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ABSTRACT

We present galaxy stellar mass functions (GSMFs) at z = 4–8 from a rest-frame ultraviolet (UV)
selected sample of ∼4500 galaxies, found via photometric redshifts over an area of ∼280 arcmin2 in
the CANDELS/GOODS fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data
yet-to-date and the relatively large volume allow us to place a better constraint at both the low-
and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS
observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-
frame UV absolute magnitude at 1500 Å (MUV) and logarithmic stellar mass (logM∗) that holds for
galaxies with log(M∗/M�) . 10. We use simulations to validate our method of measuring the slope
of the logM∗–MUV relation, finding that the bias is minimized with a hybrid technique combining
photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant
measured slopes do not significantly evolve over z = 4–8, while the normalization of the trend exhibits
a weak evolution toward lower masses at higher redshift. We combine the logM∗–MUV distribution
with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that
the low-mass-end slope becomes steeper with increasing redshift from α = −1.55+0.08

−0.07 at z = 4 to

α = −2.25+0.72
−0.35 at z = 8. The inferred stellar mass density, when integrated over M∗ = 108–1013

M�, increases by a factor of 10+30
−2 between z = 7 and z = 4 and is in good agreement with the time

integral of the cosmic star formation rate density.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: high-redshift — galaxies:
mass function

1. INTRODUCTION

The near-infrared (near-IR) capability of the Wide
Field Camera 3 (WFC3) on board the Hubble Space
Telescope (HST) has now yielded a statistically signifi-
cant sample of galaxies in the early universe, enabling
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us to pass the era of simply discovering very distant
galaxies and enter an era where we can perform system-
atic studies to probe the underlying physical processes.
Such studies have begun to make progress toward under-
standing galaxy evolution at high redshift, with particu-
lar advances in measurements of the rest-frame ultravio-
let (UV) luminosity function (e.g., Bouwens et al. 2011;
Oesch et al. 2012; Schenker et al. 2013b; Lorenzoni et
al. 2013; Finkelstein et al. 2015; Bouwens et al. 2015),
the rest-frame UV spectral slope (e.g., Finkelstein et al.
2012; Bouwens et al. 2014), and the cosmic star forma-
tion rate density (SFRD; see Madau & Dickinson 2014
for a review).

A key constraint on galaxy evolution that has only re-
cently begun to be robustly explored is that of the growth
of stellar mass in the universe. This measurement re-
quires a combination of deep rest-frame UV data with
constraints at rest-frame optical wavelengths, to better
probe the emission from older, lower-mass stars. The
mass assembly history across cosmic time is governed by
complicated processes, including star formation, merg-
ing of galaxies, supernova feedback, etc. In spite of the
complexity of the baryonic physics of galaxy formation,
however, various studies have found that global galaxy
properties, such as star formation rate (SFR), metallic-
ity, size, etc., all correlate tightly with the stellar mass
(Kauffmann et al. 2003b; Noeske et al. 2007; Tremonti et
al. 2004; Williams et al. 2010), implying that the stellar
mass plays a major role in galaxy evolution. Thus, de-
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termining the comoving number density of galaxies in a
wide range of stellar masses (i.e., the galaxy stellar mass
function [GSMF]) and following the evolution with red-
shift constitutes a basic and crucial constraint on galaxy
formation models. Specifically, obtaining robust obser-
vational constraints on the low-mass-end slope of the
GSMF can provide insights on the impact of feedback
on stellar mass buildup of low-mass galaxies (Lu et al.
2014), as current theoretical models predict steeper low-
mass-end slopes than those previously observed (e.g., Vo-
gelsberger et al. 2013; see Somerville & Davé 2014 for a
review). Consequently, the evolution of GSMFs over the
past 11 billion years has been extensively investigated ob-
servationally during the past decade (e.g., Marchesini et
al. 2009; Baldry et al. 2012; Ilbert et al. 2013; Muzzin et
al. 2013; Tomczak et al. 2014), mostly using traditional
techniques (e.g., 1/Vmax, maximal likelihood) that assess
and correct for the incompleteness in mass.

Nonetheless, the GSMF in the first 2 billion years after
the Big Bang has remained poorly constrained, due to (i)
limited sample sizes, particularly of low-mass galaxies at
high redshift; (ii) systematic uncertainties in stellar mass
estimations; and (iii) the lack of Spitzer Space Telescope
Infrared Array Camera (IRAC; Fazio et al. 2004) data
with comparable depth to HST/WFC3. IRAC data are
essential to probe stellar masses of galaxies at z & 4 as
the 4000 Å/Balmer break moves into the mid-infrared
(mid-IR), beyond the reach of HST (and ground-based
telescopes).

An alternative approach to deriving the GSMF takes
advantage of the fact that the selection effects and in-
completeness are relatively well known and corrected for
in rest-frame UV luminosity functions. Therefore, one
can derive GSMFs by taking a UV luminosity function
and convolving it with a stellar mass versus UV lumi-
nosity distribution at each redshift. Using this approach,
González et al. (2011) derived GSMFs at 4 < z < 7 of
Lyman break galaxies (LBGs) over ∼33 arcmin2 of the
Early Release Science (ERS) field (for z = 4–6, and the
Hubble Ultra Deep Field [HUDF] and the Great Obser-
vatories Origins Deep Survey [GOODS] fields with pre-
WFC3 data for z = 7) utilizing the HST/WFC3 and
IRAC GOODS-South data. They reported a shallow
low-mass-end slope of −(1.4–1.6) at z = 4–7, but the
small sample size and limited dynamic range made it
difficult for them to explore the mass-to-light distribu-
tion at z > 4, and their GSMFs were derived under an
assumption that the mass-to-light distribution at z ∼ 4
is valid up to z ∼ 7.

More recently, several studies have utilized the large
HST data set from the Cosmic Assembly Near-infrared
Deep Extragalactic Legacy Survey (CANDELS; Grogin
et al. 2011; Koekemoer et al. 2011) to make progress
on the measurements of the GSMFs at z > 4. Dun-
can et al. (2014) and Grazian et al. (2015) derived the
GSMFs of galaxies at 4 < z < 7 in the GOODS-S
field and GOODS-S/UDS fields, respectively, using the
CANDELS HST data and the Spitzer Extended Deep
Survey (SEDS; Ashby et al. 2013) IRAC data. These
studies have reported a steeper low-mass-end slope of
α ∼ −(1.6–2.0) than previous studies, but the uncer-
tainties are still large, and the inferred evolution of the
low-mass-end slope of the GSMFs remains uncertain.

Here we probe galaxy buildup from z = 4 out to
z = 8, aiming to improve on the limiting factors dis-
cussed above, with a goal of providing robust constraints
on the GSMFs of galaxies at 4 < z < 8. We do this
by combining near-IR data from CANDELS GOODS-
S and GOODS-N fields with the deepest existing IRAC
data over the GOODS fields from the Spitzer-CANDELS
(S-CANDELS; PI Fazio; Ashby et al. 2015) and the
IRAC Ultra Deep Field 2010 Survey (UDF10; Labbé et
al. 2013). We obtain reliable photometry on these deep
IRAC data by performing point-spread function (PSF)
matched deblending photometry, enabling us to extend
the exploration of the GSMFs to lower stellar masses and
higher redshifts than previous studies. Furthermore, a
special emphasis is put on quantifying and minimizing
the systematics inherent in our analysis via mock galaxy
simulations. While taking a similar approach of convolv-
ing a rest-frame UV luminosity function with stellar mass
to rest-frame UV luminosity distribution as González et
al. (2011), the increased sample size and deeper data en-
able us to bypass the limitations of the previous studies,
as we measure the mass-to-light ratio distribution at ev-
ery redshift.

This paper is organized as follows. Section 2 intro-
duces the HST data sets used in this study, as well as
our sample at 3.5 < z < 8.5 selected by photometric
redshifts, and discusses our IRAC photometry, which is
critical for the stellar mass estimation described in Sec-
tion 3. Section 4 presents stellar mass versus observed
rest-frame absolute UV magnitude (M∗–MUV) distribu-
tions and introduces a stacking analysis and mock galaxy
simulations. By combining the rest-frame UV luminos-
ity function with the M∗–MUV distribution, we derive
GSMFs and stellar mass densities in Section 5 and 6,
respectively. A discussion and summary of our results
follow in Section 7 and Section 8. Throughout the pa-
per, we use the AB magnitude system (Oke & Gunn
1983) and a Salpeter (1955) initial mass function (IMF)
between 0.1 M� and 100 M�. All quoted uncertainties
represent 68% confidence intervals unless otherwise spec-
ified. We adopt a concordance ΛCDM cosmology with
H0 = 70 = 100h km s−1 Mpc−1, ΩM = 0.3, and ΩΛ =
0.7. The HST bands F435W, F606W, F775W, F814W,
F850LP, F098M, F105W, F125W, F140W, and F160W
will be referred to as B, V, i, I814, z, Y098, Y, J, JH140,
and H, respectively.

2. DATA

Constraining GSMFs requires a deep multiwavelength
data set over a wide area in order to probe the full dy-
namic range of a galaxy population. In this section, we
describe the HST imaging used to select our galaxy can-
didates, as well as the candidate selection process. We
then discuss the procedures used to measure accurate
photometry for these galaxies from the Spitzer/IRAC S-
CANDELS imaging.

