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ABSTRACT

We show that the singular sources in the energy-momentum tensor for the Randall-

Sundrum brane world, viewed as a solution of type IIB supergravity, are composed of

two elements. One of these is a D3-brane source with tension opposite in sign to the RS

tension in five dimensions; the other arises from patching two regions of flat ten-dimensional

spacetime. This resolves an apparent discrepancy between supersymmetry and the sign and

magnitude of the RS tension.
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1 Introduction

The original Randall-Sundrum brane-world model [1] (which we will subsequently refer to

as Randall-Sundrum I), where our universe is viewed as one of two 3-branes embedded

at opposite ends of a patch of five-dimensional anti-de Sitter space, was proposed as a

mechanism for naturally generating a large exponential hierarchy based on a small extra

dimension. Subsequently, it was realized that the second brane may be pushed off to the

Cauchy horizon of the anti-de Sitter space, yielding a model with a single 3-brane and a

non-compact extra dimension [2]. Much attention has been drawn to the fact that, contrary

to conventional Kaluza-Klein lore, this Randall-Sundrum II model is able to trap gravity

to the brane, even with an infinite fifth dimension. This localization of gravity to the brane

occurs because the Randall-Sundrum metric takes on a warped product form,

ds25 = e−2K |z| ηµν dx
µdxν + dz2 , (1)

with a pronounced “kink” at the brane.1.

Since the Randall-Sundrum geometry, given by the above metric, is essentially that of

two Poincaré patches of AdS5 joined together on a horospherical slice, recent attempts have

been made to provide a more stringy origin of the scenario and to relate it to Maldacena’s

AdS/CFT conjecture [5, 6, 7]. Hints of this connection were made in [8, 9, 10, 11], where the

Randall-Sundrum II model was presented as an anti-de Sitter bulk theory with a boundary

not at infinity but instead at some finite location. By pushing the boundary off to infinity,

one finally decouples gravity and hence recovers the standard AdS/CFT relation. Further

evidence for the equivalence of the two scenarios was presented in [12], which demonstrated

that the 1/r3 correction the Newtonian potential in the Randall-Sundrum background is re-

produced exactly by the one-loop correction to the graviton propagator in the corresponding

CFT.

Since AdS5 arises as the near-horizon geometry of D3-branes in the type IIB theory, it is

natural to seek a D3-brane interpretation for the Randall-Sundrum geometry. This connec-

tion was made in Refs. [13, 14, 15, 16, 17], which makes use of a massive five-dimensional

supergravity scenario originating from an S5 compactification of type IIB theory with a

breathing mode [18]. This result ensures that the Randall-Sundrum scenario may be real-

ized in a fully supersymmetric context. Despite some initial no-go theorems [19, 20] and

difficulty in supersymmetrizing the brane-world in a pure N = 2 supergravity context [21],

it has subsequently been seen that these difficulties are overcome through the incorporation

1Such types of solutions were first considered in D = 4, N = 1 supergravity in [3]. For a review, see [4]
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of the breathing mode, and by appealing to the higher-dimensional origin of the underlying

gauged five-dimensional supergravity [17, 22, 23].

Nevertheless, investigation of the supersymmetric Randall-Sundrum realization [17] has

yet to fully resolve the issue of brane tension and the nature of the singular sources for

the Randall-Sundrum brane located at z = 0. It was pointed out in [24, 17] that the

ten-dimensional picture for a Randall-Sundrum II geometry ought to be two segments of

positive-energy D3-brane geometry, each carrying N units of charge, with 2N D3-branes

sitting at the patching location, causing the total charge to add up to zero. It was noted in

[17] that if supersymmetry were to be preserved, the 2N D3-branes at the patching location

would have to have negative tension. However two puzzles arise with this picture of the

Randall-Sundrum geometry. Firstly, as shown in [24], the magnitude of the “tension” of the

Randall-Sundrum brane [1] is greater than that of a corresponding stack of 2N D3-branes.2

Secondly, even if the magnitudes of the “tensions” agreed, it is not obvious how negative

tension in D = 10 could lead to positive tension in D = 5.

The resolution to both of these puzzles comes from the realization that the patching

of the two stacks of positive tension D3-branes involves more than simply the introduction

of 2N negative-tension D3-branes to absorb the charge. In joining together two spacetime

patches on a curved boundary (which is what occurs in this construction), one must be

careful to introduce an appropriate source of curvature in order to satisfy the Israel junction

conditions. By careful examination of the Randall-Sundrum metric lifted to D = 10, we

find that there are in fact two sources of such curvature. The first is of course the stack

of the 2N negative tension D3-branes, and the second arises from the Z2 identification of

transverse space (which remains present even in the limit when the D3-branes are removed).

This dual-source nature of the Randall-Sundrum brane becomes more apparent if the two

sources are separated rather than superimposed.

