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Abstract

Background: Vascular pathology and dysfunction are direct life-threatening outcomes resulting from atherosclerosis or
vascular injury, which are primarily attributed to contractile smooth muscle cells (SMCs) dedifferentiation and proliferation
by re-entering cell cycle. Increasing evidence suggests potent protective effects of G-protein coupled estrogen receptor 1
(GPER) activation against cardiovascular diseases. However, the mechanism underlying GPER function remains poorly
understood, especially if it plays a potential role in modulating coronary artery smooth muscle cells (CASMCs).

Methodology/Principal Findings: The objective of our study was to understand the functional role of GPER in CASMC
proliferation and differentiation in coronary arteries using from humans and swine models. We found that the GPER agonist,
G-1, inhibited both human and porcine CASMC proliferation in a concentration- (1028 to 1025 M) and time-dependent
manner. Flow cytometry revealed that treatment with G-1 significantly decreased the proportion of S-phase and G2/M cells
in the growing cell population, suggesting that G-1 inhibits cell proliferation by slowing progression of the cell cycle.
Further, G-1-induced cell cycle retardation was associated with decreased expression of cyclin B, up-regulation of cyclin D1,
and concomitant induction of p21, and partially mediated by suppressed ERK1/2 and Akt pathways. In addition, G-1 induces
SMC differentiation evidenced by increased a-smooth muscle actin (a-actin) and smooth muscle protein 22a (SM22a)
protein expressions and inhibits CASMC migration induced by growth medium.

Conclusion: GPER activation inhibits CASMC proliferation by suppressing cell cycle progression via inhibition of ERK1/2 and
Akt phosphorylation. GPER may constitute a novel mechanism to suppress intimal migration and/or synthetic phenotype of
VSMC.
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Introduction

Vascular smooth muscle cells (VSMCs) constitute the major

structural component of the vasculature, and are crucial to

maintaining vessel tone, blood pressure, and blood flow. Adult

VSMCs retain remarkable plasticity, and can undergo profound

and reversible phenotypic changes in response to local environ-

mental stimuli. Normally, VSMCs exhibit a ‘‘contractile’’ or

differentiated phenotype characterized by the expression of

specific contractile markers (e.g., myosin heavy chain and a-actin)

[1]; however, injured VSMCs dedifferentiate and re-enter the cell

cycle with an increased rate of proliferation and migration.

Further, expression of myosin heavy chain and a-actin is

decreased in the proliferative stage. This dedifferentiated pheno-

type plays a major pathophysiologic role in the development of

atherosclerosis, restenosis after angioplasty, and hypertension [2].

Estrogen (17b-estradiol or E2) lowers the risk of cardiovascular

disease in women [3], and inhibits VSMC proliferation following

injury [4–10]. Interestingly, the anti-proliferative action of E2

persists in ERa-deficient, ERb-deficient, or ERa/ERb-double-

knockout mice [11–13]. Thus, the anti-proliferative effect of E2

may involve a novel ER protein. The recently discovered G

protein-coupled estrogen receptor 1 (GPER) is a seven transmem-

brane-domain G protein receptor structurally unrelated to ERa or

ERb, binds E2 with high affinity, and mediates estrogenic

signaling [14,15]. The selective GPER agonist, G-1, lowers blood

pressure in either normotensive [16] or mRen2. Lewis hyperten-

sive rats [17], whereas GPER gene knockout female mice exhibit

increased blood pressure–presumably due to increased total vascular

resistance associated with arterial wall remodeling [18]. In addition,

G-1 improves functional recovery from myocardial ischemia-

reperfusion by reducing post-ischemic contractile dysfunction and
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infarct size [19]. Thus, GPER is a potential mediator of estrogen

action on coronary arteries, but whether GPER plays a role in

coronary artery smooth muscle cell (CASMC) proliferation is

unknown.

In the present study, we demonstrate that G-1 inhibits serum-

induced VSM proliferation in both human and porcine coronary

arteries, and have characterized downstream signaling events. We

have also investigated the effect of G-1 on the re-differentiation

and migration of CASMC. Our data provide new insight into the

mechanisms of estrogen receptor signaling in VSMC, and reveal

GPER to be a target for the development of therapeutic strategies

in vascular diseases.

Materials and Methods

Reagents
Recombinant human PDGF-BB was purchased from Sigma

Company. G-1 was purchased from Cayman Chemical Company

and dissolved in DMSO, and the concentration of DMSO was less

than 0.05% in the control and drug-containing medium.

