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1. Introduction

W strings are a natural generalisation of the ordinary bosonic string [1–6]. The spectrum

of physical states of a W -string theory is given by the non-trivial cohomology of its BRST

operator. Since the BRST operator is known explicitly only for the case of W3 [7], most

attention has focussed on this example. Considerable progress has been made in determining

the spectrum of physical states of the W3 string [2,4,5,8,9,10] but until now, very little

progress has been made in introducing interactions in the theory. The basic reason for this

is that there seems to be no way of constructing non-vanishing gauge-invariant correlation

functions involving only physical states of standard ghost structure. In this paper we show

how such correlation functions can in fact be built. The new ingredient that allows this is

the existence, and recent discovery [9,10], of new physical states with non-standard ghost

structure, which have excitations of the ghosts as well as of the matter fields. Non-vanishing

scattering amplitudes necessarily require that some external physical states have this form.

Thus the W3-string theory is rather unusual in that such states seem to be essential in

constructing an interacting theory.

For the 26-dimensional bosonic string, the physical states all have the form
∣

∣ψ
〉

=
∣

∣X
〉

⊗
∣

∣gh
〉

, where
∣

∣X
〉

is built exclusively from creation operators of the 26 matter fields Xµ acting

on a momentum eigenstate, and
∣

∣gh
〉

is the standard ghost vacuum. For the multi-scalar W3

string analogous physical states also exist, and have been fully classified [4,5,8]. However, it

has recently been appreciated that this does not exhaust the non-trivial cohomology of the

BRST operator for the W3 string [10]. In fact there are many additional physical states,

which have a non-standard structure in that they involve excitations of the ghost as well as

the matter fields. The occurrence of these states can be attributed to the fact that there

does not exist a physical gauge for the W3 string. For example, there are massive vector

states in the W3 string, indicating the existence of less spacetime gauge symmetry than for

the ordinary bosonic string. The phenomenon of physical states with non-standard ghost

structure in fact occurs in the bosonic string, but only in the special case when there are two

spacetime dimensions [11,12]. However, physical states with non-standard ghost structure

occur in the multi-scalar W3 string [10], where the on-shell momenta take continuous values,

by contrast to the two-scalar bosonic string where the momenta are necessarily discrete.

The purpose of this paper is to develop a procedure for computing gauge-invariant scat-

tering amplitudes for the W3 string, and to discuss their significance. In section 2, we

present a short review of the multi-scalar W3 string and the construction of its physical

states. The construction is exhaustive for physical states with the standard ghost structure.

The spectrum of non-standard physical states has not yet been obtained completely, but

sufficiently many examples are now known to enable us to investigate some of the features

of the interacting theory. The explicit forms of the relevant physical states are relegated to

an appendix.
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In section 3, we present our procedure for writing down gauge-invariant scattering am-

plitudes for the W3 string. We shall illustrate the procedure by computing specific examples

of three-point and four-point tachyon scattering amplitudes. In section 4 we discuss the

interpretation of these amplitudes, including their crossing and duality properties and their

relation to the Ising model. The paper ends with conclusions and comments in section 5.

2. Physical states of the multi-scalar W3 string

The key ingredient for determining the physical spectrum of the W3 string is the con-

struction of the BRST operator [7], which is given by

QB =

∮

dz
[

c (T + 1
2Tgh) + γ (W + 1

2Wgh)
]

, (2.1)

and is nilpotent provided that the matter currents T and W generate the W3 algebra with

central charge c = 100, and that the ghost currents are chosen to be

Tgh = −2b ∂c− ∂b c− 3β ∂γ − 2∂β γ , (2.2)

Wgh = −∂β c− 3β ∂c− 8
261

[

∂(b γ T ) + b ∂γ T
]

+ 25
1566

(

2γ ∂3b+ 9∂γ ∂2b+ 15∂2γ ∂b + 10∂3γ b
)

, (2.3)

where the ghost-antighost pairs (c, b) and (γ, β) correspond respectively to the T and W

generators. A matter realisation of W3 with central charge 100 can be given in terms of

n ≥ 2 scalar fields, as follows [13]:

T = −1
2(∂ϕ)

2 −Q∂2ϕ+ T eff ,

W = − 2i√
261

[

1
3
(∂ϕ)3 +Q∂ϕ∂2ϕ+ 1

3
Q2∂3ϕ+ 2∂ϕT eff +Q∂T eff

]

,
(2.4)

where Q2 = 49
8 and T eff is an energy-momentum tensor with central charge 51

2 that commutes

with ϕ. Since T eff has a fractional central charge, it cannot be realised simply by taking free

scalar fields. We can however use d scalar fields Xµ with a background-charge vector aµ:

T eff = −1
2
∂Xµ∂X

µ − iaµ∂
2Xµ, (2.5)

with aµ chosen so that 51
2
= d− 12aµa

µ [4].

Physical states are by definition states that are annihilated by the BRST operator (2.1)

but that are not BRST trivial. We shall first consider such states with standard ghost

structure, i.e.
∣

∣χ
〉

=
∣

∣ϕ ,X
〉

⊗
∣

∣−−
〉

. (2.6)
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Here
∣

∣−−
〉

is the standard ghost vacuum, given by

∣

∣−−
〉

= c1γ1γ2
∣

∣0
〉

. (2.7)

The SL(2, C) vacuum satisfies

cn
∣

∣0
〉

= 0, n ≥ 2; bn
∣

∣0
〉

= 0, n ≥ −1, (2.8a)

γn
∣

∣0
〉

= 0, n ≥ 3; βn
∣

∣0
〉

= 0, n ≥ −2. (2.8b)

The anti-ghost fields b, β have ghost number G = −1, and the ghost fields c, γ have ghost

number G = 1.∗

For standard states of the form (2.6), the condition of BRST invariance becomes [7]:

(L0 − 4)
∣

∣ϕ ,X
〉

= 0,

W0

∣

∣ϕ ,X
〉

= 0,

Ln

∣

∣ϕ ,X
〉

= Wn

∣

∣ϕ ,X
〉

= 0, n ≥ 1.

(2.9)

The consequences of these physical-state conditions have been studied in detail in various

papers [2,4,5,8]. The main features that emerge are the following. The excited states can be

divided into two kinds, namely those for which there are no excitations in the ϕ direction,

and those where ϕ is excited too. The latter states are all null, as has been discussed in

[5,8], and thus need not be considered further. For the former, we may write
∣

∣ϕ ,X
〉

as

∣

∣ϕ ,X
〉

= eβϕ(0)
∣

∣phys
〉

eff
, (2.10)

where
∣

∣phys
〉

eff
involves only the Xµ fields and not ϕ. The physical-state conditions (2.9)

now imply that

(β + Q)(β + 6
7
Q)(β + 8

7
Q) = 0, (2.11)

together with the effective physical-state conditions [2,4,5]:

(Leff
0 −∆)

∣

∣phys
〉

eff
= 0,

Leff
n

∣

∣phys
〉

eff
= 0, n ≥ 1.

(2.12)

The value of the effective intercept ∆ is 1 when β = −6
7
Q or −8

7
Q, and it equals 15

16

when β = −Q. Thus these states of the W3 string are described by two effective Virasoro-

string spectra, for an effective energy-momentum tensor T eff with central charge c = 51
2 and

intercepts ∆ = 1 and ∆ = 15
16
. The first of these gives a mass spectrum similar to an ordinary

∗ For states, we adopt the convention that the ghost vacuum
∣

∣−−
〉

has ghost number G = 0, which

means that the SL(2, C) vacuum
∣

∣0
〉

has ghost number G = −3. This implies that physical states of ghost

number G are obtained by acting on
∣

∣0
〉

with operators of ghost number (G+ 3).
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string, with a massless vector at level 1, whilst the second gives a spectrum of purely massive

states [5].

