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Spin resonance in Luttinger liquid with spin-orbit interaction
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Spin-orbit interaction in quantum wires leads to a spin resonance at low temperatures, even in the absence
of an external dc magnetic field. We study the effect of electron-electron interaction on the resonance. This
interaction is strong in quantum wires. We show that the electron-electron interaction changes the shape of the
resonance curve and produces an additional cusp at the plasmon frequency. However, except for very strong
electron-electron interaction these changes are weak since this interaction by itself does not break the spin-
rotation symmetry that is violated weakly by the spin-orbitinteraction and external magnetic field.

PACS numbers: 71.10.Pm, 71.70.Ej, 73.21.Hb

A recent theoretical work [1] has predicted that in one-
dimensional (1D) quantum wires with the spin-orbit interac-
tion (SOI) [2] it is possible to observe a relatively sharp elec-
tronic spin resonance (ESR) in terahertz range. An external
magnetic field, which is perpendicular to the internal SOI in-
duced field, enhances the resonance absorption by several or-
ders of magnitude leaving the resonance frequency almost un-
changed. It occurs because this field violates a symmetry for-
bidding the electric dipolar mechanism of the spin-flip tran-
sition. The magnetic field oriented along the SOI field sepa-
rates the resonance frequencies of the left- and right-moving
electrons and generates the permanent electric current anddy-
namic magnetization.

In the work [1] the electrons have been treated as
non-interacting particles. However, in 1D systems the
electron-electron interaction is known to be strongV/ǫF ∼
| ln(na)|/(na), whereǫF is the Fermi energy,n is the 1D
electron density,a = ~

2κ/(me2) is the Bohr’s radius in the
material,m = 0.05me is the effective electron mass, andκ
is the dielectric constant. For typical valuesn ∼ 106 cm−1

andκ ∼ 20 the ratioV/ǫF ≃ 1. Therefore, it is important to
study the effect of interaction on electron spin resonance in a
quantum wire with the SOI. This is the main goal of this pa-
per. The ESR in the Luttinger electron liquid is the excitation
of a spin wave by external ac electromagnetic field. This res-
onance would have a simple Lorentzian shape in the absence
of interaction.

Since the electron-electron interaction is strong, the
fermionic excitations do not exist in 1D systems. They are
replaced by bosonic collective excitations: charge and spin
waves. In the framework of Luttinger model [3, 4] that ne-
glects the SOI and the deviation of the electronic spectrum
near the Fermi points from the linear behavior, the charge and
spin degrees of freedom do not interact (this is the so-called
spin-charge separation). The SOI separates the Fermi points
for different spin projections and makes possible the resonant
spin-flip processes. It was shown that the interplay of mag-
netic field, SOI, and electron-electron interaction leads to the
formation of spin-density wave state when magnetic field is
perpendicular to the effective SOI magnetic field [5]. In this

Letter we assume that the magnetic field has nonzero com-
ponent along the SOI field. Such a field terminates the spin-
density wave instability [5] and simultaneously separatesthe
spin resonances for left and right movers [1]. The Coulomb
interaction is expected to change the shape of the spin reso-
nance line from simple Lorentzian to a power-like one which
is characteristic for the Luttinger liquid [3, 4, 6]. The SOIalso
violates spin-charge separation and thus enables the excitation
of the charge waves at spin reversal. It can be seen as a weak
resonance at a plasmon frequency instead of the spin-wave
frequency. As we show below, both of these effects really
take place, though both are weak for not too strong electron-
electron interaction.

We consider a nanowire with a cross-section so small that
electrons fill partially only the lowest band of the transverse
motion (one channel). In this case the Tomonaga-Luttinger
model is applied. The standard Luttinger liquid theory starts
from the fermionic Hamiltonian with the linearized dispersion
[4, 6] to which we add the Rashba SOI,HR:

H0 = −ivF
∑

σ

∫

dx (ψ†
R,σ∂xψR,σ − ψ†

L,σ∂xψL,σ)

+Hint +HR. (1)

Here thex-axis is taken along the quantum wire;∂x =
∂/∂x; vF is the Fermi velocity;R,L labels the right and
left moving fermions; andσ =↑, ↓ are the spin projec-
tions. The interaction part of the Hamiltonian,Hint, con-
tains termsρR(L)(q)ρR(L)(q) quadratic in charge densities
ρR(L)(q) of left and right movers and the terms quadratic
in spin densities such that the total spin is conserved, e.g.
:ψ†

R,↑(x)ψL,↑(x) : :ψ
†
L,↓(x

′)ψR,↓(x
′) :.

