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Abstract

We identified an amino acid change (p.G92E) in the Bone Morphogenetic Protein antagonist NOGGIN in a 22-month-old boy
who presented with a unilateral brachydactyly type B phenotype. Brachydactyly type B is a skeletal malformation that has
been associated with increased Bone Morphogenetic Protein pathway activation in other patients. Previously, the amino
acid change p.G92E in NOGGIN was described as causing fibrodysplasia ossificans progressiva, a rare genetic disorder
characterized by limb malformations and progressive heterotopic bone formation in soft tissues that, like Brachydactyly
type B, is caused by increased activation of Bone Morphogenetic Protein signaling. To determine whether G92E-NOGGIN
shows impaired antagonism that could lead to increased Bone Morphogenetic Protein signaling, we performed functional
assays to evaluate inhibition of BMP signaling. Interestingly, wt-NOGGIN shows different inhibition efficacies towards
various Bone Morphogenetic Proteins that are known to be essential in limb development. However, comparing the
biological activity of G92E-NOGGIN with wt-NOGGIN, we observed that G92E-NOGGIN inhibits activation of bone
morphogenetic protein signaling with equal efficiency as wt-NOGGIN, supporting that G92E-NOGGIN does not cause
pathological effects. Genetic testing of the child’s parents revealed the same amino acid change in the healthy father,
further supporting that p.G92E is a neutral amino acid substitution in NOGGIN. We conclude that p.G92E represents a rare
polymorphism of the NOGGIN gene - causing neither brachydactyly nor fibrodysplasia ossificans progressiva. This study
highlights that a given genetic variation should not be considered pathogenic unless supported by functional analyses.
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Introduction

NOGGIN (NOG) is a secreted homodimeric protein. The name

originates from the observation that high doses of NOG injected

into Xenopus laevis embryos caused excessive head development [1].

Later it was shown that NOG specifically inhibits activity of Bone

Morphogenetic Proteins (BMPs) and Growth and Differentiation

Factors (GDFs) with different efficacies [2–5]. BMPs were initially

identified as potent bone inducers by Marshall Urist [6]. Today it

is known that BMP function is not restricted to skeletal

development and regeneration, but fulfill essential functions in

several non-skeletal organs including brain, heart, liver, lung,

kidney and skin [7]. BMPs belong to the TGFb superfamily and

bind extracellularly to a heterotetrameric complex of type I and

type II receptors. The signal is transmitted into the nucleus via

phosphorylation of signaling molecules like SMADs, where gene

transcription is activated. A main mechanism controlling the

signaling cascade both spatially and temporarily are extracellular

antagonists like NOG. Analysis of the crystal structure of the

BMP7/NOG complex indicated that NOG inhibits signal

transmission by occluding the receptor binding site [8].

Imbalance between agonists, antagonists and receptors can

result in BMP linked disorders. As NOG is especially important in

bone development and function, NOG mutations are linked to

several skeletal diseases that are characterized either by joint

fusions and/or malformations of the phalanges [9]. Specifically,

NOG mutations are described to cause proximal symphalangism

(SYM1; OMIM #185800), multiple synostosis syndrome (SYNS,

OMIM: #186500), tarsal-carpal coalition syndrome (TCC;

OMIM #186570), stapes ankylosis with broad thumbs and toes

(OMIM #184460), and brachydactyly type B2 (BDB2; OMIM

#611377) as recently reviewed by Potti et al. [10]. All of these

phenotypes are the result of a misregulated BMP signaling

pathway during human skeletal development. BMP signaling is
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also altered in fibrodysplasia ossificans progressiva (FOP; OMIM

#135100), a rare and disabling autosomal dominant disorder

characterized by limb malformations and progressive heterotopic

bone formation that leads to complete ankylosis of nearly all joints

of the axial and appendicular skeleton [11–14]. In 2006, Shore

and colleagues linked FOP to chromosome 2q23-q24 and

identified the underlying genetic cause of FOP: a heterozygous

point mutation in the activin A type I receptor gene (ACVR1), a

BMP type I receptor, in all classically affected individuals

worldwide [15]. It was later shown that the identified missense

mutation in ACVR1 at position c.G617A leading to the amino acid

change p.R206H is an activating mutation [16].