To study this, we begin in section 2 by considering the Randall-Sundrum brane inD = 5,

and its lifting to D = 10. We find that the singular energy-momentum sources in D = 10 do

not correspond purely to a D3-brane, but instead they have a second contribution coming

from the Z2 identification of flat space. The picture becomes clearer if the five-dimensional

solution is generalised to include the breathing mode, since then the ten-dimensional solution

describes actual D3-branes rather than merely their near-horizon limit. We therefore extend

our discussion of the ten-dimensional singular sources to cover this more general class of

solution. A general feature both for these solutions, and for the pure Randall-Sundrum limit,

2This was in fact initially used as an argument for why the Randall-Sundrum brane could not be

supersymmetric.
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is that the positive-energy brane wall at z = 0 turns out to be the sum of a negative-tension

D3-brane superimposed on a positive-energy singular source corresponding to making the

Z2 identification of flat spacetime. This latter term outweighs the negative contribution

from the D3-brane, and so the net energy is still positive in ten dimensions. We then show

how in detail how the tension of the D3-brane agrees perfectly, both in magnitude and sign,

with the expectation based upon a careful application of the arguments in [24].

In section 3, we identify and separate the D3-brane Z2-identification sources for both the

Randall-Sundrum I and II scenarios. In section 4, we explore the behavior of the massless

graviton wave function for the case of separated sources. We end with conclusions and some

speculations in section 5, including a possible interpretation of the Z2-identification sources

in terms of averaged arrays of D7-branes. This might give a relation to the F-theory picture

described in [25].

2 The brane tension in D = 10

In this section, we shall consider the singular sources in D = 10 for the Randall-Sundrum

model itself (i.e. two pieces of AdS5 glued together) and also a family of generalisations in-

volving the massive breathing-mode scalar field in D = 5. We shall postpone the discussion

of these generalisations until the next subsection, and shall concentrate first, for simplicity,

on the pure Randall-Sundrum case, since this example already illustrates all the essential

points.

2.1 The singular sources for the Randall-Sundrum solution

In horospherical coordinates, the Randall-Sundrum solution takes the form (1), which in the

bulk is a solution of the five-dimensional Einstein equation with a cosmological constant.

The absolute-value symbol on the z in the exponential implies that there will be a delta-

function in the curvature, and in fact the vielbein components of the Ricci tensor are given

by

Rµν = −4K2 ηµν + 2K δ(z) ηµν ,

R55 = −4K2 + 8K δ(z) . (2)

From this it follows that the Einstein tensor Gmn ≡ Rmn − 1
2Rηmn is given by

Gµν = 6K2 ηµν − 6K δ(z) ηµν ,

G55 = 6K2 . (3)
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The structure of the singular terms in (3), and, in particular, the absence of any singu-

larity in G55, is suggestive of the energy-momentum tensor for a 3-brane source. Note that

the Randall-Sundrum Lagrangian,

e−1L = R− Λ− τRS (g55)
−1/2 δ(z), (4)

yields the Einstein equation

GMN = −1
2Λ ηMN − 1

2τRS ηµν δ
µ
M δνN (g55)

−1/2 δ(z). (5)

Comparing (5) with (3) then fixes the Randall-Sundrum “tension” to be τRS = 12K and

the cosmological constant to be Λ = −12K2 [1, 2].

However, it should be borne in mind that there is no fundamental 3-brane as such

in D = 5, and so we should really reserve judgment about how to interpret the singular

terms and the meaning of τRS until we have lifted the solution back to D = 10 type IIB

supergravity. This is easily done; the only non-vanishing ten-dimensional fields will be the

metric and the self-dual 5-form, given by

dŝ210 = ds25 +m−2 dΩ2
5 ,

F̂(5) = 4mǫ(5) + 4m−4 Ω(5) , (6)

where K2 = m2, ǫ5 is the volume form of the metric ds2(5) given in (1), and Ω(5) is the volume

form of the unit S5 metric dΩ2
5. In fact we should choose

m =

{
+K , z > 0 ,

−K , z < 0 ,
(7)

in order to ensure continuity of the Killing spinors across the junction at z = 0 [17].

It is now a simple matter using (2) to calculate the Ricci tensor R̂AB, and hence the

Einstein tensor ĜAB , in D = 10. We find that the vielbein components are given by

Ĝµν = −4K2 ηµν − 6K δ(z) ηµν ,

Ĝ55 = −4K2 , (8)

Ĝab = 4K2 δab − 8K δ(z) δab .

Naively, by looking just at the Ĝµν and Ĝ55 components, we might be tempted to interpret

the singularities as being due to a D3-brane source with tension proportional to

σ̃ = 12K . (9)
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However, it is evident from the fact that there are singular terms also in the S5 directions

Ĝab that we cannot simply attribute the singularities to a D3-brane source, which would

have the structure

T̂D3
µν = −1

2 σ̃ δ(z) ηµν ,

T̂D3
55 = 0 , (10)

T̂D3
ab = 0 .

