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We show that a strong infrared laser beam obliquely incident on graphene can experience a
parametric instability with respect to decay into lower-frequency (idler) photons and THz surface
plasmons. The instability is due to a strong in-plane second-order nonlinear response of graphene
which originates from its spatial dispersion. The parametric decay leads to efficient generation of
THz plasmons and gives rise to quantum entanglement of idler photons and surface plasmon states.
A similar process can be supported by surface states of topological insulators such as Bi2Se3.

I. INTRODUCTION

Nonlinear parametric decay of a pump laser photon
into two lower-frequency photons (usually called ”signal”
and ”idler”) in a nonlinear crystal possessing a second-
order nonlinearity is the most popular method of gener-
ating entangled photon states [1]. At higher pump inten-
sities the parametric process can experience gain which
leads to the instability and exponential amplification of
coupled signal and idler fields. Stimulated parametric
decay enables optical parametric amplifiers and oscilla-
tors as popular tunable sources of long-wavelength ra-
diation from near- to far-infrared [21]. They typically
employ bulk transparent crystals under phase-matching
conditions for frequencies and wave vectors of the fields
participating in a three-wave mixing interaction:

ωs = ωp − ωi; ks = kp − ki, (1)

where the subscripts s, p, and i represent signal, pump
and idler, respectively. In view of these requirements, the
very idea of parametric amplification supported by just a
monolayer of material seems unrealistic. Surprisingly, we
find that stimulated parametric decay of laser photons is
feasible in 2D systems of massless Dirac electrons.

Any surface has anisotropy between in-plane and out-
of-plane excitations, and graphene is no exception. How-

ever, the second-order susceptibility χ
(2)
ijk associated with

this surface anisotropy is very small in graphene [3] and
we don’t even consider it below. A much stronger non-
linear response is expected when all fields and electron
excitations lie in-plane. This is obvious already in the
classical free-carrier limit because of an extreme band
nonparabolicity [4]. However, graphene is a centrosym-
metric system for low-energy in-plane excitations, which
should prohibit any second-order response. Nevertheless,
a non-zero χ(2) appears beyond the electric dipole ap-
proximation when one includes the dependence of χ(2)

on the in-plane photon wave vectors, i.e. the spatial dis-
persion. In this case the isotropy of graphene is effec-
tively broken by the wave vector direction. The spatial
dispersion effects turn out to be quite large because of
a large magnitude of the electron velocity vF , similarly

to spatial dispersion in a hot plasma. Further enhance-
ment of χ(2) occurs at resonance between the pump fre-
quency and twice the Fermi energy: ωp = 2εF /~. Finally,
the efficiency of parametric down-conversion is enhanced
when one of the generated fields is not a photon but a
surface plasmon mode supported by a massless 2D elec-
tron layer. A non-zero value of the nonlocal in-plane
χ(2) and plasmon enhancement of the nonlinear signal
were pointed out before for second-harmonic generation
[5, 6] (which only included intraband transitions in a free-
carrier model) and for difference-frequency generation [7].
Here we develop the first theory of the parametric decay
in graphene, which includes fully quantum description of
the nonlinear response and quantization of all fields.
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FIG. 1. Schematic of the parametric decay of the pump pho-
ton into an idler photon and a surface plasmon, which satisfies
conservation of energy and in-plane component of momentum.
Inset shows matching of the signal frequency to the real part
of surface plasmon frequency obtained by solving Eq. (2).

The schematic of the nonlinear process is shown in
Fig. 1. An obliquely incident pump photon decays into
an idler photon and a ”signal” plasmon of a much lower
frequency ωs = ωp − ωi � ωp,i but a comparable wave
vector qs ∼ qp. The second of phase matching condi-
tions in Eqs. (1) is replaced by its in-plane projection
qs = qp − qi. In addition, the signal frequency should
match the real part of surface plasmon dispersion ω(q)
shown in the inset to Fig. 1: ωs = ω(qs). Note that both
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positive and negative projections of the idler wave vector
qi are possible, where the positive direction is assumed to
the right. In particular, negative values of qi give access
to larger plasmon wave vectors qs = qp − qi = |qp| + |qi|
and frequencies.