As we have indicated in the introduction, the W3-string spectrum is much richer than

simply that of the standard physical states we have discussed so far. Although the classifica-

tion of physical states with non-standard ghost structure is as yet incomplete, some classes

of such states have been found [10,14]. They contain excitations of the ghost and antighost

fields as well as the matter fields. The level number ℓ of these states is defined with respect

to the ghost vacuum
∣

∣−−
〉

given in (2.7). Thus, for example, the SL(2, C) vacuum
∣

∣0
〉

has

level number ℓ = 4 and ghost number G = −3, since it can be written as β−2β−1b−1

∣

∣−−
〉

. It

is straightforward to see that at level ℓ, the allowed ghost numbers of states (not necessarily

physical) lie in the interval

[

1−
√
4ℓ+ 1

]

≤ G ≤
[

1 +
√
4ℓ+ 1

]

, (2.13)

where
[

a
]

denotes the integer part of a. In fact for all known examples of physical states

[10], the ghost number lies in the restricted interval −3 ≤ G ≤ 5.

All the physical states in the W3 string occur in multiplets [10], each of which may be

viewed as being built from what we shall call a prime state. We shall discuss the prime

states first. All the known examples of prime states occur either at ghost number G = 0 (in

the case of states with standard ghost structure), or at G = −1 or G = −3 (in the case of

states with non-standard ghost structure). The corresponding operators have ghost numbers

G = 3, G = 2 or G = 0. From (2.13), we see that the last of these can arise only when

the level number ℓ is ≥ 4, and thus we first discuss the G = −1 prime states. (In fact the

examples that we shall be concerned with in this paper involve level numbers ≤ 3.)

The first non-standard physical states arise at level ℓ = 1. They are given by operators

of the form

V =
(

c γ ∓ i

3
√
58
∂γ γ

)

eβϕ+ip·X (2.14)

acting on the SL(2, C) vacuum
∣

∣0
〉

[10]. Just as in the case of the physical states with

standard ghost structure, here the corresponding physical states, and indeed all the non-

standard physical states we shall consider in this paper, admit a natural interpretation as

string-like states for the effective spacetime described by the coordinates Xµ. The operator

V in (2.14) describes a physical state if β = −4
7
Q and the − sign is chosen, or if β = −3

7
Q and

the + sign is chosen. The former operator leads to a state with effective spacetime intercept

Leff
0 = ∆ = 1

2 , whilst the latter corresponds to ∆ = 15
16 . We denote these physical operators

by VG
∆[β, p] = V2

1/2[−4
7
Q, p] and V2

15/16[−3
7
Q, p], and shall adopt similar conventions for

the other physical states. The spectrum of the G = −1 level 1 prime states is completed by

two discrete states, with β momenta −6
7Q and −8

7Q, and spacetime momentum pµ = 0 in

each case [10].
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At level ℓ = 2, there is just one physical state with non-standard ghost structure at

G = −1. It has momentum β = −2
7
Q in the ϕ direction, and effective spacetime intercept

∆ = 1
2 . Following the same notation as above, we denote the corresponding G = 2 operator

by V2
1/2[−2

7
Q, p]. Its detailed form is given in (A.11).

At level ℓ = 3, there are three G = −1 physical states with non-standard ghost structure.

There is a state with β = 0 and ∆ = 1; we denote the corresponding operator by V2
1[0, p].

Its detailed form is given in (A.12). Since in this paper we shall not need the two other

prime states that occur at this level, we shall not give their explicit form, but merely note

that they have β = −4
7Q and β = −3

7Q. A more detailed discussion of physical states with

non-standard ghost structure will be given in [15].

Prime states with G = −1 presumably exist at all higher level numbers too, but as yet

no classification of them exists. There are also further prime states at G = −3, [10], which,

in view of (2.13), can occur only when the level number satisfies ℓ ≥ 4. In fact the first

example, at ℓ = 4, is the SL(2, C) vacuum
∣

∣0
〉

= β−2β−1b−1

∣

∣−−
〉

. This is manifestly BRST

invariant and BRST non-trivial, and thus provides a zero-momentum discrete state.

Higher-level G = −3 physical states were first found in [10], in the context of the two-

scalarW3 string, where all physical states have discrete momenta. Some physical states in the

two-scalar W3 string generalise to continuous-momentum physical states in the multi-scalar

W3 string, some generalise to discrete-momentum physical states, and some do not admit

generalisations at all. We have seen examples above of states in the first two categories. At

level ℓ = 3 there are further discrete states in the two-scalar W3 string that do not generalise

to the multi-scalar case. In [10], two ℓ = 6 discrete states at G = −3 were found for the

two-scalar W3 string; these are analogues of the ground-ring generators [12] for the discrete

states of the two-scalar bosonic string. One of these ℓ = 6 states generalises to a discrete

state in the multi-scalar W3 string; it corresponds to a G = 0 operator, with β = 2
7
Q and

spacetime momentum pµ = 0. In [16], four further discrete states in the two-scalar W3

string were found, at ℓ = 8 and G = −3. Together with the ℓ = 6 states described above,

they constitute the complete set of “ring generators” for the two-scalar W3 string [16]. Two

of them (a pair with conjugate values of momentum in the second direction) generalise to

give a continuous-momentum physical state in the multi-scalar W3 string, corresponding

to a G = 0 operator with β = 4
7Q and continuous on-shell spacetime momentum. The

detailed expressions for the ℓ = 6 and ℓ = 8 operators that we have described here are quite

complicated. Since we shall not be making use of them in the present paper, we shall not

give their explicit form. Details may be found in [10,16].

As we mentioned above, the physical states with non-standard ghost structure arise in

multiplets [10], and so far we have described just the prime states. For each multiplet, this

is the state from which all the other multiplet partners may be generated. The multiplet

is then constructed by acting on the prime state with the G = 1 operators aϕ ≡ [QB, ϕ]

and aXµ ≡ [QB, X
µ]. These operators are manifestly BRST invariant, but they are not

6



BRST trivial since ϕ and Xµ are not primary conformal fields [12,10]. The aϕ and aXµ

operators, which have conformal weight 0, act by normal ordering with the operator that

creates the physical state, giving rise in general to new physical states with ghost number

boosted by 1. By repeatedly acting with aϕ and aXµ , the entire multiplet associated with a

given prime state is generated. In the present paper, the only such physical states that we

shall be concerned with are those obtained by acting just once on a prime state, i.e. states

with ghost number G = 0. For convenience, we summarise the prime states that we shall be

using in this paper in a table:

G Leff
0 β

3 15/16 −Q

ℓ = 0 3 1 −6Q/7, −8Q/7

2 15/16 −3Q/7

ℓ = 1 2 1/2 −4Q/7

ℓ = 2 2 1/2 −2Q/7

ℓ = 3 2 1 0

Table 1.

Every BRST non-trivial physical state has non-zero norm, in the sense that it has a non-

vanishing inner product with some other physical state, i.e. its conjugate. We shall defer

a more detailed discussion of this until the next section. For now, we just remark that the

conjugate of a state with ghost number G and momentum (β, pµ) occurs at ghost number

−G + 2 and, because of the background charges, at momentum (−β − 2Q,−pµ − 2aµ).

