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Abstract

We characterize the geometric moduli of non-Kähler manifolds with torsion. Heterotic

supersymmetric flux compactifications require that the six-dimensional internal manifold

be balanced, the gauge bundle be hermitian Yang-Mills, and also the anomaly cancellation

be satisfied. We perform the linearized variation of these constraints to derive the defining

equations for the local moduli. We explicitly determine the metric deformations of the

smooth flux solution corresponding to a torus bundle over K3.
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1. Introduction

Ever since the discovery of Calabi–Yau compactifications [1], string theorists have

tried to make the connection to the minimal supersymmetric standard model (MSSM)

and grand unified theories (GUT). This turned out to be a difficult problem, as many

times “exotic particles” appear along the way. These are particles that play no role in the

current version of the MSSM1. Recently [2,3] have made a rather interesting proposal for

three generation models without exotics in the context of Calabi–Yau compactifications of

the heterotic string.2

Even though these models have some rather interesting features, it is not possible to

predict with them the values of the coupling constants of the standard model, because

compactifications on conventional Calabi–Yau compactifications lead to unfixed moduli,

and therefore additional massless scalars. This issue can only be addressed in the context

of flux compactifications, which are known to lift the moduli [6,7].

If flux compactifications are considered in the context of the heterotic theory, the

resulting internal geometry is a non-Kähler manifold with torsion [8,9,10]. Simple ex-

amples of such compactifications were constructed in [11,12] in the orbifold limit and a

smooth compactification was constructed in [13,14] in terms of a T 2 bundle over K3. See

[15,16,17,18] for some related works. It would be extremely exciting to construct a tor-

sional manifold with all the features of the MSSM. At present, we are not yet at such a

state. Many properties of Calabi–Yau manifolds are not shared by non-Kähler manifolds

with torsion, so that well known aspects of Calabi–Yau manifolds need to be rederived for

these manifolds.

One of the important open questions is to understand how to characterize the scalar

massless fields, in other words, the moduli space of heterotic flux compactifications. We

1 It is, of course, possible that additional particles not known at present might be discovered,

leading to an extension of the MSSM.
2 String duality implies that in principle one could get realistic models in the context of type

II theories. A concrete proposal has been made recently in terms of a D3-brane in the presence

of a dP8 singularity [4]. Alternatively, one could use intersecting D-brane models. For a review

see [5].
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investigate this question by analyzing the local moduli space emerging in such compactifi-

cations from a spacetime approach. A massless scalar field in the effective four-dimensional

theory emerges for each independent modulus of the background geometry. Thus, the di-

mension of the moduli space corresponds to the number of massless scalar fields in the

theory. In our analysis, we restrict to supersymmetric deformations, as we expect the

analysis of the supersymmetry constraints to be easier than the analysis of the equations

of motion. While the later equations are corrected by R2 terms, the form of the super-

symmetry transformations is not modified to R2 order, as long as the heterotic anomaly

cancellation condition is imposed [19]. That a solution of both the supersymmetry con-

straints and the modified Bianchi identity is also a solution to the equations of motion has

been shown in [20,21].

Unlike the Calabi–Yau case, the supersymmetry constraint equations in general non-

linearly couple the various fields and thus the analysis even at the linearized variation

level is non-trivial. As an example of our general analysis, we shall give the description

of the scalar metric moduli for the smooth solution of a T 2 bundle over K3 presented in

[13,14]. It is an interesting question to understand whether the massless moduli found

in our approach are lifted by higher order terms in the low energy effective action. For

conventional Calabi–Yau compactifications it is known that moduli fields appearing in the

leading order equations will remain massless even if higher order corrections are taken into

account [22,23]. In our case, such an analysis has not been performed yet from the space-

time point of view, though the question can be answered from the world-sheet approach

recently developed in [18]. In this work, a gauged linear sigma model was constructed

which in the IR flows to an interacting conformal field theory. The analysis of the linear

model indicates that massless fields emerging at leading order in α′ will remain massless,

even if corrections to the spacetime action are taken into account.

This paper is organized as follows. In section 2, we perform the linear variation of

the supersymmetry constraints. In section 3, we analyze the variation of the T 2 bundle

over K3 solution and discuss its local moduli space. In section 4, conclusions and future

directions are presented. In the appendix, we clarify some of mathematical notations that

we used.
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2. Determining equations for the moduli fields

The non-Kähler manifolds with torsion M that we are interested in are complex

manifolds described in terms of a hermitian form which is related to the metric

J = i gab̄ dz
a ∧ dz̄b̄ , (2.1)

and a no-where vanishing holomorphic three-form

dΩ = 0 , (2.2)

satisfying J ∧ Ω = 0. The geometry can be deformed by either deforming the hermitian

form or deforming the complex structure of M. We are interested in deformations that

preserve the supersymmetry constraints as well as the anomaly cancellation condition.

