EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration*

Abstract

The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given p_T^{min} threshold starting at $p_T^{min} = 0.8$ and 1 GeV, respectively, is studied in pp collisions at $\sqrt{s} = 8$ TeV. The particles and the jets are measured in the pseudorapidity ranges $|\eta| < 2.4$ and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

Published in Physical Review D as doi:10.1103/PhysRevD.92.112001.

© 2015 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

^{*}See Appendix A for the list of collaboration members

1 Introduction

The production of jets with large transverse momenta $p_T \gg \Lambda_{QCD} \approx 0.2 \text{ GeV}$ in high-energy proton-proton (pp) collisions originates from the scattering of partons, a process described by perturbative quantum chromodynamics (pQCD), through the convolution of the parton-parton cross section with the density of partons inside the protons. Jet production in pp collisions at the LHC, at transverse momenta $p_T > 20 \text{ GeV}$ and in the pseudorapidity range $|\eta| < 3$, is well described by next-to-leading-order pQCD calculations [1–3]. However, most of the final-state hadrons produced in pp collisions arise from the hadronisation of quarks and gluons scattered through "semi-hard" interactions with exchanged momenta of $\mathcal{O}(1-3 \text{ GeV})$. At such low values of p_T , the theoretical partonic cross section, $d\sigma/dp_T^2 \propto \alpha_S^2(p_T)/p_T^4$, where α_S is the strong coupling, becomes very large, and the integrated cross section $\sigma(p_T^{min}) = \int_{p_T^{min}} dp_T^2 d\sigma/dp_T^2$ exceeds the total inelastic pp cross section, σ_{inel} . At $\sqrt{s} = 8 \text{ TeV}$, where $\sigma_{\text{inel}} \approx 70 \text{ mb}$ [4], this occurs at p_T^{min} values of $\mathcal{O}(3 \text{ GeV})$, much larger than the QCD scale, Λ_{QCD} , at which the strong coupling diverges [5, 6].

Model calculations of hadronic collisions often regulate such an infrared divergence through an effective parameter connected to the confinement scale of hadrons [7], such that the leading particle or leading jet production cross sections do not exceed the value of σ_{inel} . Contrary to the inclusive particle or jet production cross sections, the *leading* particle or *leading* jet production cross sections must indeed approach the total inelastic cross section because only one particle or one jet, the one with highest p_T in this case, is considered per event. In addition, at small p_T , the parton densities are probed in a region where parton recombination, i.e. saturation (see e.g. Ref. [8]), may occur.

Reference [9] proposes that the jet cross section integrated over $p_T > p_T^{\min}$ can be used as a probe of the transition from the perturbative $(p_T^{\min} \gg \Lambda_{QCD})$ to the non-perturbative region $(p_T^{\min} \rightarrow \Lambda_{QCD})$. According to Ref. [9], this transition should also be visible for cross sections defined in restricted ranges of pseudorapidity.

The results presented in this paper are based on measurements of single charged particles and jets reconstructed from charged particles alone. The advantage of jets is that they include more particles originating from the outgoing partons, while single charged hadrons carry only a fraction of the parent parton momentum. On the other hand, jets are sensitive to the underlying event (UE) activity, consisting of particles originating from multiple partonic interactions (MPI) and initial and final state radiation, while single leading tracks are not. The measurements based on leading particles and leading jets are therefore complementary. Throughout the text, the term "track-jets" refers to detector-level jets, reconstructed from charged-particle tracks observed in the detector, while "charged-particle jets" or just "jets" denote corrected, stable-particle level jets, consisting of stable charged particles from the final state.

In this paper, the yields, $r(p_T^{\min})$, for pp collisions with a leading charged particle or a leading jet are measured as a function of a minimum transverse momentum, p_T^{\min} :

$$r(p_{\rm T}^{\rm min}) = \frac{1}{N_{\rm evt}} \int_{p_{\rm T}^{\rm min}} \mathrm{d}p_{\rm T}^{\rm lead} \left(\frac{\mathrm{d}N}{\mathrm{d}p_{\rm T}^{\rm lead}}\right),\tag{1}$$

where $N_{\rm evt}$ is the number of selected events with a leading charged particle with $p_{\rm T} > 0.4 \,{\rm GeV}$ and $|\eta| < 2.4$, and N is the number of events with a leading charged particle or a leading jet with transverse momentum $p_{\rm T}^{\rm lead}$ within $|\eta| < 2.4$ or 1.9, respectively.

2 Phenomenological models

The measured distributions are compared to the predictions of different hadronic interaction models whose tunable parameters (mostly connected to non-perturbative and semi-hard QCD phenomena) are obtained from comparisons to LHC data such as those on UE activity, inclusive multiparticle production and diffraction.

The PYTHIA 6 [10] and 8 [11] event generators tame the low- p_T behaviour of the leadingorder pQCD 2 \rightarrow 2 cross sections with a phenomenological factor [5, 6] $[\alpha_s^2(p_{T,0}^2 + p_T^2)/\alpha_s^2(p_T^2)]$ $[p_T^4/(p_{T,0}^2 + p_T^2)^2]$, where $p_{T,0}$ is a (tunable) infrared regulator that runs with centre-of-mass energy. The tunes 4C [12], CUET [13], and MONASH [14] are used, featuring different choices of the $p_{T,0}$ cutoff, proton transverse profile, and/or parton distribution functions.