To conclude this section, we remark that all the BRST non-trivial physical states are

highest-weight states with conformal dimension 0 with respect to the total energy-momentum

tensor T tot ≡ T + Tgh. This follows because, as in ordinary string theory [12], any physical

state
∣

∣χ
〉

is certainly an eigenstate of Ltot
0 , and so we have Ltot

0

∣

∣χ
〉

= λ
∣

∣χ
〉

= {QB, b0}
∣

∣χ
〉

=

QBb0
∣

∣χ
〉

. Thus if
∣

∣χ
〉

is BRST non-trivial, it must be that λ = 0, since otherwise we would

have
∣

∣χ
〉

= λ−1QBb0
∣

∣χ
〉

. ∗

∗ It is not true, however, that there exists in general a basis for the physical states such that they are
eigenstates of W tot

0 , even though QB, L
tot
0 and W tot

0 commute. To see this, suppose that
∣

∣χi

〉

denotes all

the states at given ℓ and G that are annihilated by QB. Since QBW
tot
0

∣

∣χi

〉

= 0, it follows that we can write

W tot
0

∣

∣χi

〉

=
∑

j aij
∣

∣χj

〉

. The problem is that aij is non-hermitean, and cannot always be diagonalised, even

though W tot
0 is an hermitean operator. (This is because aij are not the matrix elements of W tot

0 with respect
to the proper SL(2, C)-invariant inner product.) We have found explicit examples of physical states at ℓ = 4
and G = 0 where the diagonalisation of aij is impossible. It is true, however, that W tot

0 on any physical state
gives a BRST-trivial state, since W tot

0

∣

∣χ
〉

= {QB, β0}
∣

∣χ
〉

= QBβ0

∣

∣χ
〉

. It follows from this that the matrix of
W tot

0 inner products with respect to the proper SL(2, C)-invariant inner product is not merely hermitean,
but actually zero.
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3. Interactions in the W3 string

3.1 Introduction

As in ordinary string theory at the first-quantised level [17], interactions for the W3

string have to be introduced by hand. The guiding principle for the construction of the

interaction terms is that they should be gauge invariant. In other words, we need to build

BRST invariant scattering amplitudes. These can be constructed from correlation functions

of the BRST invariant physical operators that we described in section 2. However, as we

shall explain below, there are no interactions among physical states with only standard ghost

structure. The main point of this paper is to show that interactions can in fact occur in the

W3 string, but that they necessarily involve states of non-standard ghost structure.

For a correlation function of operators to be non-vanishing, two necessary conditions

must be satisfied. The first is that the operators must have the correct total ghost number;

the second is that they must satisfy momentum conservation.

In addition to the standard ghost vacuum
∣

∣−−
〉

defined in (2.7), there are three more

ghost vacua
∣

∣+−
〉

= c0
∣

∣−−
〉

,
∣

∣−+
〉

= γ0
∣

∣−−
〉

and
∣

∣++
〉

= c0γ0
∣

∣−−
〉

which are degenerate

in energy with
∣

∣−−
〉

. Since we therefore have that
∣

∣−−
〉

= β0b0
∣

∣++
〉

, it follows that
〈

−−
∣

∣−−
〉

=
〈

++
∣

∣++
〉

= 0, etc. The basic non-vanishing inner product is

1 =
〈

++
∣

∣−−
〉

=
〈

0
∣

∣c−1c0c1 γ−2γ−1γ0γ1γ2
∣

∣0
〉

= 1
576

〈

0
∣

∣∂2c ∂c c ∂4γ ∂3γ ∂2γ ∂γ γ
∣

∣0
〉

.
(3.1)

Note that in particular the total ghost number of the operators in a non-vanishing correlator

must be 3 + 5 = 8.

We find it convenient for calculating correlation functions to bosonise the ghosts as

follows:
b = e−iσ; c = eiσ ,

β = e−iρ; γ = eiρ ,
(3.2)

where σ and ρ are real scalars with the operator-product expansions σ(z)σ(w) ∼ − log(z−w)
and ρ(z)ρ(w) ∼ − log(z − w). It is straightforward to see that

∂nc ∂n−1c · · · ∂c c = n!(n− 1)! · · · 1 ei(n+1)σ , (3.3)

and similarly for γ. Thus (3.1) becomes

〈

0
∣

∣ e3iσ e5iρ
∣

∣0
〉

= 1 . (3.4)

In addition to having the ghost structure given above, non-vanishing correlators must

also satisfy momentum conservation. Owing to the presence of the background charges, we

8



must have
∑N

i=1 p
µ
i = −2aµ in the effective spacetime together with

N
∑

i=1

βi = −2Q (3.5)

in the ϕ direction, in order to have a non-vanishing N -point function. For states of contin-

uous spacetime momentum pµ, as indeed we have in the multi-scalar W3 string, momentum

conservation in the Xµ directions can be straightforwardly satisfied. However, as we saw in

section 2, the momentum β in the ϕ direction can only take specific frozen values in physical

states. Thus it is in general non-trivial to satisfy momentum conservation in the ϕ direction.

Note en passant that since all the physical operators are primary fields with dimension

zero with respect to T + Tgh, the conformal prefactors in all correlation functions will be

trivial.

3.2 The two-point function

We begin our detailed discussion of correlation functions by considering the two-point

function. It is this that defines the inner product, and hence the meaning of conjugation

of any state. Physical states with standard ghost structure provide a good example for

this discussion. One can see from (2.6), (2.7) and (2.10) that the G = 3 physical operator

describing a standard state is of the form

V3
∆[β, p] = c ∂γ γ eβϕ P (∂X)eip·X

= eiσ e2iρ eβϕ P (∂X)eip·X ,
(3.6)

where β satisfies (2.11), P (∂X)eip·X
∣

∣0
〉

=
∣

∣phys
〉

eff
satisfies (2.12), and ∆ is given below

(2.12). The G = 5 operator conjugate to (3.6) that acts on
〈

0
∣

∣ to create the conjugate state

has the form
V5

∆′ [β′, p′] = ∂c c ∂2γ ∂γ γ eβ
′ϕ P (∂X)eip

′
·X

= 2 e2iσ e3iρ eβ
′ϕ P (∂X)eip

′
·X .

(3.7)

The physical-state conditions imply that β′ must satisfy the same cubic equation (2.11) as

does β, and P (∂X)eip
′
·X gives rise to a state satisfying (2.12). From (3.5) we see that the

solution β = −Q of (2.11) is self-conjugate, and that the solutions β = −6
7
Q and β = −8

7
Q

are conjugate to each other [4,5,8]. The inner product between the above states, when we

choose β′ so as to satisfy (3.5), is

〈

0
∣

∣V5
∆[−2Q− β,−2a− p](z1) V

3
∆[β, p](z2)

∣

∣0
〉

= 2
〈

0
∣

∣e2iσ e3iρ e(−2Q−β)ϕ(z1) e
iσ e2iρ eβϕ(z2)

∣

∣0
〉〈

phys′
∣

∣phys
〉

eff

= −2 z212 z
6
12 z

β(β+2Q)
12 z−2∆

12 .

(3.8)
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In the last line we have used Wick’s theorem and written the contributions from σ, ρ, ϕ and
∣

∣phys
〉

eff
in that order. We use the standard notation zij ≡ zi − zj. For each solution given

by (2.11) and its corresponding value of ∆ given below (2.12), we see that the exponent of

z12 is zero, and thus the inner product is just a constant, as it must be for the two-point

function of conformal-weight 0 fields. (The precise value of the constant is determined by the

normalisations of the physical operators. Of course because the inner product is off-diagonal

one must, as in ordinary string theory, truncate the states to obtain a positive-definite metric

on the Hilbert space [8]. This is usually done by identifying states and their conjugates.)

The calculation of inner products of states involving non-standard ghost structures proceeds

in a similar fashion.

3.3 The three-point function

In ordinary string theory the three-point function defines the basic interaction vertex

of the theory [17]. This is also the case for the W3 string, as we shall explain. There are,

however, differences and subtleties that do not arise for the ordinary string.

Three-point functions are identically zero if all the external states have the standard

ghost structure (2.6). This follows from the fact that neither of the two necessary conditions

discussed in subsection 3.1 is satisfied in this case. To see this, we note that the ghost number

of the physical operator that creates a standard state is G = 3, and thus the product of three

such operators has ghost number G = 9. From (3.1) it then follows that the inner product

in the ghost sector gives zero. Note that since the conjugate operators have ghost number

G = 5, they cannot remedy this problem. There is also another reason why these three-

point functions vanish. Since the allowed values of β momentum are in this case β = −Q,
β = −6

7
Q or β = −8

7
Q, it follows that three of them cannot be combined so as to satisfy the

momentum-conservation law (3.5). Similar arguments show that all higher N -point functions

of physical states with the standard ghost structure, or their conjugates, are identically zero.

