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1. ABSTRACT 

The Effects of Incorporating Dynamic Data on Estimates of Uncertainty. 

 (December 2003) 

 Shahebaz Hisamuddin Mulla, B.S., MIT, Pune, India 

Chair of Advisory Committee: Dr. Duane A. McVay 

Petroleum exploration and development are capital intensive and smart economic 

decisions that need to be made to profitably extract oil and gas from the reservoirs. 

Accurate quantification of uncertainty in production forecasts will help in assessing risk 

and making good economic decisions. 

This study investigates the effect of combining dynamic data with the uncertainty in 

static data to see the effect on estimates of uncertainty in production forecasting. Fifty 

permeability realizations were generated for a reservoir in west Texas from available 

petrophysical data. We quantified the uncertainty in the production forecasts using a 

likelihood weighting method and an automatic history matching technique combined 

with linear uncertainty analysis. The results were compared with the uncertainty 

predicted using only static data. We also investigated approaches for best selecting a 

smaller number of models from a larger set of realizations to be history matched for 

quantification of uncertainty.  

We found that incorporating dynamic data in a reservoir model will result in lower 

estimates of uncertainty than considering only static data. However, incorporation of 

dynamic data does not guarantee that the forecasted ranges will encompass the true 

value. Reliability of the forecasted ranges depends on the method employed. 

When sampling multiple realizations of static data for history matching to quantify 

uncertainty, a sampling over the entire range of realization likelihoods shows larger 

confidence intervals and is more likely to encompass the true value for predicted fluid 

recoveries, as compared to selecting the best models.  
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CHAPTER I 

1. INTRODUCTION 

 

Overview of the problem 

Petroleum exploration and development are capital intensive and smart economic 

decisions need to be made to profitably extract oil and gas from the reservoirs. Accurate 

quantification of reservoir uncertainty will help us in assessing the risks and making 

good economic decisions such that the outcome is profitable.  

A number of studies, such as the PUNQ-S31-2 studies show that engineers tend to 

underestimate uncertainty of reservoir forecasts. Uncertainty in reservoir modeling arises 

primarily due to lack of data and due to measurement error. Often reservoir engineers 

use statistical techniques for incorporating uncertainty in reservoir models for production 

forecasting. Quantifications of uncertainty are represented with probability density 

functions or standard deviations. Uncertainty estimates Reservoir forecasts have been 

made using just static data,3-4 while others incorporate dynamic data as well. A study 

done by Floris2 lists numerous techniques used for quantifying reservoir uncertainty. 

Background 

Various geostatistical techniques are used to represent the uncertainty in reservoir 

properties in the form of equally probable spatial distributions, or realizations, which 

honor available data. Studies done by Mishra3 and Ballin4 used the uncertainty in static 

data for reservoir performance forecasting. In the Mishra3 study, the uncertainty in 

permeability was modeled by making 50 realizations from available data using Gaussian 

simulation. Their aim was to best select a few realizations from a larger set of 

realizations to predict future performance and at the same time sample the uncertainty in 

all the models. They ranked the realizations based on their volumetric sweep efficiency 

using a streamline simulator. Models with probabilities of 0.9, 0.5 and 0.1 from the  

This thesis follows the style and format of Society of Petroleum Engineers Reservoir 
Evaluation & Engineering.  
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cumulative distribution function curve of volumetric sweep efficiency were selected and 

run using a finite-difference simulator to forecast future performance and quantify 

uncertainty. This study did not consider any dynamic data in its estimates of uncertainty 

is our motivation for our study in which we see the impact on uncertainty after adding 

dynamic data to a model.  

Some studies incorporated dynamic data by history matching but used single models to 

quantify uncertainty. Lepine5 performed a study in which perturbations around a single 

matched model were used for this purpose. This method assumes a linear relationship 

between predicted quantities and reservoir production parameters and neglects model 

error.  The study does not sample the complete parameter space and thus may miss out 

on some of the uncertainty associated with the reservoir.  

When history matching multiple realizations to quantify uncertainty, the best models are 

often used, since history matching multiple models requires a lot of computing time and 

it may not be possible to match all the models as in the Barker1 study, they generated 23 

porosity realizations for a reservoir. After history matching all the models using the pilot 

point technique they selected the 18 best-matched models for uncertainty quantification. 

