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ABSTRACT 19 

Minimum inhibitory concentration (MIC) results for 115 Staphylococcus 20 intermedius group isolates are presented. 33% were methicillin resistant, among which 21 51.4% were susceptible to doxycycline, 29.7% to clindamycin and 21.6% to trimethoprim-22 sulfamethoxazole. All isolates were susceptible to ceftaroline, daptomycin, linezolid, 23 nitrofurantoin, quinupristin-dalfopristin, rifampin, tigecycline, and vancomycin. 82.6%, 24 67.8% and 23.5% of all isolates were susceptible to ciprofloxacin, erythromycin, and 25 penicillin. No isolates harbored mupA or qacA/B genes, suggestive of no resistance to 26 mupirocin or chlorhexidine. 27 

TEXT 28 

The Staphylococcus intermedius group (SIG) is comprised of Staphylococcus 29 

intermedius, Staphylococcus pseudintermedius, and Staphylococcus delphini. These Gram-30 positive cocci are tube coagulase positive and slide coagulase negative (except S. 31 

intermedius), and may be misidentified as Staphylococcus aureus by clinical laboratories that 32 test human specimens (1). A colonizer of the nares and anal mucosa of cats and dogs, the 33 presence of S. pseudintermedius is increasingly being recognized in human diagnostic 34 specimens (2). This may in part be due to improved diagnostic technologies, such as matrix-35 assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) now 36 being used in many clinical laboratories. S. pseudintermedius have been documented to 37 cause invasive infections in humans, including brain abscesses, endocarditis, and 38 bacteremia (3). Methicillin resistance among S. pseudintermedius isolated from dogs is 39 increasing (4), with rates of up to 47% in some regions of the world (5). This resistance is 40 predominantly due to the dissemination of the ST71 clonal lineage in Europe and ST68 41 clonal lineage in North America (4). Methicillin resistant (MR) isolates often display 42 
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resistance to other classes of antimicrobials used in veterinary medicine, including 43 aminoglycosides, fluoroquinolones, lincosamides, macrolides, tetracyclines and also to 44 chloramphenicol and trimethoprim-sulfamethoxazole (SXT) (6). However, there are limited 45 susceptibility data available for S. pseudintermedius with antimicrobials used for humans. 46 We recently conducted a study to evaluate oxacillin and cefoxitin disk and minimum 47 inhibitory concentration (MIC) results as predictors of methicillin resistance (encoded by 48 

mecA) in a collection of 115 SIG isolated from human and veterinary specimens associated 49 with clinical infections. This study documented that cefoxitin testing, which is 50 recommended by the Clinical and Laboratories Standards Institute (CLSI) to predict 51 methicillin resistance for other species of staphylococci, is a poor predictor of mecA in SIG, 52 whereas both oxacillin disk and MIC tests accurately detect mecA-mediated oxacillin 53 resistance in these isolates (7). As a result of our study, CLSI published S. pseudintermedius- 54 specific oxacillin breakpoints in the 26th edition of the M100S standard (8). The present 55 study documents the results of antimicrobial susceptibility testing (AST) for this collection 56 of 115 SIG isolates, including 111 isolates of S. pseudintermedius (45 from human, 56 from 57 canine, 7 from feline, 2 from avian and 1 from porcine sources) and 4 isolates of S. delphini 58 (3 from equine and 1 from avian sources).  59 

Bacterial isolates were described in our previous article (7). AST was performed 60 according to the CLSI reference broth microdilution MIC method (8), using panels prepared 61 in-house with cation-adjusted Mueller Hinton Broth (MHB). MHB was supplemented with 62 50 mg/L CaCl2 for daptomycin testing and 2% NaCl for oxacillin testing (9). Fifteen 63 antimicrobial agents were tested (Table 1). BMD tests were read following 16-20 hours 64 incubation at 35◦C in ambient air for all antimicrobials except oxacillin and vancomycin, 65 where the final reading was done following 24 hours’ incubation. MIC results were 66 interpreted according to Staphylococcus spp. breakpoints listed in CLSI M100S 26th edition, 67 
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including use of the new oxacillin S. pseudintermedius breakpoints and ceftaroline and 68 vancomycin breakpoints for S. aureus (8).  Because there are no CLSI tigecycline 69 breakpoints, the Food and Drug Administration (FDA) breakpoint for S. aureus was used. All 70 isolates with penicillin-susceptible MICs (≤0.12 µg/ml) were also tested by penicillin disk 71 diffusion using the standard CLSI method and examined for beta-lactamase production 72 using a BBL CefinaseTM disk (BD, Sparks MD).  In addition to taking zone measurements, the 73 zone edges were evaluated for sharp versus fuzzy borders around the penicillin disks. Beta-74 lactamase testing was performed using growth taken from the zone margin surrounding a 75 penicillin disk test on BBL Mueller Hinton agar (MHA, BD) after 16-18 hours’ incubation. 76 

mecA PCR and SCCmec typing was performed as described in our previous article (7). 77 Mupirocin resistance was determined by PCR for the mupA gene and chlorhexidine 78 resistance by PCR for the qacA/B gene, as described elsewhere (10). 79 