This apparent difficulty of introducing interactions in W3 string theory can be resolved

by considering three-point functions of physical states with non-standard ghost structure.

These states circumvent both of the difficulties described above, since, as we saw in section

2, they occur with lower ghost number and less negative β momentum, as compared with

the states of standard ghost structure. With the physical states that we have described in

section 2 and the appendix, there are many non-vanishing three-point functions. We shall

begin by presenting a detailed computation of one example and shall then give the results

for many others.

The easiest way to identify a possible non-vanishing three-point function is first to ensure

that the three states have momenta satisfying the momentum-conservation law (3.5). (As

explained earlier, the only non-trivial requirement comes from the conservation equation for

the β momentum.) Since all states in a multiplet have the same momentum, it suffices to

look just at the prime state in each multiplet. Having taken care of momentum conservation,

10



we must also ensure that the ghost structure of the product of operators leads to the non-

vanishing ghost correlation function (3.1). In particular, this means that the total ghost

number of the operators must be 8. If the sum of ghost numbers for the three prime states is

greater than 8, then the three-point function will be zero. If the sum of ghost numbers equals

8, then this is a good candidate for a non-vanishing three-point function. If the sum is less

than 8, then the ghost numbers can be boosted by acting with aϕ or aXµ to generate a higher

ghost number member of a multiplet. This again can lead to a non-vanishing three-point

function.

Let us consider the following example in detail. For the three prime states we choose

one to be a tachyon state with standard ghost structure, with β = −Q; this corresponds to
the operator VG

∆[β, p] = V3
15/16[−Q, p1] as given in (A.3). The two remaining states that we

choose have non-standard ghost structure, and occur at level ℓ = 1. One has β = −3
7Q, and

corresponds to the operator V2
15/16[−3

7
Q, p2] given in (A.7), and the other has β = −4

7
Q and

corresponds to the operator V2
1/2[−4

7Q, p3] given in (A.8). We emphasise that even though

these are level 1 states, they are tachyonic from the point of view of the matter, since the

excitations are purely ghostly. Clearly the β momenta satisfy the conservation condition

(3.5). However, the ghost numbers add up to 7, and so we must boost this to 8 by acting on

one of the prime states with a linear combination of aϕ and aXµ . We choose to boost the ghost

number of the second state; accordingly we take the operator WG
∆[β, p] = W3

15/16[−3
7
Q, p2]

given in (A.9).

Not all the terms in these three states can combine to give the correct ghost struc-

ture (3.4); only two of the three terms in W3
15/16[−3

7Q, p2], and one of the two terms in

V2
1/2[−4

7Q, p3] contribute. We find it convenient to compute the ghost and ϕ part sepa-

rately from the effective matter part, since all the states that we consider in this paper

factorise in this way. Thus we have for the ghost and ϕ part

〈

0
∣

∣

(

eiσe2iρe−Qϕ
)

(z1)
(

11eiσ∂e2iρe−
3
7Qϕ + 16eiσe2iρ∂e−

3
7Qϕ

)

(z2)
(

eiσeiρe−
4
7Qϕ

)

(z3)
∣

∣0
〉

= −z12z13z23
[

11∂2(z
4
12z

2
13z

2
23)z

−21/8
12 z

−7/2
13 z

−3/2
23 + 16z412z

2
13z

2
23∂2(z

−21/8
12 z

−7/2
13 z

−3/2
23 )

]

= −2 z
11/8
12 (z13z23)

1/2 ,
(3.9)

where ∂i ≡ ∂/∂zi. The effective matter part is easier to compute, since the operators are all

tachyonic. For this, we have

〈

eip1·X(z1) eip2·X(z2) eip3·X(z3)
〉

= zp1·p212 zp1·p313 zp2·p323

= z
−11/8
12 (z13z23)

−1/2 ,
(3.10)

where in deriving the last line we have used the relation

p1 · p2 = ∆3 −∆1 −∆2 = 1
2 − 15

16 − 15
16 = −11

8 , etc , (3.11)
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which follows from the momentum-conservation law (3.5). Putting the factors (3.9) and

(3.10) together, we finally obtain the three-point function

• Leff
0 = {15

16 ,
15
16 ,

1
2}:

〈

0
∣

∣V3
15/16[−Q, p1](z1) W3

15/16[−3
7
Q, p2](z2) V

2
1/2[−4

7
Q, p3](z3)

∣

∣0
〉

= −2 . (3.12)

That this three-point function is a constant is a consequence of the fact that it is the correlator

of three primary fields of dimension zero with respect to the total energy-momentum tensor

T +Tgh. The important point is that the constant is non-zero, showing that there are indeed

interactions in the W3 string.

There are two three-point functions that are closely related to the one that we have just

calculated. These correspond to the cases where we boost the ghost number of the first or

the third operator instead of the second. The computations are similar and we just give the

results:
〈

0
∣

∣W4
15/16[−Q, p1](z1) V2

15/16[−3
7
Q, p2](z2) V

2
1/2[−4

7
Q, p3](z3)

∣

∣0
〉

= −2 ,
〈

0
∣

∣V3
15/16[−Q, p1](z1) V2

15/16[−3
7Q, p2](z2) W

3
1/2[−4

7Q, p3](z3)
∣

∣0
〉

= −2 .
(3.13)

The fact that these two three-point functions also turn out to be non-zero is a first sign of

a pattern that we shall encounter in all the correlation functions we compute, namely, that

when it is necessary to boost the total ghost number in a correlation function in order to

reach 8, it does not seem to matter which operator is boosted. (Recall that boosting an

operator means acting with a linear combination of aϕ and aXµ , giving another member in

the same multiplet, but with ghost number increased by one.)

Another interesting three-point function to compute is one with three Leff
0 = 1 operators.

The first two operators have standard ghost structure with β-momenta −6
7Q and −8

7Q. The

third is a level ℓ = 3 operator with non-standard ghost structure and β = 0. Their explicit

expressions are given by (A.2), (A.1) and (A.12). The total ghost number of these three

operators is already 8, so no boosting is needed. The result turns out to be

• Leff
0 = {1, 1, 1}:

〈

0
∣

∣V3
1[−6

7Q, p1](z1) V
3
1[−8

7Q, p2](z2) V
2
1[0, p3](z3)

∣

∣0
〉

= −2 . (3.14)

In the above calculation we have used

β ∂γ γ(z) = : e−iρe2iρ : (z) =
1

2πi

∮

dw

w − z
e−iρ(w)e2iρ(z) , (3.15)

and similarly

(∂ϕ)2(z) =
1

2πi

∮

dw

w − z

(

e−iϕ(w)∂eiϕ(z) − ∂e−iϕ(w)eiϕ(z)
)

. (3.16)
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The relevant terms where these factors appear can then be evaluated as four-point functions

with a contour integral.

From the physical operators given in the appendix, there are several more three-point

functions that satisfy momentum conservation and have the correct total ghost number.

