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We present a scheme for a quantum optical implementation of
Grover’s algorithm based on resonant atomic interactions with
classical fields and dispersive couplings with quantized cavity
fields. The proposed scheme depends on preparation of entangled
states and is within current state-of-the-art technology.

As was first shown by Grover (1), search of a database by using
quantum mechanics can be substantially faster than any

classical search of unsorted data. For example, it was shown by
Grover that, by using quantum superpositions and quantum
entanglement, we can find an object in an unsorted database
containing N objects in O(=N) quantum mechanical steps
instead of O(N) steps (1–3).

The implementation of search algorithms by using optical
methods is a subject of intense interest (4–8), and Grover’s
search algorithm has been implemented by using nuclear mag-
netic resonance (NMR) techniques for a system with four states
(9–11). However, NMR experiments for quantum computing are
carried out at room temperature, and questions have been raised
concerning the appearance of entanglement in the physical state
at any stage of such experiments (12). Braunstein et al. show that
‘‘all states so far used in NMR for quantum computations or for
other quantum-information protocols are separable,’’ and there-
fore ‘‘no entanglement appears in the physical states at any stage
of present NMR experiments.’’

In this paper, we propose a scheme for quantum optical
implementation of Grover’s algorithm that is not sensitive to
such thermal decoherence effects. The scheme is based on
resonant atomic interactions with classical fields and dispersive
coupling with quantized cavity fields. We first formulate the
problem in terms of a ‘‘circuit’’ logic involving one-bit unitary
transformation and a two-bit quantum phase gate. For an atomic
system, the one-bit unitary transformation is accomplished by
means of resonant interaction with a classical field, whereas a
quantum phase gate can be implemented by using dispersive
coupling with a cavity field having either 0 or 1 photon. Such a
quantum phase gate has been demonstrated recently [for a
beautiful demonstration of quantum phase gate, see Rauschen-
beutel et al. (13); conditional phase shifts are also demonstrated
in Turchette et al. (14)]. The proposed scheme involving atomic
interaction with classical field and two cavities therefore lies
within present experimental limitations and should be realiz-
able (15).

Grover proposed an algorithm to search an item in an
unsorted database. The problem he addressed is as follows. We
are given a function f(x) with x 5 1, 2 . . . N. The function has
the property that it is 0 for all values of x except for x0, for which
f(x0) 5 1. The task is to find x0. Classically, it would require an
average of Ny2 steps to accomplish this task. Grover showed that
we can find x0 in O(=N) quantum mechanical steps instead of
O(N) steps.

The basic idea of Grover’s algorithm is to invert the phase
(e.g., change 13 2, as in the passage from Eqs. 6 to 8) of the
desired basis state and then invert all the basis states about the
average amplitude of all the states. In this paper, we restrict
ourselves to the simplest interesting Grover’s algorithm with N 5

4 with two qubits. First, we discuss the implementation of
Grover’s algorithm in terms of quantum logic gates.

A universal quantum computer consists of only two gates,
namely a unitary transformation (one-bit gate) and a two-bit
conditional quantum phase gate. The one-bit quantum gate for
the ith qubit is given by

Uu,f
i 5 S cosu 2ie 2 ifsinu

2ieifsinu cosu D . [1]

A convenient representation of Uu,f in terms of Pauli spin
matrices is given by

Uu,f 5 cosu1 2 icosfsinusx 2 isinfsinusy. [2]

The transformation for a two-bit quantum phase gate is given by
Qhua, b . 5 exp(ihda,1db,1)ua, b ., where ua . and ub . stand
for the basis states u0 . or u1 . of the qubit. Thus, the quantum
phase gate introduces a phase h only when both qubits in the
input state are 1. In the following, we shall need the quantum
phase gate only with h 5 p, for which we have

Qp 5 u0, 0 . , 0, 0u 1 u0, 1 . , 0, 1u 1 u1, 0 . , 1, 0u

2 u1, 1 . , 1, 1u, [3]

and because u0 ., 0u 5 (1 1 sz)y2 and u1 ., 1u 5 (1 2 sz)y2,

Qp 5
1
2

~1112 1 11sz2 1 sz112 2 sz1sz2!. [4]

Grover’s algorithm is accomplished in three steps. The initial
state of the two qubits is u1, 1 .. In the first step, we apply the
Walsh–Hadamard transformation,

W 5
~11 1 isy1!