N = 1 supersymmetry for heterotic flux compactifications to four spacetime dimen-

sions imposes three conditions: the internal geometry has to be conformally balanced,

the gauge bundle satisfies the hermitian Yang-Mills equation, and the H-flux satisfies the

anomaly cancellation condition. Explicitly, they are [13,14]

d(‖Ω‖J J ∧ J) = 0 , (2.3)

F (2,0) = F (0,2) = 0 , FmnJ
mn = 0 , (2.4)

2i ∂∂̄J =
α′

4
[tr(R ∧R)− tr(F ∧ F )] . (2.5)

Above, we have replaced the two standard background fields - the three-form H and

the dilaton field φ - with the required supersymmetric relations

H = i(∂̄ − ∂)J , (2.6)

‖Ω‖J = e−2(φ+φ0) . (2.7)

Doing so allows us to consider the constraint equations solely in terms of the geometrical

data (J,Ω) and the gauge bundle.

Deformations of the metric that are of pure type, i.e. (0, 2) or (2, 0), describe defor-

mations of the complex structure

Ωab
d̄ δgd̄c̄ dza ∧ dzb ∧ dz̄c̄ , (2.8)
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while deformations of mixed type, i.e. of type (1, 1), describe deformations of the hermitian

form

i δgab̄ dza ∧ dz̄b̄ . (2.9)

We analyze below the linear variation of the three constraint equations (2.3)-(2.5)

with respect to a background solution. For simplicity, we shall keep the complex struc-

ture of the six-dimensional internal geometry fixed. For the moduli space of Calabi-Yau

compactifications, it turns out that the Kähler and complex structure deformations decou-

ple from one another [24]. It would be interesting to determine whether some decoupling

still persists in the non-Kähler case and more generally how the hermitian and complex

structure deformations are coupled. We will leave this more general analysis for future

work.

2.1. Conformally balanced condition

We consider the linear variation of the conformally balanced condition (2.3). We shall

vary the metric or hermitian form Jab̄ = igab̄ while holding fixed the complex structure.

Let

J ′
ab̄ = Jab̄ + δJab̄ , (2.10)

then we have to first order in δJ

J ′ ∧ J ′ = J ∧ J + 2J ∧ δJ , (2.11)

‖Ω‖2J ′ =
|gab̄|
|g′

ab̄
| ‖Ω‖

2
J =

|gab̄|
|gab̄|(1 + gcd̄δgcd̄)

‖Ω‖2J ,

= (1− gcd̄δgcd̄)‖Ω‖2J .

(2.12)

Note that (2.7) with (2.12) imply the dilaton variation

δφ =
1

4
gab̄δgab̄ =

1

8
JmnδJmn . (2.13)

The linear variation of the conformally balanced condition can be written as

d (‖Ω‖J ′ J ′ ∧ J ′) = d (‖Ω‖J J ∧ J + 2 δρ) = 0 , (2.14)
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where δρ is a four-form given by

δρ = ‖Ω‖J
[

J ∧ δJ − 1

8
(J ∧ J)JmnδJmn

]

. (2.15)

We can invert (2.15) and express δJ in terms of δρ. To do this, we note that any

(2, 2)-form, ω4, can be Lefschetz decomposed as follows

ω4 = LΛω4 −
1

4
L2Λ2ω4, (2.16)

where the Lefschetz operator L and its adjoint Λ have the following action on exterior

forms
L : ω → J ∧ ω,

Λ : ω → J xω.
(2.17)

Comparing (2.15) with (2.16), we find the relation

δJmn =
1

2‖Ω‖J
δρmnrs J

rs. (2.18)

From the linear variation of equation (2.14), we observe that the allowed deformations

(i.e. which preserve the conformally balanced condition) satisfy d δρ = 0. Equation (2.18)

implies that any variation of the hermitian metric can be expressed in terms of a variation

by a closed (2, 2)-form. Equivalently, we can also express the linear variation condition

directly for the hermitian metric as

d∗[δJ ′ − 1

4
J(JmnδJ ′

mn)] = 0 , (2.19)

where δJ ′ = ‖Ω‖JδJ .
Note that δJ variations that are equivalent to a coordinate transformation (i.e. a

diffeomorphism) are physically unobservable and must therefore be quotient out. Under

an infinitesimal coordinate transformation

y′m = ym + vm(y) , (2.20)

the variation of a p-form ωp is given by the Lie derivative

δωp = −Lv ωp = −[iv(d ωp) + d(iv ωp)] , (2.21)
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where v = vm∂m is a vector field and iv denotes the interior product. For the conformally

balanced four-form, a coordinate transformation results in

Lv(‖Ω‖J J ∧ J) = d [iv(‖Ω‖J J ∧ J)] . (2.22)

