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Abstract. We consider two atomic transitions excited by two variable laser fields in a three-
level system. We study the soliton-pair propagation out of resonance and under thermal bath
effect. We present general analytical implicit expression of the soliton-pair shape. Furthermore,
we show that when the coupling to the environment exceeds a critical value, the soliton-pair
propagation through three-level atomic system will be prohibited.
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1. Introduction

Recently the interaction of atoms or similar systems with electromagnetic fields has raised a lot of interest
[6, 7, 11, 13–18, 22, 25, 26, 32]. It leads to interesting quantum features such as, entanglement [33], anti-
bunching [19], squeezing [30], bistability [3] and optical soliton propagation [20, 21]. Solitons arise as
the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing
physical systems. They are an essential nonlinear kind of wave-like excitation, caused by a cancellation
of nonlinear and dispersive effects in the medium and they have particle-like properties. Solitons have
important applications in many branches of physics, from high energy and condensed matter physics to
astrophysics and cosmology as well as in biology and telecommunication [4, 9, 10, 27, 29, 34]. Early work,
have been investigated [8, 20,31] to computed the properties of solitons.

In the Λ configuration, a pair of optical pulses propagate without absorption. This medium can be
made experimentally [5] if two lasers are applied to a three-level system, the atoms will be driven to a
population trapped state, and a medium that is opaque to a probe laser can, by applying both lasers
simultaneously, be made transparent [2, 23]. In previous work [8, 20, 21], we derived analytical solutions
of solitons and pair of solitons in dissipative media.

In this paper we investigate the Soliton-pair propagation in the three-level dissipative media out of
resonance, under thermal bath effect.
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2. Model

Let us consider a three-level system in lambda configuration ( three-level atom ) interacting with two
non resonant electromagnetic fields. The medium is excited by two laser fields one applied on the stokes
transition and the second on the pump transition.

This system is described with three energy levels |0〉 , |1〉 and|2〉 . The transitions |0〉 ↔ |1〉 and |0〉 ↔ |2〉
are possible whereas the levels|1〉 and |2〉 are supposed to be decoupled (transition |1〉 ↔ |2〉 negligible).
The reason of the choice of this model is the fact that a free atom has at least two states at same parity
between which an electrical dipole transition is not allowed. The restriction to two lower energy level is
valid if the frequency of the interacting waves are distant enough to all other frequencies. In this model
we take into account the rates γ1,2 of radiative decay from the higher level |0〉 to the levels |1〉 and|2〉 and
neglecting the other dissipation effects.

This three-level system is irradiated by a light beam propagating along an arbitrary direction x, with
polarization adequate to couple the two optical transitions, and containing two monochromatic fields.
This light beam is classically described as follows:

E
′

(x, t) = E1 (x, t) + E2 (x, t) = E1 (x, t) exp(−iω1t) + E2 (x, t) exp(−iω2t). (2.1)

E1 and E2 are the amplitudes of the two waves. E1 and E2 are assumed to be slowly varying functions

in the sense [12], [28], [1]: 1
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The Hamiltonian describing the interaction of the three level atom with the field has the expression:

H =
2

∑

i=0

εia
+
i ai + g1

(

a+0 a1E1 + a+1 a0E
∗

1

)

+ g2
(

a+0 a2E2 + a+2 a0E
∗

2

)

. (2.2)

The first term of the Hamiltonian corresponds to the proper energies of the atom, the second and
third terms of the Hamiltonian describe the interaction between the two fields and the atom: ai, a

+
i

are respectively the annihilation and creation fermions operators of the atomic level i and εi represent
the energy of the levels i. ai, a

+
i verify the anticommutation relation

[

ai, a
+
j

]

+
= δij . The two dipole

transition matrix elements which are assumed to be real are denoted by g1 and g2.

To study the evolution of interaction between the atom and fields we use the density matrix formalism.
The density matrix equation of motion is

d

dt
ρ =

1

i~
[H, ρ] +

d

dt
ρirr, (2.3)

where d
dtρirr describes the dissipation in the total system and the coupling to the thermal reservoir.

d

dt
ρirr =

γ1
2
(1 + nth)(

[

a+1 a0, a
+
0 a1ρ

]

+
[

a+1 a0ρ, a
+
0 a1

]

)

+
γ1
2
nth(

[

a+0 a1, ρa
+
1 a0

]

+
[

a+0 a1ρ, a
+
1 a0

]

)

γ2
2
(1 + nth)(

[

a+2 a0, a
+
0 a2ρ

]

+
[

a+2 a0ρ, a
+
0 a2

]

) (2.4)

+
γ2
2
nth(

[

a+0 a2, ρa
+
2 a0

]

+
[

a+0 a2ρ, a
+
2 a0

]

).

So, we obtain the motion equation of the density matrix: where the elements ρij are defined as ρ =
2
∑

i,j=0

|i〉 ρij 〈j| , ω10 and ω20 represent the two atomic transition frequencies ω10 = ε0−ε1
~

and ω20 = ε0−ε2
~

and di = gi
~

are the coupling constants. The diagonal elements of the density matrix ρ describe the
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level populations and determine the internal energy of the atom. The off-diagonal elements describe the
atomic coherences. The ρ10 and ρ20 terms oscillate at the respective driving field frequency and the ρ21
oscillate with frequency differences of the two light fields. So, we can define the slowly varying amplitudes
of the off-diagonal density matrix elements ρ10, ρ20 and ρ21 through the relations:

ρj0 = ρj0 exp(iωj0t) for j = 1, 2, (2.5)