2.1. HST Data and Sample Selection

The galaxy sample employed in this study is from
Finkelstein et al. (2015), to which we refer the reader
for full details of the HST data used and the galaxy sam-
ple selection. This sample consists of ∼7000 galaxies
selected via photometric redshifts over a redshift range
of z = 3.5–8.5. These galaxies were selected using HST
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Fig. 1.— Example of our IRAC photometry modeling procedure. From left to right: (1) H-band WFC3 imaging of a 1′× 1′ region in the
GOODS-S field, (2) S-CANDELS 3.6 µm imaging, (3) the best-fit 3.6 µm model image, and (4) the t-phot residual image (i.e., real science
image subtracted by the best-fit model image). Our high-redshift galaxies (gray squares) are often blended with nearby foreground sources;
therefore, we perform PSF-matched photometry on the S-CANDELS data using the WFC3 H-band imaging as a prior on the position
and morphology of sources. Using the t-phot software package, we convolve the H-band image with empirically derived IRAC PSFs to
generate low-resolution (IRAC) model images, allowing the flux of each source to vary to simultaneously fit all sources in the IRAC data.

imaging data from the CANDELS (Grogin et al. 2011;
Koekemoer et al. 2011) over the GOODS (Giavalisco
et al. 2004) North (GOODS-N) and South (GOODS-S)
fields, the ERS (Windhorst et al. 2011) field, and the
HUDF (Beckwith et al. 2006; Bouwens et al. 2010; Ellis
et al. 2013) and its two parallel fields (Oesch et al. 2007;
Bouwens et al. 2011).14 We use the full data set which in-
corporates all earlier imaging from HST Advanced Cam-
era for Surveys (ACS), including the B, V, i, I814, and
z filters. We also use imaging from the HST WFC3 in
the Y098, Y, J, JH140, and H filters. A complete de-
scription of these data is presented by Koekemoer et
al. (2011, 2013). These combined data are three-layered
in depth, comprising the extremely deep HUDF, moder-
ately deep CANDELS-Deep fields, and relatively shallow
CANDELS-Wide and ERS fields, designed to efficiently
sample both bright and faint galaxies at high redshifts.

As described by Finkelstein et al. (2015), sources were
detected in a summed J +H image, using a more aggre-
sive detection scheme compared to that used to build the
official CANDELS catalog (e.g., Guo et al. 2013, Barro
et al. 2016, in preparation) to detect faint sources at
high redshifts, yielding a catalog with the total number
of sources a factor of two larger.15 To minimize the pres-
ence of spurious sources, only those objects with ≥ 3.5σ
significance in both the J and H bands were evaluated
as possible high-redshift galaxies. Photometric redshifts
were estimated with EAZY (Brammer et al. 2008), and
selection criteria devised based on the full redshift prob-
ability density function (pdf; P (z)) were applied (Finkel-
stein et al. 2015). These criteria were designed to assess
the robustnes of the sample, requiring the primary red-
shift solution to have more than 70% of the integrated
redshift pdf, and the narrowness of P (z), by limiting the
sample to those for which the integral of the redshift pdf
for the corresponding redshift bin is at least 25% of the
total integral of the pdf. A comparison of our photomet-

14 Finkelstein et al. (2015) also include about 500 more galaxies
from the Abell 2744 and MACS J0416.1-2403 parallel fields from
the Hubble Frontier Fields data set, while we do not, reducing our
full sample to ∼7000 galaxies.

15 Specifically, Finkelstein et al. (2015) used DE-
TECT MINAREA = 7 and DETECT THRESH = 0.6, while
the “hot” mode of the official CANDELS catalog was built with
DETECT MINAREA = 10 and DETECT THRESH = 0.7.

ric redshifts for 171 galaxies with spectroscopic redshifts
in our z > 3.5 sample shows an excellent agreement, with
σ(∆z/(1 + zspec)) = 0.03 (after 3σ clipping). All of the
selected sources were visually inspected for removal of
artifacts and stellar contaminants. Active galactic nuclei
(AGNs) identified in X-rays were also excluded from the
sample. Our final parent sample consists of 4156, 2056,
669, 284, and 77 galaxies at z = 4 (3.5 ≤ z < 4.5), 5
(4.5 ≤ z < 5.5), 6 (5.5 ≤ z < 6.5), 7 (6.5 ≤ z < 7.5), and
8 (7.5 ≤ z < 8.5), respectively.

2.2. IRAC Data and Photometry

At 3.5 < z < 8.5, the observed mid-IR probes rest-
frame optical wavelengths redward of the Balmer/4000 Å
break. Deep Spitzer/IRAC data are therefore critical to
constrain stellar masses and the resulting GSMF. One
of the key advances of our study is the significantly in-
creased depth in the 3.6 and 4.5µm IRAC bands pro-
vided by the new S-CANDELS survey (Ashby et al.
2015). The final S-CANDELS mosaics in the GOODS-
S and GOODS-N fields (where the former includes the
HUDF parallel fields) include data from three previous
studies: GOODS, with integration time of 23–46 hr per
pointing (Dickinson et al., in preparation); a 5′×5′ region
in the ERS observed to 100 hr depth (PI Fazio); and the
IRAC Ultra Deep Field 2010 program, which observed
the HUDF and its two parallel fields to 120, 50, and 100
hr, respectively (Labbé et al. 2013). The total integra-
tion time within the S-CANDELS fields more than dou-
bles the integration time for most of the area used in this
study (to ≥50 hr total), reaching a total formal depth of
26.5 mag (3σ) at 3.6 µm and 4.5 µm (Ashby et al. 2015).
Imaging at 5.8 and 8.0 µm was obtained with IRAC as
part of the GOODS program. However, these data are
too shallow to provide meaningful constraints for high-
redshift faint galaxies, so we do not include them in our
analysis.

The full-width at half-maximum (FWHM) of the PSF
of the IRAC data (∼1.′′7 at 3.6 µm versus ∼0.′′19 at 1.6
µm with WFC3) results in non-negligable source confu-
sion, making accurate flux determinations challenging,
as shown in Figure 1. The second panel of Figure 1
shows that our high-redshift galaxies are extremely faint
and are often blended with nearby bright sources in the
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mid-IR, making simple aperture photometry unreliable.
For reliable IRAC photometry on the deep S-CANDELS
data, we therefore perform PSF-matched photometry us-
ing the t-phot software (Merlin et al. 2015), an updated
version of TFIT (Laidler et al. 2007), on the S-CANDELS
3.6 and 4.5 µm mosaics. This PSF-matched photom-
etry uses information in a high-resolution image (here
the H band), such as position and morphology, as priors.
Specifically, we use isophotes and light profiles from the
detection (J+H) image obtained by the Source Extractor
package (SExtractor; Bertin & Arnouts 1996). The high-
resolution image was convolved with a transfer kernel to
generate model images for the low-resolution data (here
the IRAC imaging), allowing the flux in each source to
vary. This model image was in turn fitted to the real
low-resolution image. The IRAC fluxes of sources are
determined by the model that best represents the real
data.

As the PSF FWHM of the high-resolution image (H
band) is negligible (∼0.′′19) when compared to those of
the low-resolution IRAC images (∼1.′′7), we used IRAC
PSFs as transfer kernels. We derive empirical PSFs in
each band and in each field by stacking isolated and mod-
erately bright ([3.6], [4.5] = 15.5–19.0 mag) stars identi-
fied in a half-light radius versus magnitude diagram in
IRAC imaging. As t-phot requires the kernel to be in
the pixel scale of the high-resolution image, each star
image was 10 times oversampled to generate the final
PSFs in the same pixel scale of the H-band image (0.′′06
pixel−1). They were then registered, normalized, and
median-combined to generate the final IRAC PSFs.

Preparatory work for running t-phot includes per-
forming background subtraction on the S-CANDELS
mosaics using the script subtract bkgd.py (written by
H. Ferguson; see Galametz et al. 2013 for details) and
dilation of the J+H SExtractor segmentation map, anal-
ogous to the traditional aperture correction. The need
for this dilation step originates from the fact that un-
der nonzero background fluctuations, isophotes of faint
sources include a smaller fraction of their total flux com-
pared to bright sources, and therefore their IRAC fluxes
based on isophotes tend to be underestimated. To in-
clude the light in the wings and to counterbalance the
underestimation of flux for faint sources of which the
amount depends on the isophotal area, an empirical cor-
rection factor to enlarge the SExtractor segmentation
map was devised by the CANDELS team by compar-
ing isophotal area from deep and shallow images (see
Galametz et al. 2013 and Guo et al. 2013 for details).
We applied this empirical correction factor to the J+H
segmentaion map using the program dilate (De Santis
et al. 2007) while preventing merging between sources.

To correct for potential small spatial distortions or
mis-registrations between the high-resolution and low-
resolution images, a second run of t-phot was performed
using a shifted kernel built by cross-correlating the model
and real low-resolution images. Figure 1 presents an ex-
ample of our IRAC photometry procedure on a subregion
in GOODS-S. With the exception of very bright sources,
the residual image is remarkably clean, highlighting the
accuracy of this procedure.

2.2.1. Verification

 

      
 

-2

-1

0

1

2

 

      

 

 

 

 

 

      

 

 

 

 

 3.6 µm

 

18 20 22 24 26 28
mag (TPHOT S-CANDELS)

-2

-1

0

1

2

 

      

 

 

 

 

 

      

 

 

 

 

 4.5 µm

m
a

g
(T

P
H

O
T

 S
-C

A
N

D
E

L
S

) 
- 

m
a

g
(T

F
IT

 S
E

D
S

)

Fig. 2.— Comparison between our t-phot S-CANDELS pho-
tometry and the official CANDELS TFIT SEDS photometry from
Guo et al. (2013) and Barro et al. (2016, in preparation) for IRAC
3.6 µm (upper) and 4.5 µm (lower) bands for sources with S/N
> 1 (black), S/N > 3 (green), and S/N > 5 (red) in both cata-
logs. Blue circles and error bars indicate the median and robust
standard deviation of the magnitude difference in each magnitude
bin for sources with S/N > 1, and the blue dashed lines encom-
pass the central 68% of the distribution. The red vertical dotted
line denotes the 5σ S-CANDELS depth. The bias seen at faint
magnitudes is due to Eddington bias of upscattered sources in the
shallower SEDS data, which is shown as the gray shaded area (for
the S/N > 1 cut; see Section 2.2.1 for more details). The SEDS
data are shallower; thus, the agreement between the two catalogs
in magnitude bins brighter than this range indicates that our pho-
tometry is accurate.