Previous to the identification of ACVR1 mutations in FOP,

defects in the BMP signaling pathway had been hypothesized to be

responsible for FOP as BMPs regulate multiple steps in

development and can induce heterotopic osteogenesis [17,18].

Initially, BMP4 was considered a primary candidate as a disease-

causing gene as it is over-expressed in lesions of FOP patients, in

lymphoblastoid cells and in highly vascular pre-osseous fibropro-

liferative cells [19–21]. However, linkage analysis excluded

chromosome 14, the location of BMP4, and no mutations in

BMP4 could be found in FOP patients [15,22,23]. NOG, a potent

extracellular BMP antagonist, was also considered a candidate

gene for FOP [24,25] since BMP4 is antagonized by NOG and

also up-regulates NOG expression in a negative feedback loop

[2,26].

De novo mutations in the NOG gene in FOP patients were

reported, including the same guanine to adenine substitution at

nucleotide 275 leading to the amino acid change p.G92E that we

identified in our patient [27,28]. In response to such reports of the

involvement of NOG mutations in FOP [29–31], several studies

providing evidence that FOP is not linked to NOG mutations have

also been reported [32–37], establishing an unresolved issue

regarding whether NOG mutations can cause FOP.

NOG activity assays have been successfully established to

investigate the functional activity of NOG mutations in BDB2

patients [38] and are used in this study to evaluate the p.G92E

substitution. Here we provide evidence based on clinical as well as

experimental data that the amino acid change G92E in NOG does

not impair NOG function but represents a polymorphism of NOG.

Results

Patient
The patient of European descent was referred to the

department of clinical genetics at the age of 22 months. He

presented with unilateral atypical brachydactyly type B-like (BDB-

like) of the right hand and a negative family history (Fig. 1).

Clinically, his right hand showed shortening of the 3rd to 5th digits

with a rudimentary finger nail of 4th digit. Missing middle and

distal phalanges and a hypoplastic proximal phalanx of the 4th

finger as well as hypoplastic middle and distal phalanges of digits

III and V were demonstrated by a hand radiograph (Fig. 1A).

Both clinically and radiologically, the left hand did not show any

abnormality. His toes were normal and he had no heterotopic

ossification or any other skeletal features of FOP such as fused and

malformed cervical vertebrae, osteochondromas of the proximal

medial tibias, or short, broad femoral necks [39].

The patient was tested for mutations in two candidate genes for

BDB, ROR2 and NOG. Sequencing revealed no mutation in the

ROR2 gene, but a heterozygous substitution c.G275A, p.G92E in

the NOG gene. Analysis of the healthy parents showed that the

unaffected father also carried this substitution. Patient follow-up at

the age of 4 years revealed that apart from the unilateral

brachydactyly the boy was healthy and did not subsequently show

any signs of FOP.

Structural analysis of p.G92E
The single residue substitution in p.G92E is located within an

apparently highly flexible segment of the human NOG protein

called the polyglycine loop that comprises amino acid residues 89–

95 [8]. Due to the apparent lack of uniform structure and thus lack

of electron density in the computed maps to guide the process, the

polyglycine loop could not be modeled and incorporated into the

crystal structure (1M4U) deposited in the PDB (Fig. 2). NOG is a

dimeric extra-cellular protein that binds to and sequesters the

dimeric signal ligands, blocking recruitment of cell surface

receptors into a heteromeric signaling complex and transduction

of the signal across the membrane. Because the polyglycine loop

projects out into the solvent away from the ligand-binding

interface located on the opposite surface, direct interactions

between the substituted loop and BMP signal ligand are

precluded.