With HR = 0 the Hamiltonian (1) has an obviousSU(2)
symmetry of rotations in the spin space. The termHR =
α
∫

ψ†pxσzψ dx in the HamiltonianH0 represents the Rashba
SOI [2] that splits Fermi momenta of up and down spins so
that four Fermi pointspρ,σ = ρpF − σαm appear, but it
leaves Fermi velocities unchanged. The Rashba SOI constant
α has dimensionality of velocity and we assumeα ≪ vF ; σz
is the Pauli matrix;pF is the Fermi momentum atα = 0;
and ρ, σ = ±1 correspond to right (left) movers and up
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FIG. 1. (Color online) The up-spin and down-spin branches ofthe
electron spectrum with nonzero Rashba spin-orbit interaction α and
magnetic fieldB⊥.

(down) spin projections, respectively. The momenta splitting
can be removed by a single-particle unitary transformation
U = exp(−iσzαmx/~) which shifts the momenta by±αm.
After this transformation the electronic spectrum becomesthe
same as without the SOI and theSU(2) symmetry is restored.

An external permanent magnetic field breaks this symme-
try. It leads to additional splitting of the Fermi points andto
a difference in Fermi velocities for up and down spins, which
cannot be compensated by this unitary transformation. We
consider in this Letter only the magnetic field,B⊥, perpen-
dicular to the Rashba field (alongz-axis) and apply it for def-
initeness alongx-axis. The corresponding Zeeman Hamilto-
nian reads:

HZ = −gµBB⊥
2

∑

ρ,σ,σ′

∫

dxψ†
ρσ(σx)σσ′ψρσ′ , (2)

whereµB is the Bohr magneton andg is the electron g-
factor. Figure 1 schematically shows the electron energy as
a function of momentum in the presence of the transverse
magnetic field. We assume that the magnetic field is weak,
gµBB⊥ ≪ αpF , and further consider it perturbatively. The
residual symmetry in the perpendicular field is the combined
reflectionp, σ → −p,−σ. It ensures that the right movers
with the spin projectionσ alongz-axis have the same velocity
as the left movers with the same energy and the opposite spin
projectionvR,σ = vL,−σ, butvR,σ 6= vR,−σ. Morozet al. [7]
have shown that a velocity differenceδv = vR,↑ − vR,↓ =
vL,↓−vL,↑ appears also due to the Rashba SOI in the wires of
finite width. The curvature of the bands near Fermi level [8–
13] can also be effectively taken into account by the nonzero
velocity differenceδv on the upper and lower branches of the
energy spectrum. The later effect has a relative value of at
most∼ α/vF .

We aim to calculate the absorption power of the resonant
ac electromagnetic field for the spin-flip processes. The in-
teraction of electromagnetic field with electrons is described
by the HamiltonianHem = −(1/c)

∫

jAxdx, wherej =
eψ†(x)v̂ψ(x) is the current,̂v = p̂/m + ασz is the velocity

operator, andAx denotes thex-component of the vector po-
tential of the ac field. We use the Coulomb gauge,∇ ·A = 0,
where the scalar potential is zero, and therefore the electric
field is E = −(1/c)∂A/∂t. The part of the electric current
responsible for the spin-flip processes is

js(x) = eαψ†(x)σzψ(x). (3)

The absorption power of electromagnetic field is determined
by the real part of the conductivityσω at the frequencyω
of the field multiplied by the square of the field’s amplitude
|Ex(ω)|2. We employ the Kubo formula for the conductivity:

σω = − 1

~ωl

∫ l

0

dx

∫ l

0

dx′
∫ ∞

−∞
dt′θ(t− t′)eiω(t−t′)

×〈[js(x, t), js(x′, t′)]〉, (4)

wherel is the length of the wire. According to Eq. (3),js(x) is
proportional to the density ofz-component of the spin. There-
fore, the spin-flip conductivity (4) can be represented as

σω = −4(eα)2

~ωl

∫ t

−∞
〈[Sz(t), Sz(t

′)]〉eiω(t−t′)dt′, (5)

whereSz(t) is the operator of the total spin projection at
the moment of timet. In the absence of magnetic field
B⊥ the z-component of the total spin is conserved. There-
fore, [Sz(t), Sz(t

′)] = 0 and the conductivity associated with
the spin flip is zero. The violation of this conservation law
at smallB⊥ in the first-order approximation of the time-
dependent perturbation theory leads to

