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Calorimetric Ionization Detection in the SuperCDMS Experiment

R. Agnese,18 A. J. Anderson,4 M. Asai,8 D. Balakishiyeva,18 R. Basu Thakur,2,19 D. A. Bauer,2,* J. Billard,4 A. Borgland,8

M. A. Bowles,11 D. Brandt,8 P. L. Brink,8 R. Bunker,11 B. Cabrera,10 D. O. Caldwell,15 D. G. Cerdeno,13 H. Chagani,20

J. Cooley,9 B. Cornell,1 C. H. Crewdson,6 P. Cushman,20 M. Daal,14 P. C. F. Di Stefano,6 T. Doughty,14 L. Esteban,13

S. Fallows,20 E. Figueroa-Feliciano,4 G. L. Godfrey,8 S. R. Golwala,1 J. Hall,5 H. R. Harris,12 S. A. Hertel,4 T. Hofer,20

D. Holmgren,2 L. Hsu,2 M. E. Huber,16 A. Jastram,12 O. Kamaev,6 B. Kara,9 M. H. Kelsey,8 A. Kennedy,20 M. Kiveni,11

K. Koch,20 B. Loer,2 E. Lopez Asamar,13 R. Mahapatra,12 V. Mandic,20 C. Martinez,6 K. A. McCarthy,4 N. Mirabolfathi,14

R. A. Moffatt,10 D. C. Moore,1 P. Nadeau,6 R. H. Nelson,1 K. Page,6 R. Partridge,8 M. Pepin,20 A. Phipps,14 K. Prasad,12

M. Pyle,14 H. Qiu,9 W. Rau,6 P. Redl,10 A. Reisetter,17 Y. Ricci,6 T. Saab,18 B. Sadoulet,14,3 J. Sander,21 K. Schneck,8

R.W. Schnee,11 S. Scorza,9 B. Serfass,14 B. Shank,10 D. Speller,14 A. N. Villano,20 B. Welliver,18 D. H. Wright,8 S. Yellin,10

J. J. Yen,10 B. A. Young,7 and J. Zhang20

(SuperCDMS collaboration)

1Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

3Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

5Pacific Northwest National Laboratory, Richland, Washington 99352, USA
6Department of Physics, Queen’s University, Kingston Ontario, Canada K7L 3N6

7Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
8SLAC National Accelerator Laboratory/Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road,

Menlo Park, California 94025, USA
9Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA

10Department of Physics, Stanford University, Stanford, California 94305, USA
11Department of Physics, Syracuse University, Syracuse, New York 13244, USA

12Department of Physics, Texas A&M University, College Station, Texas 77843, USA
13Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain

14Department of Physics, University of California, Berkeley, California 94720, USA
15Department of Physics, University of California, Santa Barbara, California 93106, USA
16Department of Physics, University of Colorado Denver, Denver, Colorado 80217, USA

17Department of Physics, University of Evansville, Evansville, Indiana 47722, USA
18Department of Physics, University of Florida, Gainesville, Florida 32611, USA

19Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
20School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

21Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
(Received 3 October 2013; published 27 January 2014)

SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs),
a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search
results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov
amplification of the ionization energy deposited by particle interactions. The data were collected with a
single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory.
A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new
WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV=c2.

DOI: 10.1103/PhysRevLett.112.041302 PACS numbers: 95.35.+d, 14.80.Ly, 29.40.Wk, 95.55.Vj

Independent astrophysical surveys and cosmological
studies confirm that dark matter constitutes 27% of the
energy density of the Universe (reviewed in [1]). Weakly
interacting massive particles (WIMPs) are one of the
favored particle candidates for dark matter. Theoretical
predictions for WIMP masses, and for WIMP-interaction

cross sections on normal matter, both span many orders of
magnitude. However, WIMPs may elastically scatter off
nuclei with enough energy, and at a sufficient rate, to be
detected by laboratory detectors [2]. Measurements of the
nuclear-recoil energy spectrum by these experiments can
constrain the properties of WIMP dark matter [3–5].
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Some extensions to the standard model of particle
physics predict new stable particles, that could have been
produced in the early Universe, with the properties needed
to explain the current dark matter density [4]. The DAMA
[6,7], CoGeNT [8], CRESST II [9], and CDMS II Si [10]
experiments have reported excesses of events at low
energies compared with their background models, hinting
at the possible existence of low-mass WIMPs. The diffuse
gamma-ray emission from the Galactic center has also been
interpreted as evidence for annihilation of light WIMPs
[11]. There have been several attempts to reconcile these
hints with a low-mass WIMP hypothesis [7,12–15], and
many extensions to the standard model naturally prefer
Oð1–10Þ GeV=c2 dark matter [16–20].
Direct detection of low-mass WIMPs is an experimental

