBA

(3.13) and exact |rpa >
exc.

(3.15) solutions for the

QRPA ground state, one achieves, in fact, new extensions of the standard QRPA approach,

namely the QRPA with the PEP (PP QRPA) included in an approximate manner and the

QRPA with the PEP (EPP QRPA) fully fulfilled, respectively(see the more detailed expla-

nation after eq (3.29) below). Both methods go beyond the renormalized QRPA approach
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and require to evaluate ground state expectations values of the C, CC, A†A† and A†A op-

erators entering the expression for A, B and U as shown in Eqs. (3.10)–(3.12). This is

performed free of any approximation.

The QRPA with PEP: There is an important difference between this method and the

RQRPA one, although both methods use the same ground state wave functions [see Eq.

(3.12)]. Indeed, within the RQRPA, the commutator of the two bifermion operators A and

A† is considered in approximate way while the PP QRPA takes it exactly. Indeed, the

operators of interest have the expectation values:

QBA
< rpa|C|rpa >

QBA
= −4 n2 d h2(d),

QBA
< rpa|CC|rpa >

QBA
= −16 n2(d h2(d) − d2 h4(d)),

QBA
< rpa|A†A†|rpa >

QBA
= n2 h2(d),

QBA
< rpa|A†A|rpa >

QBA
= − n2((2− 1

Ω
) d h2(d) + 2

d2

Ω
h4(d)). (3.16)

where the following notations have been used:

h0(d) ≡ < |e−dAAe−dA†A† | >=
1

n2
,

=
Ω
∑

j=0

d2j

(j!)2
m2j ≈ m0 + d2m2 +

d4

4
m4, (3.17)

h2(d) ≡ < |e−dAAA†A†e−dA†A† | >,

=
Ω−1
∑

j=0

d2j

(j!)2
−d

j + 1
m2j+2 ≈ −dm2 −

d3

2
m4, (3.18)

h4(d) ≡ < |e−dAA(A†)4e−dA†A†| >,

=
Ω−2
∑

j=0

d2j

(j!)2
d2

(j + 2)(j + 1)
m2j+4 ≈

d2

2
m4, (3.19)

We hope that this approach can be applied also for realistic calculations and within a large

model space. Note that knowing |rpa >
QBA

, the QRPA matrices can be evaluated without

the PEP violation, at least pertubatively with respect to the factor d. If the pertubative

series is truncated to the quadratic terms in d, the resulting approach will be hereafter

labelled by the abreviation PP2 QRPA.
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The QRPA with exact PEP: This method can be formulated only for a solvable model

for which the exact QRPA ground state can be analytically found. Within the EPP QRPA

there is no violation of the PEP. However, one can not expect that the EPP QRPA solu-

tion coincides with the exact solution for the first excited state of the nuclear Hamiltonian

(2.5). The difference is caused by the approximations incorporated in the construction of

the operator Q† determining the excited state [see Eq. (3.1)]. Therefore, from the direct

comparison with the exact solution one may conclude how far the approximate description,

with the phonon operator of a simple structure, is from the exact picture (3.1). The following

expressions are used in elaborating the above defined procedure:

exc.
< rpa|AA|rpa >

exc.
=

exc.
< rpa|A†A†|rpa >

exc.
= N2

Ω−1
∑

l=0

βlβl+1(
Y

X
)2l+1m2l+2,

exc.
< rpa|AA†|rpa >

exc.
= N2

Ω−1
∑

l=0

β2
l (
Y

X
)2lm2l+1,

exc.
< rpa|C|rpa >

exc.
= N2

Ω
∑

l=1

β2
l (4l)(

Y

X
)2lm2l,

exc.
< rpa|CC|rpa >

exc.
= N2

Ω
∑

l=1

β2
l (4l)

2(
Y

X
)2lm2l,

exc.
< rpa|A†A|rpa >

exc.
= −1 + exc.

< rpa|C|rpa >
exc.

2Ω
+

exc.
< rpa|AA†|rpa >

exc.
. (3.20)

IV. RESULTS AND DISCUSSIONS

In what follow we shall present the numerical results for the QRPA approaches described

in the previous section and compare them with the values provided by diagonalizingHF (2.5).

In order to continue and complete the discussion of this Hamiltonian given in Refs. [18,22],

we have chosen the same set of parameters as there:

j = 9/2, Z = 4, N = 6, e = 1 MeV. (4.1)

Also we redefine the parameters κ and χ as in Refs. [18,22]:

κ → κ′ ≡ 2Ω κ, χ → χ′ ≡ 2Ω χ. (4.2)
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The values χ′ = 0. and χ′ = 0.5 were adopted while the particle-particle strength κ′ was

allowed to vary in the interval 0 ≤ κ′ ≤ 2. Comparing the schematic calculations with the

realistic ones, a value for κ′ close to unity is expected.