The HERWIG++ [15] Monte Carlo (MC) includes a hard (pQCD 2 \rightarrow 2 interactions) [16] and a soft (non-perturbative) component for multiple interactions [17]. The soft part is parametrised phenomenologically as $d\sigma/dp_T^2 = Ae^{-\beta p_T^2}$. The transition scale between the hard and the soft regions is set by the parameter $p_{T,0}$, obtained from fits to MPI and UE data, as well as to the effective cross section for double-parton scatterings. The parameters *A* and β are fixed by the requirements that the transverse momentum distribution be continuous at the matching scale $p_{T,0}$, and that the model reproduces the measured total cross section. HERWIG++ with tune CUETHS1 [?] is used to compared the measurement at reconstruction level. HERWIG++ is not used in the comparison of the final results, as it does not contain any diffractive component.

The other two models, QGSJET-II [18] and EPOS [19, 20], are based on Regge-Gribov effective field theory [21], which allows for a consistent treatment of soft and hard scattering processes in terms of the same degrees of freedom (reggeons and pomerons), based on unitarity cuts of the corresponding elastic scattering diagrams. Perturbative parton-parton processes are obtained via "cut (hard) pomeron" diagrams, and multi-scattering phenomena (saturation, MPI) are implemented through various procedures [22]. The two models differ in their approximations for the collision configurations (with exact energy sharing imposed in the case of EPOS), and the treatment of diffractive and perturbative contributions (the effective soft-hard transition occurs at $p_{T,0} \sim 1.6 \text{ GeV}$ for QGSJET-II and at $p_{T,0} \sim 2 \text{ GeV}$ for EPOS). Finally, in contrast to other MCs, EPOS includes also collective expansion effects in the final state that boost the final p_T distribution of the produced hadrons. It is worth to highlight that, for all MC models, the (centre-of-mass energy dependent) $p_{T,0}$ cutoff plays a very similar role to the "saturation scale" (Q_{sat}), which controls the onset of gluon fusion effects in the parton densities [23].

3 Experimental analysis

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator sampling hadron calorimeter are located within the volume of the solenoid.

The inner silicon tracker measures charged-particle trajectories ("tracks" in the following) within the pseudorapidity range $|\eta| < 2.5$. It provides an impact parameter resolution of about 100 μ m and a p_T resolution of about 0.7% for 1 GeV tracks at $\eta = 0$ [24]. A more detailed description of the CMS detector, together with definitions of the coordinate system and kinematic variables can be found in Ref. [25].

The data analysed in this study were collected during a dedicated proton-proton run with an integrated luminosity of $45 \,\mu b^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 8$ TeV. This run has a low

instantaneous luminosity and a low probability ($\sim 2\%$) of multiple pp interactions occurring in the same bunch crossing (pileup). Pileup events are rejected by requiring exactly one vertex, following the method described in Ref. [26].

Minimum bias events were selected online with the TOTEM T2 telescopes [27] that are placed symmetrically at about 14 m on both sides from the interaction point (IP). Single tracks are reconstructed in these telescopes with almost 100% efficiency for $p_T > 20 \text{ MeV}/c$, but because of multiple scattering and the effect of the magnetic field, tracks can be identified as coming from the IP with an efficiency that increases as a function of p_T and is greater than 80% for $p_T > 40 \text{ MeV}/c$ [28]. The minimum bias trigger, defined by the requirement of the presence of at least one track candidate in either of the T2 detectors [29], has an efficiency close to 100% [26] for events where a charged particle is produced within the T2 acceptance. According to the PYTHIA 8 and QGSJETII-04 [18] generators, about 91–96% of the total inelastic cross section at $\sqrt{s} = 8$ TeV is seen by T2 [4], with the uncertainty coming mainly from low mass diffractive events. The present analysis follows the procedure described in Ref. [26], where more details are given on the trigger, data selection, and correction procedures.

Corrections for the contribution of background events triggered by T2 but without a charged primary particle in the T2 acceptance are estimated with simulated events from PYTHIA 8 and EPOS. These models were found to enclose the measured pseudorapidity distributions of charged particles in the forward region [26]. The average corrections for the two models vary from 4% and 1% at $p_T^{min} \approx 1$ GeV to 7% and 5% at $p_T^{min} \approx 45$ GeV, for the track and trackjet analysis, respectively. The deviation of PYTHIA 8 and EPOS from the average correction is taken as an estimate of the systematic uncertainty related to the T2 trigger efficiency; it is less than 0.7% for the leading track measurement and varies between 0.1 and 1.0% for the leading track-jet measurement [26].

Events are selected offline by requiring the presence of a leading track in the region $|\eta| < 2.4$ with $p_T > 0.4$ GeV. These events are used to normalise the integrated distributions in both the leading track and the track-jet measurements. Track-jets are reconstructed offline from tracks with $p_T > 0.1$ GeV and $|\eta| < 2.4$, clustered by using the anti- k_T algorithm [30–32] with a distance parameter of 0.5. The track-jet momentum is determined from the sum of all track momenta in the track-jet. The pseudorapidity restriction $|\eta^{jet}| < 1.9$ assures that the track-jet is contained within the tracker acceptance.

Detailed MC simulations of the CMS and T2 detectors are based on GEANT4 [33]. Simulated events are processed and reconstructed in the same manner as collision data. For the correction of detector effects, as well as for comparison with models, both the PYTHIA 6 [10] (version 6.426) event generator with tune Z2* [34] and the PYTHIA 8 (version 8.153) generator with tune 4C are used. The final correction is obtained by averaging those from the two generators.