Classifying them by the Leff
0 values of the operators,∗ the results are as follows:

• Leff
0 = {15

16 ,
15
16 , 1}:

〈

0
∣

∣W3
15/16[−3

7Q, p1](z1) V
2
15/16[−3

7Q, p2](z2) V
3
1[−8

7Q, p3](z3)
∣

∣0
〉

= 4 . (3.17)

• Leff
0 = {15

16 ,
15
16 , 1}:

〈

0
∣

∣V3
15/16[−Q, p1](z1) V3

15/16[−Q, p2](z2) V2
1[0, p3](z3)

∣

∣0
〉

= 1 . (3.18)

• Leff
0 = {1

2
, 1

2
, 1}:

〈

0
∣

∣W3
1/2[−4

7Q, p1](z1) V
2
1/2[−2

7Q, p2](z2) V
3
1[−8

7Q, p3](z3)
∣

∣0
〉

= 2 . (3.19)

• Leff
0 = {1

2 ,
1
2 , 1}:

〈

0
∣

∣W3
1/2[−4

7
Q, p1](z1) V

2
1/2[−4

7
Q, p2](z2) V

3
1[−6

7
Q, p3](z3)

∣

∣0
〉

= 4 . (3.20)

• Leff
0 = {1, 1, 1

2}:

〈

0
∣

∣V3
1[−6

7Q, p1](z1) V
3
1[−6

7Q, p2](z2) V
2
1/2[−2

7Q, p3](z3)
∣

∣0
〉

= 0 . (3.21)

When the boosting of an operator was necessary in the above three-point functions,

we have only shown the results for one specific choice of which operator to boost. Similar

expressions are obtained when a different operator is boosted. No non-vanishing three-

point functions where all three physical operators have non-standard ghost structure can be

constructed with the examples given in the appendix.

The vanishing of the three-point function (3.21) emerges only after a computation. The

result is indicative of a relation with the fusion rules of the Ising model, as indeed are the

∗ The reason for classifying them in this way is that, as we shall argue in section 4, physical operators
with the same Leff

0 value can be viewed as equivalent, even though they may have different ghost structures
and ϕ dependence.
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results of all the other three-point functions given above. We shall discuss this further in

section 4.

3.4 The four-point function

By studying the poles of the four-point functions of the W3 string, one learns about the

mass spectrum of theory. There are several four-point functions that we can calculate using

the physical operators given in the appendix. We shall begin by describing the procedure for

computing four-point functions in the W3 string, and illustrate it in detail with an example.

Then, we shall present the results for all the other four-point functions.

By making use of the SL(2, C) invariance of the vacuum
∣

∣0
〉

, three of the worldsheet

coordinates of the physical operators in a four-point function may be fixed. As usual, we

choose to set z1 = ∞, z2 = 1 and z4 = 0. As in ordinary string theory the coordinate z3

should then be integrated from 0 to 1, giving a scattering amplitude that is independent of

the positions of insertion of the physical operators. The physical operators have conformal

dimension 0 with respect to the total energy-momentum tensor T+Tgh. Therefore in order to

preserve the conformal covariance of the theory, the dimension of the physical operator V (z3)

inserted at z3 must be increased by 1 so that we can integrate over an operator of dimension

1, as we must for an invariant result. This may be achieved by making the replacement

V (z3) →
1

2πi

∮

z3

dw b(w)V (z3) , (3.22)

where the subscript on the contour integral indicates that it is to be evaluated around a closed

path enclosing z3. The above procedure not only preserves the projective structure (i.e.

SL(2, C) covariance) but also gives a result that is invariant under the BRST transformations

generated by (2.1). This whole construction is parallel to the one used in ordinary string

theory. It also admits an immediate generalisation to higher-point functions.

As in the case of three-point functions, a four-point function will be zero unless the

ghost numbers of the operators (after the b contour integral) add up to 8 and momentum

conservation is satisfied. If these necessary conditions are satisfied then it becomes a matter

of computation to determine the result. We shall now carry this out for the following example.

Let us take four physical operators that all correspond to physical states with Leff
0 = 1

2
, We

can satisfy the momentum conservation by choosing three of them to be level 1 states with

non-standard ghost structure and β = −4
7Q, given by (A.8), and the other to be a level 2

state with non-standard ghost structure and β = −2
7Q, given by (A.11). Since they already

have the correct total ghost number, to insert the b contour integral we need to boost one

of the operators to restore the total ghost number to 8. Without loss of generality, we shall

14



boost the operator at z4. (As we shall discuss later, it does not matter which operator we

choose to boost.) Thus the four-point function for these four operators takes the form:
∫

dz3

∮

z3

dw

2πi
×

〈

0
∣

∣V2
1/2[−4

7Q, p1](z1) V
2
1/2[−4

7Q, p2](z2) b(w)V
2
1/2[−2

7Q, p3](z3) W
3
1/2[−4

7Q, p4](z4)
∣

∣0
〉

,

(3.23)

where the boosted operator W3
1/2[−4

7Q, p4](z4) is given in (A.10).

This four-point function may be factorised as a product of the ghost plus ϕ part, and a

matter part. For the ghost plus ϕ part, we obtain

〈

0
∣

∣

(

eiσeiρe−
4
7Qϕ

)

(z1)
(

eiσeiρe−
4
7Qϕ

)

(z2)
(

− 3
2∂3e

iρe−
2
7Qϕ − 2eiρ∂3e

−
2
7Qϕ

)

(z3)

(

10eiσ∂4e
2iρe−

4
7
Qϕ + 12eiσe2iρ∂4e

−
4
7
Qϕ

)

(z4)
∣

∣0
〉

= −15Aσ∂3∂4AρAϕ − 18Aσ∂3Aρ∂4Aϕ − 20Aσ∂4Aρ∂3Aϕ − 24AσAρ∂3∂4Aϕ

= 2 (z12z14z24)
2/3(z13z23z34)

−1/3x−2/3(1− x)−2/3(1− x+ x2) .

(3.24)

Here Aσ, Aρ and Aϕ denote the contractions from the σ, ρ and ϕ fields, and are given by

Aσ = z12z14z24 ,

Aρ = z12z13z23z
2
14z

2
24z

2
34 ,

Aϕ = z−2
12 z

−1
13 z

−2
14 z

−1
23 z

−2
24 z

−1
34 .

(3.25)

In the last line of (3.24) we have extracted the conformal prefactor, and written the remainder

in terms of the invariant cross-ratio

x =
z12z34
z13z24

. (3.26)

In order to compute the effective matter part of the four-point function, we introduce

the Mandelstam variables s, t and u:

s ≡ −(p1 + p2)
2 − 2a · (p1 + p2) = −2p1 · p2 − 2∆1 − 2∆2 ,

t ≡ −(p2 + p3)
2 − 2a · (p2 + p3) = −2p2 · p3 − 2∆2 − 2∆3 ,

u ≡ −(p1 + p3)
2 − 2a · (p1 + p3) = −2p1 · p3 − 2∆1 − 2∆3 .

(3.27)

Their sum is given by

s+ t + u = −2(∆1 +∆2 +∆3 +∆4) . (3.28)

In our present calculation, where ∆i =
1
2
, we have s + t + u = −4. The matter part of the

four-point function (3.23) gives
〈

eip1·X(z1) eip2·X(z2) eip3·X(z3) eip4·X(z4)
〉

= zp1·p212 zp1·p313 zp1·p414 zp2·p323 zp2·p424 zp3·p434

= (z12z13z14z23z24z34)
−1/3x−s/2−2/3(1− x)−t/2−2/3 ,

(3.29)
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where again we have extracted the appropriate conformal prefactor. Combining (3.24) and

(3.29), setting z1 = ∞, z2 = 1 and z4 = 0, and integrating x = z3 from 0 to 1, we finally

obtain for the scattering amplitude (3.23)

• Leff
0 = {1

2 ,
1
2 ,

1
2 ,

1
2}:

∫ ∮

z3

〈

0
∣

∣V2
1/2[−4

7Q, p1](z1) V
2
1/2[−4

7Q, p2](z2) b(w)V
2
1/2[−2

7Q, p3](z3) W
3
1/2[−4

7Q, p4](z4)
∣

∣0
〉

= 2

∫ 1

0

dx x−s/2−2(1− x)−t/2−2(1− x+ x2) (3.30)

= 2
Γ(−s/2− 1)Γ(−t/2)
Γ(−s/2− t/2− 1)

+ 2
Γ(−s/2 + 1)Γ(−t/2− 1)

Γ(−s/2− t/2)
. (3.31)

Here, and in subsequent expressions, the integrals at the front of the first line denote precisely

the integrations given in (3.23). We shall defer detailed discussion of this result, and of the

other four-point functions we shall compute, until section 4.