challenge requiring sensitivity to nuclear-recoil energies
≲1 keV. For some technologies, such small energy dep-
ositions are indistinguishable from electronic noise. Those
with a sufficient signal-to-noise ratio are often limited by
backgrounds whose intrinsic rates increase at low energies.
Further, the performance of background-discrimination
techniques tends to degrade at energies near the elec-
tronic-noise level because of resolution smearing. For
WIMPs lighter than ∼10 GeV=c2, there are also nontrivial
systematic uncertainties associated with detector response
[21,22] and the galactic halo model [23].
The SuperCDMS experiment [24] is located in the

Soudan Underground Laboratory (rock overburden equiv-
alent to 2090 m of water) and utilizes the CDMS II
experiment’s infrastructure [25]. SuperCDMS consists of
fifteen 0.6 kg germanium “iZIP” detectors [26–28],
arranged in five towers of three detectors each. Phonon
and charge sensors are interleaved on both faces of the
cylindrical crystals. The total phonon energy deposited in
the crystals is measured by transition edge sensors con-
nected to aluminum collection fins and read out by
superconducting quantum interference devices. During
normal operation, we trigger on phonon signals ≳2 keV
with WIMP sensitivity optimized for the range
10 GeV=c2–10 TeV=c2.
The data described here were collected using a single

iZIP detector operated at 56ð�4Þ mK, in a new mode
(CDMSlite, for CDMS low ionization threshold experi-
ment) that yields significantly better sensitivity to WIMPs
of mass <10 GeV=c2. This mode of operation uses a
relatively high bias voltage across the detector, leading
to a large Luke-Neganov [29–31] amplification of the
phonon signal [32–34]. Any interaction depositing energy
above the 0.6 eV germanium band gap promotes electron-
hole pairs to the conduction band. The number of pairs
(Neh) depends on the energy and type of recoiling particle.
These charge carriers are collected at the two detector
surfaces by applying a bias voltage (Vb). The work done
in drifting the charge carriers, NeheVb, is emitted as
Luke-Neganov phonons [29–31]. Assuming all charges

recombine at the electrodes, the total phonon energy
collected for a given event is a sum of the energy from
primary recoil and recombination phonons (Er) and from
the Luke-Neganov phonons,

ET ¼ Er þ NeheVb: (1)

For electron recoils in Ge, the average excitation energy per
charge pair is εγ ¼ 3 eV. If the phonon energy is calibrated
with respect to electron recoils, then it is labeled in
electron-equivalent units, eVee or keVee.
Normal operation of the iZIP detectors provides excel-

lent event-by-event discrimination against electron-recoil
backgrounds [27], but with relatively high energy thresh-
olds. The CDMSlite operating mode gives a substantial
reduction in energy threshold and improvement in energy
resolution, by using the phonon instrumentation to measure
ionization. However, discrimination between nuclear and
electron recoils via the simultaneous measurement of
phonon and ionization signals was not possible because
of the electric-field geometry used for this first CDMSlite
data set.
The single detector used for this initial CDMSlite result

was selected because of its good electronic noise resolution
and low leakage current through the crystal. The noise
was observed to increase slightly starting at Vb ≳ 60 V
and more rapidly for Vb ≳ 85 V. The operating bias,
Vb ¼ 69 V, was chosen to optimize the signal-to-noise
ratio. The total phonon energy for electron recoils is

ET ¼ Er ×

�
1þ eVb

εγ

�
: (2)

For Vb ¼ 69 V, ET ¼ Er × 24, resulting in a baseline
resolution σ ¼ 14 eVee.
The standard SuperCDMS electronics were not designed

for bias voltages larger than 10 V. For CDMSlite, custom
electronics were implemented that held an entire detector
face at the desired bias voltage. The other face was kept
at ground potential and operated with the standard
SuperCDMS electronics to measure the total phonon
energy. The current hardware cannot read out the biased
face, but both faces are instrumented with phonon absorb-
ers. Thus, the phonon collection efficiency was only half of
the collection efficiency in standard iZIP operation.
The CDMSlite detector was operated for a total of 15.7