The precise relation between σ̃ and the D3-brane tension τD3 may be determined by

considering the D = 10 supergravity coupled D3-brane action

S10 =

∫
d10x

√
−ĝ [R̂+ · · ·]− τD3

∫
d4ξ

√
−g + µD3

∫

M4

Â[4] (11)

(for vanishing gauge fields on the D3-brane) where g is the induced metric on the brane. In

physical gauge, the resulting stress tensor for a single D3-brane source has the form

T̂D3
MN = −1

2τD3 ηµν δ
µ
M δνN

δ6(~y − ~y0)√
det ĝij

, (12)

where ĝij is the metric in the space transverse to the brane, which is located at ~y0. To

enforce the S5 symmetry in (6), one must take a spherical distribution of branes. For a

total of N D3-branes in the above geometry, the stress tensor becomes

T̂D3
MN = −1

2N K5π−3 τD3 ηµν δ
µ
M δνN δ(z), (13)

where K−5 π3 is the volume of S5. From the ten-dimensional metric in (6), we therefore

find that the coefficient σ̃ in (10) is related to the fundamental D3-brane tension by σ̃ =

N K5 π−3 τD3.

In fact the singularities in the Einstein tensor (8) can be understood as coming from two

distinct sources. One contribution is indeed a fundamental D3-brane, while the other is a

contribution that would arise even in flat space, in the absence of any D3-brane, as a result

of having performed the Z2 identification implied by the use of the absolute-value symbol

on z in (1). It is easier to understand this second contribution in the more general context

of the breathing-mode solutions that we shall discuss below. However, in order to be able

to complete our present discussion for the AdS5 solution we shall just quote for now from

some results that we shall derive later. We find that the ten-dimensional Einstein tensor

that results from the Z2 identification of flat space has singularities that are supplied by an

energy-momentum tensor of the following structure:

T̂Z2
µν = −1

2 κ̃ δ(z) ηµν ,
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T̂Z2
55 = 0 , (14)

T̂Z2
ab = −2

5 κ̃ δ(z) δab .

It is the sum T̂D3
AB+ T̂Z2

AB that should be matched to the singular terms in the Einstein tensor

(8). Clearly we shall have κ̃ = 20K, and so instead of the D3-brane tension being given by

(9), it is actually given by

σ̃ = −8K . (15)

Not only is the correct tension smaller by a factor of 2
3 than the “naive” value [24], it

is also of the opposite sign! Thus a Randall-Sundrum domain wall in five dimensions

that would conventionally be described as having “positive tension” is actually supported,

from the ten-dimensional viewpoint, by a negative-tension D3-brane source together with

a superimposed source term associated with the Z2 identification of flat space. The latter

contribution outweighs the former, so that the sign of the total T̂00 contribution is still

positive in D = 10.

At this point it is useful to revisit the tension argument of [24], which relates the

D = 10 D3-brane tension to D = 5 brane-world quantities. As indicated in [24, 17],

the supersymmetric Randall-Sundrum realization has the brane-world sitting between two

stacks of N D3-branes. The AdS curvature is then related to N by [5]

4π3K−4 = N τD3. (16)

Based on flux conservation, the Randall-Sundrum brane must then carry −2N units of

charge. In order for this configuration to be supersymmetric, however, this negative charge

must be accompanied by negative tension. Using the previously derived relation between σ̃

and τD3, the corresponding tension of 2N negatively-charged D3-branes is then [24]

σ̃ = −2N K5 π−3 τD3 = −8K, (17)

which agrees with (15), and thus confirms the above split of T̂MN into a D3-brane source

and the Z2 identification of flat space.

Although this result, especially the change of sign of the D3-brane tension, might seem

a little surprising, it is actually rather natural from the ten-dimensional viewpoint. It is

rather easier to understand in the context of the more general family of Randall-Sundrum

type solutions that make use of the breathing-mode scalar in five dimensions, and it is to

this subject that we now turn.
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2.2 Singular sources for the breathing-mode solutions

Here, we consider generalisations of the Randall-Sundrum solution, namely certain 3-brane

solutions in five dimensions that are supported by a subset of the complete set of fields that

come from the S5 reduction of type IIB supergravity. Specifically, the relevant fields are the

metric tensor and the breathing-mode scalar that parameterises the overall volume of the

5-sphere. The solutions were first obtained in [18], and the idea of using them in the context

of a Randall-Sundrum II scenario was introduced in [13], and studied further in [14, 15].

The reason for considering the breathing-mode scalar was that it is a massive field (lying

outside the massless supergravity multiplet that is commonly considered), and its potential

has a minimum rather than a maximum. It was shown in [14] that although it still cannot

give rise to a smooth gravity-trapping domain wall, it can give an acceptable singular wall

of the Randall-Sundrum II type if two segments of the solution are appropriately patched

with a delta-function in the curvature at the “join.” The same bulk solution was then used

in [17] for the construction of a Randall-Sundrum I type of scenario, with two singular

branes, one of positive and the other of negative tension.

To study the brane tensions in detail, we first need to review the pertinent aspects of

the S5 reduction of type IIB supergravity to obtain the theory in D = 5 with the breathing

mode, and to find the brane solution in five dimensions. These results are taken from [18].