Using only the best models the authors may not have sampled the complete parameter 

space for quantifying uncertainty. Thus it is possible that they may have underestimated 

the uncertainty. 

Objectives 

The objectives of our study are to  

o Determine the impact of incorporating dynamic data on estimates of uncertainty 

based solely on static data. 

o Determine how to best select a few models from a large set of realizations for 

history matching for the purpose of uncertainty quantification.  
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Brief Outline 

In the remainder of the thesis we describe the two different techniques which were used 

to quantify uncertainty using static and dynamic data and a technique for best selecting 

few models for history matching and quantifying uncertainty. We then describe the 

application of the methodologies to a reservoir in west Texas. We provide and discuss 

the results and finally present our conclusions.  
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CHAPTER II 

METHODOLOGY 

Overview  

Two approaches, an approach using the misfit in the history match and an automatic 

history matching technique that combined the uncertainty in static data with the dynamic 

data, were applied to see the effect of incorporating dynamic data on estimates of 

uncertainty.  

We also investigated sampling techniques for best selecting a few models from multiple 

realizations of static data to history match for quantification of uncertainty. 

Likelihood Weighting Method 

This method uses the misfit in the history match to assign a weighting factor to the 

forecast of each model. The weighting factor is further used in the calculation of 

weighted means and standard deviations of fluid recoveries to quantify uncertainty. The 

resulting distributions are displayed as probability density functions. 

 The objective function (Eq.1) calculates the sum of the differences between the 

observed and simulated values of production variables like oil production, GOR, 

watercut and others. Each difference is normalized by the observed value for the 

variable. To avoid domination by frequently measured variables the normalized 

difference is divided by the number of observations. A weighting factor may be applied 

to the normalized difference on the basis of reservoir engineering judgement; e.g., a 

higher weighting factor may be assigned to water cut to give greater emphasis to 

matching water breakthrough in wells.  
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The misfit is then used to calculate the likelihood (Eq. 2) which indicates the likelihood 

that the particular model is correct. The likelihood increases as the misfit decreases. The 

likelihood are further normalized and applied as weighting factors to the model 

forecasts. Weighted means and standard deviations of future fluid recoveries are 

calculated using Eqs. 3 and 4. Probability distribution functions and cumulative 

distribution functions plots were generated for weighted and unweighted distributions 

and used to determine the impact of adding dynamic data on uncertainty. 
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Automatic History Matching 

In this method we used an automatic gradient-based history matching technique and 

linear uncertainty analysis to estimate the uncertainty in the production variables. An 

automatic history matching module called Simopt6 was used for this purpose. The 

following sections present the theoretical basis for the technology. 5,6 

Objective Function 

Matching of the production data by the reservoir model is accomplished by minimizing 

the objective function given below. 
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The objective function is similar to the one used in the likelihood method. The difference 

is that here the misfit between the observed and simulated values is normalized with the 

measurement error. Weighting factors dw  and diw are used to give weight to the data 

based on reservoir engineering considerations.  The overall measure of a history match is 

expressed using the Root Mean Square (RMS) index (Eq. 7), where f is the objective 

function and m is the total number of observations over which the index is formed. 

Parameterization 

The objective of history matching is to reproduce the observed data by conditioning the 

reservoir model. Since reservoir horizontal permeability was the only uncertain variable 

in our case we adjusted the spatial distribution of permeability to minimize the objective 

function. In history matching parameterization can be done in a number of ways. One is 

to use individual grid blocks, but this approach ends up with a large number of 

parameters. Another way is to use homogeneous regions, which reduces the number of 

parameters. Although there are some limitations with this technique, it is the most 

widely used approach for parameterization. Other methods like the pilot point technique 

are also being used with history matching. Each parameter is assigned a modifier which 

varies normally or log-normally during regression to obtain a history match.  