The data are corrected to the stable-particle level, which is defined to include primary charged particles with lifetimes of $c\tau > 1$ cm, either directly produced in the pp collisions or from decays of particles with shorter lifetimes. According to this definition, K_S^0 and Λ hadrons are considered stable. Generated events are selected at the stable-particle level if at least one charged particle with $p_T > 40$ MeV is present within the range $5.3 < |\eta| < 6.5$, and at least one charged particle with $p_T > 0.4$ GeV is found within $|\eta| < 2.4$. In each event, the highest- p_T charged particle within $|\eta| < 2.4$ and $p_T > 0.8$ GeV is selected as the leading particle. Charged particles are clustered into jets by using the anti- k_T algorithm with a distance parameter of 0.5 with no restriction on p_T or η . The leading charged-particle jet is then defined as the charged-particle jet with the highest p_T above 1 GeV and $|\eta^{\text{jet}}| < 1.9$.

The average systematic uncertainty in the track reconstruction efficiency is taken to be 3.9% [35]. Its effect is studied by randomly rejecting 3.9% of the tracks and then repeating the analysis. In the jet analysis, for tracks with low p_T , the rejection probability is taken as 15% for $p_T < 1$ GeV. However, since the measurement is integrated over p_T , it is nearly insensitive to even such large values of the rejection probability. The resulting uncertainty varies between 0.4% and 3.7% for the leading charged particle analysis and between 2% and 12% for the leading jet analysis. The larger uncertainties correspond to higher p_T^{min} .

The p_T distribution of leading track-jets is unfolded to the stable-particle level by applying the iterative procedure [36] implemented in ROOUNFOLD [37] in order to correct for the jet reconstruction efficiency and for migrations in jet p_T . Thanks to the good p_T resolution of the reconstructed tracks a simple correction for the track-finding efficiency is found to be sufficient for obtaining the p_T distribution of leading charged particles. The PYTHIA 6 and PYTHIA 8 MC models are used to generate the response matrices and efficiency corrections, and the average correction from the two generators is used to obtain the p_T distributions at stable-particle level. The corrections vary between 5% and 10% at $p_T \approx 1$ GeV, to 10% and 40% at $p_T \approx 45$ GeV, for the charged particle and the jet measurements, respectively. The deviation from the average is taken as an estimate of the systematic uncertainty related to the correction procedure. This uncertainty varies from 0.6 to 3% for the leading charged particle analysis, and from 2 to 10% for the leading jet analysis, depending on p_T^{min} .

The systematic uncertainties are summarised in Table 1.

Table 1: The systematic uncertainties for the leading charged particle ($0.8 < p_T^{min} < 50 \text{ GeV}$) and leading jet ($1 < p_T^{min} < 50 \text{ GeV}$) measurements.

Source	Uncertainty (%)	
	Leading charged particle	Leading jet
T2 trigger efficiency	0.7	0.1–1.0
Tracking efficiency	0.4–3.7	2–12
Correction procedure	0.6–3.0	2.0–10
Total	0.7–4.6	2.5–16

The per-event yields, defined in Eq. (1), are obtained experimentally as

$$r(p_{\rm T}^{\rm min}) = \frac{1}{N_{\rm evt}} \sum_{p_{\rm T}^{\rm lead} > p_{\rm T}^{\rm min}} \Delta p_{\rm T}^{\rm lead} \left(\frac{\Delta N}{\Delta p_{\rm T}^{\rm lead}}\right), \tag{2}$$

where N_{evt} is the number of events with a leading charged particle within $|\eta| < 2.4$ and with $p_{\text{T}} > 0.4 \text{ GeV}$, $\Delta p_{\text{T}}^{\text{lead}}$ is the bin width, and ΔN is the number of events with a leading charged particle or leading jet in the bin.

4 Results

Figure 1 shows the integrated distributions for the leading charged particle and leading jet events for $p_T^{min} > 0.8$ and 1 GeV, respectively. The distributions fall steeply at large transverse momenta, and by construction approach unity at small p_T^{min} . The turnover from a relatively flat to a steeply-falling distribution takes place between 1 and 10 GeV. However, the turnover point is different for the leading charged particles and the leading jet measurements. This reflects the fact that when particles are clustered into jets, more energy from additional particles is collected within the jet cone. In fact, when the jet cone size is reduced, the leading jet distribution approaches the leading charged particle distribution.

Figure 1: The integrated yield, $r(p_T^{min})$, of events with a leading charged particle within $|\eta| < 2.4$ (top) and with a leading jet within $|\eta| < 1.9$ (bottom), as a function of p_T^{min} . The data are compared to predictions from several PYTHIA 6 tunes (left) and various other event generators (right). The lower panels show the ratios of the MC and the data yields (MC/Data). The error bars indicate the statistical uncertainty and the red shaded area (only visible in the ratio plots) represents the systematic uncertainty. The predictions are scaled to the measured value of $r(p_T^{lead} > 9.0 \text{ GeV})$ (top) and $r(p_T^{lead} > 14.3 \text{ GeV})$ (bottom). The prediction from PYTHIA 6 with MPI off and no parton saturation is not shown in the MC/data ratio plot (left) because of the large disagreement with the data.

For the comparison of the data to predictions of QCD MC generators the latter are rescaled to describe the high- p_T^{lead} region. This rescaling is applied because the normalisation to the total visible cross section, which depends on the low- p_T regularisation, affects the values of r also at high- p_T^{lead} , where in fact theoretical predictions are more robust and agree better with the data. The exact choice of the normalisation point is arbitrary— $r(p_T^{\text{lead}} > 9.0 \text{ GeV})$ for the leading charged particle, and $r(p_T^{\text{lead}} > 14.3 \text{ GeV})$ for the leading jet—and the conclusions from this study are drawn from the shape of the distributions alone. The predictions at small p_T^{lead} thus give information on the modelling of the transition region from large to small p_T^{lead} .