A. Excitation energies

In Fig. 1 we plotted the dependence of the QRPA excitation energy and the first exci-

tation energy obtained by diagonalizing HF (bold solid line) on κ′, for χ′ = 0 (upper figure)

and χ′ = 0.5 (lower figure), respectively. Note that the standard QRPA breaks down for

κ′ ≈ 1. The RQRPA excitation energy remains real within the whole interval of κ′, although

it deviates significantly from the exact solution beyond the breaking down point of the stan-

dard QRPA. The effect is more evident for χ′ = 0.5. The PP2 QRPA and, especially, the

PP QRPA energies reproduce quite well those of HF , except for the values of κ
′ approaching

their minimum. The EPP QRPA, which take into account the PEP exactly, systematically

overestimates the results obtained through the diagonalization of HF . This difference might

be attributed to the simple form of the phonon operator Q† (3.2). From this figure one

remarks that the collapse is shifted to a large value of κ′ when the PEP is satisfied to a

larger extent. For example for the PP2 QRPA, PP QRPA and EPP QRPA, the collapse

appear at about κ′ = 1.80, κ′ = 2.50 and κ′ = 2.55 (χ′ = 0.5), respectively. This indicates

that a real phase transition could take place in the region beyond κ′ = 2.5.

B. Expectation values of the quasiparticle number operator

In order to get additional information about the quality of different approximations, we

calculate the expectation values of the quasiparticle number operator in the ground and first

excited states. These are defined as follows:

N0 ≡< rpa|C
2
|rpa >, ∆N ≡< rpa|QC

2
Q†|rpa > −N0. (4.3)

For the situations defined before, the results are:
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N0 = Y 2, (QRPA),

= Y
2
, (RQRPA),

=
2d2m2

1 + d2m2

, (PP2 QRPA)

= n2 (−2d) h2(d), (PP QRPA),

=
exc.

< rpa|C|rpa >
exc.

, (EPP QRPA) (4.4)

∆N = 1 + 2Y 2, (QRPA),

= 1 + 2Y
2
, (RQRPA),

= (X2 + Y 2) + (X2 − Y 2 − 1− X2 + Y 2

Ω
)QBA

< rpa|C|rpa >
QBA

2
−

X2 − Y 2

4Ω QBA
< rpa|CC|rpa >

QBA
(PP QRPA),

= (X2 + Y 2) + (X2 − Y 2 − 1− X2 + Y 2

Ω
) exc.

< rpa|C|rpa >
exc.

2
−

X2 − Y 2

4Ω exc.
< rpa|CC|rpa >

exc.
(EPP QRPA). (4.5)

The expressions corresponding to the standard QRPA and RQRPA have been obtained by

replacing the operator C/2 with its boson image, respectively. As for the remaining case we

stay in the fermionic space and use the commutation algebra given by the Eq. (2.7).

In Figs. 2 and 3, N0 and ∆N , given by the above listed approximation schemes as well

as the exact calculation are presented. One sees that the standard QRPA overestimates the

ground state correlations near the collapse point, which reflects itself in a sudden increase of

the average quasiparticle number. The RQRPA does not collapse at all and overestimates

the exact result both for N0 and ∆N . A distinct situation is produced by the QRPA

approaches with PEP. There occurs an underestimation of the ground state correlations and

the values of N0 are smaller than those corresponding to the exact solution. Practically,

there is no difference between the PP2 QRPA and the PP QRPA up to the point where the

former one collapses. The EPP QRPA, with an exact treatment of the PEP, provides the

best agreement with the exact results obtained by diagonalizing HF . We notice that none

of the considered QRPA methods is able to reproduce the exact result for ∆N which, after
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a certain point in the region κ′ .
= 1.− 1.1, is falling down, contrary to the behavior of other

curves [22]. This is an indication that a more complex form for the phonon operator might

be necessary.

C. Fermi β transition amplitudes

We turn our attention now to transitions induced by the Fermi β± operators. Neglecting

the scattering term, as we did for the nuclear Hamiltonian HF (see Sec. II), the Fermi β±

operators, in the quasiparticle basis, take the form

β− =
√
2Ω(upvnA

† + vpunA), β+ = (β−)†. (4.6)

The matrix elements of β− operator between ground and first excited states corresponding

to different versions of the QRPA, are given as follows:

< 0+1 |β−|rpa > =
√
2Ω(Xupvn + Y vpun) (QRPA),

=
√
2Ω(Xupvn + Y vpun)D

1/2 (RQRPA),

=
√
2Ω(Xupvn + Y vpun)

1 + d2(1− 2

Ω
)m2

1 + d2m2

(PP2 QRPA),

=
√
2Ωn2(Xupvn + Y vpun)(h0(d) + 2

d

Ω
h2(d)) (PP QRPA),

=
√
2Ω(Xupvn + Y vpun)×

(1− exc.
< rpa|C|rpa >

exc.