Isolation of porcine CASMCs and culture of porcine and
human CASMCs

Porcine hearts were obtained from and permitted by local

abattoirs, K&C meat processing. Coronary arteries were dissected,

and CASMCs were enzymatically dispersed [20]. Primary

cultured porcine CASMCs (PCASMC) and human CASMCs

(HCASMC, Cascade Biologics, C-017-5C) were maintained in

Medium 231 with Smooth Muscle growth Supplement (SMGS)

(GIBCO USA), 100 mg/ml penicillin and 100 mg/ml streptomy-

cin. Cell cultures were kept at 37uC and under 5% CO2 in a

humidified incubator. CASMCs were cultured to 80% confluence,

and we employed passage 2–3 for porcine CASMCs or passage 6–

8 for human CASMCs.

Cell proliferation assay
CASMCs were seeded onto 6-well plates (16105 cells per well)

for 24 h for attaching and then serum-deprived in phenol red free

MEMa medium (GIBCO USA) for 72 h before treatment with

G-1 or PDGF-BB (10 ng/ml) with 10% Charcoal Stripped FBS

(FCS) (GIBCO USA). Cell proliferation was determined by daily

counting the number of cells in triplicate.

Cell cycle progression analysis
Cell cycle progression assay was performed by RNase staining

followed by FACS (fluorescence-activated cell sorter) analysis.

Distribution of CASMCs cells in the cell cycle was determined by

flow cytometry of propidium iodide-stained nuclei as described by

Odenlund et al [21]. Briefly, flow-cytometric DNA analysis was

performed in a FACS Calibur flow cytometer equipped with data

acquisition capability.

Cellular migration analysis
Analysis of cellular motility/migration was carried out using

Culture-Inserts ready to use in a m-Dish 35 mm (ibiTreat, item #:

81176, IBIDI), which allows performing high resolution micros-

copy in a 35 mm Petri–dish with 12 mm walls. PCASMCs were

seeded in Medium 231 with SMGS (GIBCO USA), 100 mg/ml

penicillin and 100 mg/ml streptomycin. When cells reached 100%

confluence, the inserts were taken out and a 500 mM gap was left

in each dish. Cells were then grown in fresh control media, or

media+drug treatment (e.g., G-1 or G-1+G-15), and cells were

allowed to migrate for 48 h. Images were collected with a Stallion

Digital Imaging workstation (Carl Zeiss) equipped with a HQ

CoolSnap camera (Photometrics) and a 56objective. Five images

per treatment were collected before and after 48 h following

removal of the inserts. Within a specific image five different

distances were measured from the edge marked by a dotted black

line. Data collected represent the mean distance traveled from the

edge.

Western blot analysis
After human CASMCs (16105) were cultured in a 6 cm

diameter dish for 48 h, they were starved in serum-free medium

for another 48 h. Cells were then treated with G-1 (1 mM, from

Calbiochem) and PDGF-BB (10 ng/ml, from Sigma-Aldrich

Corporation). For cell cycle protein extracts, cells were starved

in serum-free medium for 72 h before G-1 treatment. Harvested

cells were disrupted, and the protein concentration was deter-

mined using BCA assay according to the manufacturer’s

instructions. Proteins were detected with the following antibodies:

anti-cyclinB1 (sc-7393 Santa Cruz, 1:200), anti-cyclin D1 (sc-

20044 Santa Cruz, 1:200), anti-p21 (sc-6246 Santa Cruz, 1:100),

anti-pERK1/2 (No. 9101s Cell Signaling, 1:1000), anti-pAKT

(No. 4060s Cell Signaling, 1:1000), anti-a-actin (ab5694 Abcam,

1:4000), anti-SM22a (ab14106 Abcam, 1:5000), anti-b-actin

(ab8227 Abcam, 1:1000), or anti-GAPDH (sc-25778 Santa Cruz,

1:1000). After chemiluminescence detection (EMD Millipore,

Billerica, MA, USA), Image J software was used for data analysis.

The experiments were replicated three times.

Immunocytochemistry
Human and porcine CASMCs seeded on 12 mm glass

coverslips placed in 6 well plates were serum-deprived for 48 h,

and then treated for 1–2 days with vehicle, SMDS, or G-1in

phenol red free MEMa medium. Cells were then fixed in 10%

buffered formalin for 10 min, washed twice with PBS, and

permeabilized in 0.2% Triton X-100 and PBS for 10 min.

CASMCs were washed twice with PBS, and incubated with 4%

BSA-PBS for 1 h, then with anti-a-actin antibody overnight at

4uC and incubated with FITC-conjugated anti-rabbit IgG

antibody (PA1-29388 Thermo Scientific Pierce) for 1 h at room

temperature in darkness. After three washes with PBS, the

coverslips were mounted for imaging.