The only non-vanishing fields in the type IIB theory are the metric ĝMN and the self-

dual 5-form F̂(5). The type IIB field equations R̂MN = 1
96 F̂

2
MN , ∗̂F̂(5) = F̂(5) and dF̂(5) = 0

are satisfied by the Ansatz

dŝ210 = e
1
2

√
5
3
ϕ
ds25 + e

− 1
2

√
3
5
ϕ
ds2(S5) ,

F̂(5) = 4me
2
√

5
3
ϕ
ǫ(5) + 4mǫ(S5) , (18)

provided that the five-dimensional fields ds25 and ϕ satisfy the equations of motion following

from the Lagrangian

e−1 L5 = R− 1
2(∂ϕ)

2 − 8m2 e
2
√

5
3
ϕ
+ e

4
√

15
ϕ
R5 . (19)

Here ǫ(5) is the volume form of ds25, ǫ(S
5) is the volume form of the metric ds2(S5) on the

5-sphere, which has (constant) Ricci scalar R5, and m is another constant. It is useful to

note that the vielbein components of the ten-dimensional Ricci tensor for the metric dŝ210

in (18) are given by

R̂mn = e
− 1

2

√
5
3
ϕ
(
Rmn − 1

4

√
5
3 ϕηmn − 1

2∇mϕ∇nϕ
)
,
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R̂ab = e
1
2

√
3
5
ϕ
Rab +

1
4

√
3
5 e

− 1
2

√
5
3
ϕ

ϕδab , (20)

R̂ma = 0 ,

where the index m lies in the five-dimensional spacetime, and a lies in S5.

The relevant domain-wall solution of the five-dimensional equations of motion is given

by [18]

ds25 = e2A dxµ dxµ + e−8A dz2 ,

e
− 7

√

15
ϕ

= H = e
− 7

√

15
ϕ0 + k |z| , (21)

e4A = b̃1H
2
7 + b̃2H

5
7 ,

where b̃1 = ∓28m/(3k) and b̃2 = ±14
√
5R5 /(15k). Of course, by placing the absolute-value

symbol around the coordinate z we have caused delta-functions to appear in the expressions

for the Ricci tensor and ϕ, and so while (21) solves the five-dimensional equations of

motion exactly when z 6= 0, there will be a need for singular source terms on the domain

wall itself.

Solutions exist for all four independent choices of signs for b̃1 and b̃2, but the ones that

are relevant here have b̃1 b̃2 < 0. The AdS5 limit is reached by sending k to zero, with the

constant ϕ0 given by

e
6

√

15
ϕ0 =

R5

20m2
. (22)

The solution (21) in this limit has

e4A = 4me
5

√

15
ϕ0 (z0 − |z|) , ϕ = ϕ0 , (23)

and can be seen, after a simple coordinate transformation, to be equivalent to the AdS5

solution (1). The constant K appearing in (1) and (2) is given by

K = m
( R5

20m2

)5/6
. (24)

Since our purpose is to study the precise nature of the singular sources, we shall not need

to present the “regular” terms in what follows, since it is already established from the results

of [18] that the five-dimensional and ten-dimensional equations are satisfied in the bulk. We

shall therefore generally simply represent the regular terms by “Reg” in the equations. A

straightforward calculation from (21) shows that ϕ and the vielbein components of the

Ricci tensor take the forms [17]

ϕ = −2
√
15

7
c−7 k (b̃1 c

2 + b̃2 c
5) (g55)

−1/2 δ(z) + Reg ,

Rµν = − 1
14k (2b̃1 c

−5 + 5b̃2 c
−2) (g55)

−1/2 δ(z) ηµν +Reg , (25)

R55 = −2
7k (2b̃1 c

−5 + 5b̃2 c
−2) (g55)

−1/2 δ(z) + Reg ,
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where for convenience we have defined the constant c by

c ≡ e
− 1

√

15
ϕ0 . (26)

Note that the five-dimensional Einstein tensor is therefore given by

Gµν = 3
14k (2b̃1 c

−5 + 5b̃2 c
−2) (g55)

−1/2 δ(z) ηµν +Reg ,

G55 = 0 + Reg . (27)

These singular terms have the general structure one would expect of a 3-brane source

in D = 5. However, as in our previous discussion for the AdS5 case, the absence of a

fundamental 3-brane in D = 5 means that we should postpone interpreting the singular

terms until we have lifted the solution back to D = 10. It is known that the bulk solution

(21) oxidises to give a standard D3-brane supergravity solution in D = 10 [18], namely

dŝ210 = H̃(r)−
1
2 dx̃µ dx̃µ + H̃(r)

1
2 (dr2 + r2 dΩ2

5) , (28)

where

H̃(r) ≡ 1 +
k̃

r4
, (29)

and

x̃µ = b̃
1/2
2 xµ , r4 = (20/R5)

2H
3
7 − k̃ , k̃ = −(20/R5)

2 b̃1

b̃2
, (30)

as can be seen by substituting (21) into (18). One might be tempted to expect that after

lifting the source terms to D = 10, they would become precisely those for the D3-brane. As

we shall now show, this is not the case.

It is a straightforward matter to lift the five-dimensional expressions (25) back toD = 10,

using the reduction Ansatz (18). In particular, using (20) we can calculate the vielbein

components of the ten-dimensional Einstein tensor, for the oxidation of the domain-wall

solution (21) to D = 10, finding

Ĝµν = 3
14 (2b̃1 + 5b̃2 c

3) c−15/4 k (ĝ55)
−1/2 δ(z) ηµν +Reg ,

Ĝ55 = 0 + Reg , (31)

Ĝab = 6
7 b̃2 c

−3/4 k (ĝ55)
−1/2 δ(z) δab +Reg .