In Fig. 1 (left plots) the yields $r(p_T^{min})$ as a function of p_T^{min} are compared to the predictions of the event generator PYTHIA 6 with tunes Z2* and CUET, as well as with the default version of PYTHIA 6, both with and without MPI. Also shown is the impact of turning off the regularisation of the cross section, labeled "PYTHIA 6 (default, MPI off, no sat)". At low p_T^{min} , the distribution predicted by this latter model differs by more than one order of magnitude from predictions with the regularised cross section.

In Fig. 1 (right plots) the leading charged particle and leading jet data are compared with PYTHIA 8 with tunes 4C, CUET, and MONASH, HERWIG++ (version 2.7.0) with tune UE-EE-5C, EPOS (version 1.99) with LHC tune, and QGSJETII-04.

The leading charged particle and leading jet cross sections are best described by EPOS, which deviates only by up to 10% from the data at very low p_T^{min} and reproduces the data well for $p_T^{min} > 4$ GeV. The event generator HERWIG++ (UE-EE-5C tune) describes the leading jet cross sections fairly well, but does not reproduce the transition from large to small p_T in the leading charged particle cross section. The event generators PYTHIA 6 (Z2* and CUET tunes) and PYTHIA 8 (4C, CUET, and MONASH tunes) predict a somewhat different shape for the measured distributions at small p_T .

The comparison of the MC predictions for MPI switched on and off indicates that the effect of MPI is small for leading charged particles, since the particle multiplicity plays only a minor role. However, when clustering particles into jets, the additional particles from MPI play a role, and a large difference is seen when such interactions are switched off in the simulation as in Fig. 1 (bottom left); this brings PYTHIA 6 closer to the data at low p_T^{min} .

The predictions with MPI and saturation turned off (dashed curves in Fig. 1, left plots) exhibit a significant deviation from the data at small $p_{\rm T}$.

In general, PYTHIA and HERWIG++ describe the trend of the measured distributions but fail to reproduce the details in the O(1-5 GeV) region, which calls for an improvement in their modelling of the transition from the non-perturbative to perturbative regime.

5 Summary

The integrated yields of events with a leading charged particle or a leading charged-particle jet with $p_{\rm T}$ above a given $p_{\rm T}^{\rm min}$ threshold, starting at $p_{\rm T}^{\rm min} = 0.8$ and 1 GeV, respectively, have been measured in pp collisions at $\sqrt{s} = 8$ TeV in a data sample corresponding to an integrated luminosity of 45 μ b⁻¹. The particles and jets are measured in the pseudorapidity ranges $|\eta| < 2.4$ and 1.9, respectively.

The yields are found to be relatively flat in the p_T^{min} region around 1 GeV—where the fixedorder perturbative parton-parton cross section diverges in the absence of any mechanism that saturates or unitarises the pQCD scattering—followed by a steep decrease for $p_T^{min} > 10$ GeV.

References

The flattening behaviour observed at very low p_T^{min} is best described by EPOS, which deviates by at most 10% from the data. The comparison of the data with different phenomenological predictions of hadronic interaction models may help to improve the description of the transition between the perturbative and non-perturbative QCD regimes, which is dominated by the effects of parton density saturation and multiple partonic interactions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We are very grateful to the TOTEM Collaboration for making their trigger signal available to CMS and for providing the additional tools required to analyse the acquired data. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; and Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand).

References

ATLAS Collaboration, "Measurement of inclusive jet and dijet production in pp collisions at √s = 7 TeV using the ATLAS detector", *Phys. Rev. D* 86 (2012) 014022, doi:10.1103/PhysRevD.86.014022, arXiv:1112.6297.

- [2] CMS Collaboration, "Measurements of differential jet cross sections in proton-proton collisions at \sqrt{s} = 7 TeV with the CMS detector", Phys. Rev. D 87 (2013) 112002, doi:10.1103/PhysRevD.87.112002, arXiv:1212.6660.
- [3] CMS Collaboration, "Measurement of the Inclusive Jet Cross Section in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$ ", *Phys. Rev. Lett.* **107** (2011) 132001, doi:10.1103/PhysRevLett.107.132001, arXiv:1106.0208.
- [4] TOTEM Collaboration, "Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at √s = 8 TeV", *Phys. Rev. Lett.* **111** (2013) 012001, doi:10.1103/PhysRevLett.111.012001.
- [5] T. Sjöstrand and M. van Zijl, "A Multiple Interaction Model for the Event Structure in Hadron Collisions", *Phys. Rev. D* **36** (1987) 2019, doi:10.1103/PhysRevD.36.2019.
- [6] T. Sjöstrand and P. Z. Skands, "Multiple interactions and the structure of beam remnants", *JHEP* 03 (2004) 053, doi:10.1088/1126-6708/2004/03/053.
- [7] J. Dischler and T. Sjostrand, "A toy model of color screening in the proton", Eur. Phys. J. direct 3 (2001) 1, doi:10.1007/s1010501c0002, arXiv:hep-ph/0011282.
- [8] A. H. Mueller, "Small-x behavior and parton saturation: A QCD model", Nucl. Phys. B 335 (1990) 115, doi:10.1016/0550-3213(90)90173-B.
- [9] A. Grebenyuk et al., "Jet production and the inelastic *pp* cross section at the LHC", *Phys. Rev. D* 86 (2012) 117501, doi:10.1103/PhysRevD.86.117501, arXiv:1209.6265.
- [10] T. Sjöstrand, S. Mrenna, and P. Skands, "PYTHIA 6.4 physics and manual", JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
- [11] T. Sjöstrand, S. Mrenna, and P. Z. Skands, "A brief introduction to PYTHIA 8.1", Comput. Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.
- [12] R. Corke and T. Sjöstrand, "Interleaved parton showers and tuning prospects", JHEP 03 (2011) 032, doi:10.1007/JHEP03(2011)032, arXiv:1011.1759.
- [13] CMS Collaboration, "Measurement of four-jet production in proton-proton collisions at $\sqrt{s} = 7$ TeV, UE tunes and double parton scattering", in *XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects*, p. 100. Warsaw, Poland, 2014. [PoS DIS2014],.
- [14] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- [15] M. Bähr et al., "Herwig++ physics and manual", Eur. Phys. J. C 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
- [16] M. Bahr, S. Gieseke, and M. H. Seymour, "Simulation of multiple partonic interactions in Herwig++", JHEP 07 (2008) 076, doi:10.1088/1126-6708/2008/07/076, arXiv:0803.3633.
- [17] M. Bähr, J. M. Butterworth, S. Gieseke, and M. H. Seymour, "Soft interactions in Herwig++", (2009). arXiv:0905.4671.