δSz(t) = − i

~

∫ t

−∞
[VI(t

′), Sz(t
′)] dt′, (6)

whereVI(t) = U−1
0 (t)(−gµBB⊥Sx)U0(t) with U0(t) =

exp(−iH0t/~) being the evolution operator in the absence
of magnetic field, andSx is the projection of the total spin
on thex-axis. It is convenient to write the Rashba Hamilto-
nian as a sum over electrons:HR =

∑

i αpiσz,i. The kinetic
and interaction energies commute withSx, and therefore the
perturbation operatorVI(t) becomes

VI(t) = −gµBB⊥
2

∑

i

(σx,i cosωit+ σy,i sinωit) ,

whereωi = 2αpi/~. Substituting this expression into Eq. (6),
we obtain

δSz =
gµBB⊥

2α

∑

i

1

pi

(

σ+,ie
−iωit + σ−,ie

iωit
)

, (7)

whereσ± = σx±iσy. Conditionα ≪ vF makes it possible to
replace the factor1/pi in Eq. (7) by±1/pF . Then the expres-
sion forδSz becomes proportional to the sum of the operators
σ±,i(t) = σ±,i exp(∓iωt). In terms of secondary quantized
operators it reads (we keep here only right movers):

δSz(t) =
gµBB⊥
2αpF

∫

ψ†
R,↑(x, t)ψR,↓(x, t) dx + h.c. . (8)
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The unitary transformationU = exp(−iσzαmx/~) that puts
the split Fermi points together, modifies this equation by mul-
tiplying the integrand by factorexp(−2iαmx/~). As a result,
we find for the conductivity (4) associated with the spin flip
[14],

σω = − (egµBB⊥)
2

~ωlp2F

∫ l

0

dx

∫ l

0

dx′
∫ ∞

−∞
dt′θ(t− t′)eiω(t−t′)

×〈[ψ†
R,↑(x, t)ψR,↓(x, t), ψ

†
R,↓(x

′, t′)ψR,↑(x
′, t′)]〉

×e−2iαm(x−x′)/~. (9)

An attempt to analyze the spin-flip process in Luttinger liq-
uid has been made in Ref. 15. The authors assumed that
Rashba SOI and longitudinal magnetic field only produce the
violation of SU(2) invariance and affect the velocity differ-
enceδv, but do not separate the Fermi points for spin up and
down electrons. The physical origin of such a model where
the Fermi points are not separated (as it should be for the re-
alistic Rashba SOI) was not specified in Ref. 15.

Since the electrons propagating in one direction with the
same velocity strongly interact, the bosonic fieldsφc, θc
andφs, θs related to the charge and spin density waves, re-
spectively, give a physically more adequate description of
phenomena. The transformation from fermions to bosons
(bosonization) reads:

ψρ,σ = Uρ,σ
eiρkF x

√
2πa0

e−i[ρφc(x)−θc(x)+ρσφs(x)−σθs(x)]/
√
2,

(10)
whereUρ,σ are the Klein factors which ensure the proper an-
ticommutation relations between the fermion, anda0 is the
ultraviolet cutoff length. The secondary quantized fermionic
wavefunctionsψσ can be represented by the linear combina-
tions of right-moving and left-moving fermionsψρ,σ with the
momenta being close to±kF , i.e.,ψσ = ψR,σ+ψL,σ. The ad-
vantage of this model is that the interaction energy becomes
quadratic in the charge and spin density bosonic operators.
The density of fermions becomes linear in bosonic fieldsφc,s,

ρc,s(x) = −
√
2

π
∂xφc,s(x). (11)

As we have mentioned, the simplest modification of the
fermionic Hamiltonian produced by the Rashba SOI in the ab-
sence of magnetic field can be removed by the unitary trans-
formation. At nonzero magnetic field, the fermionic Hamilto-
nianH = H0 +HZ after this transformation takes the form
[16]:

H = −iv1
∫

dx (ψ†
R,↑∂xψR,↑ − ψ†

L,↓∂xψL,↓)

−iv2
∫

dx (ψ†
R,↓∂xψR,↓ − ψ†

L,↑∂xψL,↑). (12)

A difference of velocitiesδv = v1 − v2 can arise due to the
SOI effect in a wire of finite width [1, 7, 16], magnetic field,

and also quadratic corrections to the electronic dispersion. Af-
ter bosonization (10) Hamiltonian (12) takes the form

H =

∫

dx

2π

[

vcKc (∂xθc)
2
+
vc
Kc

(∂xφc)
2
+ vsKs (∂xθs)

2

+
vs
Ks

(∂xφs)
2
+ δv (∂xφc∂xθs + ∂xφs∂xθc)

]

(13)

wherevc (vs) is the velocity of plasmons (spinons). We have
omitted the term

∫

cos[2
√
2φs(x)]dx/(2π) as being irrelevant

in the renormalization group procedure for the repulsive inter-
actions (Kc < 1) [16].