II. QUANTIZED SURFACE PLASMON FIELD
IN GRAPHENE

Consider a geometry of Fig. 1, i.e. a 2D layer of mass-
less Dirac electrons in z = 0 plane between two me-
dia with dielectric constants ε1 and ε2. The plasmon
frequency ωs and in-plane wave vector qs are related
through the dispersion relation for a TM-polarized sur-
face mode [7]:

4πχs +
ε1
p1

+
ε2
p2

= 0, (2)

where p1,2 =
√
q2
s − ε1,2

ω2
s

c2 . At the THz frequencies

smaller than twice the Fermi energy 2εF /~ one needs
only to take into account the intraband contributions to
the linear 2D susceptibility χs(ωs, qs), which in the limit
of strong degeneracy is given by [7]

χs(ωs, qs) =
2e2EF
π~2ωs

(ωs + iγs)

(vF qs)2
× [1−

ωs + iγs
ωs + iγ + vF qs

√
1 +

2vF qs
ωs + iγs − vF qs

]
(3)

where EF is the Fermi energy and γs is the decay rate of
surface plasmons.

The standard quantization procedure in the limit of
ωs � γ leads to

Ê =
∑
qs

Es(z)âse
iqsr‖−iωst + H.c. (4)

where r‖ = (x, y) and âs, â
†
s are annihilation and creation

operators of surface plasmon modes. The z-distribution
of the field Es(z) is [7]:

Es(z) =

(
x0 ± z0

iqs
p1,2

)
Es0e

∓p1,2z, (5)

where the upper and lower signs correspond to z > 0, z <
0, respectively. Similarly to the case of propagating fields
[8, 9], the energy of the plasmon field inside a volume V
can be written as

Ĥ =
1

8π

∑
s

(â†sâs+âsâ
†
s)

∫
V

(
E∗s

∂(ωε̃)

∂ω
Es +BsB

∗
s

)
d3r,

where ε̃ is the dielectric permittivity tensor and the pro-
jection of the quantization volume onto the 2D layer
is equal to 1. After substituting Eqs. (2) and (5), the
last equation is reduced to a standard Hamiltonian for
the plasmon field, Ĥs =

∑
qs

~ωs(qs)
(
â†sâs + 1/2

)
, if

we choose the normalization constant Es0 (in quasi-
electrostatic approximation) as:

|Es0|2 = ~ (Re(∂χs/∂ω))
−1
. (6)

The effect of dissipation of a plasmon field (within
ωs � γs) and its nonlinear interaction with other
fields can be taken into account within the Heisenberg-
Langevin approach [9]. For quasi-monochromatic wave
fields, it is convenient to consider a wave packet of surface
plasmon modes with frequencies and wave vectors con-
centrated in a narrow spectral range ∆ω � ωs, ∆q � qs
near a central component ∝ eiqsr‖−iωst [10–13]. Within
this approach we introduce the annihilation and creation
operators âs(r‖, t) and â†s(r‖, t) that are slowly varying
in time and space relative to ωs and qs. Their com-
mutator is equal to the number of quantized modes per
unit area Lx × Ly = 1 within the spectral interval ∆ω:

[âs, â
†
s] =

∆ω

2πLyvs
, where vs is the group velocity of a

surface plasmon which determines its spectral density of
states and Ly is the aperture size of the beam.

Equations for a slowly varying field amplitude of a sur-
face plasmon wave packet can be obtained in the same
way as for the propagating optical fields; see e.g. [11–13]:

∂âs
∂t

+ vs
∂âs
∂x

+ γsâs =
i

~
P̂ (2)
s E∗s0 + F̂s, (7)

where γs = ~−1(Im[χs])|E2
s0|, F̂s(t) is the operator of the

Langevin noise, and P̂
(2)
s = x0P̂

(2)
s eiqsx−iωst+ H.c. is

the second-order nonlinear component of the operator of
the polarization.

The Langevin noise source ensures a correct expres-
sion for the commutator of the plasmon field in the pres-
ence of its interaction with a dissipative reservoir. It is
convenient to define the properties of the noise source in
terms of its spectral components F̂s =

∫
F̂sωe

−iωt dω and

F̂ †sω = F̂s;−ω. Assuming a dissipative reservoir in ther-
mal equilibrium and adjusting for the 2D geometry, we
can write [9]〈
F̂ †
ω′ (x

′)F̂ω(x)
〉

=
γsNT (ωs)

πLy
δ(ω − ω

′
)δ(x− x

′
); (8)〈

F̂ω(x)F̂ †
ω′ (x

′)
〉

=
γs(NT (ωs) + 1)

πLy
δ(ω − ω

′
)δ(x− x

′
),

where the 〈...〉 means averaging over both an initial quan-
tum state in the Heisenberg picture and the statistics of

the dissipative reservoir, NT (ωs) =
(
e~ωs/(kBT ) − 1

)−1
.