In vitro analysis of G92E-NOG
We investigated the G92E-NOG amino acid change in the in

vitro chicken micromass system to test whether this amino acid

change might alter NOG function and potentially cause

brachydactyly or FOP. Using a previously established assay for

BMP-induced chondrogenesis in micromass cultures [5], we

compared the ability of wt-NOG and G92E-NOG to block the

natural chondrogenesis of the cultures (Fig. 3A). Compared to the

uninfected control, both wt-NOG and G92E-NOG inhibited

chondrogenesis even when using very low virus titers. To assure

that the comparable activity of wt-NOG and G92E-NOG was not

due to differences in protein expression levels in the micromass

cells, we confirmed via western blot that the amount of wt-NOG

and G92E-NOG protein was similar in the cells. The uninfected

control contained no detectable NOG protein (Fig. 3B).

We further investigated the ability of wt-NOG and G92E-NOG

to inhibit the activity of a set of BMPs which are co-expressed

during limb development [40]. G92E-NOG was able to block all

tested BMPs in a comparable, dose dependent manner to wt-

NOG (Fig. 4). Comparison of the levels of inhibition of the BMPs

by NOG showed that Bmp7 had the highest sensitivity. With a

NOG titer of only 1/10 of the BMP titer, Bmp7-induced

chondrogenesis is nearly completely blocked whereas all other

BMPs remain able to induce chondrogenesis at this level of

competition. Both BMP2 and Bmp4 were antagonized efficiently

by both, wt-NOG and G92E-NOG, though less potently than

Bmp7. Of this tested set of BMPs, GDF5 was blocked least

efficiently by NOG but was still able to induce Alcian blue positive

nodules when NOG and GDF5 titers were equal.

Discussion

The clinical relevance of NOG missense mutations in FOP, a

rare but fatal genetic disorder, has been a matter of intense

discussion for nearly a decade [32–37]. Here we provide evidence

based on functional data that the G92E substitution in the NOG

protein does not cause FOP but rather represents a rare neutral

genetic polymorphism.

We identified G92E-NOG in a 22-month-old patient with an

atypical unilateral brachydactyly phenotype and in his healthy

father. Brachydactylies represent a group of skeletal disorders

characterized in general by shortened digits in hand and feet due

to abnormalities in the developmental process of phalanges or

metacarpals/metatarsals [41]. Brachydactyly type B1 (BDB1;

Pathogenic Relevance of Alleged NOG Mutation G92E
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OMIN #113000) is caused by truncating mutations in the ROR2,

whereas BDB2 is the result of mutations in NOG. As the patient

described here presented with unilateral atypical BDB-like

phenotype, sequencing of ROR2 and NOG was performed,

revealing the nucleotide substitution c.G275A in the NOG gene

resulting in the amino acid change p.G92E. A search through the

Human Gene Mutation Database indicated that G92E-NOG is

currently not associated with any type of brachydactyly but with

FOP.

In 2000, Lucotte and colleagues reported a genetic linkage

between NOG and FOP, whereas Xu et al. excluded such a linkage

between NOG and FOP and could not identify mutations of the

NOG gene in a large cohort of FOP patients [35,42]. In addition,

three novel mutations in NOG published by Semonin et al. were

subsequently challenged to be technical PCR errors due to the use

of a nested PCR approach [28,36]. Consequently, the necessity to

present photographs and radiographs of the studied FOP patients

has been emphasized to assure the correct clinical diagnosis and

that the same phenotypes are compared [34]. Upon identification

of heterozygous missense activating mutations in ACRV1 as the

genetic cause of FOP in 2006, additional questions regarding the

validity of NOG mutations in FOP were raised [15,27,30,33,37].

The nucleotide substitution c.G275A in the NOG gene leading

to p.G92E was described for two patients with FOP of Spanish

origin. Of note, one of the patients was also positive for the

p.R206H mutation in ACVR1, raising the question of the

likelihood that two ‘‘pathogenic’’ mutations causing a genetic

disorder as rare as FOP would be found in a single patient [27,28].