Optimization Using Gradients 

A number of papers5,7-10 spell out the details of gradient-based history matching. The 

objective function is minimized using an algorithm that changes the uncertain 

parameters and measures how the match between observed and the simulated data 
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changes. Simopt6 does this with the help of the Levenberg-Marquardt algorithm, which 

is a combination of the Newton method and the steepest decent approach. If the current 

vector of the normalized parameter modifier values is denoted by vk, then the algorithm 

estimates the step dvk (µ) that minimizes the objective function as: 

 

)()()( 1 kk vfIHdv ∇+= −µµ .  …………………………………........… (8) 

 

The parameter µ is free and varies such that away from the solution it takes large values 

so that the bias of the step is towards the steepest descent direction, while near the 

solution it takes small values such that the fast convergence rate of the Newton step is 

used. In solving the above equation, first and second derivatives (gradients) of the 

objective function with respect to the normalized parameter modifiers are required. Once 

the gradients are calculated a correlation matrix between parameter regions is used to 

remove anti-correlated regions, which cause problems during regression. The model can 

then be regressed to obtain a history match.  

Linear Uncertainty Analysis 

This technique was used in a study done by Lepine.5 This method proposes that once a 

model is history matched, further prediction in the uncertainty of a reservoir can be done 

by using sensitivity analysis. This method assumes that, once the parameter values are 

obtained that give us an acceptable match, it is possible to perturb these values slightly 

and still have a match that would be considered acceptable. If the perturbations are 

sufficiently small, a linear perturbation analysis can be used to derive confidence 

intervals for future production performance. 

Consider a history matched model in which we matched production data using n 

parameters, v, and want to predict future values of m production values, c. We assume 

the relationship between them is linear and then the confidence interval on the calculated 

values is related to confidence interval on the parameters by  
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vAc ∆=∆ .  .…………………………………………………………… (9) 

 

[ ]
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i
ij dv

dc
A = .  ……………………………………...……………..…… (10) 

 

Assuming v∆ has a normal distribution with mean zero, then c∆ also has a normal 

distribution with covariance matrix 

 

T
vc AACC =  .  …………………………………………………….… (11) 

 

Where Cv is the covariance matrix of the parameters, which is obtained by inverting the 

Hessian matrix for the history period, hence  

 

T
histc AAHC 1−= .  ………..………………………………………….… (12) 

 

The standard deviations of the predicted values are approximated by the square roots of 

the elements of this covariance matrix, that is  

 

)( cc Cdiag=σ .  …………..……………………………………….. (13) 

 

The distribution of the confidence interval for the production values has been assumed to 

have a normal distribution. Thus the standard deviations for the production values can be 

converted into confidence intervals using the confidence coefficient, conf, for the 
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required level (%). This confidence coefficient is determined by solving the equation 

given below. Typical values of confidence coefficient for different confidence levels are 

shown in Table 1. 

 








=
2100

conferflevel .  ……………………………………………...…. (14) 

 

 

 

Table 1: Typical confidence limits 

(Source: Simopt manual) 

 

 

 

 

Hence the confidence interval for the production value is given by  
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Assumptions and Limitations  

The assumptions and limitations in using the linear uncertainty analysis technique are 

listed below. 

• Does not sample the posterior completely. 

• This uncertainty estimation assumes a linear relationship between predicted and 

reservoir model parameters. 

• It neglects model error. 

• Reservoir model parameters are normally or log-normally distributed. 

• Measurement errors are independent and normally distributed with mean zero.  

Due the above limitations in this technique some of the results obtained can have 

significant errors. 

Selection of History Matching Models 

One of the best ways to quantify uncertainty would be to generate many realizations of 

static data, history match all of them, then forecast production with all of the models to 

quantify the uncertainty. However, history matching of multiple reservoir models is time 

consuming. Selecting a few models from a large set of models can save time and money. 

The problem is how to select a subset of models for uncertainty quantification. In the 

literature we have seen that selecting a few best models is sometimes used for 

quantification of uncertainty. The best models may have the best combinations of 

distributions of the various unknown parameters for the reservoir. However using only 

those we may miss some uncertainty associated with the reservoir. Thus we believe that 

the method of using the best models may not be able to capture the uncertainty in all the 

models and other means of sampling must be used to capture the entire range of 

uncertainty present in all the models. In our approach we sampled from a cumulative 

distribution function of the normalized likelihood values (weighting factors) estimated 

from the misfit in the history match (Fig.1). We compared uncertainty estimates derived 
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from selection of the three best models to uncertainty estimates derived from a selection 

of models throughout the likelihood distribution (P90, P50 and P10). 
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Fig. 1: Cumulative distribution function of weighting factors used to select the models for 

history matching 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Reservoir Application 