MIC results obtained for the 115 isolates are shown in Table 1. Thirty-seven isolates 80 (32.2%) harbored the mecA gene, including 4 of human origin and 33 of veterinary origin. 81 Using the CLSI M100S 26th edition Staphylococcus spp. interpretive criteria, 33 of the 78 82 (42.3%) mecA-negative isolates had penicillin susceptible MICs of ≤0.12 µg/mL (Table 1). 83 For 27/33 isolates, MICs were ≤0.06 µg/ml, penicillin zone measurements were susceptible 84 at ≥29 mm and induced nitrocefin tests were negative. 6/33 (18.2%) yielded a positive 85 induced nitrocefin test, indicating the presence of a beta-lactamase, including 5 human 86 isolates and 1 animal isolate. Six isolates demonstrated penicillin zones ≤28 mm (resistant) 87 and all had “sharp” zone edges. Five of these isolates had penicillin MICs of 0.12 µg/mL and 88 1 isolate had a penicillin MIC of ≤0.03 µg/mL. Repeat testing in two laboratories confirmed 89 results. When the nitrocefin tests were performed using un-induced colonies (i.e. not from a 90 penicillin zone margin), variable results were obtained, with 0-4 of the 6 isolates yielding a 91 positive result in different laboratories, on different days when testing colonies grown on 92 
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BAP or on MHA. As such, a test for beta-lactamase production should be performed for all 93 penicillin-susceptible S. pseudintermedius isolates, as is done for other Staphylococcus spp. 94 Whether a penicillin zone edge test is sufficient for this purpose, or if an induced nitrocefin-95 based test is needed, remains to be determined. However, in our limited analysis, the 96 penicillin zone edge test was 100% concordant with nitrocefin results obtained when 97 testing induced colonies. All isolates were susceptible to ceftaroline, the cephalosporin with 98 high affinity binding to PBP2a expressed by mecA.   99 

With regards to the non-beta-lactam agents, significant differences were noted in 100 the percentage of methicillin-resistant isolates susceptible to doxycycline, SXT, and 101 clindamycin, as compared to what has been documented with contemporary isolates of S. 102 

aureus (11). This constellation of multi-drug resistance is consistent with the multi-drug 103 resistant (MDR) S. pseudintermedius clones, ST68 and ST71, which harbor mutations within 104 

gyrA and grlA (conferring resistance to fluoroquinolones), as well as a TN5404-like 105 transposon element that harbors the dfrG (sulfamethoxazole resistance) and ermB 106 (clindamycin and erythromycin resistance) genes (4). Interestingly, differences were noted 107 in our collection based on the SCCmec type. Isolates with SCCmec V were more commonly 108 resistant to erythromycin and clindamycin (10/11 isolates, 90.9%), SXT (10/11 isolates, 109 90.9%), doxycycline (8/11 isolates, 72.7%) and ciprofloxacin (9/11 isolates, 81.8%) as 110 compared to those with SCCmec types IV or III. For SCCmec type IV, 4/8 (50.0%), 8/8 111 (100%), 1/8 (12.5%), and 0/8 (0.0%) isolates were resistant to these antimicrobials, 112 respectively. For isolates with SCCmec type III, 4/9 (44.4%), 2/9 (22.2%), 4/9 (44.4%) and 113 0/9 (0.0%) were resistant. Isolates of the MDR North American ST68 lineage harbor 114 SCCmec V, similar to the more resistant isolates in our collection (4). 115 
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Doxycycline susceptibility was 89.7% among mecA-negative isolates and only 51.4% 116 among mecA-positive isolates (Table 1). This is in striking contrast to doxycycline 117 susceptibility rates among human isolates of methicillin-resistant S. aureus (MRSA), which 118 were 96% among a collection of >4,000 isolates recovered from human diagnostic 119 specimens in 2010 (12). Doxycycline susceptibility rates were similarly high among 120 methicillin-resistant CoNS, at 94.1% in one study of 1,473 isolates (13). Our data are 121 consistent with previous studies that documented 31-38% doxycycline susceptibility 122 among methicillin-resistant S. pseudintermedius (MRSP) isolates from canine sources (14, 123 15). No difference was noted in susceptibility to doxycycline between human (n=5, 40.0% 124 susceptible) and veterinary (n=32, 53.1% susceptible) MRSP isolates in the present study.  125 