- [18] S. Ostapchenko, "Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model", *Phys. Rev. D* 83 (2011) 014018, doi:10.1103/PhysRevD.83.014018, arXiv:1010.1869.
- [19] K. Werner, F.-M. Liu, and T. Pierog, "Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC", *Phys. Rev. C* 74 (2006) 044902, doi:10.1103/PhysRevC.74.044902, arXiv:hep-ph/0506232.
- [20] T. Pierog et al., "EPOS LHC : test of collective hadronization with LHC data", (2013). arXiv:1306.0121.
- [21] V. N. Gribov, "A reggeon diagram technique", Sov. Phys. JETP 26 (1968) 414.
- [22] D. d'Enterria et al., "Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic-ray physics", Astropart. Phys. 35 (2011) 98, doi:10.1016/j.astropartphys.2011.05.002, arXiv:1101.5596.
- [23] L. V. Gribov, E. M. Levin, and M. G. Ryskin, "Semihard processes in QCD", *Phys. Rep.* 100 (1983) 1, doi:10.1016/0370-1573(83)90022-4.
- [24] CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", JINST 9 (2014) 10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- [25] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [26] CMS and TOTEM Collaborations, "Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at √s = 8 TeV by the CMS and TOTEM experiments", Eur. Phys. J C 74 (2014) 3053, doi:10.1140/epjc/s10052-014-3053-6, arXiv:1405.0722.
- [27] TOTEM Collaboration, "The TOTEM Experiment at the CERN Large Hadron Collider", JINST 3 (2008) S08007, doi:10.1088/1748-0221/3/08/S08007.
- [28] TOTEM Collaboration, "Performance of the TOTEM Detectors at the LHC", Int. J. Mod. Phys. A 28 (2013) 1330046, doi:10.1142/S0217751X13300469, arXiv:1310.2908.
- [29] TOTEM Collaboration, "Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7$ TeV", EPL 101 (2013) 21003, doi:10.1209/0295-5075/101/21003.
- [30] M. Cacciari and G. P. Salam, "Dispelling the N³ myth for the k_t jet-finder", Phys. Lett. B 641 (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210.
- [31] M. Cacciari, G. P. Salam, and G. Soyez, "The anti-k_t jet clustering algorithm", JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [32] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual", Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- [33] GEANT4 Collaboration, "GEANT4—a simulation toolkit", Nucl. Instr. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
- [34] CMS Collaboration, "Study of the underlying event at forward rapidity in pp collisions at $\sqrt{s} = 0.9$, 2.76, and 7 TeV", *JHEP* 04 (2013) 072, doi:10.1007/JHEP04(2013)072, arXiv:1302.2394.

- [35] CMS Collaboration, "Measurement of Tracking Efficiency", CMS Physics Analysis Summary CMS-PAS-TRK-10-002, 2010.
- [36] G. D'Agostini, "A Multidimensional unfolding method based on Bayes' theorem", Nucl. Instr. Meth. A 362 (1995) 487, doi:10.1016/0168-9002(95)00274-X.
- [37] T. Adye, "Unfolding algorithms and tests using RooUnfold", in *PHYSTAT 2011 Workshop* on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, H. Prosper and L. Lyons, eds., p. 313. Geneva, Switzerland, 2011. arXiv:1105.1160. doi:10.5170/CERN-2011-006.313.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth¹, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady², B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè², A. Randle-conde, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffi³, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco⁴, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov⁵, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, J. Molina, C. Mora Herrera, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W. Carvalho, J. Chinellato⁶, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote⁶, A. Vilela Pereira

Universidade Estadual Paulista^{*a*}, Universidade Federal do ABC^{*b*}, São Paulo, Brazil

C.A. Bernardes^{*b*}, S. Dogra^{*a*}, T.R. Fernandez Perez Tomei^{*a*}, E.M. Gregores^{*b*}, P.G. Mercadante^{*b*}, S.F. Novaes^{*a*}, Sandra S. Padula^{*a*}

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, V. Genchev², R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina⁷, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang⁸, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia *Z*. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic M. Bodlak, M. Finger, M. Finger Jr.⁹

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran¹⁰, S. Elgammal¹¹, A. Ellithi Kamel¹², M.A. Mahmoud¹³

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, T. Dahms, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹⁴, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte¹⁴, J.-C. Fontaine¹⁴, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, K. Skovpen, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, C. Bernet⁷, G. Boudoul², E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo², B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze⁹

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, H. Weber, B. Wittmer, V. Zhukov⁵

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann², A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, U. Behrens, A.J. Bell, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel¹⁵, H. Jung, A. Kalogeropoulos, O. Karacheban¹⁵, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol,