Our patient with unilateral atypical BDB-like phenotype and his

healthy farther were positive for the amino acid change c.G275A,

p.G92E in the NOG gene previously described to be a cause of

FOP [27,28]. Neither of these two individuals, the now 4-year-old

boy or his 42-year-old father, showed any clinical features of FOP

whatsoever.

From a structural standpoint, the substitution in p.G92E is

situated in the most flexible portion of the NOG protein, a

segment not interpretable from the electron density maps of the

3D-structure determination [8] (Fig. 2). Unlike much of the

Figure 1. Patient phenotype. X-rays of the patients hands (A) were taken before the operation, at the age of 4 months, showing the unilateral
atypical BDB-like phenotype. Photographs of hands (B) and feet (C) were taken after the surgical correction, at the age of 22 months. Note that the
middle phalanx of the 3rd left toe was removed and implanted as the middle phalanx of the 3rd finger of the right hand in order to stabilize the digit
and improve functionality. The pedigree (D) shows the patient carrying the heterozygous change p.G92E in NOG which he inherited from the healthy
father.
doi:10.1371/journal.pone.0035062.g001

Figure 2. Three-dimensional model of the NOG-BMP7 complex highlighting the unstructured polyglycine loop that harbors the
substitution in p.G92E. NOG-BMP7 complex (PDB: 1M4U) is depicted as a cartoon structure, with monomers of the NOG homodimer in dark in
light green and monomers of the BMP7 homodimer in red and orange with surfaces depicted (A). Labeled residues flank the polyglycine loop, which
is unresolved due to an apparent high flexibility associated with the largely unrestricted chain of residues. The NOG monomers on the left are tilted
slightly into, and the BMP monomers slightly out of, the image plane. The complex in the zoomed view (B) is tilted further in the same direction, as
well as slightly counter-clockwise about the perpendicular axis.
doi:10.1371/journal.pone.0035062.g002

Pathogenic Relevance of Alleged NOG Mutation G92E
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polypeptide of NOG proteins that is required for folding, stability

and complex formation, the polyglycine segment is not conserved

among different species. For example, in dogs the loop is expanded

yet in non-mammals is completely absent [43]. Moreover, the

residue at position 92 is distal to and oriented away from the

ligand-binding interface, consistent with the neutral effect of the

substitution on function as an antagonist.

Further, using experimental assays for BMP signaling, we did

not identify differences between wild-type and mutant NOG

protein to inhibit control chicken micromass cells (Fig. 3). This

observation is in contrast to disease causing NOG mutations like

P35R or R167G, where chicken micromass controls are shown to

be less efficiently blocked compared to the wt-NOG [38].

However, in the same publication of Lehmann et al. some BDB

causing NOG mutations did also not show a loss of inhibitory

activity on chicken micromass control cells, like A36P and P187S.

Hence we expanded our approach to compare the ability of

G92E-NOG and wt-NOG to block chondrogenesis in chicken

micromass cells expressing BMPs/GDFs known to be essential in

limb development. We showed that BMP2, Bmp4, Bmp7 and

GDF5 are blocked by wt-NOG and G92E-NOG comparably in a

dose dependent manner (Fig. 4). As the tested BMPs are all

known to be crucial players during limb patterning, changes in

NOG affinity for these BMPs could have provided an explanation

for the hand phenotype of the patient [5,40]. It should be noted,

that in contrast to previous data, Bmp7 was antagonized very

efficiently by NOG when compared to BMP2, Bmp4 and GDF5

[2]. Furthermore, NOG had been hypothesized to cause FOP

through decreased antagonism of BMP4 since this BMP was found

to be over-expressed in lesions of FOP patients [20]. However, if a

mutation in NOG resulted in FOP due to decreased BMP4

antagonism, this would have been readily apparent in the chicken

micromass system (Fig. 4). As there is no difference in Bmp4

antagonism comparing wt-NOG and G92E-NOG, we can exclude

this path of pathogenicity. The general applicability of chicken

micromass cultures for the evaluation of FOP causing mutations

has been demonstrated as mutations in ACVR1 do result in

changes in BMP signaling which can be monitored in this system

[16].