Transfection of siRNA
Human CASMCs were transfected in 6- or 12-well dishes at

30–60% confluence with 75 nM siRNA using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions. The cells

were studied 48 h after transfection. Transfected cells were then

treated with G-1(10 nM or 1 mM) for 48 h. For determination the

effect of silencing GPER on decreased PCNA expression and cell

morphology change caused by G-1 treatment, immunocytochem-

istry was carried out as described above. For determination of

silencing efficiency, Western blotting was performed and mem-

brane was probed with GPER antibody.

Statistics analysis
Data are presented as means 6 standard deviation (SD) and

analyzed with Prism program (GraphPad Software Inc., San

Diego, CA). One-way or 2-way analysis of variance (ANOVA)

followed by Tukey’s multiple comparison test paired with repeated

measures were carried out for statistical analysis as appropriate. P

values less than 0.05 were regarded as statistically significant.
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Results

GPER activation reduces CASMC proliferation
We examined the action of GPER in controlling both primary

human and porcine CASMC proliferation. Human CASMCs

(passage 6–8) treated with G-1 displayed reduced cell growth

(Figure 1A), for example, treating cells with 1 mM G-1 for 24 h

reduced cell growth by 26%. In contrast, the pro-proliferative

agent platelet-derived growth factor (PDGF-BB, 10 ng/ml, 24 h

treatment) increased cell number by 22%. These results indicate

that activation of GPER by G-1 represses cell proliferation of

human CASMCs.

The suppressive effect of G-1 on CASMCs was further

investigated by analyzing cell cycle progression (Figure 1;

table 1–3). Cells were cultured in 10% FCS after synchronization.

G-1 (1025 M) significantly decreased the proportion of human

CASMCs in phases S and G2/M by 58.76% and 44.75%

respectively after 48 h treatment (G-1 vs control, P,0.05, n = 3;

Fig. 1B, 1C). The addition of 10 ng/ml PDGF-BB in 10% FCS

medium clearly stimulated cell growth with a marked increase in

the cell proportion of S phase and G2/M cells at 48 h (Figure 1B,

1D; table 1). Although data indicated a clear trend for 1 mM G-1

48 h treatment lowering the proportion of stimulated cells in

G2/M phase, this effect did not reach statistical significance

compared to controls (Figure 1B, 1D). The relative higher passage

of the human CASMCs might have contributed to the lesser

effectiveness of G-1 on the addition of PDGF-BB in 10% FCS

compared to 10% FCS alone stimulated cell growth.

Swine models of coronary dysfunction are similar to those of

humans in response to injury or pathophysiological conditions

[22]. Therefore, we also employed primary porcine CASMCs and

tested for GPER activation at a low passage (p2) (Figure 1E–1H;

table 2–3). Compared to human CASMCs, the anti-proliferative

effect of G-1 on porcine CASMC was more robust. Treatment

with G-1 (1027, 1026, or 1025 M) alone significantly decreased

the proportion of S phase cells at 24 h and G2/M-phase cells at

48 h, while increased accumulation of cells at G0/G1 phase.

Furthermore, G-1 significantly suppressed 10% FCS plus 10 ng/

ml PDGF-BB-induced cell proliferation, as evidenced by a marked

decrease of cell population in S phase (p,0.01, n = 4). These data

indicate that G-1 significantly inhibits the proliferation of porcine

CASMCs by slowing down the progression of the cell growth cycle

from G0/G1 to S and G2/M-phase. Together with the data from

human CASMCs, these data suggest that G-1-activated GPER

can inhibit proliferation by controlling cell cycle progression in

CASMCs in a concentration- and time-dependent manner.

GPER activation represses cell cycle progression by
inducing expression of p21 in human and porcine
CASMCs

There is increasing evidence for a critical role of the cyclin-

dependent kinase inhibitor (CDK-I) p21 in repressing VSMC

growth [23,24]. Accordingly, we examined whether p21 and other

cell cycle regulatory molecules (i.e., the G1-phase–specific cyclin

D1, and the G2/M-phase–specific cyclin B1) are involved in anti-

proliferative effects of GPER. Human CASMCs growth was

synchronized by 3-day serum deprivation, and then cells were

treated with 1 mM G-1 in 10% FCS. Cells were collected at 6, 24,

48, or 72 hours for immunoblot analysis (Figure 2A and 2B).