To find the conductivity (9) we need to calcu-
late the retarded correlation functionIR↑↓,↓↑(x, t) =

−iθ(t)〈[ψ†
R,↑(x, t)ψR,↓(x, t), ψ

†
R,↓(0, 0)ψR,↑(0, 0)]〉 in

the ground state of the Hamiltonian (13) with fermionic
operatorsψρσ given by Eq. (10). Since the perturbation the-
ory is developed for time-ordered averages in the imaginary
time τ = −it, it is instructive to go fromIR(x, t) in the
Kubo formula to the time-ordered productIT↑↓,↓↑(x, τ) =

−〈Tτψ†
R↑(x, τ)ψR↓(x, τ)ψ

†
R↓(0, 0)ψR↑(0, 0)〉. Applying the

Wick theorem, we obtain in terms of bosonic operators:

IT↑↓,↓↑(x, τ) ∝ − eg(x,τ)

(2πa0)2
,

g(x, τ) =
∑

q,ω

[1− ei(ωτ−qx)] 〈Y (q, ω)Y (−q,−ω)〉 , (14)

where we introducedeY (x,τ)/(2πa0) = ψ†
R↑(x, τ)ψR↓(x, τ)

so thatY (x, τ) = i
√
2[φs(x, τ) − θs(x, τ)] andτ > 0. After

obtainingIT↑↓,↓↑(x, τ), it can be converted into retarded corre-
lator usingIR↑↓,↓↑(t) = iθ(t)[IT↑↓,↓↑(t)− (IT↓↑,↑↓(−t))∗] [4].

To find the correlation functions of fieldsφs and θs in
Eq. (14) we use the generating functionalZ[J]:

Z =

∫

DφiDθi exp
[
∫

dτ

∫

dx

(

−1

2
ΦMΦ+ JΦ

)]

, (15)

This expression is written in a matrix form with 4-vectors
of the field Φ = (φc, φs, θc, θs) and ”current” J =
(J1, J2, J3, J4). The 4 × 4 matrix M describes the system
Lagrangian and is presented below. After the standard Gaus-
sian integration we find

Z[J] = (detM)
−1/2

exp

(

1

2
JM−1J

)

. (16)

The bosonic correlation functions from Eq. (14) are repre-
sented in terms of the elements of matrixM as

〈Φi(x, τ)Φj(0, 0)〉 =
δ2 lnZ

δJi(x, τ)δJj(0, 0)

∣

∣

∣

∣

J=0

=

∫

dω

2π

∫

dq

2π
eiqx−iωτM−1

ij (q, ω). (17)

The matrixM is symmetric and has the following nonzero
elementsMφcφc

= vcq
2/(πKc), Mφsφs

= vsq
2/(πKs),
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Mθcθc = vcKcq
2/π, Mθsθs = vsKsq

2/π, Mφcθc =
Mφsθs = iqω/π, andMφcθs = Mφsθc = δvq2/(2π). With
these expressions,g(x, t) in Eq. (14) takes the form

g(x, τ) = 2i

∫∫

dqdω

(2π)2
(1− eiqx−iωτ )[M−1

φsφs
(q, ω)

+M−1
θsθs

(q, ω)−M−1
φsθs

(q, ω)−M−1
θsφs

(q, ω)]. (18)

At zero SOI (α = 0) and magnetic field (B⊥ = 0), the
system hasSU(2) symmetry of spin rotation. This symme-
try prevents the renormalization of the interaction constant in
the spin channel and thereforeKs = 1 [13]. A weak SOI
(α ≪ vF ) and magnetic field (B⊥ ≪ αpF /µB) only slightly
violate theSU(2) symmetry [17], so thatKs − 1 ∼ (α/vF )

2

[17]. Therefore, in what follows we putKs = 1 up to
small corrections of orderα2. Thus, with this precision up
to quadratic inδv terms we find

M−1
φsφs

(q, ω) +M−1
θsθs

(q, ω)−M−1
φsθs

(q, ω)−M−1
θsφs

(q, ω)

≃ 2πi

q(ω + ivsq)
− (δv)2

πq

4Kc

(

K2
c + 1

)

vcq + 2iKcω

(ω + ivsq)2(ω2 + v2c q
2)
.