Î2

~12 1 isy2!

Î2
5 Up/4, 2 p/2

1 Up/4, 2 p/2
2 , [5]

which rotates each qubit from u0 . to (u0 . 2u1 .)y=2 and u1 .
to (u0 . 1u1 .)y=2. The resulting state is

us . 5
1
2

~u0, 0 . 1u0, 1 . 1u1, 0 . 1u1, 1 . !. [6]

In the second step, the unitary operator Ca,b f lips the sign of
state ua, b . (a 5 0 or 1 and b 5 0 or 1). In the original Grover’s
algorithm, this is accomplished through operator (1 2 2ua, b .
, a, bu). Here we follow a different approach. We first f lip the
sign of state u1, 1 . via a quantum phase gate Qp, followed by
unitary operators that either retain the state of the qubit or
change the state of the qubit from 0 to 1 and 1 to 0. The sign flip
operators for the four possible states in this approach are given by

C0,0 5 2sx1sx2Qp 5 Up/2,0
1 Up/2,0

2 Qp, [7a]
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C0,1 5 2isx112Qp 5 Up/2,0
1 Qp, [7b]

C1,0 5 2i11sx2Qp 5 Up/2,0
2 Qp, [7c]

C1,1 5 Qp. [7d]

Here the resulting state may have an unimportant overall phase
factor.

At this point, the oracle applies one of the Ca,b operators to
state 6 and thus changes one of the signs from 1 to 2. For
example, if C0,1 is chosen, then Eq. 6 becomes

C0,1us . 5
2i
2

~u0, 0 . 2u0, 1 . 1u1, 0 . 1u1, 1 . !. [8]

It is now our job to find the marked state (u0, 1 . in the above
example). This is accomplished by the application of operator
N 5 1 2 2us ., su. The resulting state is the desired state ua,
b . apart from an unimportant p phase shift. To find a
representation for N in terms of operators Uu,f and Qp, we first
note that

N 5
1
2

~1112 2 11sx2 2 sx112 2 sx1sx2!, [9]

so that, from Eqs. 8 and 9, we have NC0,1us .5 2u0, 1 .. If we
use the fact that rotating sz about the y axis yields sx, that is,

~1 1 isy!

Î2
sz

~1 2 isy!

Î2
5 2sx, [10]

we note the remarkable fact that operator N as given by Eq. 9
is the appropriately rotated quantum phase operator Qp of Eq.
7b, i.e.,

N 5 Up/4, 2 p/2
1 Up/4, 2 p/2

2 QpUp/4,p/2
1 Up/4,p/2

2 . [11]

This is the essence of Grover’s algorithm and the departure point
for our implementation of the algorithm.

On combining the various operators from Eqs. 5, 7, and 11, we
can write Grover’s algorithm in terms of simple transformations
corresponding to one- and two-bit quantum gates as NCa,bWu1,
1 .5 eicua, b ., where c is a phase depending on the choice
of a and b. These steps are summarized in the ‘‘circuit’’ diagram
of Fig. 1 for the present (N 5 4) implementation of Grover’s
algorithm. Only the one-bit unitary gates and two-bit conditional
quantum phase gates are required for this purpose.

Next, we consider schemes for the implementation of Grover’s
algorithm on the basis of cavity quantum electrodynamics (16–
20), using resonant atomic interaction with classical Ramsey
fields and dispersive atomic interaction with quantized high Q
cavity fields. First, we present a scheme that requires two species
of atoms and two cavities. This scheme is conceptually simple but
difficult to implement. We then consider a second scheme that

requires single species of atoms interacting with only one cavity
that supports two modes, and the atomic level spacings are
appropriately changed by electric or magnetic fields.

First, we consider the schematic for the proposed implemen-
tation as given in Fig. 2. The two qubits are represented by two
different three-level atoms of types A and B (Fig. 2a). Levels ua .
and ub . of these atoms represent qubits u0 . and u1 .,
respectively. The levels scheme is such that va1

b1 5 vc2
b2 1 D1

and va2
b2 5 vc1

b1 1 D2. Cavities C1 and C2 are resonant with
transitions va1

b1 and va2
b2, respectively. Here, and in the

following, the odd subscripts 1, 3, 5, and 7 refer to the atom,
cavity, and classical fields corresponding to the atoms of type A,
whereas the even subscripts 2, 4, 6, and 8 refer to atoms of type
B. Four atoms (two of type A and two of type B) pass through
cavities C1 and C2 and a sequence of classical fields, as follows
(Fig. 2b).