There are several other four-point functions that satisfy momentum conservation and

have the correct ghost number, and we now list the results. Just as for the three-point

functions, we classify them by the Leff
0 values of the physical operators.

• Leff
0 = {15

16 ,
15
16 ,

1
2 ,

1
2}:

∫ ∮

z3

〈

0
∣

∣V2
15/16[−3

7Q, p1](z1) V
2
15/16[−3

7Q, p2](z2) b(w)W
3
1/2[−4

7Q, p3](z3) V
2
1/2[−4

7Q, p4](z4)
∣

∣0
〉

= −2

∫ 1

0

dx x−s/2−2(1− x)−t/2−31/16(x− 2) (3.32)

= −2
Γ(−s/2)Γ(−t/2− 15/16)

Γ(−s/2− t/2− 15/16)
+ 4

Γ(−s/2− 1)Γ(−t/2− 15/16)

Γ(−s/2− t/2− 31/16)
. (3.33)

• Leff
0 = {15

16 ,
15
16 ,

1
2 ,

1
2}:

∫ ∮

z3

〈

0
∣

∣V3
15/16[−Q, p1](z1) V2

15/16[−3
7Q, p2](z2) b(w)V

2
1/2[−2

7Q, p3](z3) V
2
1/2[−2

7Q, p4](z4)
∣

∣0
〉

= 0 . (3.34)

• Leff
0 = {1, 15

16
, 15

16
, 1}:

∫ ∮

z3

〈

0
∣

∣V3
1[−8

7Q, p1](z1) V
2
15/16[−3

7Q, p2](z2) b(w)V
2
15/16[−3

7Q, p3](z3) V
2
1[0, p4](z4)

∣

∣0
〉

= −2

∫ 1

0

dx x−s/2−31/16(1− x)−t/2−2 (3.35)

= −2
Γ(−s/2− 15/16)Γ(−t/2− 1)

Γ(−s/2− t/2− 31/16)
. (3.36)
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• Leff
0 = {15

16 ,
15
16 , 1,

1
2}:

∫ ∮

z3

〈

0
∣

∣V3
15/16[−Q, p1](z1) V2

15/16[−3
7Q, p2](z2) b(w)V

2
1[0, p3](z3) V

2
1/2[−4

7Q, p4](z4)
∣

∣0
〉

=

∫ 1

0

dx x−s/2−3/2(1− x)−t/2−31/16 (3.37)

=
Γ(−s/2− 1/2)Γ(−t/2− 15/16)

Γ(−s/2− t/2− 23/16)
. (3.38)

• Leff
0 = {1, 1

2 , 1,
1
2}:

∫ ∮

z3

〈

0
∣

∣V3
1[−6

7
Q, p1](z1) V

2
1/2[−4

7
Q, p2](z2) b(w)V

2
1[0, p3](z3) V

2
1/2[−4

7
Q, p4](z4)

∣

∣0
〉

= −2

∫ 1

0

dx x−s/2−3/2(1− x)−t/2−3/2 (3.39)

= −2
Γ(−s/2− 1/2)Γ(−t/2− 1/2)

Γ(−s/2− t/2− 1)
. (3.40)

• Leff
0 = {1, 1

2 ,
1
2 , 1}:

∫ ∮

z3

〈

0
∣

∣V3
1[−8

7
Q, p1](z1) V

2
1/2[−4

7
Q, p2](z2) b(w)V

2
1/2[−2

7
Q, p3](z3) V

2
1[0, p4](z4)

∣

∣0
〉

=

∫ 1

0

dx x−s/2−3/2(1− x)−t/2−2 (3.41)

=
Γ(−s/2− 1/2)Γ(−t/2− 1)

Γ(−s/2− t/2− 3/2)
. (3.42)

• Leff
0 = {1, 1

2
, 1

2
, 1

2
}:

∫ ∮

z3

〈

0
∣

∣V3
1[−6

7Q, p1](z1) V
2
1/2[−4

7Q, p2](z2) b(w)V
2
1/2[−2

7Q, p3](z3) V
2
1/2[−2

7Q, p4](z4)
∣

∣0
〉

= 0 . (3.43)

• Leff
0 = {1, 1

2
, 1

2
, 1

2
}:

∫ ∮

z3

〈

0
∣

∣V3
1[−8

7Q, p1](z1) V
2
1/2[−2

7Q, p2](z2) b(w)V
2
1/2[−2

7Q, p3](z3) V
2
1/2[−2

7Q, p4](z4)
∣

∣0
〉

= 0 . (3.44)
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In the four-point functions (3.30) and (3.32), where it is necessary to boost the total

ghost number, we have in each case made a specific choice about which operator to boost.

We have checked in several examples that the result does not depend on which particular

operator is chosen. We expect this to be a general feature of all correlation functions.

The four-point functions (3.34), (3.43) and (3.44) turn out to be zero as a result of

non-trivial computations. The vanishing of (3.34) can be understood from the underlying

three-point functions, i.e. that the intermediate state in the four-point function does not

carry a β momentum for which there could be a non-vanishing three-point function with the

two external states for that particular channel. This suggests that the three-point function

is indeed the basic interaction vertex of the W3 string. The vanishing of the four-point

functions (3.43) and (3.44) cannot be explained in this way. However, as we shall discuss in

section 4, it is indicative of a relation between the W3 string and the Ising model.

4. Crossing, duality and the Ising model

Having obtained several non-vanishing three-point and four-point functions in the pre-

vious section, we now turn to a discussion of the significance of these results. We shall first

discuss the crossing and duality properties of these correlation functions. Then we shall

investigate their relation with the fusion rules of the Ising model.

4.1 Crossing properties

One of the fundamental properties of the ordinary bosonic string is that the four-point

function is crossing symmetric [17]. For example, the four-point function for tachyons in the

ordinary string takes the form

∫ 1

0

dx x−s/2−2 (1− x)−t/2−2 , (4.1)

and is invariant under the interchange of s and t. It should be stressed that this is a direct

consequence of the SL(2, C) invariance of the vacuum
∣

∣0
〉

. This invariance in general dictates

how correlation functions with different orderings of the operators are related. In particular,

for a case such as (4.1), where the operators are identical, the four-point function is invariant

under s↔ t, since the interchange of s and t corresponds precisely to the interchange of the

second and fourth operators or of the first and third operators.

In the W3 string there are analogous consequences of the SL(2, C) invariance of the

vacuum, again leading to relations among correlation functions with different orderings of

the operators. From these, we can see that, as we mentioned in section 3, there are indications

that the physical operators we are discussing in this paper are characterised by their Leff
0

values, regardless of their ghost structures and ϕ dependence. For example, the four-point
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function (3.30) for four tachyons with Leff
0 = 1

2 is invariant under the interchange of s and

t. So is the four-point function (3.39). Thus these four-point functions exhibit the crossing

symmetries that would be expected if the second and fourth operators were identical and also

if the first and the third operators were identical. The fact that these pairs of operators in

(3.30) and (3.39) have identical Leff
0 values indeed provides evidence for the above suggestion

that all operators with an effective spacetime interpretation and the same Leff
0 values should

be regarded as “equivalent.”

Since the above-mentioned pairs of operators in the remaining four-point functions of

section 3 have different Leff
0 values, they are not invariant under the “crossing transforma-

tions.” However, they do transform covariantly. For example, under the crossing transfor-

mation t ↔ u, implemented by the interchange of the third and fourth operators (and thus

x→ −x/(1−x)), the integrand in the four-point function (3.39) (including the measure dx)

transforms as

dx x−s/2−3/2(1− x)−t/2−3/2 → dx x−s/2−3/2(1− x)−t/2−2 . (4.2)

In fact, this result provides another illustration of the equivalence of different physical oper-

ators with the same Leff
0 value, since (4.2) leads precisely to (3.41).