Performing the integration over frequencies, one finds the
correlator as a function of imaginary time. Because of fac-
tor e−iωτ only the poles in the lower half-plane of the com-
plex planeω contribute to the integral. After the integra-
tion and analytical continuation, expression (18) turns into
a sum of logarithms of the typeC ln(x ± vc,st), whereC
is a constant. Inserting this result in Eq. (14) we find the
corresponding time-ordered fermionic correlator but in real
time. It can be converted into retarded correlation function
asIR↑↓,↓↑(t) = −2θ(t)Im IT↑↓,↓↑(t) [18], and using Eq. (9) we
obtain

σω = A
∫ ∞

−∞
dx

∫ ∞

0

ei(ωt−qx)[K(t+ iδ)−K(t− iδ)]dt, (19)

K(t) =
1

(x− vct)λ(x+ vct)µ(x− vst)ν
, (20)

where the constant

A =
(egµBB⊥)

2 aλ+µ+ν−2
0

2π2p3Fα
. (21)

We recall that the wavevectorq in the above integral is equal
to 2αm/~, cf. Eq. (9). The exact numerical factorA is ob-
tained here from the comparison with the noninteracting result
of Ref. 1, see supplementary material for details. The inte-
grand in the integral overx has two singularities in the lower
half-plane, atx = vst andx = vct. The expressions for the
exponentsλ, µ, andν are as follows [19]

λ = (δv)
2 (1 +Kc)

2

8Kc (vc − vs)
2 , (22)

µ = (δv)2
(Kc − 1)

2

8Kc (vc + vs)
2 , (23)

ν = 2− (δv)2
Kcv

2
c +

(

K2
c + 1

)

vcvs +Kcv
2
s

2Kc (v2c − v2s)
2 . (24)

To approximateσω close to the spin resonance at frequency
ωres = vsq = 2αmvs/~, we takeγ ≤| ω − ωres |≪ ωres

with γ being the width of the resonance which we assume to
be small [20]. In the limit(vc − vs)ωres/(vsγ) ≫ 1, we find
[21]

Reσω ≃ A qν−1

(vc − vs)λ(vc + vs)µΓ(ν)

× γ

[(ω − ωres)2 + γ2]
1−λ+µ

2

. (25)

To evaluateσω close to the other singularity,ω = 2αmvc/~,
we use similar approximation and obtain

Reσω ≃ A 2πλqλ−1

(2vc)
µ
(vc − vs)ν(2 − µ− ν)

× γ

[(ω − vcq)2 + γ2]
1−µ+ν

2

. (26)

The plasmon singularity has a character of a weak cusp that
can be detected only at large enough interaction.

Equations (25) and (26) are obtained under the assumption
of well separated spinon and plasmon peaks,(vc − vs)q ≫ γ
[22]. In the opposite case corresponding to the limit of non-
interacting fermions, the peaks atω = ωres andω = vcq
merge. According to Eq. (19), the combined power of the
merged peaks isλ+ν = 2+(δv)2(1−Kc)

2/[8Kc(vc+vs)
2].

In the limit of non-interacting fermionsvc → vs andKc →
1, so that the power becomes2 which corresponds to the
Lorentzian shape of the spin resonance [23]. For small in-
teractiong0 between fermions,Kc ≃ 1 − g0/π, vs = vF ,
andvc ≃ vF (1 + g0/π), so that the power deviates from2 by
∼ (δv)2g20 . Therefore, in the framework of perturbation the-
ory the shape of the resonance line nearωres deviates slightly
from Lorentzian. However, generallyg0 = (e2/κ~vF )| ln qa|
can be of the order of 1. For repulsive interactions0 < Kc <
1 and for strong fermionic interactionKc → 0. In this case
the results (25) and (26) show that the shape of the absorption
line may deviate significantly from Lorentzian at sufficiently
strong interaction.