Immunoblot studies revealed that p21 proteins were up-regulated

in G-1-treated cells at all-time points compared to vehicle-treated

cells (Figure 2B). Unexpectedly, G-1 treatment increased cyclin D1

level (Figure 2B), but almost completely prevented cyclin B1

accumulation (Figure 2B). These data indicate that GPER

activation by G-1 treatment accumulates cell population in G1

phase, but hinders the cell cycle from entering G2/M phase.

We then tested these effects of G-1 on porcine CASMCs. The

protein levels of cell cycle regulatory molecules were examined at

24 and 48 hours by immunoblot analysis (Figure 2C and 2D). As

expected, PDGF-BB clearly up-regulated expression of both

cyclins D1 and B1, while p21 expression was down-regulated

compared to controls (Figure 2D), further confirming the cell cycle

accelerating effect of PDGF-BB in CASMCs. G-1, on the other

hand, not only increased p21 expression and nearly prevented

Figure 1. Reduced proliferation and delayed cell cycle progression of G-1 treated CASMCs cells. A: Cell proliferation curves of G-1 and/or
PDGF-BB treated HCASMC cells. CASMCs were synchronized by 3 days of culturing in serum free and phenol red-free DMEM medium. Then 10% fetal
calf serum (FCS) was added into medium and cells were counted manually with trypan-blue method (trypan-blue method of exclusion). B, E and G:
HCASMC (B) and PCASMC (E, G) cell cycle distribution was determined by propidium iodide staining of DNA content and flow cytometry. After
synchronized, 10% FCS was added and cells were treated with vehicle as control (C); G-1 (G, 1028–1025 M); 10 ng/ml PDGF-BB (P) or 1 mM G-1 plus
10 ng/ml PDGF-BB (G+P) at 24 or 48 hours. Twenty-thousand cells per sample and three replicates per group were collected. Representative
histograms are shown in C (G-1 concentration response); D, G+P, 1 mM G-1 plus 10 ng/ml PDGF-BB, for 48 h treatment of HCASMC; F, 24 hour
treatment and H, 48 hour treatment of PCASMC with 1 mM G-1 plus 10 ng/ml PDGF-BB. Representative histograms are shown as the mean 6SD
(n = 3), a significant difference is indicated by either *p,0.05; ** p,0.01 or ***p,0.001, one-way or two-way ANOVA.
doi:10.1371/journal.pone.0064771.g001

Table 1. The effect of G-1 treatment on human CASMCs for 48 hours.

G0/G1 S G2/M

Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%)

Control 82.27+5:58 9.82+3:96 7.91+1:64

G 1028 84.58+1:68 2.81 9.00+1:58 28.35 6.42+1:00 218.84

G 1026 85.03+2:81 3.26 6.64+1:76 232.38 8.33+1:10 5.31

G 1025 91.58+1:80 10.95 4.05+0:58 258.76 4.37+1:39 244.75

PDGF 79.77+2:46 22.96 7.78+2:47 220.77 12.45+2:2 57.40

G1026+P 72.27+9:41 212.54 9.78+4:10 20.41 11.90+1:87 50.44

doi:10.1371/journal.pone.0064771.t001
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cyclin B1 accumulation at both 24 and 48 hours (in the presence

of 10% FCS), but also inhibited the effects of PDGF-BB on p21

and cyclin B1 in a similar concentration-dependent manner

(Figure 2D). However, the effect of G-1 on PDGF-BB-induced

cyclin D expression was not significant (Figure 2D). Taken

together, our results demonstrate that G-1 blocks cell cycle

progression in late G1 phase before cyclin D1 degradation occurs

and before cyclin B1 accumulates.

GPER activation decreases phosphorylation of AKT and
ERK1/2

To understand the pathways that mediate GPER activation

regulated cell proliferation, we next examined the effects of G-1 on

extracellular signal-regulated protein kinases (ERKs)-1 and 2

(ERK1/2) and Akt – two signaling systems that powerfully impact

cell proliferation in breast and prostate cancer cells [25–27]. After

serum deprivation, human CASMCs (passage 7–8) were treated

with 10 ng/ml PDGF-BB for the indicated times (total period of

60 minutes) in the presence of 10% FCS. Control groups were

treated with vehicle only. PDGF-BB-treated cells showed a

significant increase of phosphorylated Akt and ERK1/2 over

60 min compared to controls (Figure 3A; P,0.05, n = 3). In

contrast, human CASMCs treated with 1 mM G-1 exhibited

decreased phosphorylation of both ERK1/2 and Akt at each time

point, with the exception of p-Akt at 2-minutes, compared to

vehicle-treated controls (Figure 3B).