In the absence of the nonlinear polarization, the solution
of Eqs. (7),(8) in the limit γsx/vs → ∞ corresponds to
thermal equilibrium:〈

â†sâs
〉
→
〈
â†sâs

〉
T

=
NT (ωs)∆ω

2πLyvs
. (9)

Eq. (9) corresponds to a general property of thermal
emission: its power received by a matched antenna
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≈ Lyvs~ωs
〈
â†sâs

〉
T

does not depend on the size and

shape of the aperture [15].

III. PARAMETRIC INSTABILITY IN
GRAPHENE

Consider parametric second-order interaction of
surface plasmons with an s-polarized bichromatic
pump+idler field incident from the z > 0 half-space:

Ê =
∑
j=p,i

Êj ; Êj = y0Ej0ĉje
−ikjz+iqjx−iωjt + H.c.,

where the normalization fields |Ej0|2 = 2π~ωj/n2
1 are de-

fined for a unit quantization volume, ĉj are Heisenberg
operators of slowly varying amplitudes corresponding to
a finite spectral width ∆ω [11–14]. The nonlinear 2D po-
larization at frequencies ωp,i,s generated in the graphene
plane z = 0 is given by

P̂ (2)
s = x0χ

(s,2)
xyy Ê

†
i Êp + H.c.,

P̂
(2)
i = y0χ

(i,2)
yyx E

∗
s0â
†
sÊpe−iqsx+iωst + H.c.,

P̂ (2)
p = y0χ

(p,2)
yyx Es0âsÊieiqsx−iωst + H.c., (10)

where Êp,i are the ∝ exp(−iωt) parts of the electric field
operators at the pump and idler frequencies ωp,i in the
graphene plane. They are related to the field operators in
the upper and lower half-spaces through standard bound-
ary conditions. The second-order susceptibilities at cor-

responding frequencies are χ
(s,2)
xyy = χ

(2)
xyy(ωs = ωp − ωi),

χ
(i,2)
yyx = χ

(2)
yyx(ωi = ωp−ωs), χ(p,2)

yyx = χ
(2)
yyx(ωp = ωi+ωs).

Index α in χ
(2)
αβγ(ω = ω′ ∓ ω′′) corresponds to the polar-

ization of the field at the mixing frequency ω, and the
index β corresponds to the polarization of the field at a
larger of the two frequencies ω′, ω′′.

Using the nonlinear polarizations and boundary con-
ditions for the fields, Eq. (7) becomes

∂âs
∂t

+ vs
∂âs
∂x

+ (γs − Ĝ) · âs = Ĵ + F̂s, (11)

where

Ĵ = Γχ(s,2)
xyy ĉ

†
i ĉp, Γ = i

2π
√
ωiωp

n2
1

TiTpE
∗
s0,

Ĝ = |Γ|2n1

c

(
χ

(s,2)
xyy χ

(i,2)∗
yyx ĉ†pĉp

Ti cos θ1i
− χ

(s,2)
xyy χ

(p,2)
yyx ĉ

†
i ĉi

Tp cos θ1p

)
.

Here Tp,i = 2n1 cos θ1p,i/(n1 cos θ1p,i + n2 cos θ2p,i) are
Fresnel transmission coefficients for s-polarized pump
and idler fields with incidence angles θ1p,i and refraction
angles θ2p,i. Eq. (11) was derived neglecting the terms of

the order α|χ(2)|2 and |χ(2)|3 where α = e2/~c.
The terms Ĵ and Ĝ in Eq. (11) include all possi-

ble three-wave mixing processes. The term Ĵ describes

difference frequency generation of surface plasmons in
graphene by a bichromatic quantum field. For classical
fields this process has been predicted in [7] and observed

in [16]. The operator Ĝ describes the creation of plas-
mons by a parametric decay of the pump photons.

The operator-valued Eq. (11) has a stationary solution
given by

âs = exp

[
(
Ĝ− γs
vs

)x

]
(12)

×

âs(0) +

∫ x

0

exp

[
(
Ĝ− γs
vs

)x′

]−1

(Ĵ + F̂s)
dx′

vs

 ,

Here we will only deal with a coherent classical pump
field at frequency ωp. The field at the idler frequency
ωi is present only as a quantum and/or thermal noise.