In conclusion, we have considered the electron spin-flip
resonance caused by internal SOI field in the framework of
Luttinger liquid theory. We have shown that the electron
interaction incorporated does not destroy the resonance. In
this theory it is treated as the excitation of a spin wave with
the uniquely specified wavevector. We have found that the
Luttinger liquid renormalizations almost do not change the
Lorentzian shape of the resonance line at not too strong in-
teraction. It occurs because theSU(2) symmetry in the spin
channel is only slightly violated by the spin-orbit interaction
and weak dc magnetic field. The same small parameters en-
sure that the coupling of the spin flip to the charge channel
and therefore the excitation of the plasma oscillations is weak
at the same conditions. Nevertheless, since the Coulomb in-
teraction in quantum wires is strong, it may be expected that
the deviation from Lorentzian shape of the resonance can be
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observed experimentally. In this work we considered a simpli-
fied model of the SOI whose only effect is the appearance of
the difference between Fermi velocities of up and down spins.
The exact consideration of the quadratic part of the dispersion
is still an open problem.
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Supplementary material for “Spin reso-
nance in Luttinger liquid with spin-orbit
interaction”

Relation between IR↑↓,↓↑(t) and IT↑↓,↓↑(t)

The perturbation theory is valid for time-ordered aver-
ages in imaginary time, whereas what we need to calculate
is a retarded averageIR↑↓,↓↑(t). Therefore, we need a re-
lationship betweenIRBA(x, t) = −iθ(t)〈[B(x, t), A(0, 0)]〉
and ITBA(x, τ) = −〈TτB(x, τ)A(0, 0)〉 for imaginary time
τ where B(x, t) = ψ†

R,↑(x, t)ψR,↓(x, t) and A(0, 0) =

ψ†
R,↓(0, 0)ψR,↑(0, 0) are boson-like operators. These two

types of averages are related by equality [4]:

IRBA(t) = iθ(t)
[

ITBA(t)−
(

ITA†B†(−t)
)∗]

, (27)

which follows from

IRBA(t) = −iθ(t) [〈B(t)A(0)〉 − 〈A(0)B(t)〉] , (28)

ITBA(t) = − [θ(t) 〈B(t)A(0)〉 + θ(−t) 〈A(0)B(t)〉] . (29)

For positive timet > 0,

ITBA = −〈B(t)A(0)〉 , (30)

−
(

ITA†B†(−t)
)∗

=
〈

B†(0)A†(−t)
〉∗
, (31)

and
〈

B†(0)A†(−t)
〉∗

= 〈A(−t)B(0)〉 = 〈A(0)B(t)〉 =
〈

B†(t)A†(0)
〉∗

. In our case, due to the above definitions of
A andB,

〈

B†(t)A†(0)
〉

differs from 〈B(t)A(0)〉 by chang-
ing the spin componentsσ → −σ. It is equivalent to
Y (x, t) → −Y (x, t) since we introducedeY (x,τ)/(2πa0) =

ψ†
R↑(x, τ)ψR↓(x, τ). However,Y enters in all correlation

functions quadratically, see Eq. (14) in the main part, and we
conclude that this transformation does not change the correla-
tor. ThenIRBA(t) = iθ(t)[ITBA(t)−

(

ITBA(t)
)∗
], and we find

IRBA(t) = −2θ(t)Im ITBA(t). (32)

Evaluation of conductivity in Eqs. (25) and (26)

To find the absorption power of electromagnetic field we
need to calculateRe (σω), where the conductivity is given by
Eq. (19) in the main text.

The integral in Eq. (19) is

σω = A
∫ ∞

−∞
dx

∫ ∞

0

ei(ωt−qx)[K(t+ iδ)−K(t− iδ)]dt, (33)

K(t) =
1

(x− vct)λ(x+ vct)µ(x− vst)ν
, (34)

where

A =
(egµBB⊥)

2
aλ+µ+ν−2
0

π2p3Fα
.

FIG. 2. The integration contour in the lower half-plane of the com-
plex variablex.

Sinceq is positive, the exponente−iqx vanishes at largex in
the lower half-plane of the complex variablex. Therefore, the
integral over real axisx is equal to the sum of two contour
integrals in the lower half-plane ofx along contours wind-
ing around two branch cuts shown in Fig. 2. The contourC1

winds around the branch cut from the pointx = vst − iδ to
x = +∞ − iδ, and the contourC2 winds around the branch
cut fromx = vct − iδ′ to x = +∞ − iδ′. (We ignore here
the potential singularity atx = −vct which is associated with
the inverse processes of spin flip from up to down on the right
branch. These processes should be suppressed in the approx-
imation of small excited-state occupation numbers which we
employ.) We can estimate the integrals overx around each
branch cut separately. The conductivityσω has two singular-
ities: atω = vsq and atω = vcq. As we show below, close
to the singularity nearω = vsq the main contribution to the
integral comes from contourC1, and the other (plasmon) sin-
gularity is dominated by the integral overC2.