The above methodology was applied to a synthetic model based on a heterogeneous 

carbonate reservoir, the North Robertson unit located in west Texas. The reservoir has as 

a low matrix porosity of about 10%. It covers an area of 5,633 acres and has 144 active 

producing wells, 109 injection wells and 6 water-supply wells. Sections 326-327 (Fig.2) 

were used for this study. 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig 2: North Robertson Unit map 

327 326
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A simulation grid of 50 x 25 x 12 was used. Each grid block has a length and width of 

262.5 feet.  A thickness map was created using log data from a study done by Idrobo.11 

The thickness (Fig. 3) of the reservoir model used in this study is approximately 1300 

feet. A net-to-gross ratio of 1 was used in the simulation.  

 

 

 

 
Fig. 3: Cross section of NRU reservoir and its thickness 

 

 

 

Permeability-thickness data for 27 producing wells was taken from an earlier study by 

Idrobo11 and used to generate fifty equiprobable permeability realizations using Gaussian 

simulation. Fig. 4 shows the distribution of permeability in the top layer of one of the 

realization models. 
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Fig. 4: Areal view of a model and its permeability distribution in the plan view 

 

 

 

The reservoir was modeled using PVT and relative permeability data (Fig. 5) from the 

SPE 912 test case study.  There are 27 producing wells and 15 injection wells, each 

completed in all twelve layers. The producers operate at a constant oil rate until the 

following bottomhole pressure drops to 500 psi, at which time the operating constraint is 

switched from constant rate to a constant flowing bottomhole pressure of 500 psi. The 

injection wells operate at a constant rate of 4000 stb/day with a maximum pressure of 

8000 psi. The reservoir is at the bubble point pressure of 3600 psi at the start of the 

simulation. There is no gas cap and no OWC in the reservoir. Major drive mechanisms 

are solution-gas drive and water flooding. 

Seven years of observed data were synthetically generated using the fiftieth permeability 

realization. We used cumulative GOR, cumulative oil production, flowing bottomhole 
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pressures and water cut for all 27 producing wells in our objective function to calculate 

the misfits and the weighting factors.  

 

 
Fig. 5: Oil-water relative permeability data used in the model 

(Source: SPE 9 Test case) 

 

 

 

Quantification of Uncertainty (Likelihood Weighting method) 

Our first objective was to determine the effect of incorporating dynamic data on 

estimates of uncertainty. We used the four performance variables to calculate misfits and 

likelihoods using Eqs. 1 and 2. Each forecast was weighted based on how well the model 

matched the production history. Models which poorer matches of the observed data had 

lower weighting factors (Fig. 6). The means and standard deviations for predicted oil and 

recoveries after 30 years of production were estimated using these weighting factors. 
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Fig. 6: Data misfit and the weighting factors for the models show that higher the misfit, lower the 
weighting factor of the model 
 

 

 

We first calculated means and deviations without weighting by likelihood. A mean of 

204 million bbls with standard deviation of 3.6 million bbls is predicted for future oil 

recovery and a mean of 1,161 Bcf with a standard deviation of 98 million scf is predicted 

for gas recovery after 30 years of production.  

For the weighted models, the means and deviations were calculated using Eqs. 3 and 4. 

The weighted models predict a mean future oil recovery of 205 million STB with a 

standard deviation of 0.42 million STB. The mean of future gas recovery is 1,148 Bcf 

with a standard deviation of 13 Bcf after 30 years of production. The uncertainties are 

displayed and compared with pdf plots (Figs. 7 and 8), P90-P10 ranges (Figs. 9 and 10) 

and cdf plots (Figs. 11 and 12) using the means and standard deviations obtained. We 

see that the mean values were close between the two methods, but the unweighted 

models result in much larger ranges of uncertainty.  
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Fig. 7: PDF of cumulative oil recovery using weighted and unweighted models. Values show that the 

weighted models have a lower standard deviation resulting in a lower uncertainty range 
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Fig. 8: PDF of cumulative gas recovery using weighted and unweighted values confirms that the 
weighted models with dynamic data have a lower standard deviation resulting in lower uncertainty 
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Fig. 9: 80 % confidence intervals of cumulative oil recovery using weighted and unweighted values 
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Fig. 10: 80% confidence interval of predicted cumulative gas recovery using weighted and 
unweighted values 
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Fig. 11: CDF of cumulative oil recovery using weighted and unweighted values 
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Fig. 12: CDF of cumulative gas recovery using weighted and unweighted values 
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Table 2 lists the predicted 80 % ranges of oil and gas after 30 years of reservoir life. The 