In this case, and for ~ωs � kBT , the term Ĵ can be
neglected as compared to the Langevin noise term, and
the operator Ĝ can be replaced by a c-number:

G ≈ |Γ|2n1

c

χ
(s,2)
xyy χ

(i,2)∗
yyx

〈
ĉ†pĉp

〉
Ti cos θ1i

. (13)

Taking the thermal noise as a boundary condition and
taking into account Eqs. (8) and (12) one can get

â†sâs = exp

[
2

Re[G]− γs
vs

x

]
(â†sâs)T (14)

×
[
1 +

γs
Re[G]− γs

(
1− exp

[
−2

Re[G]− γs
vs

x

])]
,

where the operator (â†sâs)T corresponds to the thermal
field and has an average value given by Eq. (9). Note that
there is a 1/vs dependence in the gain factor in Eq. (14)
which describes the enhancement in the gain for slowly
moving plasmons as compared to photons.

From Eq. (14) one can obtain an important result,
namely the criterion for parametric instability:

Re(χ(s,2)
xyy χ

(i,2)∗
yyx ) > 0, (15)

Re[G] ≈ |Γ|2
Re
[
χ

(s,2)
xyy χ

(i,2)∗
yyx

]
Ip

c2~ωp
n2

1

Ti cos θ1i
> γs, (16)

where Ip is the incident pump intensity.
To calculate the magnitude of the parametric gain we

need to substitute the components of the second-order
susceptibility tensor. Their derivation is straightforward
but cumbersome, so we keep it in the Supplemental Ma-
terial; see Eq. (S10). Their salient feature is the presence
of resonances when one of the three frequencies involved
in three-wave mixing is close to 2εF = 2~vF kF . This
is a weaker resonance than the one that would exist in
coupled quantum wells [17] where χ(2) would scale as a
product of two Lorentzians. Still, it enhances the value
of χ(2) by a factor of ω/γ. A similar resonance exists
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in the third-order nonlinear response of graphene [18].
Close to resonance one has to include the imaginary part
of the frequency which describes the decay rate of the
optical or plasmon polarization. We will take the same
values for the imaginary part γ for both pump and idler
frequencies. Furthermore we assume ωp,i � ωs � γs and
consider strongly degenerate graphene with a frequency
of the pump field close to 2vF kF . In addition to res-
onant enhancement of the nonlinearity, this eliminates
interband absorption losses for the plasmons and re-
duces electron scattering. Under these conditions, when
|ωp − 2vF kF | < γ, we obtain

χ(s,2)
xyy = χ(i,2)∗

yyx ≈ 3e3v2
F

16π~2

qp
ωiω2

sγ
. (17)
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FIG. 2. The gain Re[G] (solid blue line) and the plasmon
frequency corresponding to phase matching conditions (green
dashed line) as a function of the angle θ1i between the direc-
tion of the idler wave vector in medium 1 and the normal.
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FIG. 3. The pumping intensity Ip needed to reach the para-
metric instability threshold, Re[G] = γs in Eq. (16), as a
function of the plasmon decay rate γs.

Figure 2 shows the gain (left-hand side of Eq. (16)) and
the plasmon frequency corresponding to phase matching
conditions as a function of the emission angle of the idler

field θ1i. Negative angles correspond to negative projec-
tions of qi. For the plot we took n1 = 1 and n2 = 2,
γp,i = 1012 s−1, the pump beam at a 10-µm wavelength
and incidence angle of π/4. The pumping intensity was
assumed to be Ip = 1 GW/cm2, which corresponds to in-
tensities in the experiment [16]. The gain is only weakly
dependent on the idler emission angle except for a nar-
row range around θ1i = π/4 where qp ' qi and therefore
qs, ωs → 0. In this range the gain becomes negative;
however, the approximation ωs � γs becomes invalid, so
this case requires a separate investigation.

In Fig. 3 we show the pumping intensity Ip needed to
reach the parametric instability threshold, Re[G] = γs,
as a function of plasmon decay rate γs, for the same nu-
merical parameters as in Fig. 2 and for the idler emitted
at θ1i = 20 degrees. In this case the phase matching con-
dition is satisfied when the plasmon frequency ωs/2π is
equal to 1 THz (see Fig. 2).

The magnitude of the gain can be further increased by
non-Bernal stacking of multiple graphene layers, which
will reduce the threshold intensity.