ρ21 = ρ21 exp(i (ω20 − ω10) t). (2.6)

We decompose the off-diagonal elements into an imaginary part and a real part :

ρj0 = χj0 + iψj0, (2.7)

ρ21 = χ21 + iψ21. (2.8)

The Hermitian propriety of the density matrix ensures that the diagonal elements ρ11,ρ22 and ρ00 must
be real. δ1 and δ1 are the detunings between the laser frequencies and the atomic transitions frequencies:
δ1 = ω10 − ω1 and δ2 = ω20 − ω2. The signal field E2 and E1 are described by the Maxwell equations for
a slowly varying approximation (SVA) [2, 12]:

∂Ej

∂t
+ c

∂Ej

∂x
= ig

′

j

−

ρj0. (2.9)

We assume that the propagation constants of the fields are given by g′j =
2π
ε0
Ngj(ωj+δj) where j = 1, 2

, ε0 is the vacuum electric constant, N the atomic dipole density and c is the light velocity. The condition

for soliton-pair propagation is expressed as Ej (x, t) = Ej (x− vgt). We consider here two fields
−

E1and
−

E2 and we assume that they are real. The fact that
−

E2 is real gives us χ20 = 0. Then we introduce a
moving coordinate which propagates with the pulses’ velocities z = x − vgt which gives us ∂

∂t = −vg
∂
∂z

and ∂
∂x = ∂

∂z where vg can be identified with the group velocity of the soliton-pair. The two spontaneous
emission rates γ1 and γ2 are assumed to be approximately equal to γ. Finally, the complete set of the
evolution equations for medium-fields interaction ( Maxwell-Bloch equations) in the case of two photon
resonance δ1=δ2 can be obtained from Maxwell equation and the system of evolution equations for the
density matrix:

d

dz
χ10 =

δ

vg
ψ10 − α2ψ21 + Γ (1 + 3n/2)χ10,

d

dz
ψ10 =

δ

vg
χ10 − 2α1χ11 − α2χ21 + Γ (1 + 3n/2)ψ10,

d

dz
ψ20 = α2(−1− χ11)− α1χ21 + Γ (1 + 3n/2)ψ20,

d

dz
χ21 = α1ψ20 + α2ψ10 + Γnψ21,

d

dz
ψ21 = α2χ10 + Γnψ21,

d

dz
χ11 = 2α1ψ10 + Γχ11(1 + 2n),

d

dz
αj = −

djg
′

j

vg(c− vg)
ψj0 = −kjψj0 j = 1, 2,

0 =
δ

vg
ψ20 + α1ψ21. (2.10)
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Where αj are variables related to the field amplitudes by the following expressions αj =
djEj

vg
. Γ = γ

vg

represents a new constant .

3. Soliton-pair shapes

Our interest is in studying the evolution of the fields α2 and α1 and we deal with the case of similar
shape soliton-pair so we can write α1 = Aα2 = Aα (A is a real constant > 1). The fields 1 and 2
have a slowly varying amplitudes, in this case, we can neglect the variation of the curvature and we can
assume that the third and the forth order of derivation are negligible. After algebraic manipulations and
differentiation of the Maxwell-Bloch equations, we obtain a non-linear differential equation:

(−A2E − F )α4 +Mα2 = −B(1 + α)
dα

dz
. (3.1)

E, F , B and M are constants depending of the system parameters

E =
δ

vgK1
,

B =
δ

vgK2
(1− Γn),

M = Γ (1 + 3n/2)(1− Γn)
δ

vgK2
,

F =
δ

vgK2
. (3.2)

by integrating the above equation, the soliton α verifies the following implicit equation

ηe−2Mz
b = e

−1
α2(z)α2(z)(

1 + βα2(z)

1− βα2(z)
)1/2β(−1 + β2α2

2(z))
−1/2 , (3.3)

where β =
√

A2E+F
M =

√

A2
−1

Γ (1+n3/2)(1−nΓ ) and η is a free constant that can be determined from the

initial condition as following

η = α2(z0)e
2

Mz0
b

−
1

α2(0) (
1 + βα2(z0)

1− βα2(z0)
)1/2β(−1 + β2α2

2(z0))
−1/2. (3.4)

This gives us a condition of existence of the signal field

−1

β
< α <

1

β
and α 6= 0. (3.5)

In other words if the initial amplitude value of the signal α is out of the range [−1
β ,

1
β ] no more soliton-

pair propagation is possible. Moreover the thermal bath coefficient n should be less than a critical value
nc = 1/Γ , otherwise if the coupling to the environment exceeds the critical value nc then no more soliton-
pair can be propagate. In Figure 1 we plot the soliton shape α(z) for n = 1.5, Γ = 0.5, E = 1 and F = 1
and for the initial condition α(0) = 0.05.
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Figure 1. soliton shape for in n = 1.5, Γ = 0.5, E = 1, F = 1 and for the initial
condition α(0) = 0.05.

4. Conclusion

In summary, we have investigated a theoretical model describing a pair of solitons propagating through
an absorbing three-level atoms, interacting with the environment through the thermal bath effect, out of
resonance. We have derived an analytical implicit expression for the shape of the soliton-pair. We have
shown that up a critical value of the thermal bath, the soliton-pair is not allowed to propagate through
the three-level atomic system.

These results are useful in optical data communication, where the optical fibre can be modelled as an
absorbing three level system [5]. The advantage of soliton in supporting data information is the invariance
of their shape which minimizes the noise effect, this is usually the origin of the signal defects. Besides,
solitons propagate without dispersion. Therefore, we can send the optical information with high bit rate.
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