Clearly this is not of the form of a pure 3-brane source in D = 10, which would have the

structure given in (10).

As we have already foreshadowed, the resolution of the puzzle is that the singular terms

we are seeing in (31) are actually accounted for by the sum of two quite distinct singular
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sources. One of these is a D3-brane source, and the other describes the curvature singulari-

ties that result from identifying two patches of flat spacetime under Z2. In fact the situation

is made unnecessarily confusing by having these two sources located at the same value of

the coordinate z (or r) transverse to the brane, and later on we shall find it convenient to

separate the two contributions and locate them at different values of r.

To recognise how the singular sources for (31) separate into the two contributions we can

either first isolate the D3-brane contribution, after which the remainder must be the term

describing the Z2 identification of flat space, or else we can first isolate the contribution from

the Z2 identification. Although it is perhaps logically more natural to follow the former

approach, calculationally it seems to be simpler first to calculate the curvature singularities

for Z2-identified flat space, and then after extracting this part from (31); the remainder will

be the D3-brane contribution.

To calculate the Ricci curvature for Z2-identified flat space, it is simplest to perform

the computation in D = 5, and then lift the results back to D = 10. We begin by picking

a radius r = r0 in (28), and then taking the flat-space metric that continuously matches at

this radius, namely

dŝ210 = H̃(r0)
− 1

2 dx̃µ dx̃µ + H̃(r0)
1
2 (dr2 + r2 dΩ2

5) , (32)

We now reduce this to D = 5, using the reduction Ansatz (18). At the same time, we make

the following redefinitions

r40 + k̃ = c3 , r4 = r40 + k |ξ| . (33)

Thus by using the ξ coordinate, we have arranged that as ξ passes from negative to positive,

r approaches r0, and then retraces its steps. This introduces a “join” at r = r0. In terms

of z, the D = 5 metric becomes

ds25 = r
− 4

3
0 c (r40 + k |ξ|) 5

6 dxµ dxµ + 1
16 k

2 r
− 16

3
0 c4 (r40 + k |ξ|)− 2

3 dξ2 ,

e
−
√

3
5
ϕ

= r−4
0 c3 (r40 + k |ξ|) . (34)

We then find that

Rµν = 1
6 κ̃ c

− 5
4 (g55)

−1/2 δ(ξ) ηµν +Reg ,

R55 = 2
3 κ̃ c

− 5
4 (g55)

−1/2 δ(ξ) + Reg , (35)

1
4

√
5
3 ϕ = 1

6 κ̃ c
− 5

4 (g55)
−1/2 δ(ξ) + Reg ,

where

κ̃ ≡ −20 c−
3
4 . (36)
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Lifting to D = 10, we find that the Einstein tensor for Z2-identified flat space has the

following vielbein components:

Ĝµν = −1
2 κ̃ (ĝ55)

−1/2 δ(ξ) ηµν ,

Ĝ55 = 0 , (37)

Ĝab = −2
5 κ̃ (ĝ55)

−1/2 δ(ξ) δab .

Since this is not a brane-source term it is inappropriate to speak of a “tension” associated

with this contribution. We shall merely describe it as having positive energy if κ̃ is positive,

and vice versa.

Using this result, we can now make the unique decomposition of the singular terms in

the ten-dimensional Einstein tensor (31) into the sum of a D3-brane source (10) and the

identified flat-space source (37). Thus we find

σ̃ = −6k

7
c−15/4 b̃1 , κ̃ = −15k

7
c−3/4 b̃2 . (38)

Using b̃1 = 28m/(3k) allows us to rewrite the D3-brane tension as σ̃ = −8mc−15/4. Now, in

deriving the fundamental D3-brane tension from (12), one has to account for the complete

Ansatz (18) when determining the volume of S5. The resulting relation is

σ̃(single D3-brane) =

(
R5

20

)5/2

π−3 c−15/4 τD3. (39)

At the same time, the AdS relation, (16), is modified to3

4π3m

(
R5

20

)−5/2

= N τD3. (40)

Thus one finds simply

σ̃ = −2N σ̃(single D3-brane), (41)

which once again corresponds to having a source of 2N negative tension D3-branes.

It is clear that the “tension” κ̃ arising from the Z2 identification cannot be identified

with any conventional brane source. After all, a p-brane with tension τp would yield a

contribution to the D = 10 stress tensor of the form

T̂ p
MN = −1

2τp ηµν δ
µ
M δνN

δ9−p(~y − ~y0)√
det ĝij

, (42)

where ĝij is the metric transverse to the brane. Unlike (37), this p-brane contribution is

isotropic in all directions longitudinal to the brane.

3This relation may be derived by comparing the factor k̃ in the D3-brane harmonic function, (29), with

that demanded by charge quantization.
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3 Separating the singular sources

Having seen that the singular terms in the Einstein tensor in D = 10 are actually matched

by two quite distinct sources, namely a D3-brane and the term associated with the Z2

identification of flat space, we see that it now becomes natural to dissociate the two terms

from one another, by placing them at different values of r in the ten-dimensional solution.