We can thus identify, as physically not relevant, δρ variations that are exterior derivatives

of a non-primitive three-form

δρ ∼ d(‖Ω‖Jβ ∧ J), (2.23)

where βm = vnJnm. Using (2.18), this corresponds to deformations of the hermitian form

δJ ∼ 1

‖Ω‖J
Λ d(‖Ω‖Jβ ∧ J) . (2.24)

Let us now interpret the content of the above variation formulas. By the identifica-

tion of (2.18), variations of the hermitian metric that preserve the conformally balanced

condition can be parametrized by closed (2, 2)-forms. Moreover, modding out by diffeo-

morphisms results in the cohomology3

ker(d) ∩ Λ2,2

d(β ∧ J)
. (2.25)

Thus, the space of conformally balanced metrics is equivalent to the space of closed (2, 2)-

forms modded out by those which are exterior derivatives of a non-primitive three-form.

But notice that exact forms which are exterior derivative of a primitive three-form are

not quotient out. Hence, if there exists such a primitive three-form, ω0
3 , then the space

of balanced metrics is infinite dimensional. This is because d(fω0
3) where f is any real

function would be closed but not modded out.

The cohomology of (2.25) can also be expressed directly in terms of (1, 1)-forms. From

(2.19), every co-closed (1, 1)-form defines a metric deformation preserving the conformally

balanced condition. To see this explicitly, we note that any (1, 1)-form can be Lefschetz

decomposed as follows

Cmn = (C0)mn +
1

6
Jmn J

rsCrs

≡ (C0)mn +
1

3
JmnCΛ ,

(2.26)

3 Note that complex structures are also defined up to diffeomorphism. So any diffeomorphism

generated by a real vector field will keep the complex structure in the same equivalence class.
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where C0 denotes the primitive part and CΛ = 1
2J

rsCrs encodes the non-primitivity of

Cmn . We can therefore re-express (2.19) as

0 = d∗(δJ ′ − 1

2
J δJ ′

Λ)

= d∗(δJ ′
0 −

1

6
J δJ ′

Λ)

= d∗C ,

(2.27)

where we have defined a new (1, 1)-form C = C0+
1
3
J CΛ with C0 = δJ ′

0 and CΛ = −1
2
δJ ′

Λ.

Furthermore, variations associated with diffeomorphisms can be written as

δJ ′ ∼ Λd(‖Ω‖Jβ ∧ J) , (2.28)

so that we have

(δJ ′ − 1

2
JδJ ′

Λ) ∼ d∗(β̃′ ∧ J), (2.29)

where β̃′
m = Jm

nβn‖Ω‖J . Equations (2.27) and (2.29) together imply the cohomology

ker(d∗) ∩ Λ1,1

d∗(β ∧ J)
. (2.30)

Therefore, the local moduli space can also be described as spanning all co-closed (1, 1)-

forms modulo those which are d∗ of non-primitive three-forms. This space is isomorphic to

that of (2.25) and is in general infinite-dimensional. We have however yet to consider the

two other supersymmetry constraints. Imposing them, especially the anomaly cancellation

condition, will greatly reduce the number of allowed deformations and render the moduli

space finite-dimensional. This can be seen clearly in the T 2 bundle over K3 example

discussed in the next section.

Finally, let us point out that if we had taken into consideration variations of the

complex structure, then a δJ variation will in general include also a (2, 0) and a (0, 2)

part. Nevertheless, J+δJ must still be a (1, 1)-form with respect to the deformed complex

structure as is required by supersymmetry.

2.2. Hermitian Yang-Mills condition

Any variation of the hermitian gauge connection with the complex structure held

fixed will preserve the holomorphic condition F (2,0) = F (0,2) = 0. As for the primitivity
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condition FmnJ
mn = 0, we shall vary its equivalent form

0 = δ(F ∧ J ∧ J) = δF ∧ J2 + 2F ∧ J ∧ δJ . (2.31)

The hermitian field strength F can be written as

Fāb = ∂̄āAb = ∂̄ā(h
αβ̄∂bhβ̄γ) = ∂̄ā(h̄

−1∂bh̄), (2.32)

where α, β̄, γ are gauge indices and h̄ = hβ̄α is the transpose of the hermitian metric on

the gauge bundle. Under the variation, h̄′ = h̄+ δh̄, the gauge field varies as

δA = A′ − A = h̄−1∂(δh̄) + δh̄−1∂h̄

= h̄−1∂[h̄(h̄−1δh̄)]− h̄−1δh̄(h̄−1∂h̄)

= ∂(h̄−1δh̄) + A(h̄−1δh̄)− (h̄−1δh̄)A

≡ DA(h̄−1δh̄).