4.2 Duality

Let us now turn to a discussion of duality. In the usual bosonic string, duality is the

statement that the four-point amplitude can be expanded as an infinite sum over either

s-channel or t-channel poles [17]. The form of the poles in the sum is identical in each case,

since it is always the same set of intermediate string states that are exchanged in either

channel.

The notion of duality exists for the W3 string, but it is slightly more subtle. In this

case, four-point amplitudes can again be expanded as infinite sums over either s-channel

or t-channel poles, as immediately follows from their expressions in terms of Γ functions.

However, as we have seen, the W3 string contains different sectors corresponding to different

Leff
0 values, and the set of intermediate states in one channel does not necessarily belong

to the same sector as the set of intermediate states in another channel. Thus the form of

the poles may be different in different channels. In particular, the masses of the exchanged

particles in different channels may not be the same.

The four-point function (3.32) provides a nice illustration of this phenomenon. As can

be seen from (3.33), if we expand in the s-channel, the poles correspond to the exchange

of states from the Leff
0 = 1 sector, with (mass)2 = 2n − 2, whilst if we expand in the

t-channel, the poles correspond to the exchange of states from the Leff
0 = 15

16 sector, with

(mass)2 = 2n− 15
8 . Similarly, in the four-point function (3.37), the exchanged states in the s-

channel have Leff
0 = 1

2 , with (mass)2 = 2n−1, whereas in the t-channel the exchanged states
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have Leff
0 = 15

16 . Our expressions for four-point functions in subsection 3.4 make manifest

the structure of poles in the s-channel and t-channel. Of course one can also look at the

u-channel, where the exchanged states may again belong to a different sector. For example,

the four-point function (3.39) is s ↔ t symmetric, with Leff
0 = 1

2 states exchanged in both

these channels; if expanded instead in the u-channel, the exchanged states have Leff
0 = 1.

The other four-point functions in section 3 provide further examples.

4.3 The relation with the Ising model

Indications of a relation with the Ising model have been apparent since the earliest work

on the W3 string [1,2,5]. Until now, the evidence was essentially numerological, consisting of

a twofold observation. Firstly, the central charge of the effective energy-momentum tensor

T eff given in (2.5) can be written as 51
2 = 26 − 1

2 , where 26 is the critical central charge of

the usual bosonic string and 1
2
is the central charge of the Ising model. Secondly, the set of

Leff
0 values, namely {1, 15

16
, 1

2
}, can be written as 1 −∆min, where 1 is the intercept of the

usual bosonic string and ∆min takes the values of the dimensions of the primary fields of the

Ising model, namely {0, 1
16
, 1

2
}.

Inspired by this numerological connection, it was recently proposed in [18] that one might

be able to compute the scattering amplitudes for those physical states of the W3 string that

admit an effective spacetime interpretation by tensoring, by hand, the effective spacetime

parts of the physical states with appropriate primary fields of the Ising model, and then

calculating the scattering amplitudes for the tensor-product states. This procedure implicitly

assumes that the physical operators of the W3 string are equivalent to direct products of

effective Virasoro operators with Ising fields. It is a priori far from clear that this direct

product structure captures the essence of the W3 symmetry. Later in this subsection we

shall examine this assumption in more detail in the light of our calculation of the W3-string

scattering amplitudes, and show that indeed there is more to the W3 symmetry than can be

described by a direct-product structure.

It follows from our results in section 3 that the connection between the W3 string and

the Ising model is more than numerological. In fact, the pattern of vanishing and non-

vanishing three-point functions computed in subsection 3.3 reproduces the fusion rules of

the Ising model. To see this, we associate, as suggested by the numerological observation,

the Leff
0 = 1 sector with the identity operator 1 of the Ising model; the Leff

0 = 15
16 sector

with the spin operator σ; and the Leff
0 = 1

2 sector with the energy operator ε. It is now

immediately clear that the structure of the three-point functions presented in subsection 3.3

exactly agrees with the fusion rules [19] of the Ising model, viz.

1× 1 = 1 , σ × σ = 1+ ε ,

1× σ = σ , σ × ε = σ ,

1× ε = ε , ε× ε = 1 .

(4.3)
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As we already mentioned, the three-point function describes the basic interaction vertex

in the W3 string. Thus one may expect, and indeed it is the case, that all the four-point

functions that we have computed should be consistent with the above fusion rules and the

corresponding four-point functions of the Ising model, in the sense that an amplitude that is

forbidden by the fusion rules (4.3) is indeed zero in theW3 string. In particular, this explains

the vanishing of (3.43) and (3.44). However, it appears that this correspondence does not

go both ways. From the fusion rules of the Ising model, one might expect that there should

exist four-point functions for four Leff
0 = 1 operators and also for four Leff

0 = 15
16 operators.

With the physical operators given in this paper, we cannot construct either of these; in

neither case it is possible to have the correct total ghost structure together with momentum

conservation in the ϕ direction. For the Leff
0 = 1 case, this may simply be because we

have not explored higher-level states in the physical spectrum sufficiently. However, for the

Leff
0 = 15

16 case on the other hand, it seems impossible, from the general pattern of physical

states that is known so far, to construct such a four-point function satisfying β-momentum

conservation. To see this, suppose that, as it is the case for all known physical states, the β

momentum is of the form β = k
7Q, with k an integer.∗ It follows that a physical state with

Leff
0 = 15

16 would have k = −7 ± 4
√
n, where n is an integer related to the level number. To

satisfy momentum conservation in the four-point function, we would need four such (integer)

k’s satisfying k1 + k2 + k3 + k4 = −14, which is manifestly impossible. (In fact even if one

relaxes the supposition that the k’s are integers, it would still be the case that momentum

conservation could not be satisfied for such a four-point function. This follows from the

relatively-easily proven fact that, for integer ni, the sum ±√
n1 ±

√
n2 ±

√
n3 ±

√
n4 cannot

equal 7
2 .)

Let us now compare this result with the computation in [18] of the four-point function

for four Leff
0 = 15

16 effective Virasoro operators tensored with four spin- 1
16 fields of the Ising

model. Interestingly, this computation gave a non-zero result. In view of our finding above,

namely that the four-point function of four Leff
0 = 15

16
physical operators in the W3 string is

zero, it seems that essential aspects of the W3 symmetry are not captured by the method of

[18]. It appears from our results that a W3-symmetry selection rule forbids the existence of

such a non-vanishing four-point function in the W3 string.

We have checked that if one uses the method in [18] to calculate the four-point function

for four Leff
0 = 1

2
effective Virasoro operators tensored with four spin-1

2
Ising fields, the result

is the same as the result (3.30) for the scattering of four Leff
0 = 1

2 physical states of the W3

string. It is not clear to us to what extent in general the method presented in [18] should

agree with the W3-string scattering amplitudes, which are described in this paper.

∗ In fact the quantisation of β in units of 1
7Q follows from a functional integral approach if ϕ is taken

as a time-like coordinate, since under this circumstance ϕ is automatically periodic [4,5].
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5. Open problems and conclusions

In this paper we have presented a procedure for computing gauge-invariant scattering

amplitudes in the W3 string. Although we have concentrated on the open string, the proce-

dure is equally applicable to the closed string. The essential point that enables us to build

scattering amplitudes is the existence of physical states with non-standard ghost structure;

their inclusion is vital, since there seems to be no way to obtain non-vanishing scattering

amplitudes amongst physical states with only standard ghost structure.

All the physical states we have considered in this paper have the property of factorising

into a product of the form

∣

∣effective spacetime
〉

⊗
∣

∣ghost + ϕ
〉

. (5.1)

We have observed in several examples that the Leff
0 value characterises these physical states,

in the sense that states with the same Leff
0 but different ghost structure and ϕ dependence

behave equivalently in correlation functions.