We shall discuss this first for the case of a Randall-Sundrum II type scenario, where there

is just a single domain wall in five dimensions, at z = 0. After doing this, we shall then

discuss the case of a Randall-Sundrum I model, where a seond domain wall is introduced

at z = L, by identifying the coordinate values z = +L and z = −L.

3.1 Ten-dimensional sources for a single domain wall

It can be seen from (30) that as z ranges from z = 0 on the five-dimensional domain wall

to z = ±∞ on the Cauchy horizon, the radial coordinate r in the ten-dimensional D3-brane

solution ranges from some fixed value r > 0 outside the horizon to r = 0, on the D3-brane

horizon. We shall now deform the geometry so that the S5 spherical shell of D3-brane source

and the Z2-identification source are located at two different values of r. Specifically, as r

increases from the horizon at r = 0, the D3-brane source will be encountered first, at some

radius r = r1. We saw by direct calculation that the D3-brane tension was coming out to

be negative, and in fact this is very natural. It has the effect of “turning off” the D3-brane

charge for values of r that lie outside r = r1, so that for r > r1 the D3-brane solution (28)

is replaced by a flat spacetime. Of course the metrics must match continuously at r = r1,

and so we shall have that for r > r1, the flat metric is given by

dŝ210 = H̃(r1)
− 1

2 dx̃µ dx̃µ + H̃(r1)
1
2 (dr2 + r2 dΩ2

5) , (43)

It should be remarked that one can explicitly check, using the relations given in (30), that

the D3-brane tension σ that we calculated in (38) is precisely the correct value to “turn off”

the D3-brane (28) for r lying outside the radius r1 at which we have now chosen to locate

the D3-brane source.

Proceeding outwards, we now choose a radius r0 > r1 at which the Z2 identification of

the flat spacetime (43) will be performed. This implies a singular source term of the form

(37), with positive energy. The ten-dimensional solution is depicted in Figure 1.
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r=0

Horizon

r=r0

D3-brane solution

Flat spacetime

Positive-energy Z identification source

Negative-tension D3-brane source

2

r=r1

Figure 1: The ten-dimensional configuration for the RS II brane

3.2 Ten-dimensional sources for two domain walls

The situation described above is for a single domain wall in five dimensions, corresponding

to a model of the Randall-Sundrum II type. We may also consider the situation where a

second domain wall is introduced at z = L, by identifying z = L with z = −L. This is

conventionally described, in five dimensions, as having “negative tension.” Again, in ten

dimensions we shall separate the singular terms associated with this second wall into a

D3-brane source and a Z2-identification source, located at two different values of r. Since

its five-dimensional “tension” is of the opposite sign to that of the wall at z = 0, we know

from our earlier results that the associated D3-brane source in D = 10 will have positive

tension. The second wall lies at a smaller radius r than the original one. Thus we shall

now have a total of four radii at which singular sources are located, which we take to be in

the order r3 < r2 < r1 < r0. The disposition of sources will be as follows. At r = r0 is the

Z2-identification source for the z = 0 domain wall, and at r = r1 is the negative-tension

D3-brane source for the z = 0 domain wall, exactly as in the previous subsection. Moving

inwards, we next encounter a positive-tension D3-brane source for the z = L domain wall,

at r = r2. Finally, we encounter a Z2-identification source at r = r3, which has negative

energy.

The region r2 ≤ r ≤ r1 has the form of a solid annulus of the D3-brane solution (28).
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Outside this, for r1 ≤ r ≤ r0, and inside it, for r3 ≤ r ≤ r2, are solid annuli of flat spacetime.

The ten-dimensional spacetime is depicted in Figure 2.

r=r0

D3-brane solution

Flat spacetime

Positive-energy Z identification source

Negative-tension D3-brane source

2

r=r1r=r2 r=r3

Flat spacetime

Positive-tension D3-brane source

Negative-energy Z 2 identification source

Figure 2: The ten-dimensional configuration for the RS I branes

In this situation with two domain walls, the effect of the Z2 identification is as follows.

The coordinate z can be thought of as a coordinate on the circle S1, with −L ≤ z ≤ L,

which is then factored by Z2 in the style of Horava and Witten. At the same time, as

one crosses from negative to positive z the sign of the parameter m in the expression for

F̂(5) in (18) reverses, corresponding to a reversal of the orientation of the compactifying

5-sphere. Thus the ten-dimensional theory is reduced on the orbifolded internal manifold

(S1 × S5)/Z2.

4 The wave function for the massless graviton mode

In the conformally-flat frame

ds25 = e2A(z) (dxµ dxµ + dz2) , (44)

the massless wave function is just given by

ψ(z) = e
3
2
A(z) . (45)
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We can study this explicitly for the case where we take the pure AdS5 limit. In fact

it is easier then to derive the result directly, rather than to get it by explicitly taking the

singular k −→ 0 limit. But we still want to separate the D3-brane and Z2-identification

sources. Accordingly, we consider the ten-dimensional metrics in two regimes:

r ≤ r1 : dŝ210 =
r2

r21
dxµ dxµ +

r21
r2
dr2 + r21 dΩ

2
5 ,

r ≥ r1 : dŝ210 = dxµ dxµ + dr2 + r2 dΩ2
5 . (46)

This is the AdS5 solution, for r ≤ r1, obtained by taking the near-horizon limit in which

the “1” is dropped in the harmonic function H̃(r) = 1 + k̃/r4, joined on continuously to

pure flat space for r ≥ r1.