(2.33)

This implies that the field strength varies as δF = ∂̄(DA(h̄−1δh̄)). Inserting into (2.31),

we obtain

0 = ∂̄(DA(h̄−1δh̄)) ∧ J2 + 2F ∧ J ∧ δJ . (2.34)

This gives the constraint relation between the variations of the hermitian form and the

gauge field. The pair (δJ, δh) will be further constrained when inserted into the anomaly

cancellation condition as we now show.

2.3. Anomaly cancellation condition

We can write the variation of the anomaly cancellation equation as,

2i ∂∂̄ δJ =
α′

2
(tr[R(g) ∧ δR(g)]− tr[F (h) ∧ δF (h)]) . (2.35)

The left hand side is a ∂∂̄ of a (1,1)-form, so we should write the variation of the right hand

side of the equation similarly. With the curvature defined using the hermitian connection,

we can write the variation using the Bott-Chern form [25,26]. For two hermitian metrics

(g1, g0) that are smoothly connected by a path parameterized by a parameter t ∈ [0, 1],

the difference of the first Pontraygin classes is given by the Bott-Chern form

tr[R1 ∧R1]− tr[R0 ∧R0] = 2i ∂∂̄BC2(g1, g0) , (2.36)
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where

BC2(g1, g0) = 2i

∫ 1

0

tr[Rt ḡ
−1
t

˙̄gt] dt , (2.37)

and ḡ = gāb denotes the transpose of the hermitian metric, the dot denotes the derivative

with respect to t, and the ”tr” in (2.37) traces over only the holomorphic indices.4 We

now use the Bott-Chern formula to obtain the variation. Let

gt = g + t (g′ − g) = g + t δg , (2.38)

where t ∈ [0, 1] and in particular g0 = g and g1 = g′. Then to first order in δg, we have

δ(tr[R ∧R]) = 2 tr[R ∧ δR] = −4 ∂∂̄ (tr[R ḡ−1δḡ]) , (2.39)

where the trace can be more simply written in components as

tr[R ḡ−1δḡ]ab̄ = −i Rab̄
cd̄δJcd̄ . (2.40)

With (2.39), the linear variation of the anomaly equation (2.35) becomes

2i ∂∂̄ δJ = −α′∂∂̄
(

tr[R ḡ−1δḡ]− tr[F h̄−1δh̄]
)

. (2.41)

By factoring out the 2i∂∂̄ derivatives, the anomaly condition can be equivalently expressed

as

δJ − i
α′

2

(

tr[R ḡ−1δḡ]− tr[F h̄−1δh̄]
)

= γ , (2.42)

where γ is a ∂∂̄ closed (1, 1)-form.

Note that for the special case where either the gauge bundle is trivial (i.e. F = 0)

or δh = 0, there is a simple relationship between δJ and γ. The anomaly variation with

(2.40) inserted into (2.42) becomes

δJab̄ −
α′

2
Rab̄

cd̄δJcd̄ = γab̄ . (2.43)

Grouping the two hermitian indices (a b̄) as a single index, we can solve for δJ by inverting

the above equation and obtain

δJ = (1−M)−1γ , (2.44)

4 Note that the Bott-Chern form is defined only up to ∂ and ∂̄ exact terms.
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where the curvature is encoded in the matrix Mab̄
cd̄ = α′

2 Rab̄
cd̄. As long as (1 − M)

is invertible, we see that δJ is parametrized by the space of ∂∂̄-closed (1, 1)-forms γ.

Modding out by diffeomorphism equivalence, we can obtain a cohomology associated with

the anomaly equation of the form

ker(∂∂̄) ∩ Λ1,1

γdiff
, (2.45)

where

γdiff = (1−M) δJdiff =
1

‖Ω‖J
(1−M) Λ d(‖Ω‖Jβ ∧ J) , (2.46)

and δJdiff is the variation of the hermitian form corresponding to diffeomorphism given in

(2.24).

To summarize, we list the three linear variation conditions with complex structure

fixed.

d
(

‖Ω‖J [2J ∧ δJ − 1

4
(J ∧ J)JmnδJmn]

)

= 0 , (2.47)

∂̄(DA(h̄−1δh̄)) ∧ J2 + 2F ∧ J ∧ δJ = 0 , (2.48)

∂∂̄
(

δJ − i
α′

2

[

tr[R ḡ−1δḡ]− tr[F h̄−1δh̄]
]

)

= 0 . (2.49)

In the next section, we will write down explicit deformations that satisfy the above equa-

tions for the T 2 bundle over K3 flux background.