Of note, canine-specific breakpoints for doxycycline have been proposed to 126 accommodate the pharmacokinetics of doxycycline doses used for dogs. The canine 127 breakpoints are ≤0.125 μg/mL (susceptible), 0.25 μg/mL (intermediate) and ≥0.5 µg/mL 128 (resistant), but these have yet to be published in the CLSI VET antimicrobial susceptibility 129 testing document (16). The lowest concentration of doxycycline tested in our study was 1 130 μg/mL, and as such we cannot estimate the effect these breakpoints would have on our 131 collection of isolates. However, 35% of mecA-positive and 10.2% of mecA-negative isolates 132 had MICs of 2 – 4 μg/mL, which are resistant by the canine breakpoints but susceptible by 133 the human breakpoints. Resistance to the tetracyclines is mediated through acquisition of 134 tetracycline resistance genes (tet genes), four of which have been identified among S. 135 

pseudintermedius isolates. These are tet(M) and tet(O), which mediate ribosomal protection, 136 and tet(K) and tet(L), which encode efflux pumps. The most commonly occurring of these 137 are tet(M) and tet(K) in S. pseudintermedius (16, 17). Isolates that harbor none of these 138 genes typically have MICs ≤0.125 μg/mL to doxycycline, whereas acquisition of the tet(M) 139 gene can be associated with MICs that are elevated, but below the 4 μg/mL CLSI M100S 26th 140 
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edition susceptible breakpoint. Clinically, it is unclear whether such isolates that are 141 susceptible by the CLSI M100S 26th edition breakpoint and harbor a tet gene are associated 142 with treatment failures, but these isolates would be considered resistant by the proposed 143 veterinary breakpoint (16). The EUCAST susceptible breakpoint for doxycycline is ≤1 144 μg/mL for human isolates of Staphylococcus spp. (www.eucast.org) and when applying this 145 breakpoint, only 18.1% of methicillin-resistant and 79.5% of methicillin-susceptible isolates 146 in our study would be doxycycline susceptible. Regardless, the tet genes are carried on 147 Tn5801 and Tn916 elements (6), the same as are found in human and veterinary isolates of 148 tetracycline-resistant S. aureus (18). The Tn916 tet(M) gene was found in all isolates of the 149 clonal complex (CC) 398 of S. aureus, suggesting this element was integrated into the 150 genome of the clone early and disseminated vertically.  This may also be the case for the 151 ST71 and ST68 clonal lineages of S. pseudintermedius, and may account for the common 152 occurrence of doxycycline resistance in these isolates. Doxycycline resistance may also be 153 selected for through the common use of this agent for the treatment of pyoderma in small 154 animal veterinary medicine. 155 

SXT susceptibility was only 21.6% among mecA positive isolates. In contrast, human 156 isolates of MRSA are typically susceptible to this agent; in 2013, 98.0% of isolates in a 157 collection of over 9,000 MRSA were susceptible to SXT (19). SXT susceptibility is lower 158 among coagulase-negative staphylococci. In the same study conducted in 2013 52.7% of 159 2,268 methicillin-resistant coagulase-negative staphylococci were susceptible to SXT (19).  160 

All isolates in this study that were resistant to erythromycin were also resistant to 161 clindamycin and susceptibility rates for both agents were only 29.7% among MRSP (Table 162 1). Consequently, no inducible clindamycin resistance was observed, although an inducible 163 

erm gene has been documented previously in S. pseudintermedius (20).  164 
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We documented 51.4% ciprofloxacin susceptibility in MRSP, which is similar to 165 what has been observed for MRSA and MR coagulase-negative Staphylococcus (CoNS) 166 isolates (19). However, this susceptibility rate is significantly higher than has been 167 documented in some studies of veterinary SIG isolates, where susceptibility rates as low as 168 2.7% have been reported using the same susceptible breakpoint of 1 µg/mL (21). A single 169 point mutation in topoisomerase II or IV genes confers fluoroquinolone resistance in S. 170 