Because our cell cycle results revealed a stronger G-1 effect in

porcine CASMCs (passage 2) compared to human CASMCs

(passage 7–8), we next tested the effect of G-1 on ERK1/2 and Akt

phosphorylation induced by 10% FCS or 10% FSC plus 10 ng/ml

PDGF-BB in porcine CASMCs. G-1 (1027–1025 M) inhibited

FCS-induced phosphorylation of ERK1/2 and Akt in a concen-

tration-dependent fashion. Moreover, G-1 inhibited the enhanced

phosphorylation of Akt and ERK induced by the addition of

10 ng/ml PDGF-BB in 10% FSC medium (Figure 3C). These

results demonstrated that the inhibitory effects of GPER activation

by G-1 in CASMCs are mediated by suppressing ERK1/2 and

Akt activation.

G-1 stimulation changes CASMC morphology by
increasing the protein level of a-Actin and SM22

Several lines of evidence suggest that p21 up-regulation and cell

cycle arrest are necessary for cell differentiation [28,29]. There-

fore, we postulated that G-1 might contribute to SMC differen-

tiation. To test this possibility, we used Smooth Muscle

Differentiation Supplement (SMDS) to induce differentiation of

normal human and porcine CASMCs [30]. After 3-day synchro-

nization, 10% FCS was added to the medium and cells were then

treated with 10 nM or 1 mM G-1. Vehicle-treated SMCs exhibited

a typical SMC morphology: flattened and spindle shaped with

central oval nuclei and long cytoplasmic extensions. Confluent

cells appear aligned in parallel so that the broad nuclear region of

a cell lies adjacent to the thin cytoplasmic area of another forming

a ‘‘hill-and-valley’’ appearance. Cells treated with SMDS

displayed a change in cellular morphology from slender stellate

cells to enlarged rectangular-shaped cells. Furthermore, immuno-

cytochemistry demonstrated increased amounts of smooth muscle

a-actin. A more contractile phenotype and increased a-actin was

Table 2. The effect of G-1 on porcine CASMCs after 24 hour treatment.

24 h G0/G1 S G2/M

Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%)

C 75.15+2:77 20.68+0:49 4.51+0:67

G 1027 69.68+4:17 27.28 20.56+0:92 20.58 5.01+1:53 11.09

G 1026 81.93+0:24 9.02 16.12+1:32 222.05 5.09+0:61 12.86

G 1025 88.43+3:70 17.67 8.88+0:85 257.06 3.84+0:08 214.86

P 54.80+3:48 227.08 33.69+1:48 62.91 12.96+0:33 187.36

G1026+P 56.76+2:60 224.47 24.40+3:20 17.99 13.63+0:27 202.22

doi:10.1371/journal.pone.0064771.t002

Table 3. The effect of G-1 on porcine CASMCs after 48 hour treatment.

48 h G0/G1 S G2/M

Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%) Mean+SD

Change after
treatment (%)

C 65.86+0:16 25.48+1:74 8.66+1:91

G 1027 75.40+0:32 14.49 17.53+0:82 231.20 7.07+1:14 218.36

G 1026 82.42+2:94 25.14 12.66+0:84 250.31 4.92+2:09 243.19

G 1025 85.94+1:56 30.49 9.27+0:75 263.62 4.79+1:00 244.69

P 59.10+0:19 210.26 31.08+0:29 21.98 9.82+0:10 13.39

G1026+P 66.48+0:42 0.94 22.93+1:17 210.01 10.59+0:74 22.29

The numbers in Tables 1–3 are from Figure 1 B–H.
doi:10.1371/journal.pone.0064771.t003
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seen in both G-1-treated groups. Cells showed more enlarged

rectangular or even triangular shaped cells in human CASMCs

(Figure 4, left side two panels). These phenotypic characteristics

were even more pronounced in porcine CASMCs (Figure 4, right

side two panels). After prolonged G-1 exposure some cells

exhibited an increased stacking of a-actin fibers giving the

appearance of a ‘‘bird’s nest’’ shape, and the upper panels of G-

1 (10 nM and 1 mM)-treated human and porcine CASMCs were

selected areas for this ‘‘bird’s nest’’ shape morphology change.

Further, G-1 produced a much greater increase of smooth muscle

a-actin and SM22 a than that of cells treated with SMDS alone

(Figure 5). For example, a-actin expression induced by 10 nM G-1

(2-day treatment, human and porcine CASMCs) was 46.62% and

79.23% greater, respectively, compared to a-actin expression in

SMDS-treated cells P,0.01 (n = 3). Collectively, these data

demonstrate that GPER activation induces a differentiated VSMC

phenotype.