All the atoms are initially in their ground states ub ., i.e., ub1,
b2, b3, b4 ., and we assume that the classical Ramsey fields are
on only when the appropriate atoms are passing through them.
Atom 1 of type A and atom 2 of type B are initially in their
ground states ub1 . and ub2 ., i.e., in qubits u1, 1 .. The
Walsh–Hadamard transformation on these atoms is carried out
by interacting with classical fields R1 and R2 of frequencies va1

b1
and va2

b2, respectively. The interaction of an atom with the
classical field results in the unitary transformation (Eq. 1) on the
atomic states ua . and ub ., such that u depends on the Rabi
frequency and the interaction time, and f depends on the phase
of the driving field (21, 22). We choose, for the interaction of R1
with atom 1 and R2 with atom 2, u1 5 u2 5 py4 and f1 5 f2 5
2py2, so that the state of the atoms is (ua1, a2 . 1ua1, b2 . 1ub1,
a2 . 1ub1, b2 .)y2.

In the next step, we consider operation Ca,b. This step requires,
in addition to the unitary operations, a quantum phase gate. The
operation of the quantum phase gate is accomplished as follows.
Atom 1 in the state (ua1 . 1ub1 .)y=2 passes through the
empty cavity C1. The interaction time is chosen such that the
atom leaves in the ground state ub1 ., and the field state inside
the cavity becomes (u01 . 1u11 .)y=2. Atom 2, which is of type
B, then passes through the cavity. Because of the dispersive
coupling, the effective Hamiltonian for the interaction between
atom 2 and cavity C1 is (21, 22)

Heff 5 2
Ég2

D
~a1a1

†uc2 . , c2u 2 a1
†a1ub2 . , b2u!, [12]

where g is a coupling coefficient, and a1 and a1
† are destruction

and creation operators for the field state inside cavity C1. The
resulting entangled state between atom 2 and the field in cavity
C1 is 1

2
(u01, a2 . 1u01, b2 . 1u11, a2 . 1eihu11, b2 .), where

h 5 g2tyD1. The net result is that there is no photon number
change inside the cavity, and there is a phase change only when
there is one photon inside the cavity and the atom is in state

Fig. 1. Level diagram for the implementation of Grover’s algorithm.

Scully and Zubairy PNAS u August 14, 2001 u vol. 98 u no. 17 u 9491

PH
YS

IC
S



ub2 .. Interaction time t and detuning D1 are chosen such that
h 5 p. This operation corresponds to the quantum phase gate
discussed above and experimentally implemented in refs. 13 and 14.

Atom 3 of type A in ground state ub3 . now passes through
cavity C1, followed by a classical field RC1

. The interaction times
with the cavity and classical fields are such that the cavity field
is reduced to u0 ., and the resultant entangled state between
atoms 2 and 3 is given by (ua3, a2 . 1ua3, b2 . 1ub3, a2 . 2ub3,
b2 .)y2. Here and in the following, we neglect the unimportant
overall phase factor. Now C0,0, C0,1, C1,0, and C1,1 are imple-
mented by turning classical fields R3 and R4 on, only R3 on, only
R4 on, and none of the fields on, respectively. In the present
example where the oracle picks C0,1, field R3 is tuned to
frequency va1

b1 and interacts with atom 3, and field R4 tuned to
frequency va2

b2 is off. The interaction time for field R3 is chosen
such that u 5 py2 and f 5 0. Atoms 2 and 3 are in an entangled
state (ua3, a2 . 2ua3, b2 . 1ub3, a2 . 1ub3, b2 .)y2. This
completes the oracle operation C0,1 corresponding to the p phase
shift of state ua3, b2 ..

Next, we implement operator N, which inverts the states about
the average. Atoms 3 and 2 interact with classical Ramsey field
R5 and R6, which are resonant with ua . to ub . transitions of
atoms 3 and 2 with u 5 py4 and f 5 py2.