First, we estimate the integralI1 over the contourC1. After
the change of variableu = x−vst the contour that mapsC1 in
a complex planeu winds around the branch cut fromu = 0 to
u = +∞ and will be denoted by the same symbolC1. Thus,
the integralI1 can be written as follows:

I1 =

∫

C1

du
e−iqu−ivsqt

uν [u+ (vs − vc) t]
λ [u+ (vs + vc) t]

µ
.

We aim to approximateσω very close to the resonance at
ωres = vsq. The closeness is determined by inequalities re-
lating to the detuningδω = |ω − ωres|:

γ ≪ δω ≪ ωres,

whereγ is the attenuation rate mainly due to Cherenkov emis-
sion of phonons [1]. Then the time during which the reso-
nance absorption is accumulated is large enough,t ∼ 1/δω.
In this limit, (vc − vs)qt ≫ 1, we approximate the above
integral as

I1 =
e−ivsqt(−iq)ν−1

[(vs − vc) t]
λ [(vs + vc) t]

µ

∫

C

z−νezdz, (35)
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where we introduced new variablez = −iqu. As a result
of this change of variables, the contourC1 turns into contour
C winding around a branch cut going fromz = 0 to z =
−i∞. The contourC can be rotated clockwise together with
the branch cut until the latter coincides with the left half of
the real axisz < 0. Then the contour integral turns into the
Hankel’s representation of the inverse Gamma function and
gives2πi/Γ(ν). After that we can integrate over time with
the following final result:

Iω,q ≃ A −2πiΓ(1− λ− µ)qν−1i−ν−λ−µ

(vs − vc)
λ (vs + vc)

µ Γ(ν) (ω − vsq + iγ)1−λ−µ
.

(36)
Then the real part of conductivity nearω = vsq becomes

Reσω ≃ A Γ(1− λ− µ)qν−1

(vc − vs)λ(vc + vs)µΓ(ν)

× γ

[(ω − ωres)2 + γ2]
1−λ+µ

2

, (37)

which for smallλ andµ is approximated by Eq. (25). Here we
used thatvc ≥ vs. The integralI2 over the contourC2 does
not contribute to the singularity atω = vsq and therefore can
be neglected.

In addition, there is also a small part ofReσω which is
independent ofγ:

π2AΓ(1− λ− µ)qν−1(ν + λ+ µ− 2)

(vc − vs)λ(vc + vs)µΓ(ν)|ω − ωres|1−λ−µ
. (38)

It is small in positive parameterν + λ+µ− 2 = (δv)2(Kc −
1)2/[4Kc(vc + vs)

2].
Nevertheless,I2 contributes to a singularity at plasma fre-

quencyω = vcq. Next we analyze this singularity. We con-
sider the integralI2 over contourC2 similarly to what we
did for I1. We change variable inI2 to u = x − vct. The
mapped contourC2 winds around the branch cut fromu = 0
to u = +∞. As a result of winding around the branch cut we
obtain factor

(

1− e−2πi(λ−1)
)

≈ 2πiλ and the integral over
u from 0 to infinity:

I2 = 2πiλ

∫ ∞

0

du
e−iq(u+vct)

uλ (u+ 2vct)
µ [u+ (vc − vs)t]

ν . (39)

At small detuningδω = |ω − vcq| from the plasma reso-
nance we expect that similarly to what we observed forI1
the accumulation time for the resonance absorption is large,
t ∼ 1/δω ≫ 1/(vcq), and therefore in the factorsu + 2vct,
u + (vc − vs)t it is possible to neglectu ∼ 1/q. After this
procedure the resulting integral overt diverges att = 0.
This divergence however is spurious. It has happened be-
cause at smallt < 1/[(vc − vs)q], the variableu cannot
be neglected. It means that the integration overt is effec-
tively cut off att0 ∼ 1/[(vc − vs)q]. To estimate the singular
part on the background of nonsingular contribution originated
from smallt, we represent the exponentei(ω−vcq)t as a sum,

ei(ω−vcq)t = [ei(ω−vcq)t − 1]+ 1, and divide the integral over
time into two parts:

∫ ∞

t0

[

ei(ω−vcq)t − 1
]

dt

tµ+ν
+

∫ ∞

t0

dt

tµ+ν
.