GPER activation inhibits PCNA expression in CASMCs
Proliferating cell nuclear antigen (PCNA) expression increases

as mitogens (such as PDGF) or serum stimulates VSMC

proliferation [31]. In order to determine the effect and specificity

of G-1 on proliferation we knocked-down expression of GPER via

siRNA transfection studies, and then determined the effect of G-1

on PCNA expression and cell morphology in serum-stimulated

human CASMCs. In control cells transfected with non-target

siRNA, 10 nM or 1 mM G-1 clearly decreased serum-induced

increases in PCNA expression, (Figure 6 A, B) and also changed

cell morphology into a more enlarged rectangular shape. In

contrast, G-1 failed to exert an inhibitory effect on PCNA

expression in cells transfected with GPER siRNA, and the effect

on cell morphology was less compared to controls (Figure 6A).

Western blotting confirmed the efficiency of GPER silencing with

siRNA, as GPER expression deceased by 65–69.3% (Figure 6C).

Collectively, these results strongly suggest that G-1 inhibits

CASMC proliferation via a GPER-mediated mechanism.

GPER activation inhibits CASMC migration
Vascular smooth muscle cell migration accompanies prolifera-

tion, and plays important role in the pathogenesis of atheroscle-

rosis or arterial injury. Therefore, we tested the effect of G-1 on

migration of porcine CASMCs. Cells were seeded on 35 mm

dishes with Culture-Inserts, and grown in Medium 231 with

SMGS. When cells reached 100% confluence, the inserts were

removed leaving a 500 mM gap in the growing cell population.

Fresh growth medium was then added to the cells, which were

exposed to different treatment conditions (Figure 7). After a 48 h

incubation, cells from the control group migrated to the center of

the dish, but did not fully cover the gap. 1 mM G-1, however,

completely inhibited cellular migration stimulated by the growth

medium (p,0.05; Figure 7B). Addition of 5 mM G15 to the

growth medium did not affect control cell migration; however, the

inhibitory effect of G-1 on cellular migration was attenuated

significantly by G15 (p,0.05). Collectively these results suggest

that GPER activation inhibits CASMC migration.

Discussion

GPER is a G protein-coupled receptor functioning indepen-

dently from ERa and ERb to regulate cellular and physiological

responsiveness to estrogen [14,30]. To our knowledge, this study is

the first to demonstrate effects of a selective GPER agonist, G-1,

on coronary artery SMC differentiation, proliferation and

migration, and to propose key mediators of this response. Previous

studies indicate that GPER activation promotes cancer cell

proliferation and migration primarily by producing connective

tissue growth factor in a human breast cancer cell line SKBr3

[32,33]. In addition, tamoxifen, an ERa antagonist but GPER

agonist, induces abnormal endometrial thickening and cell

proliferation [34,35]. Expression of both GPER and ERa along

with active EGFR signaling, is required for E2-stimulated and G-

1–stimulated proliferation of ovarian cancer cells [36]. In contrast

to these proliferative effects, activation of GPER by G-1 inhibits

growth of androgen-dependent and -independent prostate cancer

cells in vitro and PC-3 xenografts in vivo [27]. Thus, GPER

functions in a tissue- or cell-specific manner. In blood vessels the

VSM layer is enlarged in arteries from GPER gene knockout

female mice, indicating that GPER helps maintain VSMCs in a

dedifferentiated state [18]. In addition, G-1 reduces serum-

stimulated human umbilical VSMC proliferation [16]. These

findings are consistent with our results of G-1 inhibition of

CASMCs proliferation or migration. Involvement of GPER in

these inhibitory responses to G-1 was substantiated by our

experiments indicating that the effect of G-1 on proliferation

was attenuated in cells expressing GPER siRNA, whereas G-1-

induced inhibition of migration was inhibited significantly by G-

15, a selective GPER antagonist.

E2 inhibits serum-stimulated cell growth of human CASMCs by

57% and arrests PDGF-BB stimulated cell cycle at the G1 phase in

human aortic VSMC [10]. In contrast, we found that G-1 failed to

effectively repress cell cycle progression after 24 hours in human

CASMCs (passage 7–8). However, G-1 (24 hours) effectively

inhibited serum-induced growth of primary CASMC from pig

coronary artery, but failed to inhibit serum plus PDGF-induced

cell growth of these cells. These findings indicate that the anti-

proliferative effect of G-1 on VSM is distinct from that of E2, and

suggest a stronger anti-proliferative effect compared to G-1.