Low-energy surface states of a 3D topological insulator
Bi2Se3 are massless 2D Dirac fermions described by the
effective Hamiltonian H = vF (~σ × ~p)z [19], where vF
is two times smaller than in graphene. The states have
different chirality as compared to those in graphene but
the same matrix elements of the interaction Hamiltonian
and the same structure of the optical response. Proceed-
ing in the same way, one can show that the parametric
gain for a thin Bi2Se3 film (i.e. two surfaces) will have a
magnitude lower by a factor of ∼ 26 due to a two times
lower vF and two times lower degeneracy.

IV. GENERATED IDLER FIELD FLUX

The outgoing flux of idler photons generated as a re-
sult of parametric decay of the pump carries information
on the intensity of generated surface plasmon field and
the surface nonlinearity. To calculate the average flux of
the idler photons on the detector we calculate first the
operator of the idler field generated by the nonlinear cur-
rent. Using Eqs. (10) and standard boundary conditions,
we arrive at

δÊi = y0Ei0ĉ
(2)
i eikiz+iqix−iωit+H.c., ĉ

(2)
i =

n1Γχ
(i,2)
yyx

c cos θ1i
â†sĉp.

One also needs to calculate the average value of the gen-
erated number of plasmon quanta

〈
â†sâs

〉
D

, which is col-

lected by the detector from length Lx. Using Eq. (14) we
obtain〈

â†sâs
〉
D

=
1

Lx

∫ x

0

〈
â†sâs

〉
dx ≈

〈
â†sâs

〉
T

eΞ − 1

Ξ
; (18)

Ξ = 2
Re[G]− γs

vs
Lx.
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The resulting average flux of the idler photons on the
detector of transverse area AD is given by

〈
Π̂

(2)
i

〉
=
n2

1|Γ|2|χ
(i,2)
yyx |2IpLx∆ω

2πc2vs~ωp cos θ1i

(
eΞ − 1

Ξ
NT (ωs) + 1

)
,

where Π̂
(2)
i =

cAD
n1

ĉ†i ĉi.

Close to the parametric instability threshold, when
eΞ − 1

Ξ
∼ 1, the idler photon flux is

〈
Π̂

(2)
i

〉
∼ ∆ωγsLx

2πvs
NT (ωs), (19)

i.e. it is of the order of the thermal flux at a much lower
surface plasmon frequency collected from the length
equal to the plasmon decay length, Lx ∼ vs/γs.

V. PLASMON-PHOTON ENTANGLEMENT

The total idler field propagating away from the
graphene layer to the detector consists of the reflected
noise field and the generated parametric field calculated
above:

ĉr ≈ Riĉi +
n1Γχ

(i,2)
yyx

c cos θ1i
â†sĉp, (20)

where Ri =
n1 cos θ1i − n2 cos θ2i

n1 cos θ1i + n2 cos θ2i
is the Fresnel reflec-

tion coefficient for the S-polarized field. Here we ne-
glected thermal noise at high frequencies, NT (ωp,i), and
absorption in monolayer graphene ∼ πα. Calculating
quantum-mechanical averages of the quantities quadratic
with respect to the reflected field, it is easy to see that
Eq. (20) corresponds to an entangled plasmon-photon
state. In particular, for a classical pump field and an
initial state in the form Ψ0 = |0i〉 |0s〉, one can show
[13] that parametric decay leads to the state of the kind
Ψ = α |0i〉 |0s〉+ β |1i〉 |1s〉.

In general, the calculations of quantum-mechanical av-
erages of any physical quantities are much easier to per-
form in the Heisenberg picture using Eq. (20) for Heisen-
berg operators, without converting to the Schrödinger
picture. In particular, it is obvious from Eq. (20) that
for a given spectrum of the pump field any physical ob-
servable for a surface plasmon field can be related to a
corresponding observable for the idler field at frequency
ωi. For example, if the pump field spectrum is much
narrower than the spectrum of the plasmon fluctuations
then the spectrum of surface plasmons is related to the
spectrum of idler photons.

In conclusion, we showed the feasibility of stimulated
parametric decay of photons of a strong laser pump
obliquely incident on graphene. We calculated the flux
of surface plasmons and idler photons generated by

parametric decay of the pump, and demonstrated their
entanglement.

VI. SUPPLEMENTAL MATERIAL

A. Second-order nonlinear susceptibility in
graphene

In this Supplemental Material we provide the general
expressions for the components of the second-order sus-
ceptibility tensor that are relevant for the parametric
three-wave mixing in graphene.