3. T 2 bundle over K3 solution

The metric of the T 2 bundle over K3 solution [13,14] has the form

ds2 = e2φds2K3 + (dx+ α1)
2
+ (dy + α2)

2

= e2φds2K3 + |dz3 + α|2 ,
(3.1)

where θ = dz3 + α is a (1, 0)-form and α = α1 + iα2. The twisting of the T 2 is encoded in

the two-form defined on the base K3

ω = ω1 + i ω2 = dθ = ω
(2,0)
S + ω

(1,1)
A , (3.2)
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which is required to be primitive

ω ∧ JK3 = 0 , (3.3)

and obeys the quantization condition

ω̃i =
ωi

2π
√
α′

∈ H2(K3,ZZ) . (3.4)

With this metric ansatz, the anomaly cancellation equation reduces to a highly non-linear

second-order differential equation for the dilaton φ. Importantly, a necessary condition for

the existence of a solution for φ is that the background satisfies the topological condition

∫

K3

(

‖ω̃S‖2 + ‖ω̃A‖2
) JK3 ∧ JK3

2!
+

1

16π2

∫

K3

trF ∧ F = 24 . (3.5)

If this condition is satisfied, then the analysis of Fu and Yau [13] guarantees the existence

of a smooth solution for φ that solves the differential equation of anomaly cancellation.

3.1. Equations for the moduli

For expressing the constraint equations of the allowed deformations, we first write

down more explicitly the hermitian metric. Note that the conventions we follow here are

that Jab̄ = igab̄ and ds2 = 2gab̄dz
adz̄b̄. The hermitian two-form can be expressed simply

as

J = e2φJK3 +
i

2
θ ∧ θ̄ , (3.6)

and we write the corresponding metric as

gab̄ =
1

2

(

2g′ + BB∗ B
B∗ 1

)

, (3.7)

where g′ij̄ = e2φgK3 is the base K3 metric with the e2φ warp factor included, B = (B1,B2)

is a column vector with entries locally given by α = B1dz
1 + B2dz

2 , and B∗ = B†.

An allowed deformation of the conformally balanced condition must satisfy the re-

quirement that the four-form (2.15)

δρ = ‖Ω‖J
[

J ∧ δJ − 1

8
(J ∧ J)JmnδJmn

]

= JK3 ∧ δJ +
i

2
e−2φθ ∧ θ̄ ∧ δJ − 1

8
(e2φJK3 ∧ JK3 + iJK3 ∧ θ ∧ θ̄)JmnδJmn ,

(3.8)
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is d-closed.

As for the anomaly condition, we shall work with the constraint given in the form of

(2.49) (with trivial gauge bundle)

∂∂̄
(

δJ − i
α′

2
tr[R ḡ−1δḡ]

)

= 0 . (3.9)

The curvature term can be written out explicitly as

tr[R ḡ−1δḡ] = i
(

R̃j̄iδJij̄ + R̃j̄3δJ3j̄ + R̃3̄iδJi3̄ + R̃3̄3δJ33̄

)

, (3.10)

where

R̃j̄i = −g′
−1

R′ − 1

2
(g′−1∂̄B)(∂B∗g′−1) , (3.11)

R̃j̄3 = g′
−1

R′B + ∂(g′
−1

∂̄B)− 1

2
(g′−1∂̄B)(∂B∗ g′−1)B , (3.12)

R̃3̄i = B∗g′−1R′ − ∂̄(∂B∗g′−1) +
1

2
B∗(g′−1∂̄B)(∂B∗ g′−1) , (3.13)

R̃3̄3 = −B∗g′−1R′B+1

2
B∗g′−1∂̄B(∂B∗g′−1)B+∂̄(∂B∗g′−1)B−B∗∂(g′−1 ∂̄B)−∂B∗(g′−1∂̄B) ,

(3.14)

and R′ = ∂̄(ḡ′
−1

∂ḡ′) is the curvature tensor of K3 with respect to the g′ metric. Note

that the R̃b̄a are two-forms with components only on the coordinates of K3.

Below, we shall analyze the infinitesimal deformations of the T 2 bundle over K3 model

with trivial gauge bundle. For this type of model, the topological constraint (3.5) is satisfied

purely by the curvature of the T 2 twist. (See section 5.2 in [14] for explicit examples.) We

shall discuss the variation of the three components of the metric - the dilaton conformal

factor, the K3 base, and the T 2 bundle - separately below. We will show that the moduli

given below satisfy both the conformally balanced and anomaly cancellation condition. For

the trivial bundle case, the hermitian Yang-Mills condition does not place any constraint

on the deformations. Finally, we will also discuss the variation of the complex structure

in this model.