live days of WIMP search, with 133Ba gamma calibration
data interspersed throughout. Additionally, the detector was
twice exposed to neutrons from a 252Cf neutron source,
resulting in sufficient activation (70Geþ n → 71Ge) to
determine the energy scale and monitor stability. 71Ge
primarily decays via K- and L-shell electron captures,
yielding 10.36 and 1.29 keVee cascades of x rays and
Auger electrons with total energy equal to the binding
energy of the respective Ga electron shell. The measured
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gain matched the expectation for electron recoils with a
×24 amplification reduced by readout of only one side of a
two-sided detector. There was an ∼8% variation over time,
which is believed to be due to humidity-dependent leakage
currents in the CDMSlite electronics (an offline test
confirmed that changing humidity leads to significant
changes in leakage currents). The 10.36 keVee line was
used to correct for the gain variation and to set the overall
energy scale. Time periods when this line was not intense
enough to monitor the gain, because of the length of time
since the last neutron activation, were removed from this
analysis, removing 3.2 days of live time. Immediately after
biasing the detector, exponentially decaying leakage cur-
rents were observed, with time constants that varied from a
few minutes to tens of minutes. Time periods up of to four
of these time constants were excluded, costing 2.2 days
of live time. After applying these data-selection criteria, the
remaining WIMP-search exposure was 10.3 live days.
A number of event-selection criteria were applied to these

data. Events with time-coincident signals in the muon veto
detectors were removed in this analysis. Multiple-scatter
events, for which at least one other SuperCDMS detector
had reconstructed energy more than 3σ above noise, were
rejected. Electronic glitches, the majority of which cause
multiple detectors to trigger, were removed. A class of small
electronic glitches that triggered only single detectors was
observed. Theseglitch pulses are sharper than phononpulses
originating from particle interactions in the detector, so
events matching a glitch pulse-shape template were also
rejected. Events in which low-frequency noise triggered
were removed by requiring the pulse rise time to be
consistent with those measured during calibration with
ionizing radiation. The combined WIMP detection effi-
ciency for these criteria, calculated from pulse-shape
Monte Carlo simulations, 133Ba calibration data, and ran-
domly triggered events spread uniformly throughout the
physics run, is 98.5% for phonon pulses above 110 eVee.
The trigger efficiency was measured using low-energy

events that passed these event-selection cuts. The efficiency
was calculated with 133Ba calibration events triggered by
another detector and verified with similar events from the
WIMP-search data. Because of the larger available counts,
the calibration data were used to derive the final trigger
efficiency. In this measurement, 50% efficiency was
reached at 108 eVee. Low-frequency noise dominated the
trigger rate below ∼100 eVee, well above the 14 eVee
baseline resolution limit. The analysis threshold was set
to 170 eVee, and the trigger efficiency is 100% at, and
above, this energy. Figure 1 displays the measured spec-
trum up to 12 keVee. The inset in Fig. 1 shows the
combined veto, event-selection, and trigger efficiencies,
with the energy spectrum of WIMP-search events from 0.1
to 1.6 keVee. The spectrum shows two main activation lines
at 1.29 and 10.36 keVee, along with lines corresponding to
cosmogenic activation: 8.98 keVee (68Ga) and 9.66 keVee

(68Zn). No other significant lines were found [35].
Furthermore, the rate under 1 keVee did not increase
significantly after neutron calibration. The spectrum is
relatively flat at low energies; however, the average level
is different above and below the 1.29 keVee line. The
average rate is 5.2� 1 counts=keVee=kg day between 0.2
and 1 keVee, and 2.9� 0.3 counts=keVee=kg day between
2 and 7 keVee. Further precise statements about the energy
spectrum are limited by the low number of counts in the
data presented here.
To use the energy spectrum shown in Fig. 1 to search for

WIMPs, it must be converted to a nuclear-recoil-equivalent
energy scale, with units denoted as keVnr. We do so
assuming 100% charge collection for every event. The
number of charges created by nuclear recoils is smaller than
that for equivalent-energy electron recoils. This “quench-
ing” can be parametrized as a reduction in the number of
charges produced as Neh ¼ EnrYðEnrÞ=εγ , where Y is the
ionization yield, which measures the ionization energy per
recoil energy, and is defined to be unity for electron recoils.
The phonon energy can be converted to a nuclear-recoil-
equivalent energy scale (Enr) using the equation

Enr ¼ Eee

ð1þ eVb
εγ
Þ

½1þ eVb
εγ

YðEnrÞ�
. (3)

The ionization yield is not measured in this experiment,
so a theoretical model is used. The most commonly used
yield model is from Lindhard [3,36], given by the following
formula for a nucleus with Z protons and with atomic
mass A:
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FIG. 1 (color online). Recoil energy spectrum of WIMP-search
events, after application of event-selection cuts. Inset: Low-
energy spectrum in terms of raw counts (blue, solid histogram);
also shown is the analysis efficiency (red, curve). Both are
expressed in keVee. The analysis threshold of 170 eVee is
indicated by the vertical dot-dashed line. The resolution of the
1.3 keV line is 43 eVee (1σ).
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Y½EnrðkeVÞ� ¼ k
gðεÞ