Nonetheless, Haas et al. [16] found that G-1 reduced proliferation

of human umbilical vein SMCs by 60–80%. Interestingly, these

cells lose expression of ERa and ERb in culture, yet retain full

GPER expression. Therefore, it appears that activation of GPER,

like nuclear ER, exerts an anti-proliferative effect on VSM;

however, it appears that when all three estrogen receptors are co-

expressed that the nuclear receptors play the more dominant role

in slowing proliferation. At present, however, potential cross-talk

between GPER and ERa or ERb and signaling events

downstream from GPER activation in VSMC is unknown.

Potential effects of G-1 on downstream signaling events are also

unknown.

Our flow cytometry results indicate that G-1 increases the

number of cells in the G1-phase, and hinders cell cycle transition

into the S phase and G2/M phase. Moreover, G2/M phase-

Figure 2. Effects of G-1 treatment on the protein level of cyclinB1, cyclinD1 and p21 in CASMCs. A and C: Western blot results of
cyclinB1, cyclinD1 and p21 protein levels in human CASMCs (A) and porcine CASMCs (C). CASMCs were synchronized by 3 days of cultivation in
serum-free and phenol red free medium followed by vehicle treatment as control (C); G-1(G, 1027–1025 M); 10 ng/ml PDGF-BB (P); and G-1(1027–
1025 M) plus 10 ng/ml PDGF treatment (GP or P+G) for 24 or 48 hours in the presence 10% FCS. Total cell extracts (16106) were subjected to
Western-blot analyses for cyclinB1, cyclinD1 and p21 level. B and D: Quantitative densitometric analyses of band intensities from 3 independent
experiments. Data are normalized by GAPDH or b-Actin, expressed as the mean6SD (n = 3). A significant difference is indicated by either *(p,0.05);
**(p,0.01) or *** (p,0.001) (one-way ANOVA). Representative histograms are shown.
doi:10.1371/journal.pone.0064771.g002
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Figure 3. G-1 inhibits the phosphorylation of Akt and ERK1/2 in CASMCs. A and B: HCASMCs were cultured in serum and phenol red free
medium for two days followed by PDGF-BB (10 ng/ml) (A) or G-1 (1 mM) treatment (B) for indicated time in the presence of 10% FCS. C: PCASMCs
were cultured in the same medium for two days followed by G-1(1027–1025M); PDGF-BB (10 ng/ml); and G-1(1027–1025M) plus PDGF-BB (10 ng/ml)
treatments for indicated time in the presence of 10% FCS. Total cell extracts (16106) were subjected to Western-blot analyses for Phospho-Akt and
ERK1/2 level. Under the Western blot panels, a quantitative representation of the expression analysis from 3 independent experiments is shown.
Vehicle-treated CASMCs cells were used as control. Data are normalized by b-Actin and expressed as means 6SD (n = 3). A significant difference is
indicated by either **** p,0.0001, *** p,0.001, ** p,0.01 or * p,0.05(one or two-way ANOVA); C, G and P represent control, G-1 and PDGF-BB
treatment sample respectively, ns indicates no significant difference.
doi:10.1371/journal.pone.0064771.g003

Figure 4. Effect of G-1 treatment on cell morphology in cultured CASMCs. Human and porcine CASMCs were incubated in the presence of
either a SMDS or G-1 (1 mM and 10 nM) for 1 and 2 day followed by immunostaining using anti-a-smooth muscle antibody and FITC-conjugated anti-
rabbit IgG secondary antibody (green).
doi:10.1371/journal.pone.0064771.g004
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specific cyclin B1 was strongly down-regulated by G-1. Cell-cycle

progression from the G1-phase of the cell cycle to S phase entry is

tightly regulated by cyclin-dependent kinases and their cyclin-

regulatory subunits. Because cyclin B1 is essential for G2/M phase

transition entry into mitosis, our finding of G-1-induced down-

regulation of cyclin B1 is consistent with an anti-proliferative effect

of G-1 on CASMCs. In addition to cyclin B1, cyclin D1 gene is

frequently overexpressed in VSMC under growth factor stimula-

tion, and its down-regulation has been proposed to be associated

with G1-phase arrest of cell growth [37,38]. Unexpectedly, we

found that expression of G1-S phase specific cyclin D1 was up-

regulated by G-1 in VSMCs. Obviously, cyclin D1 was not involved

in G-1-induced inhibition of cell cycle progression from G1- into

S-phase. This finding seems to differ from a previous report where

17b-estradiol suppressed PDGF-stimulated progression from G1- to

S-phase in human aortic artery smooth muscle proliferation,

possibly by inhibiting PDGF-induced phosphorylation of retino-

blastoma protein (pRb) or by reducing cyclin D1 expression [10].