3.2. Deformation of the dilaton

The dilaton is associated to the warp factor of the K3 base. Thus, varying the dilaton

corresponds to varying the local scale of the K3. The deformation of the hermitian form
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due to the variation of the dilaton is

δJ = 2 δφ e2φJK3 , (3.15)

where δφ depends only on the K3 coordinates. This is consistent with the dilaton vari-

ation condition δφ = (1/8)JmnδJmn of equation (2.13). As for the conformally balanced

condition, it in fact does not place any constraint on the dilaton. The metric variation

(3.15) when inserted into (3.8) gives the four-form

δρ = e2φJK3 ∧ JK3 δφ , (3.16)

which is indeed d-closed for any real function δφ on the base K3. Since the space of real

function is infinite-dimensional, the dimensionality of the deformation space is also infinite

if only the conformally balanced condition is considered.

Imposing anomaly cancellation condition will however make the deformation space

finite. Anomaly cancellation (3.9) imposes the condition

∂∂̄

(

[

2e2φJK3 − i
α′

2
e−2φtr[∂̄B ∧ ∂B∗g−1

K3] + 4 ∂̄∂φ
]

δφ

)

= 0 , (3.17)

where we have used (3.11). The analysis of Fu and Yau [13] guarantees only a one-

paramater family of solutions parametrized by the normalization

A =

(
∫

K3

e−8φ JK3 ∧ JK3

2!

)1/4

, (3.18)

as long as the topological condition (3.5) is satisfied and also A ≪ 1. (See [14] for a

discussion of the physical implications of the A ≪ 1 bound.) The variation of the dilaton

can thus be parametrized by the value of A.5

5 Rigorously, one should be able to show that there does not exist a dilaton variation that

satisfies (3.17) and leaves the normalization A unchanged. Regardless, the finite-dimensionality

of the deformation space is ensured if one assumes the elliptic condition required by Fu and Yau

[13] to solve the anomaly cancellation equation for φ.
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3.3. Deformations of the K3 metric

The metric moduli of the K3 are associated with deformations of the hermitian form

JK3 such that the curvatures of the T 2 bundle, ωi for i = 1, 2, remain primitive (3.3). This

implies that the allowed variation of δJK3 satisfies

ωi ∧ δJK3 + δωi ∧ JK3 = 0 , i = 1, 2 . (3.19)

Hence, of the 20 possible h1,1 Kähler deformations of K3, only the subset that satisfies

(3.19) is allowed.

First, consider the case where δωi = 0. We then have the condition

ωi ∧ δJK3 = 0 , (3.20)

which must be satisfied locally at every point onK3. With the curvature form ω containing

a (1, 1) part, (3.20) is a very strong condition that in general can only be satisfied by a

variation proportional to the hermitian form, δJK3 ∼ JK3. But this would then be the

modulus identified above as associated with the dilaton (3.15).

More generally, we can have δωi = i∂∂̄fi, where fi for i = 1, 2 are functions on the

base K3. This form of δωi is required so that the variation does not change the H2(K3)

integral class of ωi as required by the quantization of (3.4). Let δJK3 = η ∈ H1,1(K3) and

not proportional to JK3, then the variation (3.19) corresponds to

0 = ωi ∧ η + i∂∂̄fi ∧ JK3

= (f ′
i −∆fi)

JK3 ∧ JK3

2
.

(3.21)

Here, we have replaced ωi ∧ η = f ′
i
JK3∧JK3

2
noting that the exterior product of two (1, 1)-

forms on the base must be a function times the volume form of the K3. Now, the sufficient

condition that a solution for fi exists is that
∫

K3

f ′
i

JK3 ∧ JK3

2
=

∫

K3

ωi ∧ η = 0 . (3.22)

But this is related to the requirement that the intersection numbers are zero. The inter-

section numbers of K3 are defined to be

dIJ =

∫

K3

ω̃I ∧ ω̃J , (3.23)
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where ω̃I , I = 1, . . . , 22 , denotes a basis of H2(K3,ZZ). The matrix dIJ is the metric of

the even self-dual lattice with Lorentzian signature (3, 19) given by

(−E8)⊕ (−E8)⊕
(

0 1
1 0

)

⊕
(

0 1
1 0

)

⊕
(

0 1
1 0

)

, (3.24)

where

E8 =























2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2























, (3.25)

is the Cartan matrix of E8 Lie algebra. Thus we see that a variation of δJK3 = η is

allowed as long as the intersection numbers of η with ωi are zero. This implies at least

that η 6= ω1 , ω2.