unweighted models predicted significantly higher ranges. Two significant results can be 

seen from this study. The first is that using only static data for quantification of 

uncertainty results in larger estimates of uncertainty in oil and gas recoveries. When 

dynamic data are incorporated uncertainty estimates are reduced. The second result is 

that incorporation of dynamic data does not guarantee that the uncertainty estimate will 

encompass the true value. The true values for recovery are 201 million STB of oil and 

1,230 bcf of gas. The weighted models did not encompass the true value which may be 

because without history matching none of the models were sufficiently close to the true 

model. This is illustrated in the relatively uniform distribution of misfits and likelihoods 

(Fig. 6). We found that all the uncertainty estimates in this study are relatively narrow 

for fluid recoveries, around 5 % of the future recovery. This is likely attributed to the 

way the realizations were generated. The cumulative fluid productions for all the models 

fell in a narrow range of recovery, resulting in the low ranges of uncertainty.  

 

 
 

Table 2: Uncertainty in predicted oil recovery of models using only static data as compared to 
models in which dynamic data is incorporated (Likelihood Method) 

 80 % Confidence Intervals  

 Models in which 
dynamic data is 

incorporated 

Models using 
only static data 

True value 

Predicted future recovery of 
oil (106stb) 204-205 199-209 201 

Predicted future recovery of 
gas, (1012 scf) 1.13-1.16 1.034-1.28 1.23 
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Best Selection of Models for History Matching  

The second objective was to determine how to best select a few models for history 

matching to quantify uncertainty. Six models were selected from a cdf plot of likelihood 

values (Fig.1). The top three models, corresponding to probability values of P98, P96 

and P94 were compared to sampled models with probabilities of P90, P50 and P10. 

After history matching, we compared the uncertainty in the best models and the P90-P10 

models using linear uncertainty analysis to see which group performed better. 

Parameterization was done using Voronoi regions around the wells. The Voronoi region 

for a well is the set of blocks closer to the well than to any other wells. A total of 167 

regions (Fig.13) were defined with each region extending over 3 layers of the reservoir. 

Since the reservoir is isotropic, combined X-Y permeability modifiers were regressed on 

to obtain a history match.  

 

 

 

 
Fig. 13: Voronoi regions used for regression to obtain a history match 

 



 

 

23

In this study we history matched cumulative oil production, cumulative GOR, flowing 

bottomhole pressures and watercut for a period of 7 years for all 27 producing wells. 

Measurement errors of 0.1 in watercut, 1 Mscf/stb in GOR, 100 psi in pressure and 200 

STB for oil production were assumed. A weighting factor of unity was applied to all data 

and no ‘a priori’ information was used in the objective function. Starting with the 

original permeability distributions of the models, which were generated using Gaussian 

simulation, we first estimated the misfit (RMS) for the model. After calculating 

gradients, we removed negatively correlated parameter regions and combined positively 

related regions, after which we regressed over permeability modifiers to obtain a history 

match. We successfully history matched all six models. Plots of the RMS values as the 

regression progresses are shown in Figs.14 and 15. In the first 10-12 iterations there was 

a significant drop in the RMS value, after which the changes were very small. A single 

iteration took around 45 minutes making the history matching a long and tedious 

process.  
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Fig. 14: Minimization of the objective functions and the number of iterations for the best models 
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Fig.15: Minimization of the objective functions and the number of iterations for the P90-P10 models 

 

 

 