Therefore, GPER may function differently from ERa and ERb:

GPER does not mediate inhibition of cyclin D1 expression nor pRb

phosphorylation in VSMC. Although G-1-induced up-regulation of

cyclin D1 is unexpected, it is not surprising as studies have shown

that cell differentiation can be promoted by up-regulation of cyclin

D1 and p21 [28].

The re-differentiation process of synthetic VSMC is coupled to

withdrawal from the proliferation cell cycle, and we examined how

G-1 affects smooth muscle cell differentiation marker protein

expression in both porcine and human CASMCs. Differentiation

induced by SMDS [39,40] changed cellular morphology from

slender stellate cells to enlarged rectangular shaped cells, and

Figure 5. Effect of G-1 treatment on the protein level of a-smooth muscle actin and SM22a in CASMCs. A and D: changes of a-smooth
muscle actin and SM22a protein in SMDS and G-1 treated human (A) and porcine (D) CASMC. Expression of a-smooth muscle actin and SM22a
protein were determined by immunoblot analysis. SM22a and a-smooth muscle actin were increased in G-1 treated cells in a concentration and time-
dependent manner. SM22a and a-smooth muscle actin expression was quantified by densitometric analysis from 3 independent experiments. Data
are normalized by GAPDH (HCASMC) and b-Actin (PCASMC), expressed as the mean 6SD (n = 3). *P,0.05, **P,0.01 vs control (one-way ANOVA).
Representative histograms are shown in B, C and E, F.
doi:10.1371/journal.pone.0064771.g005
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Figure 6. Down-regulation of GPER reverses the decreased expression of PCNA and cell morphology changes caused by G-1. (A)
HCASMC cells transfected with non-targeted siRNA or GPER siRNA were incubated with G-1 (1 mM or 10 nM) for 48 h, followed by immunostaining
using anti-PCNA antibody and FITC-conjugated anti-rabbit IgG secondary antibody (green). Cells were then stained by acti-stainTM555 Fluorescent
phalloidin for F-actin to reveal cell morphology. Slides were mounted with ProLong Gold anti-fade regent with DAPI (Invitrogen Life Technologies,
Gaithersburg, MD, USA) for imaging. (B) The expression of PCNA were presented as mean fluorescence intensities 6 S.E. of at least 50 cells collected
from at least 5 random areas per sample and were analyzed statistically by ANOVA followed by Tukey’s multiple comparison test. *Indicates
significant difference from control at p,0.05. (C) GPER protein levels were measured by immunoblotting in siRNA-transfected cells 48 h following
transfection.
doi:10.1371/journal.pone.0064771.g006
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VSMC a-actin content was clearly increased, as predicted.

However, G-1 exerted an even stronger effect than SMDS on

cell morphology and a-actin expression in both human and

porcine CASMCs. Collectively, these data certainly demonstrate

that GPER activation induces VSMC differentiation phenotype

and repression of cell cycle progression. The mechanism of how

this repression is coupled to re-differentiation is beyond the scope

of the present study, but evidence suggests that increased p21 and

cyclin D1 expression is correlated with differentiation of various

cell types [29,41,42]. We found increased expression of p21 and

cyclin D1 as early as 6 hours after exposure to G-1, and this effect

persisted up to 72 hours – an effect which correlated with

increased expression of VSMC a-actin and SM22 a at the first and

second day of CASMCs exposure to G-1. Taken together, these

findings suggest that G-1-induced CASMC differentiation is

related to greater expression of p21 and cyclin D1.

GPER has been shown to modulate ERK1/2 and Akt activity,

which is dependent upon trans-activation of the epidermal growth

factor (EGF) receptor via release of heparin-bound EGF (HB-EGF)

in breast cancer cells [25]. We found that although phosphorylation

levels of ERK1/2 and Akt in human and porcine CASMCs

fluctuated somewhat over time, the overall effect of G-1 was to

decrease phosphorylation. Pretreating CASMCs with G-1 led to a

significant concentration-dependent decrease in serum-stimulated

ERK1/2 and Akt phosphorylation. Apparently, GPER exerts a

negative effect on ERK and Akt signaling in the presence of

mitogens in CASMCs. This finding is consistent with studies by

Filardo et al. [26] where GPER activation stimulated adenylyl

cyclase activity in breast cancer cells and suppressed EGF-induced

ERK1/2 activity. Whether cAMP signaling is involved in the G-1

effect on ERK1/2 activity in the CASMCs is an ongoing

investigation in our laboratory. The present study provides new

evidence that GPER plays an important role in regulating coronary

artery smooth muscle growth, and promotes re-differentiation and a

contractile phenotype in these cells. Furthermore, we propose

GPER as a novel therapeutic target to prevent coronary artery

dysfunction.
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