We tested the accuracy of our IRAC photometry in two
ways. First, we compared our catalog with the official
CANDELS catalogs (Guo et al. 2013; Barro et al. 2016,
in preparation) in which IRAC fluxes were obtained from
the shallower SEDS data using TFIT. Figure 2 shows the
comparison between our magnitude and that from the of-
ficial catalog for sources with signal-to-noise ratio (S/N)
greater than 1, 3, and 5 in both catalogs. As we compare
two catalogs generated from images with different depths
with a certain S/N cut, faint sources are dominated by
background fluctuations and the Eddington bias of up-
scattered sources in the shallower SEDS data, making
the comparison unreliable (see Figure 13 of Guo et al.
for a similar trend and discussion of the flux compari-
son). Taking a similar approach to that of Guo et al.
(2013), we estimated this magnitude range in which the
flux comparison is unreliable due to the Eddington bias
for the S/N > 1 cut. We first found the best-fit power law
to the differential number count density of the sources
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in the official CANDELS catalog without any S/N cut.
Then, we compared the differential number count den-
sity of sources with S/N > 1 with the best-fit power law
to find the magnitude that the former starts falling be-
low 80% of what is expected by the best-fit power law
([3.6] = 25.1 and [4.5] = 25.5; gray shaded region in
Figure 2). In magnitude bins brighter than this range,
the comparison indicates an excellent agreement with a
negligible systematic offset.

Second, we performed a mock source simulation in or-
der to validate our photometry. Briefly, mock sources
with varying physical properties (e.g., size, light profile,
luminosity, redshift) were generated using the GALFIT
software (Peng et al. 2002), of which flux densities in each
band are assigned using the updated Bruzual and Char-
lot (CB07; Bruzual & Charlot 2003) stellar population
synthesis (SPS) models. While the exact shape of the as-
sumed distribution of physical parameters such as size or
light profile can impact the detection rate of sources close
to the sensitivity limit and thus the results of simulations
designed to correct for completeness, t-phot photome-
try is by design limited to the sources recovered in the
high-resolution detection image. Therefore, our simula-
tion results should not be sensitive to those assumptions
in the first order. These mock sources were convolved
with the PSF of each filter and added at random loca-
tions in the (H-band PSF-convolved) high-resolution and
IRAC low-resolution images. Our simulation thus ac-
counts fully for source confusion with nearby foreground
real sources, but we constrain the number density of
mock sources to be negligible (5 arcmin−2) compared to
that of real sources to ensure that our simulation results
are not dominated by self-crowding among the inserted
artificial sources. The mock sources were then recovered
using the same procedures as for real sources, including
t-phot photometry. Figure 3 shows a comparison be-
tween the input and recovered 3.6 µm and 4.5 µm mag-
nitudes. It is encouraging that we find no systematic
offset between the two down to the 50% completeness
limit of 25 mag (Ashby et al. 2015), given that the IRAC
photometry is affected with many sources of uncertainty
that demand accurate background subtraction, aperture
correction scheme (dilation), and buildup of transfer ker-
nels. As any observed offsets from these simulations are
not statistically significant, we do not apply any correc-
tion to our observed IRAC photometry.

2.2.2. Visual inspection

A practical limitation exists when building empirical
IRAC PSFs for deep fields, as such surveys by design
target a relatively small area well off the Galactic plane,
resulting in few stars present in the imaging. The se-
vere source confusion in the IRAC data further reduces
the number of isolated stars that can be used for the
creation of PSFs. Therefore, although our PSF-matched
IRAC photometry significantly improves photometric ac-
curacy over more traditional methods (Lee et al. 2012),
our IRAC photometry may be imperfect. Its significance,
however, is likely small, as already discussed in the pre-
vious sections.

Another source of uncertainty is that TFIT/t-phot as-
sumes no morphological k-corrections (no variation in the
surface profile or morphology) between short- and long-
wavelength images, which is likely not the case (although
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Fig. 3.— Comparison between the input and recovered IRAC
3.6 µm (upper) and 4.5 µm (lower) magnitude in our mock source
simulations. Symbols are color-coded by blendedness in the two
filters (shown in the inset in binary notation)—00: contamination-
free; 01: contaminated in 4.5 µm; 10: contaminated in 3.6 µm; 11:
contaminated in both 3.6 and 4.5 µm. Large black circles and error
bars represent the median and standard deviation of the magnitude
difference of sources in each magnitude bin with the magnitude
difference between the input and the recovered less than 2 mag,
demonstrating the reliability of our IRAC photometry down to the
50% completeness limit of 25 mag (red vertical dotted line; Ashby
et al. 2015).

we attempted to mitigate this by using the reddest HST
image as our high-resolution image). However, our high-
redshift galaxies are small enough to not be resolved in
the low-resolution image (see Figure 25 of Ashby et al.
2013), and thus it should have a negligible effect on the
derived fluxes. Bright (and extended) foreground sources
in close proximity to our high-redshift sample, however,
are prone to imperfect modeling in this case (even with
perfect PSFs) and leave residuals that in turn can signif-
icantly affect the photometry of faint sources nearby.

To account for these uncertainties, we visually in-
spected the IRAC science and residual images of all
∼7000 sources in our sample to ensure that their IRAC
photometry is reliable. Sources falling on strong residu-
als from nearby bright sources often have recovered S/Ns
that are too high (even when we cannot visually identify
counterparts in the IRAC images) or significantly nega-
tive, which indicates that their photometry is not reliable
in general. This is confirmed by a mock source simula-
tion in which we added mock sources at various posi-
tions around a bright source, finding that the recovered
flux is highly biased (either overestimated or underesti-
mated depending on the “yin” and “yang” of the residual
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on which the mock source was inserted). We therefore
caution against blindly taking IRAC fluxes from a cat-
alog and stress the importance of visual inspection of
IRAC images and residuals of all objects, as contami-
nated sources can significantly impact studies on indi-
vidual galaxies or with small number statistics (e.g., the
high-mass end of the GSMF).

Contaminated sources are excluded from the sample
in our subsequent analysis. This leaves ∼63%, 63%,
54%, 61%, and 57% of our z = 4, 5, 6, 7, 8 parent sample
free from a possible contamination from nearby bright
sources,16 resulting in 2611, 1292, 364, 172, and 44
sources in our final z = 4, 5, 6, 7, 8 selection. Among
the final sample, 1172/2611, 480/1292, 108/364, 41/172,
and 6/44 (45%, 37%, 30%, 24%, and 14%) sources at
z = 4, 5, 6, 7, 8, respectively, have & 2σ detections at 3.6
µm, and 613/2611, 211/1292, 43/364, 12/172, and 1/44
(23%, 16%, 12%, 7%, and 2%) show S/N > 5. A final
multiwavelength catalog was constructed by combining
the HST catalog and the IRAC t-phot catalog for this
final sample.

3. STELLAR POPULATION MODELING

We derived stellar masses and rest-frame UV luminosi-
ties for our sample galaxies by fitting the observed spec-
tral energy distribution (SED) from the B, V, i, I850,
z, Y098, Y, J, JH140, H, 3.6 µm, and 4.5 µm data to
the Bruzual & Charlot (2003) SPS models. We refer the
reader to Finkelstein et al. (2012, 2015) for a detailed ex-
planation of our modeling process. Briefly, we modeled
star formation histories (SFHs) as exponentially declin-
ing (τ = 1 Myr–10 Gyr), constant (τ = 100 Gyr), and
rising (τ = −300 Myr, −1 Gyr, −10 Gyr). Allowable
ages spanned a lower age limit of 1 Myr to the age of
the universe at the redshift of a galaxy, spaced semi-
logarithmically, and metallicity ranged from 0.02 to 1
Z�. We assumed the Calzetti et al. (2000) attenuation
curve with E(B − V ) = 0.0–0.8 (AV = 0.0–3.2), and
intergalactic medium (IGM) attenuation was applied us-
ing the Madau (1995) prescription. All the models were
normalized to a total mass of 1 M�.

One of the major sources of uncertainty in stellar
mass measurements of high-redshift galaxies derived
from broadband imaging data via SED fitting is the con-
tribution of nebular emission. Spectroscopically measur-
ing the contribution of strong emission lines (e.g., Hα,
[O iii]λλ4959, 5007) to the broadband fluxes for z & 4
galaxies is not currently feasible because they redshift
into the mid-IR. Many efforts, however, have been made
taking an alternative approach of investigating IRAC col-
ors of spectroscopically confirmed galaxies at the redshift
range such that only one of the first two IRAC bands is
expected to be contaminated by a strong emission line
(e.g., Shim et al. 2011; Stark et al. 2013). Together with
an inference from the direct measurements of nebular
lines of galaxies at lower redshift (e.g., z ∼ 3; Schenker

16 These uncontaminated source fractions are consistent with
the confusion-free fraction of the S-CANDELS images found by
Ashby et al. (2015). While the symbols in Figure 3 are color-coded
by the blendedness, which is determined based on the SExtractor
segmentation map, in this section we visually inspected individ-
ual sources to exclude sources for which photometry is affected by
residuals of nearby bright sources. That is, those excluded by our
visual inspection are a subset of sources that are color-coded as
being contaminated in Figure 3, and likely catastrophic outliers.
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Fig. 4.— Comparison of the inferred rest-frame
EW([O iii]λλ4959, 5007) distrbution derived from our SED
fitting analysis for galaxies in our z ∼ 4 sample with spectroscopic
redshifts (black solid histogram) with the spectroscopic EW([O iii])
distribution of 20 LBGs from Schenker et al. (2013a, blue dashed
histogram; eight galaxies out of their 28 targets were not de-
tected). The good agreement implies that our implementation of
nebular emission lines in our stellar population models is a fair
representation of reality.

et al. 2013a), several studies claim that the contribution
of nebular emission to the broadband fluxes for galaxies
at high redshift, and thus to the inferred stellar mass,
can be significant (e.g., Schaerer & de Barros 2010).