The above variations of the Kähler form on the K3 require the metric variations

δJ = e2φη +
i

2
(δθ ∧ θ̄ + θ ∧ δθ̄) + 2 δφ e2φJK3 ,

δρ =
i

2

(

θ ∧ θ̄ ∧ η + JK3 ∧ (δθ ∧ θ̄ + θ ∧ δθ̄)
)

+ e2φJK3 ∧ JK3 δφ ,

(3.26)

where δθ = −i ∂(f1 + if2). One can check that the above δρ is closed when (3.21) is

satisfied. We note that the additional variation of the dilaton in (3.26) is needed in order

to satisfy the anomaly condition. With it, the analysis of Fu and Yau [13] then guarantees

the existence of a solution for δφ for each consistent pair (η, δθ). Therefore, δJ variations

in (3.26) satisfying (3.22) are indeed moduli.

3.4. Deformation of the T 2 bundle

We now consider the variation of the size of the T 2 bundle. This is an allowed variation

of the conformally balanced condition since the metric variation

δJ =
i

2
ǫ θ ∧ θ̄ , (3.27)

results in the closed four-form

δρ = ǫ (−1

4
e2φJK3 ∧ JK3 +

i

4
θ ∧ θ̄ ∧ JK3) , (3.28)
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where ǫ is a constant infinitesimal parameter. But we must also check the anomaly con-

dition. The variation of the curvature term can be calculated using (3.11)-(3.14) and we

obtain

tr[R ḡ−1δḡ] =
1

2
ǫ tr[∂̄B ∧ ∂B∗g′−1] . (3.29)

The anomaly condition (3.9) therefore becomes

0 = i ∂∂̄(δJ − i
α′

2
tr[R ḡ−1δḡ])

= −1

2
ǫ ∂∂̄(θ ∧ θ̄ − α′

2
tr[∂̄B ∧ ∂B∗g′−1])

=
1

2
ǫ (‖ω‖2J

2
K3

2
+

α′

2
∂∂̄ tr[∂̄B ∧ ∂B∗g′−1]) ,

(3.30)

but this can not hold true. To see this, we can integrate the last line over the base K3.

The first term gives a positive contribution while the second term integrates to zero. Here,

we have used the fact that the two-form tr[∂̄B∧∂B∗g′−1] in the second term is well-defined

and has dependence only on the base K3 as was shown in [13] (see Lemma 10 on page 11).

Thus, the size of the torus can not be continuously varied as it is fixed by the anomaly

condition.

With the size of the torus fixed, it is evident that there can not be any overall radial

moduli δJ = ǫ J for this model, as has also been noted previously in [27,21,28]. Actually, it

is true in general that the anomaly cancellation forbids an overall constant radial modulus

for any heterotic compactification with non-zero H-flux. The reason is simply that tr[R∧R]

is invariant under constant scaling of the metric since the Riemann tensor, Rmn
p
q , is scale

invariant. However dH = 2i ∂∂̄J depends on J and can not be scale invariant. Hence, the

overall scale is not a modulus.

To summarize, the T 2 bundle over K3 model has a dilaton modulus and also moduli

associated with the Kähler moduli of the base K3. The number of moduli in particular

depends on the curvature of the T 2 twist, ω. The size of the T 2 is however fixed and hence

there is no overall radial modulus in the model.

3.5. Fixing the complex structure

We have mostly taken the complex structure to be fixed in analyzing the moduli. But

for the T 2 bundle over K3 solution, the complex structures are rather transparent and we
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can describe how they can be fixed. To begin, the complex structures are simply those on

the K3 plus that on the T 2. For the T 2, its complex structure determines the integral first

Chern class quantization condition (3.4) for ω1 and ω2. For an arbitrary torus complex

structure τ = τ1 + i τ2 , the quantization conditions depend on τ and takes the form

1

2π
√
α′

∫

Γ

(ω1 −
τ1
τ2

ω2) ∈ ZZ ,
1

2π
√
α′ τ2

∫

Γ

ω2 ∈ ZZ , (3.31)

where Γ ∈ H2(K3,ZZ) is any two-cycle on K3. Therefore, fixing ω = ω1 + iω2 effec-

tively fixes τ . And even if we were to allow ω to vary infinitesimally, the complex struc-

ture integrability condition ω = ω1 + i ω2 ∈ Λ(2,0)(K3) ⊕ Λ(1,1)(K3) and the topological

condition (3.5) must be imposed. All together, these strong conditions generically fix

the T 2 complex structure moduli.6 Note also that the condition ω ∈ H(1,1)(K3,ZZ) =

H(1,1)(K3) ∩ H2(K3,ZZ) also strongly constrains the complex structure of the K3 since

the dimension of H(1,1)(K3,ZZ) do vary with the complex structure of K3.