D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann¹⁵, B. Lutz, R. Mankel, I. Marfin¹⁵, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, H. Kirschenmann, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann², T. Hauth, U. Husemann, I. Katkov⁵, A. Kornmayer², P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁶, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁷, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi¹⁸, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India S.K. Swain

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, D. Dutta, V. Kumar, A.K. Mohanty², L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

T. Aziz, S. Banerjee, S. Bhowmik¹⁹, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu²⁰, G. Kole, S. Kumar, M. Maity¹⁹, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage²¹

Indian Institute of Science Education and Research (IISER), Pune, India S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshiansohi, H. Behnamian, S.M. Etesami²², A. Fahim²³, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh²⁴, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^{*c*}, Bari, Italy

M. Abbrescia^{*a*,*b*}, C. Calabria^{*a*,*b*}, S.S. Chhibra^{*a*,*b*}, A. Colaleo^{*a*}, D. Creanza^{*a*,*c*}, L. Cristella^{*a*,*b*}, N. De Filippis^{*a*,*c*}, M. De Palma^{*a*,*b*}, L. Fiore^{*a*}, G. Iaselli^{*a*,*c*}, G. Maggi^{*a*,*c*}, M. Maggi^{*a*}, S. My^{*a*,*c*}, S. Nuzzo^{*a*,*b*}, A. Pompili^{*a*,*b*}, G. Pugliese^{*a*,*c*}, R. Radogna^{*a*,*b*,2}, G. Selvaggi^{*a*,*b*}, A. Sharma^{*a*}, L. Silvestris^{*a*,2}, R. Venditti^{*a*,*b*}, P. Verwilligen^{*a*}

INFN Sezione di Bologna^{*a*}, Università di Bologna^{*b*}, Bologna, Italy

G. Abbiendi^{*a*}, A.C. Benvenuti^{*a*}, D. Bonacorsi^{*a*,*b*}, S. Braibant-Giacomelli^{*a*,*b*}, L. Brigliadori^{*a*,*b*}, R. Campanini^{*a*,*b*}, P. Capiluppi^{*a*,*b*}, A. Castro^{*a*,*b*}, F.R. Cavallo^{*a*}, G. Codispoti^{*a*,*b*}, M. Cuffiani^{*a*,*b*}, G.M. Dallavalle^{*a*}, F. Fabbri^{*a*}, A. Fanfani^{*a*,*b*}, D. Fasanella^{*a*,*b*}, P. Giacomelli^{*a*}, C. Grandi^{*a*}, L. Guiducci^{*a*,*b*}, S. Marcellini^{*a*}, G. Masetti^{*a*}, A. Montanari^{*a*}, F.L. Navarria^{*a*,*b*}, A. Perrotta^{*a*}, A.M. Rossi^{*a*,*b*}, T. Rovelli^{*a*,*b*}, G.P. Siroli^{*a*,*b*}, N. Tosi^{*a*,*b*}, R. Travaglini^{*a*,*b*}

INFN Sezione di Catania^{*a*}, Università di Catania^{*b*}, CSFNSM^{*c*}, Catania, Italy

S. Albergo^{*a,b*}, G. Cappello^{*a*}, M. Chiorboli^{*a,b*}, S. Costa^{*a,b*}, F. Giordano^{*a,2*}, R. Potenza^{*a,b*}, A. Tricomi^{*a,b*}, C. Tuve^{*a,b*}

INFN Sezione di Firenze^{*a*}, Università di Firenze^{*b*}, Firenze, Italy

G. Barbagli^{*a*}, V. Ciulli^{*a*,*b*}, C. Civinini^{*a*}, R. D'Alessandro^{*a*,*b*}, E. Focardi^{*a*,*b*}, E. Gallo^{*a*}, S. Gonzi^{*a*,*b*}, V. Gori^{*a*,*b*}, P. Lenzi^{*a*,*b*}, M. Meschini^{*a*}, S. Paoletti^{*a*}, G. Sguazzoni^{*a*}, A. Tropiano^{*a*,*b*}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova^{*a*}, Università di Genova^{*b*}, Genova, Italy

R. Ferretti^{*a*,*b*}, F. Ferro^{*a*}, M. Lo Vetere^{*a*,*b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca^{*a*}, Università di Milano-Bicocca^{*b*}, Milano, Italy

M.E. Dinardo^{*a,b*}, S. Fiorendi^{*a,b*}, S. Gennai^{*a,2*}, R. Gerosa^{*a,b,2*}, A. Ghezzi^{*a,b*}, P. Govoni^{*a,b*}, M.T. Lucchini^{*a,b,2*}, S. Malvezzi^{*a*}, R.A. Manzoni^{*a,b*}, A. Martelli^{*a,b*}, B. Marzocchi^{*a,b,2*}, D. Menasce^{*a*}, L. Moroni^{*a*}, M. Paganoni^{*a,b*}, D. Pedrini^{*a*}, S. Ragazzi^{*a,b*}, N. Redaelli^{*a*}, T. Tabarelli de Fatis^{*a,b*}

INFN Sezione di Napoli^{*a*}, Università di Napoli 'Federico II'^{*b*}, Napoli, Italy, Università della Basilicata^{*c*}, Potenza, Italy, Università G. Marconi^{*d*}, Roma, Italy

S. Buontempo^{*a*}, N. Cavallo^{*a,c*}, S. Di Guida^{*a,d*,2}, F. Fabozzi^{*a,c*}, A.O.M. Iorio^{*a,b*}, L. Lista^{*a*}, S. Meola^{*a,d*,2}, M. Merola^{*a*}, P. Paolucci^{*a*,2}

INFN Sezione di Padova ^a, Università di Padova ^b, Padova, Italy, Università di Trento ^c, Trento, Italy