While a more concrete answer on the nebular contribu-
tion will need to wait for the advent of the James Webb
Space Telescope (JWST), we took into account the con-
tribution of nebular emission in our SED modeling in a
self-consistent way following the prescription of Salmon
et al. (2015). In this prescription, the strengths of H
and He recombination lines (including Hβ) are set by
the number of non-escaping ionizing photons, and the
strengths of metal lines relative to Hβ are given by In-
oue (2011). The nebular line strengths are thus a func-
tion of the population age and metallicity (which sets
the number of ionizing photons), as well as the ioniz-
ing photon escape fraction. We added the nebular lines
to the stellar continuum assuming an escape fraction of
zero 17 and no extra dust attenuation for nebular emis-
sion (i.e., E(B − V )stellar = E(B − V )nebular). Fig-
ure 4 presents a comparison of the inferred equivalent
width (EW) distribution of [O iii]λλ4959, 5007 from our
SED modeling for spectroscopically confirmed galaxies at
3.5 < z < 4.5 with the observed EW([O iii]) histogram of
20 LBGs at similar redshifts (3.0 < z < 3.8) in Schenker
et al. (2013a), showing a good agreement. As Figure 4 is
based on spectroscopically confirmed galaxies, they are
biased toward high-mass (median ± standard deviation
of the logarithmic stellar mass = 9.7±0.5) and UV-bright
(−21.3± 0.8) galaxies. However, the two samples shown
in Figure 4 have similar stellar mass distributions.

Our final stellar+nebular line stellar population mod-

17 Many studies at z ∼ 3, the highest redshift where we can
estimate the LyC escape fraction before the IGM becomes opaque
to ionizing photons, have shown no evidence of high escape fraction,
only placing an upper limit of .0.1 (1σ; Siana et al. 2015).
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els are integrated through all of the filter bandpasses in
our photometry catalog. The best-fit model for each
source was found as the one that best represents the
observed photometry via χ2 minimization. During this
procedure, we accounted for uncertainties in the zero-
point and aperture corrections by adding 5% of the flux
in quadrature to the flux error in each band. For our
fiducial stellar mass for each galaxy, we adopted the me-
dian mass obtained from a Bayesian likelihood analysis
following Kauffmann et al. (2003a). We describe the pro-
cedure briefly here, but we refer the reader to Kauffmann
et al. (2003a) and our previous work (Song et al. 2014)
for more details of the analysis (see also Salmon et al.
2015; Tanaka 2015). In short, we used the χ2 array that
samples the full model parameter space of our SPS mod-
els to compute the four-dimensional posterior pdf of free
parameters (dust extinction, age, metallicy, and SFH)

using the likelihood of each model, L ∝ e−χ
2/2. We as-

sumed flat priors in parameter grids and z = zphot. The
stellar mass for each grid point is taken to be the normal-
ization factor between the observed SED and the model.
Then, the 1-dimensional posterior pdf for stellar mass
was obtained by marginalizing over all the parameters.
The median and the central 68% confidence interval of
stellar mass were computed from this marginalized pdf.

The rest-frame absolute magnitude at 1500 Å, MUV,
was obtained from the mean continuum flux density of
the best-fit model in a ∆λrest = 100 Å band centered
at rest-frame 1500 Å. Its uncertainty was derived from
100 Monte Carlo simulations in which the redshift un-
certainty was accounted for by varing the redshift in our
Monte Carlo simulations following the pdf, P (z), ob-
tained from our photometric redshift analysis (Finkel-
stein et al. 2015). Systematic biases and uncertainties of
our SED fitting method were estimated via mock galaxy
simulations and will be discussed in Section 4.3.

4. STELLAR MASS–REST-FRAME UV LUMINOSITY
DISTRIBUTION

With the stellar mass (M∗) and the rest-frame absolute
UV magnitude (MUV) of our galaxy sample measured
from the previous section, we now explore the correlation
between these properties in our sample to infer whether
it is possible to derive a scaling relation.

4.1. Overall M∗–MUV Distribution

Figure 5 presents the stellar mass versus rest-frame UV
absolute magnitude distribution at each redshift. Over-
all, we find a strong trend between stellar mass and rest-
frame absolute UV luminosity at all redshifts probed in
this study. The scatter (standard deviation) in logarith-
mic stellar mass is about 0.4 dex (0.52, 0.42, 0.36, 0.40,
and 0.30 dex at z = 4, 5, 6, 7, and 8, respectively, mea-
sured as the mean of standard deviation in logarithmic
stellar mass in bins with more than five galaxies), and no
noticeable correlation of the scatter is found with red-
shift or UV luminosity. The scatter at the bright end
(measured at −21.5 < MUV < −20.5), where the effect
of observational uncertainty should be minimal, is 0.43,
0.47, 0.36, 0.52, and 0.40 dex at z = 4, 5, 6, 7, and 8,
respectively, similar to the quoted value above and the
scatter at the faint end (at −19.0 < MUV < −18.0) of
0.51, 0.39, 0.39, and 0.41 dex at z = 4, 5, 6, and 7,
respectively.

Often raised as a weakness in studies of rest-frame
UV-selected galaxies is that such studies by construc-
tion miss dusty star-forming or quiescent galaxies. As
our sample is selected mainly from rest-frame UV, the
observed M∗–MUV distribution shown in Figure 5 is also
susceptible to this weakness. Interestingly, however, we
do observe populations of UV-faint galaxies with high
mass (given their UV luminosity) on the upper right
part of the M∗–MUV plane at z = 4 and 5. Although
the lower limit of SFRs inferred from the UV luminos-
ity and the Kennicutt (1998) conversion assuming no
dust (upper x-axis in Figure 5) indicates that they are
not completely quenched systems, their inferred (dust-
uncorrected) SFRs are down to 2 orders of magnitude
lower than those on the M∗–MUV relation (to be derived
in the following section). Outliers off the best-fit relation
by more than 1 dex make up 6% (155/2624) of the total
sample at z = 4. The fraction decreases as redshift in-
creases to 3% (12/365) at z = 6. This increasing fraction
of massive and UV-faint galaxy populations from z = 6
to z = 4 implies either that we may be witnessing the
formation of dusty star-forming or quiescent populations
that are very rare at high redshift (z ∼ 6–7) or that the
duty cycle of those populations at high redshift is lower
than that at low redshift (with a star-forming time scale
much longer than 100 Myr) so that fewer such galaxies
are observed with the current flux limit at higher redshift.
Given the young age of the universe at high redshift, the
latter requires a very early and fast growth of stellar
mass for those galaxies that are completely quenched or
highly dust extincted by z ∼ 7. As we do not see such
extremely UV-luminous populations at higher redshifts
in the UV luminosity functions (e.g., Finkelstein et al.
2015; Bouwens et al. 2015), we regard the former as a
more plausible scenario.

Interestingly, we do not find such populations in the
opposite (low-mass) side at a given UV luminosity. The
lack of bright and low-mass galaxies in the lower left re-
gion of Figure 5 is most clearly shown at z = 4. This is
unlikely to be a selection effect or observational uncer-
tainty, as had there been galaxies with log(M∗/M�) & 9,
they should have been detected in both WFC3/IR and
IRAC; although we impose an S/N cut in both J and
H bands in our sample selection and may thus be bi-
ased against the bluest galaxies, this only applies for UV
bins fainter than those discussed here. It should not be
an artifact of our SPS modeling, as the minimum mass-
to-light ratio allowed in our SPS models is well below
the mass-to-light ratio distribution of our sample. Lee
et al. (2012), based on LBGs selected at z = 4–5 over
the GOODS field, interpreted the absence of undermas-
sive galaxies as evidence of smooth growth for UV-bright
galaxies that has lasted at least a few hundred million
years. If dust extinction is proportional to UV luminos-
ity (e.g., Bouwens et al. 2014), this indicates a lack of
UV-bright galaxies with very high specific SFRs (sSFR
= SFR/M∗). This lack of UV-bright and low-mass galax-
ies at all redshifts we probe provides a further support
on our claim in the paragraph above of a growing pop-
ulation of dusty star-forming or quiescent galaxies seen
between z = 6 and z = 4.