The complex structures of K3 can also be fixed if the T 2 twist ω contains a (2, 0)

self-dual part, ω(2,0) = kΩK3, which up to a constant k must be proportional to the

holomorphic (2, 0)-form of K3. The above mentioned quantization condition for the (2, 0)

part then takes the form (for τ = i)

k

2π
√
α′

∫

Γ

ΩK3 ∈ ZZ , (3.32)

which defines the periods of the holomorphic (2, 0)-form on the K3. These periods specify

the complex structures chosen onK3, and the quantization condition thus fixes the complex

structures on K3.

4. Conclusions and Open Questions

In this paper, we have derived the defining equations for the local moduli of supersym-

metric heterotic flux compactifications. The defining equations were derived by performing

a linear variation of the supersymmetry constraints obeyed by such compactifications. We

6 That the T 2 complex structures are fixed has also be noted from the gauged linear sigma

model point of view in [18].
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further analyzed the corresponding geometric moduli spaces and discussed the particular

example of a T 2 bundle over K3 in detail. This T 2 bundle over K3 solution is special in

that in it is dual to M- or F-theory on K3 × K3. Notice that under infinitesimal defor-

mations, the manifold K3×K3 remains K3×K3. Thus, the corresponding heterotic T 2

bundle over K3 dual must also be locally unique; that is, it remains a T 2 bundle over K3

under infinitesimal variation.

In much of our analysis, we have set the gauge bundle to be trivial. For the T 2 bundle

over the K3 case, the non-trivial, non-U(1) bundle are simply the stable bundles on K3

lifted to the six-dimensional space. The moduli space then corresponds to the space of K3

stable bundle. The dimension of this moduli space M is given by the Mukai formula [29]

dimM = 2r c2(E)− (r − 1)c21(E)− 2r2 + 2 , (4.1)

where r is the rank of the bundle (i.e. the dimension of the fiber), and (c1(E), c2(E)) are

the first and second Chern number of the gauge bundle E. It would be interesting to

understand the moduli space of stable gauge bundle in general.

There are a number of interesting open questions. First, in our analysis we have

kept for simplicity the complex structure fixed. It is well known that for Calabi–Yau

compactifications the moduli space is a direct product of complex structure and Kähler

structure deformations. For non-Kähler manifolds with torsion, this likely is not the case

and it would be interesting to allow for a simultaneous variation of the complex structure

and the hermitian form.

It would be interesting to analyze the geometry of the moduli space and to determine if

powerful tools such as the well known “special geometry” of Calabi–Yau compactifications

[30] can be derived in this case.

Furthermore, counting techniques for moduli fields need to be developed and we expect

that the number of moduli can be characterized in terms of an index or some topological

invariants of the manifold.

Finally, it would be interesting to analyze the moduli space from the world-sheet

approach using the recently constructed gauged linear sigma model [18]. Moduli fields will

correspond to the marginal deformations of the IR conformal field theory.
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Appendix

We summarize our notation and conventions.

• Our index conventions are as follows: m,n, p, q, . . . denotes real six-dimensional co-

ordinates, a, b, c, . . . and ā, b̄, c̄, . . . denote six-dimensional complex coordinates, and

i, j, k, . . . and ī, j̄, k̄, . . . denote four-dimensional complex coordinates on the base K3.

• The gauge field Am and field strength Fmn take values in the SO(32) or E8 × E8

Lie-algebra with the generators being anti-hermitian.

• The Riemann tensor is defined as follows

Rmn
p
q = ∂mΓn

p
q − ∂nΓm

p
q + Γm

p
r Γn

r
q − Γn

p
r Γm

r
q .

With a hermitian metric g with components gab̄, we write the hermitian curvature two-

form as R = ∂̄[ḡ−1∂ḡ] = ∂̄[(∂g)g−1] where ḡ is the transposed of g with components

gb̄a. Explicitly, in components, we write

Rāb
c
d = ∂̄ā[g

cd̄∂gd̄d] = ∂̄ā[(∂bgdd̄)g
d̄c] .

• We follow the convention standard in the mathematics literature for the Hodge star

operator. For example, (⋆H)mnp = 1
3! Hrst ǫ

rst
mnp with ǫmnprst being the Levi-Civita

tensor.
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• We use the definition for ‖Ω‖2J :

Ω ∧ ⋆ Ω̄ = ‖Ω‖2J
J3

3!
.

• For a vector field, v = vm∂m, the interior product acting on a p-form with components

αm1m2...mp
is just

(ivα)m2m3...mp
= vm1αm1m2...mp

.

• Given a hermitian form J , the adjoint of the Lefschetz operator Λ acting on a p-form

with components αm1m2...mp
is

(Λα)m3m4...mp
=

1

2!
Jm1m2αm1m2m3m4...mp

.
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