For simplicity, we have restricted our attention to physical states of the form (5.1) where
∣

∣effective spacetime
〉

is a tachyonic state. The only property of
∣

∣effective spacetime
〉

that

is relevant when imposing the physical state conditions on a state of the form (5.1) is that

it should be a highest-weight state under T eff with weight Leff
0 . This means that we can

replace the effective tachyonic state by an arbitrary excited effective physical state with the

same intercept Leff
0 . One can then straightforwardly write down scattering amplitudes for

these new excited physical states.

There are, however, many states in the physical spectrum of the W3 string that are not

of the form (5.1). Specifically, they have prefactors that are the sum of terms that involve

Xµ excitations and terms that do not, and thus they do not factorise into the form (5.1).

The procedure that we have developed in this paper for calculating scattering amplitudes is

equally applicable for such states. The effective spacetime interpretation of these physical

states, and of the corresponding scattering amplitudes, is not yet clear. In addition, it is not

clear how, if at all, these non-factorisable states are related to the Ising model.

An important issue that has not been addressed in this paper is the question of unitarity.

For physical states with standard ghost structure, unitarity was proven in [5], by exploiting

the fact that they all admit an effective spacetime interpretation with effective intercept

values Leff
0 = 15

16 or Leff
0 = 1. One can easily show that the unitarity bounds for an effective

Virasoro string with central charge c = 51
2 imply that the effective intercept must satisfy

either 15
16

≤ Leff
0 ≤ 1 or 0 ≤ Leff

0 ≤ 1
2
[5]. Thus the standard-type physical states of the W3

string precisely saturate the lower and upper limits of the first of these unitarity bounds.

In fact all the known physical states of the W3 string that admit an effective spacetime

interpretation saturate one or other of the unitarity bounds, since they have Leff
0 = 1, 15

16
or

1
2 . Further work on the question of unitarity for the W3 string is in progress.
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We restricted attention in this paper to physical operators at ghost number G = 3 (for

operators with standard ghost structure), or G = 2 (for operators with non-standard ghost

structure), and their boosted partners at G = 4 or G = 3 respectively. It is easy to see

that when N is greater than 5, N -point functions of such operators can never have the

correct ghost structure, and thus they all vanish. However, as we mentioned in section 2,

there are also physical operators with ghost number G = 0; the first non-trivial example

(i.e. with continuous on-shell spacetime momentum pµ) occurs at level ℓ = 8, with β = 4
7Q

[16]. Further examples will arise at higher levels, and can be generated by the action of the

ground-ring generators of the W3 string [10,16]. With such states the N ≤ 5 limit discussed

above can clearly be overcome. It is interesting to note also that these G = 0 operators

have positive β momentum, and can thus counterbalance the negative contributions from

the G = 2 and G = 3 operators discussed in this paper.

The procedure that we have developed in this paper seems to provide a consistent picture

of W3-string scattering. Although we can calculate any desired scattering amplitude, the

underlying structure remains obscure. This is not surprising, since elucidating the organising

principle would require the understanding of W geometry. It may be, however, that our

results provide us with a glimpse of W geometry itself. By analogy with the super-extension

of the bosonic string, where one introduces superspace and integrates over it, one should

expect that in a W extension of the bosonic string one should introduce a “W space” and

“integrate” over it. In view of our results it is not inconceivable that this integration over

W space turns states with standard ghost structure into states with non-standard ghost

structure and vice versa. This suggests that W geometry cannot be completely understood

without including ghosts.

In a usual gauge theory the rôle of the ghost fields is to remove the unphysical degrees

of freedom of the gauge fields. As such, they appear only as virtual particles, and never as

external states in physical amplitudes. In the W3 string, on the other hand, their rôle seems

to be strikingly different: ghost excitations must necessarily appear in the external states of

physical amplitudes. Whereas ghost fields in external states would spoil unitarity in a usual

gauge theory, such as Yang-Mills, it seems plausible that they are needed for unitarity of the

W3 string. Indeed the W3 string differs in an essential way from a usual gauge theory in

that the gauge algebra of the matter fields in the quantum theory, namely W3, is different

from the gauge algebra of the original classical theory, which is a contraction of W3. This

non-trivial renormalisation of the gauge algebra does not happen in a usual gauge theory. It

may well be, therefore, that it is inappropriate to try to understand W3-string theory from

a classical point of view.
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APPENDIX

In this appendix we present the explicit forms of the various physical operators that

we use in this paper. In particular, we give the operators corresponding to all the prime

states at level 0 (i.e. with standard ghost structure), level 1 and level 2, and one example

at level 3 (these all have non-standard ghost structure). We recall that we denote such an

operator by VG
∆[β, p], where G is its ghost number, ∆ is its Leff

0 value, and β and p are the

momenta in the ϕ and effective spacetime (Xµ) directions. For level 0 and level 1, we also

give for each prime state a member of the multiplet whose ghost number has been boosted

by 1. Such operators are denoted by WG
∆[β, p]. In each case we choose a special linear

combination of the ghost boosters aϕ and aXµ with which we act on the prime state. This

combination is chosen so as to introduce no excitations in the Xµ directions, in order to

preserve the factorisability (5.1) and consequently to permit the same effective spacetime

interpretation for the boosted physical states that the prime states enjoy. Expressions for

aϕ and aXµ are presented in [10] for the two-scalar case, and can be generalised immediately

to the multi-scalar case.

• Standard ghost structure: level 0

V3
1[−8

7Q, p] = c ∂γ γ e−
8
7Qϕeip·X , (A.1)

V3
1[−6

7Q, p] = c ∂γ γ e−
6
7Qϕeip·X , (A.2)

V3
15/16[−Q, p] = c ∂γ γ e−Qϕeip·X . (A.3)

• Boosted operators

W4
1[−8

7Q, p] = c ∂2γ ∂γ γ e−
8
7Qϕeip·X , (A.4)

W4
1[−6

7Q, p] = c ∂2γ ∂γ γ e−
6
7Qϕeip·X , (A.5)

W4
15/16[−Q, p] = c ∂2γ ∂γ γ e−Qϕeip·X . (A.6)
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• Non-standard ghost structure: level 1

V2
15/16[−3

7Q, p] =
(

c γ +
i

3
√
58
∂γ γ

)

e−
3
7Qϕeip·X , (A.7)

V2
1/2[−4

7Q, p] =
(

c γ − i

3
√
58
∂γ γ

)

e−
4
7
Qϕeip·X . (A.8)

• Boosted operators

W3
15/16[−3

7Q, p] =
(

11c ∂2γ γ − 12
√
2∂ϕ c ∂γ γ − 13i√

58
∂2γ ∂γ γ

)

e−
3
7Qϕeip·X , (A.9)

W3
1/2[−4

7Q, p] =
(

10c ∂2γ γ − 12
√
2∂ϕ c ∂γ γ − 38i

3
√
58
∂2γ ∂γ γ

)

e−
4
7Qϕeip·X .(A.10)

• Non-standard ghost structure: level 2

V2
1/2[−2

7
Q, p] =

−i√
29

(

∂ϕ ∂γ γ +
√
58 i ∂ϕ c γ − 3

2

√
29 i c ∂γ

− 2
3

√
2∂2γ γ − 1

3

√
2 b c ∂γ γ

)

e−
2
7Qϕeip·X .

(A.11)

• Non-standard ghost structure: level 3

V2
1[0, p] =

(

680
261

b ∂2γ ∂γ γ − 36c β ∂γ γ − 19c ∂2γ − 16
29

√
29 i ∂ϕ b c ∂γ γ + 42

√
2 ∂ϕ c ∂γ

− 24(∂ϕ)2c γ + 28
29

√
58 i (∂ϕ)2∂γ γ − 172

87

√
29 i ∂ϕ ∂2γ γ − 14

29

√
58 i ∂b c ∂γ γ

+ 48
29

√
29 i ∂2ϕ∂γ γ + 301

174

√
58 i ∂2γ ∂γ

)

eip·X .

(A.12)
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