After history matching we used linear uncertainty analysis to quantify 90% confidence 

intervals of future recoveries after 30 years of production for each model. Tables and 

plots of the 90% confidence intervals for different production variables for all the six 

models can be found in the appendix. After obtaining the 90% confidence intervals for 

the models, we combined the intervals for the three models in each group using SPSS 

statistical software. Fig. 16 shows how the uncertainty of the selected P90-P10 models 

compared to the selected best models. For oil recovery the best models predicted lower 

ranges as compared to our sampled models. For the best models, the average oil 

prediction was between 195-212 million STB, while for the sampled models it was 

between 189-221 million STB, a difference of about 10 million STB. It can also be seen 

that none of the best models encompassed the true value whereas two out of the three 

sampled models encompassed the true value for predicted future oil recovery.  
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Similar results can be seen in the case of gas predictions (Fig. 17). The best models 

predicted slightly lower ranges as compared to our sampled P90-P10 models. For the 

best models the average gas prediction was between 1,205-1,244 Bcf and for the 

sampled models it was 1,216-1,270 Bcf, a difference of about 10 Bcf. In the case of gas 

recovery both the best models and the sampled models were able to encompass the true 

value for predicted future gas recovery. 

These results show that by using the best models we may underestimate the uncertainty 

in our predictions which may affect project economics. For purposes of quantifying 

uncertainty, we recommend sampling over the entire distribution of realization 

likelihoods rather than selecting the best models for history matching and uncertainty 

quantification. 
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Fig. 16:  P90-P10 models encompass the true value but show larger range of uncertainty as 

compared to the best models for oil recovery 
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Fig. 17: Best models show a similar range of uncertainty as compared to the P90-P10 models at the 

same time encompassing the true value for gas recovery 
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CHAPTER IV 

2. CONCLUSIONS AND FUTURE WORK 

 

On the basis of my research, I have reached the following conclusions: 

 Incorporating dynamic data in a reservoir model will result in lower estimates of 

uncertainty than considering only static data. 

 Incorporation of dynamic data does not guarantee that the forecasted ranges will 

encompass the true value. Reliability of the forecasted ranges depends on the 

method employed. 

 When sampling multiple realizations of static data for history matching to 

quantify uncertainty, a sampling over the entire range of realization likelihoods 

shows larger confidence intervals and is more likely to encompass the true value 

for predicted fluid recoveries, as compared to selecting the best models. 

Future work 

• Future work should consist of adding a prior term to the objective function to 

constrain the history matching variables from going to extreme values. 

• There are a number of limitations in using the linear uncertainty analysis and any 

future work should investigate other techniques for quantifying uncertainty.  

• This study should be carried out with real field production data to more 

rigorously test the techniques applied in this study. 
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NOMENCLATURE 

SYMBOL        Description 

A =  sensitivity matrix 

cdi  = simulated values 

Cv =  covariance matrix of the parameters 

d = one set of observed data of a given type at a given well 

dvk = vector of  current parameter normalized values 

Erf = error function 

f = objective function 

H = hessian matrix 

i = an individual data point for the dth item of observed data 

I = identity matrix 

L    =  likelihood 

m = total number of observations 

n =          number of observations  

nw        =  number of wells  

np        =   number of production variables used   

nt             =  number of observed production data time series 

odi  = observed values  
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oobs  =  observed production data 

osim =  production data calculated for a particular model 

Q    =  data misfit. 

rdi = weighted difference between the observed and simulated values 

w    = weighting factor 

wd = overall weighting for dth the data set 

wdi = is a weighting for the ith data point of the dth data set 

Xavg         =   mean value     

x  =          value taken by a variable 

σd =  measurement error for the dth data set 

 

 

 

 

3.  

 

 

 

4.  

5.  

6.  

7.  
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APPENDIX 

 
Table A1: Estimated Misfits, Likelihoods and Weighting Factors   

Realization Q L wt. factor Realization Q L wt. factor
1 2.59997 0.10873 0.020666928 25 2.53152 0.11251 0.021386558
2 2.56749 0.11051 0.021005398 26 2.39262 0.1206 0.022924612
3 2.33531 0.12411 0.023590988 27 1.75681 0.16574 0.031504021
4 1.68182 0.17207 0.032707753 28 2.28198 0.12746 0.024228565
5 0.19879 0.3612 0.06865714 29 7.77922 0.00816 0.00155102
6 2.48127 0.11537 0.021930734 30 2.78582 0.09908 0.018833063
7 4.51616 0.04171 0.007928324 31 7.79227 0.00811 0.001540933
8 8.76952 0.00497 0.000945313 32 2.38899 0.12082 0.022966324
9 3.47152 0.07032 0.01336665 33 2.33716 0.12399 0.023569259