The Hamiltonian of graphene near the Dirac point K
is

H = vFσ · p̂ = vF

(
0 p̂x − ip̂y

p̂x + ip̂y 0

)
, (21)

where p̂ is the momentum operator relative to K and σ
is a 2D vector of Pauli matrices. The eigenenergies are
ε±(k) = ±~vF k, and eigenstates are

〈r‖|s,k〉 =
1√
2A

exp(ik · r‖)
(

s
eiφ(k)

)
, (22)

where s = 1 for conduction band, s = −1 for valence
band, A is the area of graphene, and φ(k) is the angle of
the wave vector k with the x-axis.

The interaction Hamiltonian between graphene and
the optical field which has an in-plane component of the
electric field can be written as

Ĥop
int = vF

e

c
σ ·A =

e

c
v̂ ·A, (23)

where v̂ = vFσ is the velocity operator, and A is the vec-
tor potential of the optical field, which is related to the
electric field by E = (−1/c)∂A/∂t. Using this Hamil-
tonian, the evolution equation for the density matrix is
given by

i~
∂

∂t
ρmn = (εm − εn)ρmn +

e

c
(v̂ ·A)mn(ρnn − ρmm)

+
e

c

∑
l 6=m,n

((v̂ ·A)mlρln − ρml(v ·A)ln) , (24)

where both linear and nonlinear effects are included. We
calculate the field-induced current in second order with
respect to the optical field, as a quantum-mechanical av-

erage of the current operator ĵ = −evFσ with the density
matrix.

We will seek the response at the sum frequency ω1 +
ω2 to the bichromatic optical field with in-plane electric
fields at frequencies ω1,2 directed along unit vectors η1,2

:

A =
1

2
η1A(ω1)ei(q1·r‖−ω1t) +

1

2
η2A(ω2)ei(q2·r‖−ω2t) + c.c.

(25)
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The result will be applicable to the difference frequency
process by choosing either positive or negative frequen-
cies, with the corresponding change in q for a given ω.
The second-order density matrix elements at the sum fre-
quency ω1 + ω2 are evaluated to be

ρ(2)
mn(ω1 + ω2) =

1

2

(e
c

)2 A(ω1)A(ω2)

~(ω1 + ω2)− (εm − εn)

×
∑
l 6=m,n

(
(v̂ · η1)eiq1·r‖

)
ml

(
(v̂ · η2)eiq2·r‖

)
ln

×
[

(ρnn − ρll)
~ω2 − (εl − εn)

− (ρll − ρmm)

~ω1 − (εm − εl)

]
+ {1↔ 2} . (26)

The matrix elements entering the above expression are
given by(

(v̂ · η)eiq·r‖
)
mn

=
1

2
vF
[
(ηx − iηy)sme

iφn

+(ηx + iηy)sne
−iφm

]
δkm,kn+q. (27)

The average of the corresponding Fourier harmonic of
the induced current with the density matrix can be cal-
culated as

J (2)(ω1 + ω2) = −e
∑
mn

(
v̂e−i(q1+q2)·r‖

)
nm

ρ(2)
mn(ω1 + ω2).

(28)

Next, we transform from summation to integration
over k-states, introduce the corresponding occupation
numbers f(s,k) of the momentum states in each band,
apply the momentum conservation in a three-wave mix-
ing process, and take into account spin and valley degen-
eracy. The result is

J (2)(ω1 + ω2) = − e3v2
F

16π2c2~2
A(ω1)A(ω2)∑

sm,sn,sl

∫
d2k

1

(ω1 + ω2)− vF (sm|k + q1| − sn|k − q2|)

×
[
f(sn, |k − q2|)− f(sl, |k|)
ω2 − vF (sl|k| − sn|k − q2|)

− f(sl, |k|)− f(sm, |k + q1|)
ω1 − vF (sm|k + q1| − sl|k|)

]
×
[
(η1x − iη1y)sme

iφ(k) + (η1x + iη1y)sle
−iφ(k+q1)

]
×
[
(η2x − iη2y)sle

iφ(k−q2) + (η2x + iη2y)sne
−iφ(k)

]
×
[
(x̂+ iŷ)sme

−iφ(k−q2) + (x̂− iŷ)sne
iφ(k+q1)

]
+ {1↔ 2} . (29)