The absence of differences between G92E-NOG and wt-NOG

in our functional tests supports that the observed unilateral

atypical BDB-like phenotype in our patient is not due to the

polymorphism in NOG. His malformation is more likely caused by

an isolated local disruption of embryonic vessels during early

development. Polygenic or multifactorial developmental distur-

bances rather than single gene germline mutations are thought to

be the cause of many unilateral limb defects, especially with

respect to hereditary monogenic types of brachydactylies as these

generally manifest bilaterally [44]. Furthermore, empirical data

support our interpretation. In the exome sequence variant

database of the Seattle University (http://evs.gs.washington.edu/

EVS) 25 of 10129 alleles (23 of European American origin; 2 of

African American origin) are listed containing the G92E exchange

[45]. This implies a population allele frequency of 1/400. As both

FOP and BDB are rare genetic disorders, it is very unlikely that

G92E-NOG causes either of these diseases. We conclude that the

G92E change in NOG is a polymorphism neither causing BDB

nor FOP.

Our analysis raises important issues with respect to genetic

counseling. Since the G92E amino acid change in NOG is

reported to be pathogenic for FOP in many databases, such as the

Human Gene Mutation Database, parents could be wrongly

informed that their child has a FOP causing mutation when, in

fact, a neutral polymorphism has been identified. In our opinion it

is imperative that this fact becomes common knowledge and noted

in the relevant database, and further that other NOG mutations

described to cause FOP are evaluated through experimental tests.

The necessity of such functional assays for the evaluation of

putatively disease causing mutations was recently underlined by

several studies. For example, genome information of Dr. James

Watson by next-generation sequencing technology identified 20

mutations associated with increased disease risks without becom-

ing manifest in the apparently healthy carrier [46,47]. This notion

was also supported in a larger scale by MacArthur et al. who

Figure 3. Biological activity of wt-NOG and G92E-NOG and protein production in chicken micromass cells are comparable. Chicken
micromass cells were infected with either wt-NOG or G92E-NOG from 1*10e07 viral particles/ml and decreasing to 0.05*10e07 viral particles/ml (A). At
day 5, cells were stained with Alcian blue, and dye concentration quantified spectrophotometrically at 595 nm. Non-infected controls were
normalized as 100% activity. Data shown are taken from a representative experiment performed with 3 replicates each. Error bars indicate standard
deviation. Pellets from cells infected with 1*10e07 viral particles/ml were collected at day 3 from the same chicken micromass experiment to perform
Western Blot analysis (B). Uninfected cells were used as a control. After SDS-PAGE under non-reducing conditions and subsequent Western Blot, NOG
and b-Actin were detected with specific antibodies. For quantification, NOG was normalized to b-Actin. Wt-NOG and G92E-NOG are expressed in
equal amounts in the micromass cultures.
doi:10.1371/journal.pone.0035062.g003

Pathogenic Relevance of Alleged NOG Mutation G92E
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showed that healthy humans carry a high number of putative

complete loss-of-function mutations in protein-coding genes

without phenotypic consequences, suggesting an unexpected high

degree of redundancy in the human genome [48]. It is predicted

that for the majority of human genes a single functional allele is

sufficient to exert the normal function [49]. Considering these

results, functional assays are indispensable to analyze the potential

pathogenicity of a mutation.

Materials and Methods

Ethics statement
Clinical investigations have been conducted according to the

principles expressed in the Declaration of Helsinki. Ethical

approval of the study was given by the ethical board Charité.

Written informed consent for genetic testing was received from all

analyzed individuals or by parents on behalf of their child.

Molecular Analysis of patient and parents
Genomic DNA was extracted from peripheral blood samples by

standard methods. The coding regions of tyrosine kinase-like

orphan receptor 2 gene (ROR2) and NOG as well as the flanking

intronic sequences were amplified by standard PCR protocols.

The primer sequences and PCR conditions for the molecular

testing were previously published (for NOG: [38]; for ROR2: [50]).