4.2. Stacking Analysis
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Fig. 5.— From upper left to lower right, stellar mass versus rest-frame UV absolute magnitude at 1500 Å (MUV) at z = 4–8. For
reference, SFR inferred from the UV luminosity and the Kennicutt (1998) conversion assuming no dust is shown in the upper x-axis. Small
gray filled circles indicate objects with IRAC detection (& 2σ at 3.6 µm), while gray open circles are those with nondetections in IRAC
(< 2σ at 3.6 µm). Gray error bars represent the 68% confidence intervals in stellar mass and rest-frame absolute UV magnitude. Large
red filled circles are the median stellar masses in each rest-frame absolute UV magnitude bin of 0.5 mag, while large open circles indicate
bins containing a single galaxy. Black error bars are standard deviations in stellar mass in each UV luminosity bin. Blue stars indicate
median stellar masses in each rest-frame absolute UV magnitude bin from our median-flux stacking analysis in Section 4.2, with error bars
denoting the 1σ uncertainty, including both photometric error and sample variance. We derived the best-fit relation (red solid line) by
fitting data points that combine red filled circles with blue filled stars in a redshift-dependent UV magnitude range specified in Section 4.3
(indicated as the light-red and light-blue filled regions). The 1σ uncertainty of the best-fit M∗–MUV relation is denoted as the light-red
shaded region. The gray arrows and horizontal error bars at the bottom show the characteristic UV magnitude, L∗, of the UV luminosity
function (Finkelstein et al. 2015) at each redshift. Gray dotted lines indicate minimum mass-to-light ratio allowed in our SPS models. We
find that the best-fit relation has a nonevolving slope at z = 4–6, which is marginally steeper than a constant mass-to-light ratio (gray
dashed line; normalized to the mass-to-light ratio of the Milky Way), and shows a weak evolution in the normalization. The inferred stellar
mass from the best-fit M∗–MUV relation for galaxies with MUV = −21 (∼ L∗) is log(M∗/M�) = 9.70, 9.59, 9.53, 9.36, and 9.00 at z = 4,
5, 6, 7, and 8, respectively. The typical mass-to-light ratio of galaxies at z = 4–8 at the rest-frame UV absolute magnitude of the Milky
Way (MUV = −20.5) is lower by a factor of ∼30 (130) at z = 4 (8) than that of the Milky Way.



The Galaxy Stellar Mass Function at z = 4–8 9

 
 

1

10

100

1000

 

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25
-21.75

z ∼ 4

 
 

 

 

 

 

 

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

z ∼ 5

 
 

1

10

100

1000

 

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.25
-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

z ∼ 6

 
 

 

 

 

 

 

50.5

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

-17.75
-18.25
-18.75
-19.25
-19.75
-20.25
-20.75
-21.25

z ∼ 7

 
 

1

10

100

1000

 

50.5

-19.25
-19.75
-20.25
-20.75

-19.25
-19.75
-20.25
-20.75

-19.25
-19.75
-20.25
-20.75

-19.25
-19.75
-20.25
-20.75

z ∼ 8

λobs [µm]

λobs [µm]

f ν
 [

n
J
y
]

Fig. 6.— Median flux-stacked SEDs at z = 4–8 in bins of rest-frame absolute UV magnitude with ∆MUV = 0.5 mag, for bins with
MUV < −17 and more than 10 (for z = 4–5) or 5 (for z = 6–8) galaxies (corresponding to blue stars in Figure 5). The stacked SEDs are
denoted by filled circles and downward-pointing arrows (indicating 2σ upper limits for bands with S/N < 2), with the rest-frame absolute
UV magnitudes given by the inset text. The solid lines and open squares indicate the best-fit SPS models and model bandpass-averaged
fluxes, respectively. The best-fit SPS models for stacked SEDs with S/N < 2 in 3.6 µm are shown as dotted lines, indicating that the
inferred mass for stacked SEDs with S/N < 2 in 3.6 µm is uncertain.

Despite our deep IRAC data, individual galaxies in
our sample, especially those in faint UV luminosity bins
(which likely have low masses), often suffer from low S/N
in the IRAC mosaics. This can make the reliability of an
M∗–MUV relation derived based on individual galaxies
questionable. We therefore performed a stacking analy-
sis to increase the S/N and to examine the typical stellar
mass in each rest-frame absolute UV magnitude bin. We
built median flux-stacked SEDs, comprising a total of 12
bands (B, V, i, I814, z, Y098, Y, J, JH140, H, 3.6 µm, 4.5
µm), for galaxies in each UV magnitude bin of 0.5 mag in
the full sample. Uncertainties on the stacked SEDs were
assigned as the quadrature sum of the photometric uncer-
tainty and the uncertainty due to sample variance (het-
erogeneity of the SEDs of galaxies) estimated via boot-
strapping on galaxies in each UV magnitude bin. The
latter dominates the error budget at z = 4, contributing

on average 80% to the total uncertainty, but the contri-
bution of sample variance decreases with redshift, down
to 45% at z = 8. This is a combined effect of (i) de-
creasing outliers in the M∗–MUV plane (i.e., decreasing
fraction of dusty star-forming or quiescent galaxy popu-
lation) with redshift, as seen in Figure 5, and (ii) increas-
ing photometric uncertainty with redshift, as the galaxies
are fainter compared to the photometric depth.

Stacked SEDs were analyzed through our SED fitting
procedures described in Section 3 with the redshift of
model templates fixed to the median photometric red-
shift of galaxies in each stack. Bands not common to
all galaxies (e.g., JH140 covering only the HUDF) were
included in the SED fitting only when more than half of
the stacked galaxies have measurements. Our choice is a
trade-off between making the most of the available infor-
mation and minimizing the chance of biasing our results
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by including a subset not having the characteristics of the
parent sample. As the median flux-stacked SEDs short-
ward of the Lyα line may still have some fluxes depending
on the redshift distribution of the stacked galaxies and
thus may not represent an SED of a galaxy at the median
redshift, we excluded bands shortward of the Lyα line.

The best-fit SPS models and stacked SEDs in each red-
shift bin are shown in Figure 6. Overall, the shapes of
the SEDs are nearly similar but show a weak trend with
UV luminosity such that the typical UV-bright galaxies
have slightly redder rest UV-to-optical (observed NIR-
to-MIR) color than UV-faint galaxies at a given redshift,
being in qualitative agreement with other previous stud-
ies (e.g., González et al. 2012). This trend indicates that
on average UV-faint galaxies have (mildly) lower mass-
to-light ratios than UV-bright galaxies, suggesting that
an M∗–MUV relation with a constant mass-to-light ratio
would not provide a good description of our data.

The results from our SED fitting analysis on the me-
dian flux-stacked SEDs are included in the M∗–MUV

plots of Figure 5. Comparing the stacked points to
the median of individual galaxies shows that they are
largely consistent with each other at the bright end
(MUV . −(20–21)). But for fainter UV luminosities,
the stacked points are generally lower than the medians.
This may reflect the fact that the stellar masses of indi-
vidual IRAC-undetected galaxies are on average biased
toward higher masses, while they are relatively robust
for IRAC-detected galaxies.

4.3. Mock Simulation with Semi-Analytic Models

As noted in the previous section, stellar mass estima-
tion involves various sources of uncertainty, which im-
pact the derived GSMFs. In our methodology of con-
volving the M∗–MUV distribution with the completeness-
corrected UV luminosity functions to derive GSMFs, the
reliability of our to-be-derived GSMF and its low-mass-
end slope is tied to our ability to recover the intrinsic
slope, normalization, and scatter of the M∗–MUV distri-
bution.

To explore the systematics and uncertainties in our
observed M∗–MUV distribution introduced by the pho-
tometric uncertainty of our data and our stellar mass
estimation procedure, and to examine whether we can
recover the intrinsic M∗–MUV distribution (and the sub-
sequent GSMF), we simulated M∗–MUV planes using
mock galaxies drawn from semianalytic models (SAMs).
We used synthetic galaxy photometry from the SAMs of
Somerville et al. (2016, in preparation). These SAMs are
implemented on halos extracted from the Bolshoi dark
matter simulation (Klypin et al. 2011), which has a dark
matter mass resolution of 1.35 ×108 h−1M� and a force
resolution of 1 h−1 kpc. Galaxies hosted in a halo more
massive than 1010 M� are included in the mock catalog.
This corresponds to a typical stellar mass of a few times
107 M� at z = 4–8 (e.g., Behroozi et al. 2013), similar to
the minimum stellar mass in our real sample. The most
notable characteristic of these SAMs is that their light
cones are specifically designed to provide realizations of
the five CANDELS fields (with albeit a factor of 6–9
larger areas than the actual CANDELS HST coverage),
aiming to help with interpretation of observational data.
Moreover, using synthetic galaxy photometry from the
SAMs has an advantage over using SPS models in that

mock galaxies have more realistic SEDs based on more
complicated SFHs and metal enrichment histories, thus
representing real galaxy populations more closely. We
refer the reader to Somerville et al. (2012) and Lu et al.
(2014) for full details of their mock galaxy models. Here
we specifically use the mock light cone of the CANDELS
GOODS-S field for our simulation.

We generated mock galaxy samples by populating the
M∗–MUV plane at each redshift with objects from the
SAM catalog similar to our real sample in both sam-
ple size and rest-frame UV absolute magnitude distribu-
tion, but with various input slopes ranging from −0.3
to −0.8. We assumed a lognormal distribution around
a linear logM∗–MUV relation with a dispersion of ∼0.3
dex, motivated by the functional form of the observed
star-forming main sequence at lower redshifts (Speagle
et al. 2014 and references therein). Although the SAMs
have an inherent M/L relation, this does not affect our
results as we randomly draw galaxies from the SAM to
fill in our simulated plane based on the M/L slope in
a given simulation. We then added noise in each band
based on the flux uncertainty of our real sample at a
given magnitude and perturbed the simulated photome-
try assuming a Gaussian error distribution. The stellar
masses and rest-frame UV absolute magnitudes of these
mock galaxies were calculated in the same manner as in
the real data. The above precedures describe a single
mock realization of one intrinsic M∗–MUV distribution.
For each realization of a given intrinsic M∗–MUV distri-
bution, we measured the recovered slope, normalization,
and scatter of the M∗–MUV distribution. We repeated
the above procedures 50 times for each input slope and
redshift, from which we constructed pdfs of the recovered
slopes and normalizations.