1þ kgðεÞ ; (4)

with gðεÞ ¼ 3ε0.15 þ 0.7ε0.6 þ ε, ε ¼ 11.5EnrðkeVÞZ−7=3,
and k ¼ 0.133Z2=3A−1=2. This gives k ¼ 0.157 for a
germanium target. The constant k is sometimes adjusted
by experimenters to fit measurements. Though other
yield models, including simple power-law fits to data,
have been used elsewhere [8,37], we have carried out our
conversion to nuclear-recoil equivalent using the standard
Lindhard model, as recommended by Barker and
Mei [22]. Under this assumption, the threshold is
841 eVnr, with less than a 1.5% change from the ∼8%
gain drift. The resulting spectrum is shown in Fig. 2 with
examples of expected rates from two WIMP models.
The region of interest used for limiting possible signal
events from light WIMP scatters is between the 170 eVee
analysis threshold and 7 keVee. A 90% C.L. upper limit on
the spin-independent WIMP-nucleon cross section as a
function of WIMP mass is calculated using the “optimum
interval” method [38], using standard assumptions of a
WIMP mass density of 0.3 GeV=c2=cm3, a most probable
WIMP velocity with respect to the Galaxy of 220 km=s, a
mean circular velocity of the Earth with respect to the
Galactic center of 232 km=s, a galactic escape velocity of
544 km=s, and the Helm form factor [3].
As shown in Fig. 3, this analysis limits new WIMP

parameter space for WIMP masses < 6 GeV=c2 and rules

out portions of both the CDMS II Si [10] and CoGeNT [8]
contours. The CDMS II Si results had three WIMP
candidate events in ∼140 kg days, with an expected back-
ground of ∼0.5 events. CoGeNT had an exposure of
∼269 kg days and performed a background subtraction
for their results. These CDMSlite limits were obtained
with a small net exposure of ∼6 kg days, minimal effi-
ciency corrections, and no background subtraction.
It is important to understand the systematic effect on

our results due to possible inaccuracy in the assumed
Lindhard ionization-yield model. The choice of a different
yield model systematically changes the nuclear-recoil
energy scale, and therefore, the interpretation of the data
as a limit on the WIMP-nucleon scattering cross section.
Figure 4 shows the limits recomputed for four different
yield models that bracket the measured data for
germanium [22]. A low-ionization Lindhard-like model
with k ¼ 0.1 and a high-yield model with k ¼ 0.2 are
shown, along with the functional form used by the
CoGeNT collaboration [8], to demonstrate the effect of
this systematic. The effect of the different yield models is
mostly a shift of the limit curve along the WIMP-mass axis.
Thus, for masses above 6 GeV=c2, where the curve is
relatively flat, the effect is rather small. For lighter WIMP
masses, the systematic uncertainty in yield does produce a
noticeable effect on the derived limits.
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FIG. 2 (color online). The efficiency-corrected WIMP-search
energy spectrum is shown in keVnr and compared with expected
rates for WIMPs with the most likely masses and cross sections
suggested by the analysis of CoGeNT [8] (green, upper dashed
curve) and CDMS II Si [10] data (red, lower dashed curve).
Note that the k ¼ 0.157 Lindhard yield model was used to
convert from an electron-equivalent to a nuclear-recoil-equivalent
energy scale. The 170 eVee ionization threshold translates to
841 eVnr (amber dot-dashed line). The 1.3 keVee activation line
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regular (dot dash) [39], CDMS II Ge low threshold (solid) [40],
EDELWEISS II low threshold (dash) [37]; point-contact Ge
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liquid Xenon in red: XENON100 (dot dash) [43], XENON10 S2
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magenta: low threshold reanalysis of CRESST II data (dot dash)
[46], PICASSO (dash) [47]. The contours are from CDMS II Si
(light and dark gray correspond to 68% and 90% C.L. regions,
respectively) [10], CRESST II (blue) [9], DAMA (orange) [6,7],
CoGeNT (pink) [8].
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In conclusion, a very low ionization threshold of
170 eVee was achieved with voltage-assisted calorimetric
ionization detection, which resulted in sensitivity to light
WIMPs. With a small exposure of 6.3 kg days, and without
any background subtraction, new constraints on low-mass
WIMPs were obtained. Further exposure will provide more
information on the backgrounds, which may allow back-
ground subtraction and improve the WIMP sensitivity. The
substantial reduction in background levels planned for the
SuperCDMS SNOLAB [24] experiment would dramati-
cally increase the sensitivity of this experimental mode for
low-mass WIMPs.
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