2Ω
) (EPP QRPA). (4.7)

Expressions for β+ are obtainable from the above equations by interchanging the u′s and

v′s.

In Figs. 4 and 5 we examine the behavior of the β− and β+ amplitudes respectively

as functions of κ′ for two values for χ′ (= 0., 0.5). One notes a rapid increase of β− and

decrease of β+ transition strengths for the standard QRPA and the PP2 QRPA, close to

their collapse point. In general, the PP2 QRPA, the PP QRPA and the EPP QRPA methods

reproduce better the trends of the exact results comparing them with the RQRPA. The best

agreement with the exact values is achieved for the PP QRPA. Obviously these analyses
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demonstrate how important it is to have a correct treatment of the PEP, in describing the

nuclear β transitions. It is worth noting the sensitivity of the β+ amplitude to the details of

nuclear structure wave functions. Indeed, by increasing the the particle-particle interaction

strength κ, the matrix element of the β+ transition operator reaches a vanishing value and

therefore is no longer predictable.

D. The Ikeda sum rule

From the β± amplitudes one obtains, straightforwardly, the β± strengths:

S− = | < 0+1 |β−|rpa > |2, S+ = | < 0+1 |β+|rpa > |2. (4.8)

For a ground state preserving the proton and neutron numbers in avarage, the two strengths

are satisfying the Ikeda sum rule

S− − S+ = N − Z (4.9)

where N and Z are the numbers of neutrons and protons, respectively.

It is well known that the Ikeda Sum rule is automatically fullfiled in the standard QRPA

and violated in the RQRPA [17,18]. According to the Fig. 6, this is also true for the

solvable model of this work. This figure shows also numerical results for the Ikeda sum

rule predicted by the methods described so far, and compare them with the exact results.

One notices that the exact results for HF , do not fullfil the Ikeda sum rule and show a large

deviation from the value of (N-Z) for κ′ for κ′ ≥ 1. The origin of this phenomenon is expected

to due to neglecting the scattering terms in the derivation of the assumed Hamiltonian HF

[28]. We hope that discrepancies concerning the Ikeda sum rule are substantially diminished

by adding the contributions due to the quasiparticle operators a†τaτ , a
†
τa

†
τ + aτaτ involved

in the particle number operators. Indeed these contributions have been omitted so far,

although their average on the ground state is not vanishing. One may conclude that the

standard QRPA fails to reproduce the exact results for the chosen Hamiltonian. All other
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modifications of the QRPA (RQRPA, PP2 QRPA, PP QRPA, EPP QRPA) reproduce the

trend of the exact solution, albeit the agreement with the exact results, for large value of

κ′ (κ′ ≥ 1) is rather poor. For non-vanishing kappa′ the results lying closest to the exact

ones are those produced by PP QRPA and FPP QRPA. A reason might be the influence

of higher excited states on the ground state induced by the diagonalization procedure. It

is worthwhile to notice that improving the treatment of the PEP in the QRPA, a better

agreement of the Ikeda sum rule with the (N-Z) value is achieved.

E. Double beta decay matrix element

In this section we shall focus our attention on the two-neutrino double beta decay mode,

2νββ. Consequences of the previously presented approaches on the 2νββ-decay matrix

element will be discussed. Within the solvable model considered here there is only one

QRPA excited state and the corresponding nuclear 2νββ-decay matrix element takes the

form

M2ν
F =

f < rpa|β−|0+1 >f i < 0+1 |β−|rpa >i

EQRPA +∆
. (4.10)

Here, the states with subscripts ”i” and ”f” are describing to the initial (A,Z) and final

(A,Z+2) nuclei, respectively. We considered ∆ to be equal to 0.5 MeV and performed the

calculations for the following set of parameters [18]:

j = 19/2 ( Z = 6, N = 14) → ( Z + 2 = 8, N − 2 = 12), χ′ = 0, 0.5 (4.11)

Results corresponding to the matrix element M2ν
F , calculated with different approxima-

tions, are shown in Fig. 7, as function of κ′. In addition we present also the exact results

of HF , considering only the contribution coming from the lowest intermediate state. One

notices that the behaviors of the QRPA and the RQRPA curves are qualitatively similar

to those found in the realistic calculations. The transition amplitude M2ν
F vanishes within

the range 1.0 ≤ κ′ ≤ 1.5 for all calculations, including the exact ones. The values of M2ν
F
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obtained by a better consideration of the Pauli exclusion principle (PP QRPA and EPP

QRPA) are significantly less sensitive to the particle-particle interaction strength κ′. Our

studies show that the behavior of M2ν
F , as function of κ′, is strongly influenced by the β+

strength characterizing final nucleus.