In addition to allowing us to explore the best way to
minimize the bias and uncertainty in recovering the in-
trinsic M∗–MUV distribution, these simulations also al-
low us to test the validity of our stellar mass measure-
ments. First, we find that if we use the classical maxi-
mum likelihood estimator (i.e., the best-fit model) as a
fiducial stellar mass, the uncertainty in the inferred stel-
lar mass for individual galaxies is considerable, differing
up to 1 dex for galaxies with log(M∗/M�) ∼ 9 at z = 4.
As a result, the scatter of the recovered M∗–MUV dis-
tribution increases significantly compared to the original
one (a 0.2 dex increase at MUV ∼ −20 and larger for
fainter galaxies; see also Salmon et al. 2015). This large
spread in stellar mass in the recovered distribution makes
it hard to recover the intrinsic relation at z & 6 where
the photometric uncertainty is large and the sample size
is small. The median mass from our Bayesian likelihood
analysis described in Section 3 performs much better in
the sense that it does not significantly increase the scat-
ter of the recovered M∗–MUV plane even in faint UV
luminosity bins; the scatter of the recovered M∗–MUV

distribution compared to that of the input distribution
shows an increase of only 0.05–0.10 dex at MUV ∼ −20,
and the scatter remains nearly constant in fainter UV lu-
minosity bins. However, there exists a noticeable bias in
the recovered stellar mass for galaxies fainter (and lower
in mass) than a certain UV magnitude threshold at each
redshift (hereafter referred to as Mthresh1(z)). This is be-
cause, for low-S/N data, the stellar mass is determined
by the assumed priors (e.g., flat priors in parameter grids
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Fig. 7.— Probability density function of the recovered M∗–
MUV slope as a function of the intrinsic slope at z = 4–8 in our
SAM mock galaxy simulations. Darker gray colors indicate a higher
probability. For reference, a 1:1 line is shown as the black solid line.
The best-fit slope of the M∗–MUV relation and its 1σ uncertainty
obtained from our real sample (using our optimized fitting method)
at each redshift are denoted as the red dashed horizontal line and
shaded region, respectively. At z = 4–6, we can recover the intrinsic
slope within ±0.07. At z = 7–8, the uncertainties become much
larger; thus, as discussed in Section 4.4, we fix the slope (which
does not significantly evolve from z = 4 to 6) at z = 7 and 8 to the
z = 6 value.

in the case of our SPS modeling) and the data have little
constraining power.

Although the recovered M∗–MUV distribution above
Mthresh1(z) is reliable in both bias and scatter, the small
dynamic range above this limit at high redshift still
makes the uncertainty of the recovered M∗–MUV rela-
tion large. We thus utilize a stacking analysis (described
in Section 4.2) to increase the S/N and dynamic range
in UV luminosity at which we can still reliably derive
typical properties of sources (e.g., stellar mass). In the
simulation, we find that via stacking, we can achieve
this 1.5–2.0 mag further in UV magnitude, down to
MUV ∼ −(18.0–18.5) at z =4–6 (hereafter Mthresh2(z)).
Mthresh2(z) corresponds roughly to the UV luminosity of
the stacked SEDs with S/N ∼ 1 at 3.6 µm, below which
the inferred mass remains uncertain just as one might
expect.

In short, our simulation enables us to assess the bias
and uncertainty of the observed M∗–MUV distribution,
which has so far been generally overlooked in the lit-
erature. We find that the observed M∗–MUV distribu-
tion and the inferred relation at high redshift are very
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Fig. 8.— Probability density function of the recovered M∗–MUV
normalization as a function of intrinsic normalization at z = 7 and
z = 8 in our mock galaxy simulations, when the slope is fixed to
the intrinsic slope. When the slope is fixed, the normalization can
be recovered at high confidence.

sensitive to the choice of stellar mass estimator and the
UV magnitude range even when using the same data set
and can be dominated by systematics if not tested thor-
oughly. From this simulation, we derive the redshift-
dependent UV magnitude thresholds, Mthresh1(z) and
Mthresh2(z), above which we can rely on the median
mass and scatter of individual galaxies in each UV
magnitude bin and the median mass of stacks, respec-
tively. Specifically, we find Mthresh1(z) to be MUV =
−20.0,−20.0,−20.0,−22.5,−22.5 and Mthresh2(z) to be
MUV = −18.0,−18.5,−18.5,−20.5,−20.5 at z = 4, 5, 6,
7, 8.

Based on our findings, we derive the best-fit M∗–MUV

relation by combining the median mass of galaxies in
each UV magnitude bin at MUV < Mthresh1(z) and the
median mass of stacked points at Mthresh1(z) < MUV <
Mthresh2(z), neglecting galaxies fainter than Mthresh2(z)
when fitting this relation. To explore the validity of this
optimized method of combining individual bright galax-
ies with stacked faint galaxies, we show in Figure 7 the
distribution of the recovered slope at z = 4–8 for var-
ious input slopes with our optimized method, demon-
strating that we can recover the intrinsic relation fairly
well even at z = 6. From this simulation, we derive the
pdf of intrinsic slope (slopein) of the M∗–MUV relation
given the observed slope (slopeout), based on the results
from each of the 50 simulations at each input slope. We
find, for the given slope observed from our real sam-
ple, the central 68% range of the intrinsic slope to be
−0.57 < slopein < −0.63, −0.42 < slopein < −0.53, and
−0.42 < slopein < −0.64 at z = 4, 5, and 6, respec-
tively. This is comparable with the 1σ confidence level
of the observed slope, indicating that our M∗–MUV rela-
tions and their uncertainties at z = 4–6 measured from
our real sample are relatively reliable, when we use this
optimized method.

It is encouraging that we find no bias at z = 7–8, but
the broad pdf of the recovered slope for a given input
slope at z = 7–8 indicates that it is hard to constrain the
intrinsic slope with the currently available data. There-
fore, we perform another test to see if our current data
can constrain the normalization of the intrinsic M∗–MUV

relation when we apply an additional prior of a known
intrinsic slope. Figure 8 shows the pdf of the recovered
normalization as a function of intrinsic normalization at
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TABLE 1
Best-fit Fiducial log10(M∗)–MUV relation

z Normalization Slope logM∗(MUV=−21)

(M�) (M�)

4 −1.70 ± 0.65 −0.54 ± 0.03 9.70 ± 0.02
5 −0.90 ± 0.74 −0.50 ± 0.04 9.59 ± 0.03
6 −1.04 ± 0.57 −0.50 ± 0.03 9.53 ± 0.02
7 −1.20 ± 0.16 −0.50 ± — 9.36 ± 0.16

(−4.23 ± 2.12) (−0.65 ± 0.10) (9.45 ± 0.07)
8 −1.56 ± 0.32 −0.50 ± — 9.00 ± 0.32

(−5.47 ± 6.19) (−0.69 ± 0.31) (9.00 ± 0.31)

Note. — At z ∼ 7–8, numbers in parentheses are the best-
fit parameters when we do not fix the slope to the best-fit slope
at z ∼ 6. The quoted errors represent the 1σ uncertainties. The
normalization is defined as the logarithmic stellar mass at MUV =
0 (logM∗(MUV=0)).

z = 7–8 when the slope is fixed to the intrinsic slope,
illustrating that the normalization can be recovered ac-
curately within ±0.5.

The best-fit relation for our real sample in Section 4.4
is derived with the optimized method of combining in-
dividual bright galaxies with stacks of fainter galaxies.
When we need to use the full M∗–MUV distribution or a
scatter for our GSMF derivation, we use those inferred
at MUV < Mthresh1(z).

4.4. M∗–MUV Relation

Using our optimized method vetted in Section 4.3, we
derive the best-fit linear log10(M∗/M�)–MUV relation at
each redshift. Specifically, we use the median mass of in-
dividual galaxies for bins with MUV < Mthresh1(z) and
the median mass of median flux-stacked SEDs for bins
with MUV < Mthresh2(z). Our best-fit mass-to-light rela-
tion, listed in Table 1, has a slope of −(0.50–0.69), which
is slightly steeper than a constant mass-to-light ratio of
a slope of −0.40. As the slope between z = 4 and z = 6
is nearly constant (∼ −0.5) but the uncertainty at z =
7–8 is large, we fix the slope at z = 7 and z = 8 to be
the same as the best-fit slope at z = 6 while leaving the
normalization as a free parameter.18 Our mock galaxy
simulation in Section 4.3 indicates that our current data
allow us an accurate recovery of the intrinsic normal-
ization at z = 7–8 with a prior of a known input slope
(Figure 8). We find a (very) weak evolution in the nor-
malization between z = 4 and z = 7 (a decreasing nor-
malization with increasing redshift). The normalization
evolves from log(M∗/M�)(MUV=−21) = 9.70 (at z =4) to
9.36 (at z = 7) at only 2σ significance. Interestingly,
the normalization appears to decrease more rapidly from
z = 7 to z = 8 than at lower redshifts, although the small
sample at z = 8 prevents drawing any firm conclusions.
We discuss this further in Section 6.