P. Azzi^{*a*}, N. Bacchetta^{*a*}, M. Bellato^{*a*}, M. Dall'Osso^{*a*,*b*}, T. Dorigo^{*a*}, S. Fantinel^{*a*}, F. Gonella^{*a*}, A. Gozzelino^{*a*}, M. Gulmini^{*a*,25}, S. Lacaprara^{*a*}, M. Margoni^{*a*,*b*}, A.T. Meneguzzo^{*a*,*b*}, F. Montecassiano^{*a*}, J. Pazzini^{*a*,*b*}, M. Pegoraro^{*a*}, N. Pozzobon^{*a*,*b*}, P. Ronchese^{*a*,*b*}, M. Sgaravatto^{*a*}, F. Simonetto^{*a*,*b*}, E. Torassa^{*a*}, M. Tosi^{*a*,*b*}, S. Vanini^{*a*,*b*}, S. Ventura^{*a*}, P. Zotto^{*a*,*b*}, A. Zucchetta^{*a*,*b*}

INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy

M. Gabusi^{*a*,*b*}, S.P. Ratti^{*a*,*b*}, V. Re^{*a*}, C. Riccardi^{*a*,*b*}, P. Salvini^{*a*}, P. Vitulo^{*a*,*b*}

INFN Sezione di Perugia^{*a*}, Università di Perugia^{*b*}, Perugia, Italy

M. Biasini^{*a*,*b*}, G.M. Bilei^{*a*}, D. Ciangottini^{*a*,*b*,2}, L. Fanò^{*a*,*b*}, P. Lariccia^{*a*,*b*}, G. Mantovani^{*a*,*b*}, M. Menichelli^{*a*}, A. Santocchia^{*a*,*b*}, A. Spiezia^{*a*,*b*,2}

INFN Sezione di Pisa^{*a*}, Università di Pisa^{*b*}, Scuola Normale Superiore di Pisa^{*c*}, Pisa, Italy K. Androsov^{*a*,26}, P. Azzurri^{*a*}, G. Bagliesi^{*a*}, J. Bernardini^{*a*}, T. Boccali^{*a*}, G. Broccolo^{*a*,*c*}, R. Castaldi^{*a*}, M.A. Ciocci^{*a*,26}, R. Dell'Orso^{*a*}, S. Donato^{*a*,*c*,2}, G. Fedi, F. Fiori^{*a*,*c*}, L. Foà^{*a*,*c*}, A. Giassi^{*a*}, M.T. Grippo^{*a*,26}, F. Ligabue^{*a*,*c*}, T. Lomtadze^{*a*}, L. Martini^{*a*,*b*}, A. Messineo^{*a*,*b*}, C.S. Moon^{*a*,27}, F. Palla^{*a*,2}, A. Rizzi^{*a*,*b*}, A. Savoy-Navarro^{*a*,28}, A.T. Serban^{*a*}, P. Spagnolo^{*a*}, P. Squillacioti^{*a*,26}, R. Tenchini^{*a*}, G. Tonelli^{*a*,*b*}, A. Venturi^{*a*}, P.G. Verdini^{*a*}, C. Vernieri^{*a*,*c*}

INFN Sezione di Roma^{*a*}, Università di Roma^{*b*}, Roma, Italy

L. Barone^{*a,b*}, F. Cavallari^{*a*}, G. D'imperio^{*a,b*}, D. Del Re^{*a,b*}, M. Diemoz^{*a*}, C. Jorda^{*a*}, E. Longo^{*a,b*}, F. Margaroli^{*a,b*}, P. Meridiani^{*a*}, F. Micheli^{*a,b*,2}, G. Organtini^{*a,b*}, R. Paramatti^{*a*}, S. Rahatlou^{*a,b*}, C. Rovelli^{*a*}, F. Santanastasio^{*a,b*}, L. Soffi^{*a,b*}, P. Traczyk^{*a,b*,2}

INFN Sezione di Torino ^{*a*}, Università di Torino ^{*b*}, Torino, Italy, Università del Piemonte Orientale ^{*c*}, Novara, Italy

N. Amapane^{*a,b*}, R. Arcidiacono^{*a,c*}, S. Argiro^{*a,b*}, M. Arneodo^{*a,c*}, R. Bellan^{*a,b*}, C. Biino^{*a*}, N. Cartiglia^{*a*}, S. Casasso^{*a,b,2*}, M. Costa^{*a,b*}, R. Covarelli, D. Dattola^{*a*}, A. Degano^{*a,b*}, N. Demaria^{*a*}, L. Finco^{*a,b,2*}, C. Mariotti^{*a*}, S. Maselli^{*a*}, E. Migliore^{*a,b*}, V. Monaco^{*a,b*}, M. Musich^{*a*}, M.M. Obertino^{*a,c*}, L. Pacher^{*a,b*}, N. Pastrone^{*a*}, M. Pelliccioni^{*a*}, G.L. Pinna Angioni^{*a,b*}, A. Romero^{*a,b*}, M. Ruspa^{*a,c*}, R. Sacchi^{*a,b*}, A. Solano^{*a,b*}, A. Staiano^{*a*}, U. Tamponi^{*a*}

INFN Sezione di Trieste ^{*a*}, Università di Trieste ^{*b*}, Trieste, Italy

S. Belforte^{*a*}, V. Candelise^{*a*,*b*,2}, M. Casarsa^{*a*}, F. Cossutti^{*a*}, G. Della Ricca^{*a*,*b*}, B. Gobbo^{*a*}, C. La Licata^{*a*,*b*}, M. Marone^{*a*,*b*}, A. Schizzi^{*a*,*b*}, T. Umer^{*a*,*b*}, A. Zanetti^{*a*}