We now reduce to D = 5, using the standard reduction Ansatz

dŝ210 = e2αϕ ds25 + e−
6
5
αϕ dΩ2

5 . (47)

Thus for the two regimes we have

r ≤ r1 : ds25 =
r2

r21
dxµ dxµ +

r21
r2
dr2 , ϕ = 0 ,

r ≥ r1 : ds25 =
( r
r1

) 10
3
(dxµ dxµ + dr2) , e−

6
5
αϕ =

r2

r21
. (48)

We now change to the z coordinate, which transforms the metric into the conformally-

flat form (44). In the two regimes we therefore have

r ≤ r1 :
r1
r

= 1 +
z − z1
r1

,

r ≥ r1 :
r

r1
= 1 +

z1 − z

r1
, (49)

where we have chosen the constants of integration for convenience, and so that the join

(r = r1) occurs at z = z1.

We now choose a Z2 identification at r = r0 > r1. We shall take this to be at z = 0, so

now we have

r ≤ r1 :
r1
r

= 1 +
|z| − z1
r1

,

r1 ≤ r ≤ r0 :
r

r1
= 1 +

z1 − |z|
r1

, (50)

The upper equation corresponds to |z| ≥ z1, while the lower corresponds to |z| ≤ z1. (We

assume, without loss of generality, that z1 is positive.) Note that we shall have

z1 = r0 − r1 . (51)
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To summarise, we now have a positive-energy source at z = 0, corresponding to r = r0,

which results from the Z2 identification, and a pair of negative-tension D3-brane sources at

z = ±z1, corresponding to r = r1 < r0. As the coordinate z goes to the Cauchy horizons

at ±∞, the radial coordinate r tends to zero.

We see from (45) that the wavefunction in the two regimes is given by

|z| ≥ z1 : ψ(z) = a e
3
2
A(z) = a

[
1 +

|z| − z1
r1

]− 3
2
,

|z| ≤ z1 : ψ(z) = a e
3
2
A(z) = a

[
1 +

z1 − |z|
r1

] 5
2
, (52)

where a is a normalisation constant. It can be determined by requiring that
∫∞
−∞ dz |ψ|2 = 1,

and this implies

a =

√
3 r

5/2
1√

r60 + 2r61
. (53)

Expressed back in terms of the r coordinate, the normalised wavefunction becomes

0 ≤ r ≤ r1 : ψ =

√
3 r1 r

3/2

√
r60 + 2r61

,

r1 ≤ r ≤ r0 : ψ =

√
3 r5/2√
r60 + 2r61

. (54)

From this it follows that the wavefunction concentrates around the Z2-reflection point at

r = r0, even more strongly than in the Randall-Sundrum case where r1 = r0. Conversely,

it tends to be suppressed on the D3-branes at r = r1.

5 Conclusion and speculations

In this paper, we have investigated the lifting of the pure Randall-Sundrum AdS5 solution,

and its breathing-mode generalisations, from D = 5 to D = 10. Since the five-dimensional

breathing-mode solutions are nothing but D3-brane solutions when lifted to D = 10, this

procedure provides a natural mechanism for interpreting the singular sources in terms of ten-

dimensional D3-brane sources. Likewise, the pure Randall-Sundrum AdS5 limit corresponds

to taking the near-horizon limit of the D3-brane in ten dimensions.

After lifting the solutions, we find that the singular sources are not accounted for purely

by D3-brane sources in ten dimensions. In fact the singular terms in the energy-momentum

tensor can be split into the sum of a standard type of D3-brane source, plus a second term

that would be present even in the absence of any D3-branes, which results from performing

the Z2 identification of flat spacetime. Having disentangled the two contributions, we were

then able to show that the D3-brane part has exactly the correct magnitude, and sign, to
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account for the expected quantity (−2N) of D3-brane charge that should be present at

z = 0 in order to counterbalance the presence of N D3-branes placed to the left and to

the right of the brane wall. In other words, the puzzles that had been raised in [24], which

seemed to indicate a mismatch of brane charges, are now fully resolved.

An element of the resolution, the necessity for which was not highlighted in [24], is that

not only is the magnitude of the D3-brane charge different from the “naive” value that

one might be tempted to read off in D = 5, but also the sign is reversed. In particular,

this means that what is customarily called a “positive tension brane” in D = 5 actually

corresponds to a negative-tension D3-brane in D = 10. This does not, however, mean that

the sign of the energy is reversed on lifting the solution from D = 5 to D = 10, since the

negative D3-brane contribution to the energy in D = 10 is actually outweighed by a larger

positive contribution associated with the Z2 identification of flat space.