PCR products were analyzed on 2% agarose gels. Sequencing was

done using the ABI Prism BigDye Terminator Sequencing Kit

(Applied Biosystems, Foster City, CA, USA) with PCR primers

used as sequencing primers. Products were evaluated on an

automated capillary sequencer (Applied Biosystems 3730, Foster

City, CA, USA). Identified sequence changes were evaluated using

dbSNP135 and the Human Gene Mutation Database (HGMD)

(https://portal.biobase-international.com/hgmd) as a reference.

NOG-BMP7 complex
The image of the three-dimensional structure of NOG-BMP7

complex was produced from the PDB-file 1M4U [8] rendered by

PyMOL Molecular Graphics System, Version 1.2r3pre, Schrö-

dinger, LLC.

Virus preparation
Mouse Bmp4 in RCAS-A was provided by Pip Francis-West

[51], human GDF5 in RCAS-A was previously described [52].

Coding sequences of human BMP2, mouse Bmp7 and human NOG

Figure 4. wt-NOG and G92E-NOG show comparable ability to block BMP targets in the chicken Micromass system. Chicken micromass
cells were infected with 1*10e07 viral particles/ml containing the gene for BMP2 (A), Bmp4 (B), Bmp7 (C) or GDF5 (D). Co-infection was performed
with increasing virus titers of either wt-NOG or G92E-NOG as indicated. At day 5, cells were stained with Alcian blue, and dye concentration quantified
spectrophotometrically at 595 nm. Controls infected exclusively with BMPs were normalized as 100% activity. Data shown are taken from a
representative experiment performed with 3 replicates each. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0035062.g004

Pathogenic Relevance of Alleged NOG Mutation G92E
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were amplified by PCR and cloned into the shuttle vector pSLAX-

13. In vitro mutagenesis for human NOG was performed with the

QuickChange Site-Directed Mutagenesis Kit (Agilent Biotechnol-

ogies, Santa Clara, CA, USA) BMP2, GDF5 and Bmp7 were

cloned into RCAS(BP)A. Wild-type (wt)-NOG and G92E-NOG

were cloned into RCAS(BP)B to allow co-expression of NOG with

different BMPs. Cloning into retroviral vectors, production of viral

supernatant in DF1 cells and concentration of viral particles was

performed as described previously [53]. In short, DF1 cells were

transfected with RCAS retroviral vectors and supernatant

harvested at 3 consecutive days. Viral particles were concentrated

via ultra-centrifugation, followed by determination of viral titer

through infection of DF-1 cells (ATCC: UMNSAH/DF-1 #CRL-

12203) and counting of cells positive for an RCAS specific

antibody.

Chicken Micromass Culture System
Chicken micromass cultures were primary isolated from limb

buds of day 4.5 chicken embryos and performed as previously

described [38]. Cells were plated at a density of 2610e05 cells/

14 ml-drop. Single and co-infections were performed with

concentrated viral supernatants adjusted to 1610e07 infectious

units/ml. To evaluate chondrogenesis, micromass cultures were

fixed and stained with 0.05% Alcian blue. Alcian blue staining was

quantified after extraction with 6 M guanidine-HCl and spectro-

photometically measured at 595 nm.

Western Blotting
Western Blot analysis was performed as previously described

[38] with minor changes: Micromass cells were harvested at day 3

and lysed in lysis buffer (50 mM HEPES, 50 mM NaCl, 10 mM

EDTA, 10% glycerol, 1% Triton, 100 mM PMSF). Immunode-

tection was performed using an anti-NOG antibody (sc-25656,

Santa Cruz Biotechnology, Santa Cruz, CA, USA), and an anti-

Actin antibody (A5441, Sigma-Aldrich, St.Louis, MO, USA) as

primary antibodies. Signals were detected via IRDye labeled

secondary antibodies (IRDye goat anti rabbit 800; IRDye goat

anti mouse 680, LICOR, Lincoln, NE, USA) and quantified using

the Odyssey infrared imaging system (LICOR).
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