Although the M∗–MUV distribution of our flux-limited
sample has nonzero scatter, the derived M∗–MUV rela-
tion is not subject to Malmquist bias (i.e., missing faint
galaxies at a given stellar mass) as we estimate the M∗–
MUV relation in bins of luminosity and not stellar mass.
Therefore, the derived relation should be robust against
the Malmquist bias, which could artificially result in a

18 Albeit slightly shallower (−(0.44–0.48)), the slope predicted
from the SAMs of Somerville et al. (2016, in preparation) is almost
constant over the redshift interval as well.

steeper slope than the intrinsic one by losing the faint
envelope of galaxy distribution for a given stellar mass.19

There are discrepancies of 0.3–0.7 dex between differ-
ent studies in the measured median mass at a given UV
magnitude even at z ∼ 4, which are larger at fainter
UV bins (González et al. 2011; Lee et al. 2012; Stark et
al. 2013; Duncan et al. 2014; Salmon et al. 2015). This
may reflect a number of systematic uncertainties associ-
ated with sample selection and stellar mass estimation.
As these uncertainties make a direct comparison between
different studies difficult, it highlights the importance of
a comprehensive and independent analysis to verify sys-
tematics.

Overall, we found the best-fit slope shallower than that
of González et al. (2011) but similar to those of Stark
et al. (2013) and Duncan et al. (2014), with an excep-
tion at z = 4. First, the slope of our best-fit relation
of −0.54(±0.03) at z = 4 is significantly shallower than
that of González et al. of −0.68(±0.08), which is based
on an order-of-magnitude-smaller sample. As the rela-
tion of González et al. is derived with no nebular cor-
rection, it is not surprising that their stellar masses for
UV-bright galaxies are higher than ours. However, their
stellar masses for galaxies in faint UV bins are lower than
ours by ∼0.2 dex at MUV ∼ −18, resulting in a steeper
slope than ours. Meanwhile, the M∗–MUV relation of
Stark et al. (2013) shows a good agreement with ours
at all redshifts with only a slightly shallower slope than
ours. Duncan et al. (2014) in general find higher stel-
lar masses for galaxies than we do in faint UV bins, re-
sulting in a higher normalization and a shallower slope
than ours, with the biggest difference in normalization
(∆ log(M∗/M�)MUV=−21 = 0.25) and slope (∆ = 0.09;
2.5σ significance) being observed at z = 4 (see Section
5.4 for more discussion).

5. THE GALAXY STELLAR MASS FUNCTION

5.1. Derivation of the GSMFs

We now convolve our M∗–MUV distribution with the
observed rest-frame UV luminosity function to derive
GSMFs. The luminosity functions we utilize in this
study are from Finkelstein et al. (2015), which included
the full CANDELS GOODS fields, the HUDF and two
parallel fields, and the Abell 2744 and MACS J0416.1-
2403 parallel fields from the Hubble Frontier Fields data
set. These luminosity functions are already corrected for
incompleteness and selection effects using the detection
probability kernels derived from fake source simulations,
as discussed by Finkelstein et al. (2015).

Figure 9 presents GSMFs constructed using four dif-
ferent methods:

1. “Raw Bootstrapped GSMF”:

We constructed the “observed” GSMF by combining
the UV luminosity function with the observed M∗–MUV

19 As discussed in Section 4.1, objects with high mass and low
UV flux that are observed or that we may be missing are believed to
be the subdominant population for all UV luminosity bins and thus
would not change the derived relation (see also Salmon et al. 2015
for a similar argument based on the tight scatter of the star-forming
main sequence). When probing in bins of stellar mass, however,
those massive outliers seen at z = 4–5 with log(M∗/M�) > 10 are
off from the linear correlation derived in bins of UV luminosity in
this section.
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Fig. 9.— Our fiducial galaxy stellar mass functions, from a J +H-band selected sample of galaxies at z = 4–8 (red filled circles). The
open squares, filled squares, small stars, and small red filled circles indicate raw bootstrapped, incompleteness-corrected bootstrapped,
constant-scatter, and asymmetric-scatter GSMFs, respectively. The red dotted, red dashed, red dash-dot and red solid lines represent the
Schechter fit for the last three and for our fiducial GSMFs, respectively. The uncertainty on our fiducial GSMF includes contributions
from both the UV luminosity function uncertainties and the uncertainty in the M∗–MUV relation. The light-red shaded regions denote
1,000 Schechter fits for our fiducial GSMF randomly chosen within the 1σ 3-dimensional contour of the Schechter parameters determined
from our MCMC analysis. The blue points (open squares, filled squares, dashed line) correspond to previous estimates (raw bootstrapped,
incompleteness-corrected bootstrapped, constant-scatter GSMF) of González et al. (2011) from WFC3/IR data of the ERS (for z = 4–6)
and from WRC3/IR data of the ERS, HUDF09, and NICMOS data over the GOODS fields (for z = 7). Also overplotted are recent
estimates for GSMFs from the literature—from Ks-band selected sample at z ∼ 4 (Ilbert et al. 2013; Muzzin et al. 2013), from 4.5µm
selected sample (Caputi et al. 2011, 2015), and from rest-frame UV-selected samples (Stark et al. 2009; Santini et al. 2012; Lee et al. 2012;
Duncan et al. 2014; Grazian et al. 2015). All points and lines are converted to a Salpeter IMF. The thick grey lines show dark matter
halo mass functions scaled to a baryon conversion efficiency of 20% (i.e., 20% of halo mass times the cosmic baryon fraction of Ωb/Ωm).
Our GSMFs are characterized by a steeper low-mass-end slope of −1.55 (−2.25) at z = 4 (z = 8) compared to that of González et al. of
−1.43 (−1.55) at z = 4 (z = 7).
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distribution. We first drew 105 galaxies from the best-
fit Schechter function of the UV luminosity function in
the range of −30 < MUV < −13. Then, we assigned
stellar mass for each galaxy to be the stellar mass of
the randomly chosen galaxy with similar rest-frame UV
absolute magnitude from the observed M∗–MUV distri-
bution. This method accounts for outliers, which may
be a non-negligible fraction of galaxies at z = 4.

The non-negligible spread in stellar mass at a fixed
rest-frame UV absolute magnitude observed in Figure 5
can result in GSMFs with an underestimated low-mass-
end slope if we do not account for the “unobserved” pop-
ulation of galaxies below the detection threshold of the
survey. This is because galaxies at a given UV luminos-
ity have a range of mass-to-light ratios; thus, galaxies be-
low the detection limit can still have stellar masses high
enough to contribute to the number density in the stellar
mass bins of our interest (affecting the last few points in
the GSMFs depending on the amount of spread). There-
fore, we need to correct for the incompleteness by as-
suming an M∗–MUV distribution in UV luminosity bins
below the current sensitivity limit. We use three different
incompleteness correction schemes.

2. “Incompleteness-corrected Bootstrapped GSMF”:

A reasonable assumption on the M∗–MUV distribution
in the unobserved faint UV luminosity bins is that the
observed distribution of individual galaxies in bright UV
bins above a threshold represents the intrinsic distribu-
tion and can be extended to fainter bins. In Section 4.3,
we found the redshift-dependent threshold Mthresh1(z) at
each redshift above which the intrinsic distribution can
be recovered well without any noticeable bias or increase
in scatter. We extend the observed M∗–MUV distribu-
tion at MUV < Mthresh1(z) to fainter UV luminosities
down to MUV = −13, keeping the distribution centered
around the best-fit M∗–MUV relation. The rest of the
procedures are the same as those for the “raw boot-
strapped GSMF”.

3. “Constant-scatter GSMF”:

Instead of using individual points in the M∗–MUV dis-
tribution, we assumed an idealized lognormal distribu-
tion around the best-fit M∗–MUV relation with a con-
stant scatter, inferred from bright UV luminosity bins
that have a statistical number of galaxies and high com-
pleteness. We used the mean scatter estimated from the
two faintest bins at MUV < Mthresh1(z) with more than
10 galaxies, which is ∼0.4–0.5 dex. The UV luminosity
function was then convolved with this lognormal distri-
bution to derive the “constant-scatter GSMF”.

4. “Asymmetric-scatter GSMF”:

The three approaches above are basically the same as
those used by González et al. (2011). However, the mass
distribution of our sample in a given rest-frame UV abso-
lute magnitude bin is not symmetric with respect to the
best-fit relation. Rather, the lower side of the best-fit re-
lation has in general a smaller scatter. As already noted
in Section 4.1, the lack of galaxies with high UV luminos-
ity and low mass contributes in part to the asymmetric
scatter, and the results in Section 4.3 in addition indi-

cate that it could be an intrinsic property and not just
an observational bias. Therefore, we assume a lognormal
distribution with an asymmetric scatter with respect to
the best-fit M∗–MUV relation (a different sigma above
and below the mean) inferred from the two faintest bins
at MUV < Mthresh1(z) and extend it to fainter UV lu-
minosity bins.20 The resultant GSMF constructed via
this method is referred to as the “asymmetric-scatter
GSMF”.

While the asymmetric-scatter GSMFs were devised to
probe the incompleteness-corrected low-mass-end slope,
they might not account properly for the fraction of out-
liers seen at z = 4 and z = 5 that can impact the
high-mass end of the GSMF. Thus, we combine the
bootstrapped GSMF for high masses (log(M∗/M�) >
10) and the asymmetric-scatter GSMFs for low masses
(log(M∗/M�) > 10), and consider this our fiducial
GSMF. We found that the GSMFs computed using
the 1/Vmax method (Schmidt 1968, gray diamonds in
Figure 9) are in excellent agreement with our fidu-
cial GSMFs at the high-mass end. Figure 9 shows
our fiducial GSMFs at z = 4–8 (listed in Table 2) as
well as those derived from the four methods described
above. The incompleteness-corrected, constant-scatter,
and asymmetric-scatter methods yield consistent results
(except at z = 8 where the GSMF is less robust due
to the small sample size), and their Schechter fits (see
Section 5.2) are nearly indistinguishable within the un-
certainties on the low-mass end.