The second integral is approximately equal tot1−µ−ν
0 /(ν +

µ− 1) and has no singularity. The first integral converges and
can be extended tot = 0 if µ + ν < 2. This condition is
satisfied in a broad range of not too strong interaction as it can
be readily checked from Eqs. (22) – (24). The first integral
after the change of variableτ = (ω − vcq)t turns into

(ω − vcq)
µ+ν−1

∫ ∞

0

(

eiτ − 1
)

dτ

τµ+ν
. (40)

The integral in Eq. (40) is a large number≈ i(2 − µ − ν)−1

proportional to[δv/(vc − vs)]
−2. The ratio of the first term to

the second has the order of magnitude[δv/(vc − vs)]
−2[|ω −

vcq|/(vcq)]µ+ν−1. Thus, the nonresonant contribution is
comparable with the resonant one only in a narrow region
close to the resonanceδω ≤ vcq[δv/(vc − vs)]

2. Combining
all the results, we arrive at the expression for the singularity
due to spin-flip processes at the plasmon frequency:

Iω,q ≃ −Aiλ−1qλ−1 2πλΓ(1 − λ)

2− µ− ν

(ω − vcq + iγ)µ+ν−1

(2vc)µ(vc − vs)ν
.

(41)
The calculation of the real part gives the following result:

Re Iω,q ≃ A 2πλΓ(1 − λ)qλ−1

(2vc)
µ
(vc − vs)ν(2− µ− ν)

× γ

[(ω − vcq)2 + γ2]
1−µ+ν

2

, (42)

c.f. (26) in the main text forReσω. The plasmon singularity
has a character of a weak cusp that can be detected only at
large enough interaction.

Case of noninteracting electrons

The ratew of the spin flips per one electron found in the
work [1] reads:

w =

(

2eα

~ωres

)2 (
gµBB

2αpF

)2

Iω , (43)

whereIω is the spectral density of the driving electromagnetic
field. It is determined by

E∗(t)E(t′) =

∫ ∞

−∞
Iωe

iω(t−t′) dω

2π
. (44)

For the monochromatic field with the frequencyω0 the spec-
tral density isIω = 4πδ(ω−ω0)|Eω|2, whereEω is the com-
plex amplitude of the field. The energy absorption per particle
per unit time is equal tow~ω. The Luttinger model neglects
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the quadratic part of energy dispersion. From this point of
view any particle in the single-occupied range has the same
energy of the spin flip or equivalently the same spin-resonance
frequency. To calculate the energy losses per unit wire length
and time it is necessary to multiply the energy rate per parti-
cle by the density of electrons in the single-occupied ranges
of the momentum. The latter is equal tonsf = 2α

vF
n, where

n = 2pF /(π~) is the total one-dimensional density of elec-
trons. As a result we find the absorption power per unit wire
length:

P = w~ωnsf =
8e2 (gµBB)

2 |Eω|2
~p2FvF

δ(ω − ωres). (45)

The real part of conductivity,Reσω for noninteracting elec-
trons is equal to the power, Eq. (45), divided by|Eω|2:

σω =
8e2 (gµBB)

2

~p2F vF
δ(ω − ωres). (46)

The exact numerical factor for the conductivity of interacting
electrons in Luttinger model is extracted by the matching it
with the conductivity of noninteracting electrons (46).

In the case of noninteracting electronsvs = vc, µ = 0, and
λ + ν = 2. Substituting it into Eqs. (19) – (20) of the main

text we findA → A|λ+µ+ν=2 and Eq. (20) simplifies to

K(t) =
1

(x− vst)
2 . (47)

Sinceq is positive, the exponente−iqx in Eq. (19) of the main
text vanishes at largex in the lower half-plane of the complex
variablex. Therefore, the integral over real axisx is equal
to the integral in the lower half-plane ofx. Therefore, only
K(t− iδ) has nonzero contribution, and using the residue the-
orem,

σω = A
∫ ∞

0

dteiω(t−iδ)

×(−2πi)Resx=vs(t−iδ)

[

e−iqx

(x− vs(t− iδ))
2

]

.

At a finite attenuationγ, the conductivity becomes

σω = A −2πiq

ω − vsq + iγ
. (48)

Taking the real part we find in the limitγ → 0,

Reσω = 2π2Aqδ (ω − vsq) . (49)

Thus, in the noninteracting limit the conductivity of Luttinger
liquid coincides with the conductivity of free electrons pro-
vided a correct choice of the factorA. Note that the cut-off
lengtha0 disappears from the factorA in this limit. At a finite
interaction it enters in a small power∝ (δv)2. Therefore it
can be defined only by the order of magnitude.