10 5.04473 0.03202 0.006087013 34 5.56821 0.02465 0.004685229
11 5.06175 0.03175 0.00603542 35 1.92654 0.15225 0.028940843
12 1.75554 0.16584 0.031524045 36 1.92654 0.15225 0.028940843
13 1.6952 0.17092 0.0324896 37 2.06607 0.14199 0.026990537
14 2.4123 0.11942 0.022700141 38 1.94486 0.15087 0.028676959
15 2.56269 0.11077 0.021055862 39 1.71385 0.16934 0.032188132
16 4.12208 0.05079 0.009655083 40 2.19663 0.13302 0.02528485
17 2.29209 0.12682 0.024106405 41 3.1113 0.0842 0.016004501
18 10.0968 0.00256 0.000486814 42 19.7853 2E-05 3.83294E-06
19 1.86753 0.15681 0.029807375 43 15.2362 0.0002 3.72693E-05
20 5.93453 0.02052 0.003901093 44 2.65107 0.10598 0.02014562
21 3.8101 0.05937 0.011284978 45 4.09529 0.05148 0.009785263
22 2.17598 0.1344 0.025547325 46 1.72668 0.16825 0.031982267
23 2.59997 0.10873 0.020666928 47 2.52261 0.11301 0.021481994
24 1.69127 0.17126 0.032553566 48 2.11496 0.13856 0.026338729

49 1.21494 0.21732 0.041307902  
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Table A2: Uncertainty Estimates Using the Automatic History Matching Technique With Linear 
Uncertainty Analysis 

 Best Models P90-P10 Models  

 Model 4 Model 49 Model 5  Model 6 Model 13 Model 29 True 

value 

Predicted future  

recovery of oil (106stb) 
195-207 196-204 197-212 190-205 197-215 189-221 194 

Predicted future 

recovery of gas, (1012 

scf) 

1.21-1.24 1.20-1.22 1.21-1.24 1.25-1.27 1.22-1.24 1.21-1.24 1.23 
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Figure A.1: Predicted uncertainty in oil recovery for model 6 after 30 years of production 

 

  

 

 

Figure A.2: Predicted uncertainty in watercut for model 6 after 30 years of production 
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Figure A3: Predicted uncertainty in gas recovery for model 6 after 30 years of production 

 

 

 

 
Figure A4: Predicted uncertainty in the GOR for model 6 after 30 years of production 
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FigureA5: Predicted uncertainty in oil recovery for model 13 after 30 years of production 

 

 

 

FigureA6: Predicted uncertainty in watercut for model 13 after 30 years of production 
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FigureA7: Predicted uncertainty in gas recovery for model 13 after 30 years of production 

 

 

 

 
FigureA8: Predicted uncertainty in GOR for model 13 after 30 years of production 
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FigureA9: Predicted uncertainty in oil recovery for model 29 after 30 years of production 

 

 

 

 
FigureA10: Predicted uncertainty in watercut for model 29 after 30 years of production 
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FigureA11: Predicted uncertainty in gas recovery for model 29 after 30 years of production 

 

 

 

 
FigureA12: Predicted uncertainty in GOR for model 29 after 30 years of production 
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FigureA13: Predicted uncertainty in oil recovery for model 5 after 30 years of production 

 

 

 
FigureA14: Predicted uncertainty in watercut for model 5 after 30 years of production 
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Figure A15: Predicted uncertainty in gas recovery for model 5 after 30 years of production 

 

 

 

 

 
FigureA16: Predicted uncertainty in GOR for model 5 after 30 years of production 
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FigureA17: Predicted uncertainty in oil recovery for model 4 after 30 years of production 

 

 

 

 
FigureA18: Predicted uncertainty in water cut for model 4 after 30 years of production 
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Figure A19: Predicted uncertainty in gas recovery for model 4 after 30 years of production 

 

 

 

 
FigureA20: Predicted uncertainty in GOR for model 4 after 30 years of production 
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FigureA21: Predicted uncertainty in oil recovery for model 49 after 30 years of production 

 

 

 

 
FigureA22: Predicted uncertainty in watercut for model 49 after 30 years of production 
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FigureA23: Predicted uncertainty in gas recovery for model 49 after 30 years of production 

 

 

 

 

 
FigureA24: Predicted uncertainty in GOR for model 5 after 30 years of production 
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