V. SUMMARY AND CONCLUSIONS

We have analyzed some limitations of the QRPA formalism in an solvable proton-neutron

monopole Lipkin model. In addition to the standard QRPA and RQRPA, we introduced

new extensions of the standard QRPA approach by improving (PP QRPA) and exactly

(EPP QRPA) considering the Pauli exclusion principle. These approaches have been used

to study the behavior of different observables as function of the particle-particle interaction

strength κ′.

Due to the collapse of its solution for κ′ ≈ 1.0, the standard QRPA reproduces worse

the exact results of the nuclear Hamiltonian. Our studies show that the real collapse of

the QRPA, usually associated to a phase transition, appears for a large value of κ′ (≈ 2.5).

For the PP2 QRPA, which is obtained from the PP QRPA by cuting the series in d at

second order, the solution breakdown appears around κ′ = 1.7. This suggests that a better

consideration of the PEP, within the QRPA, shifts the instability strength to a larger value.

To shed more light on this problem we commented on the corrections induced by the

ground state correlations, by plotting the average quasiparticle number versus κ′. Our anal-

ysis of the β± transitions shows the sensitivity of the β+ transition to correlations, included

in the ground state, which violate the PEP. Concerning the Ikeda sum rule we have found

that this is conserved neither by the exact solution of the quasiparticle nuclear Hamiltonian

nor by the QRPA methods including the PEP. This discrepancy is very likely due to the

structure of the model Hamiltonian. Also one expects, that including the contribution com-

ing from the two quasiparticle and quasiparticle scattering operators entering the expressions

of the particle number operators, the discrepancies are decreased.
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The 2νββ-decay matrix element, calculated within the solvable model, is changing the

sign when κ′ is increased, similar to what happens in realistic calculations. It was pointed

out that M2ν
F calculated by the PP QRPA and EPP QRPA, is less sensitive to the details

of nuclear structure than that predicted by the standard QRPA and RQRPA approaches.

The main conclusions of our analysis can be summarized as follows.

New extensions of the standard QRPA with approximate (PP QRPA) and exact (EPP

QRPA) consideration of the PEP were presented. These formalisms yield a better agreement

with the exact results, obtained by diagonalizing the model Hamiltonian, than the standard

QRPA and the renormalizer QRPA approaches.

The EPP QRPA results show that the collapse of the first excited states is far from

the place where the standard QRPA breaks down, i.e., is achieved for larger values of the

particle-particle interaction strength.

The comparison of the EPP QRPA results with those obtained with the exact eigenstates

of HF , points out the drawbacks coming from the simple structure of the QRPA phonon

operator and suggests a range of applicability for this theory. Clearly, this analysis shows

some limitations for the QRPA and RQRPA approaches.

The results of the present paper support our hope that the PP QRPA approximations

might work equally well in the case of realistic calculations. Indeed, the PP QRPA is based

on the approximate QRPA ground state wave functions, derived within the QBA, which can

be undoubtly found also in realistic models. This subject seems to be very interesting and

therefore deserves further considerations.
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[8] M.K. Cheon, A. Bobyk, A. Faessler, F. Šimkovic, and G. Teneva, Nucl. Phys. A 561,

74 (1993); A 564, 329 (1993).
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FIGURES

FIG. 1. Comparison of the lowest excitation energies resulting from the diagonalization of HF

(bold solid line - HF diag.) with the standard QRPA (solid line - QRPA), the renormalized QRPA

(dashed line - RQRPA), the QRPA with the Pauli exlusion principle up to second order in d (bold

dashed line - PP2 QRPA), the QRPA with Pauli exclusion principle (bold dotted line - PP QRPA)

and the QRPA with exact consideration of Pauli exclusion principle (bold dot-dashed line - EPP

QRPA) values.

FIG. 2. The expectation values of (half) the quasiparticle total number operator, C/2, in the

ground state, versus κ′. Conventions are the same as in Fig.1.

FIG. 3. Differences between the expectation values of (half) quasiparticle number operator,

C/2, in the first excited state and in the ground state as function of κ′. Conventions are the same

as in Fig.1.

FIG. 4. The Fermi β− transition amplitudes between the ground and first excited states. Con-

ventions are the same as in Fig.1.

FIG. 5. The Fermi β+ transition amplitudes between the ground and first excited states. Con-

ventions are the same as in Fig.1.

FIG. 6. The Fermi β− transition amplitudes between the ground and first excited states. Con-

ventions are the same as in Fig.1.

FIG. 7. The 2νββ-decay Fermi transition amplitude versus κ′. The same notations as in Fig.

1 are used.
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