pseudintermedius (22).  171 

All isolates were susceptible to ceftaroline, daptomycin, linezolid, nitrofurantoin, 172 quinupristin-dalfopristin, rifampin, tigecycline, and vancomycin. There are currently no 173 vancomycin breakpoints for the SIG, as the CLSI only publishes S. aureus and CoNS 174 breakpoints for this antimicrobial agent. However, unlike the CoNS, where the modal MIC 175 for vancomycin is 2.0 μg/mL, we found vancomycin MIC mode to be 1.0 μg/mL, similar to 176 what is documented for S. aureus. As such, it may be reasonable for clinical laboratories to 177 interpret vancomycin MICs using the more conservative S. aureus susceptible breakpoints 178 of ≤2.0 μg/mL when SIG is encountered, as compared to the ≤4 µg/mL breakpoint for CoNS 179 in the M100S  or for Staphylococcus spp. in the VET01, CLSI standards. Similar to what has 180 been seen in other studies of SIG (23) we did not document any cases of high-level 181 mupirocin resistance among the isolates in this collection, nor did we detect the presence of 182 the qacA/B gene in any isolates, suggestive of the absence of chlorhexidine resistance in this 183 collection of isolates. 184 

In summary, we present in vitro susceptibility results for a large collection of SIG 185 clinical isolates tested by the CLSI reference BMD MIC method. Laboratories should 186 carefully review susceptibility results for all coagulase-positive staphylococci and consider 187 using additional identification procedures, such as MALDI-TOF MS or an automated 188 
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instrument, for isolates that are doxycycline and/or SXT resistant, a phenotype common to 189 

S. pseudintermedius, but unusual for S. aureus. This is important, as correct identification of 190 these isolates is critical to accurate testing of SIG with oxacillin to detect methicillin 191 resistance. Clinicians should be cognizant of the dramatic difference in SXT, clindamycin, 192 and doxycycline susceptibility between SIG and S. aureus, as these agents are commonly 193 prescribed as empiric therapy for MRSA in wound and skin structure infections. While 194 overall, susceptibility to these antimicrobials was higher in human than in animal isolates 195 (Table 1), this is likely due to the significantly higher proportion of mecA- positive isolates 196 in the veterinary collection, a bias of our data set. A second limitation of the present study is 197 the inclusion of only 4 S. delphini and 0 S. intermedius isolates; further data will determine if 198 susceptibility rates differ significantly for these isolates as compared to S. pseudintermedius. 199 It is worth noting, however, that S. intermedius is very infrequently isolated in veterinary or 200 human clinical laboratories, but rather is a constituent of the normal nares flora of the wild 201 pigeon (24).   202 
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 281 Table 1. MIC values of 15 antimicrobial agents for Staphylococcus intermedius group (n=115) when tested by CLSI reference broth 282 microdilution MIC method in CAMHB  283 

Antimicrobial Number of Isolates at MIC (µg/mL) % susceptible≤0.06 0.12 0.25 0.5 1 2 4 8 16 32 human animal mecA- mecA+ AllCeftaroline     115a               100 100 100 100 100Ciprofloxacin       94a 1     20b     91.1 77.1 97.4 51.4 82.6Clindamycin       78a   1     36b   80.0 60.0 85.9 29.7 67.8Daptomycin     115a               100 100 100 100 100Doxycycline         69   20 23 3b   84.4 72.9 89.7 51.4 77.4Erythromycin       78a         37b   80.0 60.0 85.9 29.7 67.8Linezolid     1a   63 50 1       100 100 100 100 100Nitrofurantoin                 114 1 100 100 100 100 100Oxacillin     77a   3c 6 2 1 2 24b 91.1 51.4 98.7 0 66.9Penicillin 28 5 3 1 2   76b       26.6d 21.4d 50 0 23.5dQDA       115a             100 100 100 100 100Rifampin       115a             100 100 100 100 100SXT       54a 25 1 4 31b     84.4 60.0 92.3 21.6 69.6Tigecycline     115a               100 100 100 100 100Vancomycin     14 a 100  1         100 100 100 100 100 284 

a MIC ≤ value in column header; b value ≥ value in column header; c includes 1 isolate that was mecA negative; d includes 5 human isolates 285 and 1 animal isolate that had penicillin susceptible MICs but were beta-lactamase positive 286 QDA, quinupristin-dalfopristin; SXT, trimethoprim-sulfamethoxazole 287 
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MIC values to left of vertical lines fall in the susceptible interpretive category; those to the right are in the intermediate or resistant 288 category  289 
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