According to Eq. 12, we should next apply a quantum phase
gate Qa with a 5 p. This step is accomplished as above by first
transferring the atomic coherence of atom 2 to the empty cavity
C2 by adjusting the interaction time with the cavity appropri-
ately. And then, on passing atom 3 through cavity C2, the
entangled state of atom 3 and cavity C2 is (ua3, 02 . 2ua3, 12 .
1ub3, 02 . 2ub3, 12 .)y2.

Subsequently, a fourth atom of type B passes through cavity
C2, and a classical field, RC2

, leaves the cavity empty and
transfers the field coherence to the atom yielding (ua3, a4 . 2ua3,
b4 . 1ub3, a4 . 2ub3, b4 .)y2. As a last step, atoms 3 and 4 pass
through a sequence of classical fields, R7, resonant with ua . to
ub . transitions of atom 3 and R8 resonant with ua . to ub .
transitions of atom 4, such that u 5 py4, f 5 py2 for R7, R8.
This step completes the implementation of operator N, and the
resulting state of atoms 3 and 4 is ua3, b4 .. The final state of

atoms 3 and 4 would be ua3, a4 ., ua3, b4 ., ub3, a4 . or ub3, b4 .,
depending on the choice of Ca,b.

Motivated by the above scheme, we consider an equivalent
scheme that requires only one species of atoms and a single
cavity, as shown in Fig. 3. Here the atoms have one lower level
and two excited levels, whose splitting can be adjusted by
applying electric or magnetic fields (23). These Stark or Zeeman
splittings can be used to carry out resonant or dispersive atomic
couplings with the cavity fields.

We consider a cavity that can support two modes of frequen-
cies n1 and n2. The three-level atoms having a lower level ub .
and two upper levels ua1 . and ua2 . can have level spacings that
depend on the applied electric or magnetic fields, as shown in
Fig. 3a. Level ub . corresponds to qubit u1 ., and levels ua1 .
and ua2 . correspond to qubit u0 . for atoms 1 and 3 and atoms
2 and 4, respectively. In configuration 0, levels ua1 . and ua2 .
are completely detuned with respect to cavity resonance fre-
quencies n1 and n2, and the atom is effectively decoupled from
the cavity fields. In configuration 1, the atom resonantly interacts
with n1 but is decoupled with n2. In configuration 2, the atom
interacts dispersively with n2 but is decoupled with n1. Similarly,
in configurations 3 and 4, the atom interacts resonantly with n2
with no interaction with n1, dispersively with n1, and with no
interaction with n2.

As before, four atoms are sent inside the cavity initially in their
ground state ub . such that they interact with a sequence of classical
driving fields Ri (i 5 1 2 8) and cavity fields C1 and C2 of
frequencies n1 and n2, respectively, as shown in Fig. 3b. The
interaction times are the same as in the first scheme. The appro-
priate interactions leading to the implementation of Grover’s
algorithm corresponding to the first scheme are obtained if the
sequence of the atomic level spacings during the passage through Ri

and Ci is chosen for various atoms as that given in Fig. 3c.
In conclusion, we have shown how Grover’s algorithm can be

implemented by using the known methods and techniques of
quantum optics. Limitations are imposed by considerations of
spontaneous emission and by cavity field damping. A potential
source of error is the uncertainty associated with the location of
atoms in the various fields.

Fig. 2. (a) Atomic-level spacings for types A and B atoms. Here va1b1 5 vc2b2 1 D1 and va2b2 5 vc1b1 1 D2. (b) Schematics for the cavity quantum
electrodynamics implementation of Grover’s algorithm. Here all the atoms are initially in their ground states ub . , i.e., ub1, b2, b3, b4 . . After passage through
the box corresponding to the Walsh–Hadamard transformation W, the state of the atoms is (ua1, a2 . 1 ua1, b2 . 1 ub1, a2 . 1 ub1, b2 . )y2 ^ ub3, b4 . .
After passage through box C corresponding to the oracle for, say, state u0, 1 . , the atomic state is (ub1 . ^ ua3, a2 . 2 ua3, b2 . 1 ub3, a2 . 1 ub3, b2 . )y2
^ ub4 . . Finally, after passage through box N corresponding to the inversion about the average, the atomic state is ub1, b2 . ^ ua3, b4 . .
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