Kangwon National University, Chunchon, Korea

S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea

T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, D.H. Moon, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea H.D. Yoo

University of Seoul, Seoul, Korea M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia J.R. Komaragiri, M.A.B. Md Ali²⁹, W.A.T. Wan Abdullah

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico A. Morelos Pineda

University of Auckland, Auckland, New Zealand D. Krofcheck

University of Canterbury, Christchurch, New Zealand P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev³⁰, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kim³¹, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³², I. Dremin³², M. Kirakosyan, A. Leonidov³², G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, A. Ershov, A. Gribushin, L. Khein, V. Klyukhin, O. Kodolova, I. Lokhtin, O. Lukina, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic³³, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi³⁴, M. D'Alfonso, D. d'Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco,

M. Dobson, M. Dordevic, B. Dorney, N. Dupont, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, S. Orfanelli, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi³⁵, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³⁶, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres¹⁷, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, P. Musella, C. Nägeli³⁷, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov³⁸, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland

C. Amsler³⁹, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, S. Taroni, Y. Yang

National Central University, Chung-Li, Taiwan

M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

R. Bartek, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.F. Tsai, Y.M. Tzeng

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci⁴⁰, S. Cerci⁴¹, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal⁴², A. Kayis Topaksu, G. Onengut⁴³, K. Ozdemir⁴⁴, S. Ozturk⁴⁰, A. Polatoz, D. Sunar Cerci⁴¹, B. Tali⁴¹, H. Topakli⁴⁰, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan⁴⁵, B. Isildak⁴⁶, G. Karapinar⁴⁷, K. Ocalan⁴⁸, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey E.A. Albayrak⁴⁹, E. Gülmez, M. Kaya⁵⁰, O. Kaya⁵¹, T. Yetkin⁵²

Istanbul Technical University, Istanbul, Turkey K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold⁵³, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev⁵⁴, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas⁵³, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko³⁸, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp[†], A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika, T. Scarborough, Z. Wu

The University of Alabama, Tuscaloosa, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA

A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA

J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA

R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA

J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D'Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, A. Gaz, M. Krohn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Kwan[†], J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O'Dell, O. Prokofyev, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, H. Mei, P. Milenovic⁵⁵, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA

B. Bilki⁵⁶, W. Clarida, K. Dilsiz, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁵⁷, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok⁴⁹, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA

I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, Y. Lu, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

A. Apyan, R. Barbieri, K. Bierwagen, W. Busza, I.A. Cali, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA

B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, S. Nourbakhsh, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA

J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA

K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, Y. Musienko³⁰, T. Pearson, M. Planer, R. Ruchti, G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA

O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland², C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA

E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki

Purdue University Calumet, Hammond, USA

N. Parashar, J. Stupak

Rice University, Houston, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, S. Korjenevski, G. Petrillo, M. Verzetti, D. Vishnevskiy

The Rockefeller University, New York, USA

R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

O. Bouhali⁵⁸, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon⁵⁹, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA

E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood

Wayne State University, Detroit, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, C. Vuosalo, N. Woods

- †: Deceased
- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

6: Also at Universidade Estadual de Campinas, Campinas, Brazil

7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

8: Also at Université Libre de Bruxelles, Bruxelles, Belgium

9: Also at Joint Institute for Nuclear Research, Dubna, Russia

10: Also at Suez University, Suez, Egypt

11: Also at British University in Egypt, Cairo, Egypt

12: Also at Cairo University, Cairo, Egypt

13: Also at Fayoum University, El-Fayoum, Egypt

14: Also at Université de Haute Alsace, Mulhouse, France

15: Also at Brandenburg University of Technology, Cottbus, Germany

- 16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 17: Also at Eötvös Loránd University, Budapest, Hungary

18: Also at University of Debrecen, Debrecen, Hungary

19: Also at University of Visva-Bharati, Santiniketan, India

20: Now at King Abdulaziz University, Jeddah, Saudi Arabia

21: Also at University of Ruhuna, Matara, Sri Lanka

22: Also at Isfahan University of Technology, Isfahan, Iran

23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran

24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

25: Also at Laboratori Nazionali di Legnaro dell'INFN, Legnaro, Italy

26: Also at Università degli Studi di Siena, Siena, Italy

27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France

28: Also at Purdue University, West Lafayette, USA

29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia

30: Also at Institute for Nuclear Research, Moscow, Russia

31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia

32: Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia

34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy

35: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy

36: Also at University of Athens, Athens, Greece

37: Also at Paul Scherrer Institut, Villigen, Switzerland

38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland

40: Also at Gaziosmanpasa University, Tokat, Turkey

41: Also at Adiyaman University, Adiyaman, Turkey

42: Also at Mersin University, Mersin, Turkey

43: Also at Cag University, Mersin, Turkey

44: Also at Piri Reis University, Istanbul, Turkey

45: Also at Anadolu University, Eskisehir, Turkey

46: Also at Ozyegin University, Istanbul, Turkey

47: Also at Izmir Institute of Technology, Izmir, Turkey

48: Also at Necmettin Erbakan University, Konya, Turkey

49: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey

50: Also at Marmara University, Istanbul, Turkey

51: Also at Kafkas University, Kars, Turkey

52: Also at Yildiz Technical University, Istanbul, Turkey

53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

56: Also at Argonne National Laboratory, Argonne, USA

57: Also at Erzincan University, Erzincan, Turkey

58: Also at Texas A&M University at Qatar, Doha, Qatar

59: Also at Kyungpook National University, Daegu, Korea