Having seen that the singular sources in D = 10 have two different kinds of contribution,

it becomes natural to separate the two, and allow them to be located at two different values

of the radial coordinate r in the space transverse to the D3-brane. In fact it would seem

now to be unnatural to insist that the two contributions be superposed at the same spatial

location, since the position of the D3-brane is a modulus of the solution. Furthermore, the

solutions will be supersymmetric for any choice of this modulus.

Now that the five-dimensional “positive-tension Randall-Sundrum brane” is recognised

as corresponding to a negative-tension D3-brane in D = 10, the whole question of the

possible instability of the model raises its head again. Also, one may wonder what happens

concerning the trapping of gravity. These are two rather different questions, and the latter

seems to be an easier one to address. We made a simple analysis of the gravity trapping,

by studying the form of the wave-function for the massless four-dimensional graviton in

the Randall-Sundrum limit, after having first separated the D3-brane and Z2-identification

sources as described above. We found that the wavefunction tends to peak on the positive-

energy Z2-identification surface, and to be suppressed on the negative-tension D3-brane.

However, if the two singular surfaces are not too far separated, then the binding effect on

the Z2-identification surface extends far enough to encompass the D3-brane region too. In

this sense, gravity is still trapped in the vicinity of the two surfaces.

The question of stability, alluded to above, is less clear cut. On the one hand, the

full one-parameter family of solutions with arbitrary placement of the D3-brane source is

supersymmetric. This would seem to indicate that no instabilities can be present. Moreover,

the full field theory clearly has a Bogomolnyi’i bound for the energy. On the other hand, a
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negative-tension D3-brane considered in isolation would appear to have “ballooning modes”

exploiting the fact that the energy is decreased if the area increases. The resolution of the

apparent conflict between these two viewpoints remains unclear.

So far, we have refrained from speculating about any physical interpretation for the Z2-

identification singular sources. We have treated them for now as arising via some deus ex

machina, without attempting to give the associated surfaces any dynamical interpretation.4

A more serious attempt at providing an interpretation for the Z2-identification sources

might be the following. From a type IIB perspective, what is needed is an object that

carries no five-form charge, but that nevertheless folds up the transverse space. While we

are unable to identify such a source in the maximally symmetric AdS5 × S5 case, we can

speculate on a possible interpretation in a case where where there is a reduced symmetry

in the transverse space. In such a circumstance, it seems that D7-branes may serve as a

source for singular Z2-identification terms in the energy-momentum tensor. An examination

of (37) suggests that if the assumption of spherical symmetry were relaxed, one could wrap

a set of D7-branes around a 4-cycle of the 5-dimensional compact space. The D7-branes

would then contribute with a strength −1
2 κ̃ to four out of the five components of T̂ab, so

that the factor of −2
5 κ̃ in (37) results from ‘averaging’ over all five internal directions. For

a single wrapped D7-brane, the effective tension is given by5

κ̃(single D7-brane) =

(
R5

20

)5/2

π−3 c−3/4 V4−cycle τD7 , (55)

which may be compared with κ̃ =
√
20R5 c

−3/4 coming from (38). Note in particular that

the factor c−3/4 is common to both expressions.

This in fact leads to the picture of a Randall-Sundrum realization in the spirit of [25],

where the Randall-Sundrum geometry arises from a warped F-theory construction. In [25],

it was claimed that the six dimensions transverse to the 3-brane may be viewed as being the

base of an elliptically fibered F-theory Calabi-Yau (complex) 4-fold. Curvature of the base

may be related to the number of D3-branes and D7-branes present as well as the topology

of the 4-fold itself. The kinked ‘thin-brane’ solution of (1) would then be an orbifold limit of

this F-theory construction. Of course, the curvature sources arise not from the orbifolding
4One might be tempted to view the Z2-identification energy-momentum sources as being provided by a

mechanism in the spirit of the turtles featured in the opening chapter of Stephen Hawking’s A Brief History

of Time. The universe, according to an elderly lady attending a talk by a distinguished cosmologist, is

supported on the back of a giant turtle. Before the cosmologist could ask the obvious question, the lady

quickly added “and it’s turtles all the way down.”
5When the internal space is no longer S

5, the Ricci scalar R5 would more properly be replaced by the

average curvature of the space.
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itself but rather from the D3-branes and D7-branes pinned to the fixed orbifold planes.

There is nevertheless still a need for an orbifold, since one needs to match not only the

delta-functions in the energy-momentum tensor but also in all the form-field equations of

motion. In particular, a D7-brane would require a charge for the 1-form dχ, which however

is absent in the Z2-identified flat space. Thus this D7-brane charge would need to be

cancelled by something else, and an orbifold charge might be a natural candidate for this.

If this proposal were correct then our view of Kaluza-Klein theories would have come full

circle. Initially it was thought that extra dimensions had to be compact in order to ensure

a proper four-dimensional behavior. Then Randall-Sundrum II proposed an abandonment

of this long-held view by demonstrating how an appropriate warp factor in the metric is all

that is needed for the binding of modes to the brane. But with the suggestion of [25] that

the space transverse to the D3-branes is simply the base of an F-theory Calabi-Yau 4-fold

(whether smooth or in the orbifold limit), one once again returns to the original picture

that a Kaluza-Klein theory necessarily has a compact internal space.
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