This equation can be integrated numerically for any
given geometry of incident fields and electron distribu-
tion. We consider the limit of the Fermi distribution with
a strong degeneracy, direct all in-plane photon wave vec-
tors along x-axis, and expand the integrand in Eq. (29)

in powers of q1, q2. The integral over the term of zeroth-
order in q vanishes, as expected from symmetry. We
will keep the terms linear in q. Also we have to evalu-
ate separately the intraband contribution sl = sm = sn
and all types of mixed interband-intraband contributions:
sm = sn = −sl, sm = sl = −sn, and sn = sl = −sm.
Here we give only the component of the second-order
nonlinear conductivity tensor which gives the main con-
tribution to the signal:

σ(2)
xyy(ω1 + ω2;ω1, ω2) = −s(εF )

e3v2
F

2π~2

1

ω2
1ω

2
2(ω1 + ω2)

× 1

(ω2
1 − 4v2

F k
2
F )(ω2

2 − 4v2
F k

2
F )((ω1 + ω2)2 − 4v2

F k
2
F )

×
[
4(vF kF )2ω1ω2(ω1 + ω2)2(q1ω

2
2 + q2ω

2
1)

+ 4(vF kF )4(q1ω
4
2 − (6q1 + 4q2)ω1ω

3
2

− 8(q1 + q2)ω2
1ω

2
2 − (4q1 + 6q2)ω3

1ω2 + q2ω
4
1)

− 16(vF kF )6(q1ω2(ω2 − 2ω1) + q2ω1(ω1 − 2ω2))
]
.

(30)

Here s(εF ) = ±1 depending on whether the Fermi level
is in the conduction or valence band. The result for the
difference frequency can be obtained from Eq. (30) by
flipping the sign of ω2 and q2.

After converting the nonlinear conductivity to the non-
linear susceptibility according to

χ
(2)
ijk(ω1 + ω2;ω1, ω2) =

iσ
(2)
ijk(ω1 + ω2;ω1, ω2)

ω1 + ω2
,

one can verify that in the absence of dissipation all com-
ponents of the nonlinear susceptibility tensor that we
calculated satisfy permutation relations originated from
symmetry properties; see e.g. Ch. 2.9 in [20]:

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jik(−ω1 = −ω3 + ω2)

= χ
(2)
kji(−ω2 = −ω3 + ω1), (31)

where in-plane wave vectors have to be permuted to-
gether with frequencies.

The second-order response goes to zero when the Fermi
energy εF goes to zero, and is maximized when one of the
three frequencies involved in three-wave mixing is close
to 2εF /~ = 2vF kF . Close to resonance with 2εF /~ one
has to include the imaginary part of the frequency which
comes from the omitted relaxation term −γρmn in the
density-matrix equations. This amounts to substituting
ω1 → ω1 + iγ1, ω2 → ω2 + iγ2, ω1 + ω2 → ω1 + ω2 +
iγ3. Note that if we flip the sign of ω2 the sign of +iγ2

remains the same. If dissipation is included, one cannot
use permutation relations Eq. (31) and has to evaluate

each component of χ
(2)
ijk independently.
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B. A coupled oscillators model for the parametric
gain

The instability condition Eq. (16) can be easily inter-
preted and understood within the classical model of two
parametrically coupled oscillators. Consider a classical
pump beam of amplitude Ep and ωp incident on a non-
linear 2D layer in vacuum. The pump field decays into
a surface plasmon field within a unit area As = 1 and
an idler photon field at frequency ωi within a volume of
a cylinder of length l oriented at an angle θi with re-
spect to the normal to area As. In this mean-field zero-
dimensional (0D) model one can derive the following cou-
pled differential equations for the complex amplitudes of

the plasmon and idler fields:

∂Es
∂t

+ γsEs = iζsEpE
∗
i , (32)

∂E∗i
∂t

+ γiE
∗
i = −iζ∗i E∗pEs, (33)

where

ζs =
1

2
χ(s,2)
xyy

[
Re

(
∂χs
∂ω

)]−1

,

ζi =
π

l cos θi
ωiχ

(i,2)∗
yyx ,

γi = c/l is the effective decay rate of the idler field in the
0D model. Equations (32) and (33) have an exponen-
tially growing solution for both parametrically coupled
waves [21] if Re(ζsζ

∗
i )|Ep|2 > γsγi, which coincides with

Eq. (16), if we use Eq. (6) and assume n2 = n1 = 1.
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