5.2. Schechter Fit and Uncertainties

Before we parameterize our GSMF with a Schechter
function, we first need to derive the uncertainties for our
GSMF data points. Randomly perturbing points of the
GSMFs is not a proper way to estimate the uncertainties
of the GSMFs because they are correlated. Thus, we de-
rive the 68% confidence interval of our fiducial GSMFs
as follows. First, we randomly drew 1000 samples from
a Markov Chain Monte Carlo (MCMC) chain of the
UV luminosity function Schechter parameters derived by
Finkelstein et al. (2015) within the 3-dimensional 1σ con-
tour of (L∗, αL, φ∗L). Then, for each luminosity function
generated from the Schechter parameters, we assigned an
M∗–MUV relation with (slope, normalization) values ran-
domly chosen within the 2-dimensional 1σ contour of the
best-fit parameters of the M∗–MUV relation.21 The new
M∗–MUV distribution was then combined with the new
luminosity function to generate a GSMF in the same way
that our GSMF was constructed. This generates 1000
GSMFs, of which the minimum and maximum represent
the 1σ upper and lower limits of the GSMFs, respectively.

We parameterize our GSMFs with a Schechter (1976)
function,

φ(M∗)dM∗ = (φ∗/M∗)×(M∗/M
∗)α exp[−(M∗/M

∗)]dM∗
(1)

20 For z = 7 and z = 8 where the scatter is not robustly mea-
sured due to the small sample size, we assume that the M∗–MUV
distribution follows that at z = 6.

21 For z =7–8 where we fix the slope of the M∗–MUV relation
to the z = 6 value, the uncertainty in the normalization is taken
into account.
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which is characterized by a power law with a low-mass-
end slope of α, an exponential cutoff at stellar masses
larger than a characteristic mass, M∗, and a normal-
ization φ∗. The best fit, uncertainties, and posterior
distributions of the Schechter parameters for our fidu-
cial asymmetric-scatter GSMFs were derived by running
an MCMC algorithm that samples the 3-dimensional pa-
rameter space of the Schechter parameters. To ensure
full coverage of the parameter space and assess conver-
gence, we ran five parallel chains composed of 105 steps
each. The starting position of the chain was determined
by a coarse grid search that minimized the χ2 statis-
tic between the model and the data. The first 10% of
steps were disregarded in the burn-in phase before run-
ning each chain to reduce the dependence of the poste-
rior distribution on the initial position. The proposal
distribution of each parameter was assigned as a nor-
mal (lognormal) distribution for α (M∗ and φ∗) with
the width tuned to generate an acceptance rate of ∼
23–30%.22 As a prior, we limited the sampling param-
eter space to be α > −10, 8 < log(M∗/M�) < 13,
and log(φ∗/Mpc−3) > −8. For 6 ≤ z ≤ 8, where the
constraints on M∗ are weak (see the large error bars
on the open gray circles in Figure 10), we took a log-
normal prior on M∗ with mean log(M∗/M�) = 10.75
and standard deviation of 0.3 dex, following the poste-
rior distribution of M∗ at z = 4 and z = 5. Comparing
the likelihood of the current step, which is defined as

L ∝ e−χ
2/2, with the proposed set of parameters deter-

mines whether the proposal is accepted. We employ the
Metropolis–Hastings algorithm for the acceptance crite-
ria. After running all chains, convergence was assessed by
examining trace plots of parameters, as well as using the
Rubin–Gelman R̂ diagnostic (Gelman & Rubin 1992) for
each marginalized posterior distribution. The diagnos-
tic value R̂ ∼ 1 suggests convergence, and we confirmed
that for all redshifts and parameters the diagnostic has
a value 1.00 < R̂ < 1.01.

From the resulting joint posterior distribution, we ex-
tracted the marginal posterior distribution of each pa-
rameters. The median and the central 68% of the
marginal posterior distributions provide our fiducial
Schechter parameters and an estimate of the 68% confi-
dence interval on each parameter (shown as the error bars
in Figure 10). In short, the uncertainties on the GSMFs
and Schechter parameters include (i) the uncertainty of
the best-fit M∗–MUV relation and (ii) the uncertainty of
the Schechter parameters in the UV luminosity function,
the latter of which includes Poisson errors. Other sources
of random errors on the derived GSMFs, including cos-
mic variance, are discussed in Section 7.2.

Our best-fit Schechter parameters are listed in Table
3 and plotted in Figure 10 as a function of redshift.
Our data support a decreasing (steepening) of the low-
mass-end slope (α ∼ −1.55+0.08

−0.07, −1.70+0.08
−0.07, −1.91+0.09

−0.09,

−1.95+0.18
−0.18, −2.25+0.72

−0.35 at z = 4, 5, 6, 7, 8) with increas-
ing redshift, asymptoting to the faint-end slope of the
UV luminosity function (αL ∼ −1.56+0.06

−0.05, −1.67+0.05
−0.06,

22 The ideal acceptance rate, which affects the efficiency of the
chain, depends on the dimension (d) of the problem, decreasing
from ∼44% for d = 1 to ∼23% for d→∞ (Gelman et al. 1996, pp.
599–607).
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Fig. 10.— Redshift evolution of the best-fit Schechter parameters
for our fiducial GSMFs. The low-mass-end slope, α, evolves toward
a steeper value with increasing redshift, asymptoting to the faint-
end slope of the UV luminosity function. Conversely, the open
gray circles denoting the best-fit Schechter parameters with a flat
prior on M∗ show that we observe no significant evolution in the
characteristic mass, M∗, though our observations do not allow us
to place reasonable constraints on M∗ at z ≥ 6.
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Fig. 11.— Confidence contours of the best-fit Schechter parame-
ters for our fiducial GSMFs at z = 4–8 at the 68% and 95% levels,
showing that we can place reasonable constraints on α. The best-
fit Schechter parameters at z = 6–8 were derived with a lognormal
prior on M∗, and their contours are denoted as dot-dashed lines.
The best-fit values are shown as filled circles.
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−2.02+0.10
−0.10, −2.03+0.21

−0.20, −2.36+0.54
−0.40 at z = 4, 5, 6, 7, 8),

and possibly a decrease in φ∗ with increasing redshift as
well. Conversely, our GSMFs favor no evolution in M∗

with redshift, although we cannot rule out the possiblity
of evolution due to the large uncertainties, in particular
at z & 6 (see the gray open circles in Figure 10, which
are derived with a flat prior on M∗). The large error
bars on M∗ are because constraints on the bright end of
the luminosity function (and thus the massive end of the
GSMF) remain weak, as even our wide-area data reach
only 1–2 mag brighter than the characteristic magnitude
of the UV luminosity function, L∗ (marked as arrows at
the bottom of Figure 5), and the UV magnitude bins
brighter than L∗ are populated by only a few galaxies.
The lack of robust constraints on the massive end of the
GSMF leads to a well-known degeneracy between M∗, α,
and φ∗, as shown in Figure 11 with confidence contours
on the Schechter parameters.

5.3. Eddington Bias

Several recent studies (Ilbert et al. 2013; Caputi et
al. 2015; Grazian et al. 2015) investigated the effect of
the Eddington bias (Eddington 1913) on the low-mass-
end slope of the GSMF, finding that the increase in the
stellar mass uncertainties for individual galaxies at low
masses results in an artificial steepening of the low-mass-
end slope (Grazian et al. 2015; Caputi et al. 2015). In our
methodology, the “effective” uncertainty in stellar mass
is not stellar mass dependent, as we do not use individual
stellar masses to construct the GSMF on the low-mass
end but rather convolve the UV LF with stellar mass–UV
luminosity distribution, where we use the distribution
around ∼L∗ (−21 < MUV < −20) to extend to fainter
luminosities. Taking a similar approach to other studies,
we investigated the effect of the Eddington bias by pa-
rameterizing the observed GSMF as a convolution of an
“intrinsic” Schechter function with a lognormal function
with its width to be the mean stellar mass uncertainty
of galaxies with −21 < MUV < −20. We implemented
a grid search for the “intrinsic Schechter parameter to
correct for the Eddington bias, finding that while we see
a similar trend to what Grazian et al. (2015) found (the
“intrinsic” low-mass-end slope is similar [at z = 4–5] or
slightly flatter [at z & 6], driven by the change in M∗,
which is uncertain), the change in the number density on
the low-mass end is negligible and the trend of steepen-
ing low-mass-end slope with increasing redshift persists
after correcting for the Eddington bias.

5.4. Comparison with Previous Work

Figure 9 compares our GSMFs with recent estimates
from the literature determined by rest-frame UV-selected
galaxies (either using photometric redshift or color-color
selection; Stark et al. 2009; González et al. 2011; Lee et
al. 2012; Santini et al. 2012; Duncan et al. 2014; Grazian
et al. 2015)23 or rest-frame optical-selected galaxies (Ca-
puti et al. 2011; Ilbert et al. 2013; Muzzin et al. 2013; Ca-
puti et al. 2015). All GSMFs are converted to a Salpeter
IMF when necessary. Overall, the comparison of our
GSMFs with previous estimates demonstrates that there

23 For the GSMFs of Stark et al. (2009), we apply correction
factors for nebular emission of ×1.1, 1.3, and 1.6 at z = 4, 5, 6 that
are inferred in Stark et al. (2013).

exists a considerable discrepancy in the high- and/or low-
mass ends and in the normalization of the GSMFs at all
redshifts. However, before discussing the discrepancy in
detail, we point out that the error bars of the GSMFs
compared in Figure 9 include only random uncertain-
ties. For example, those of Grazian et al. (2015) include
Poisson errors and errors (photometric scatter and pho-
tometric redshifts) derived from their Monte Carlo simu-
lations, while those of Duncan et al. (2014) include Pois-
son errors and photometric redshift uncertainty. Those
of González et al. (2011) include the uncertainties of the
UV luminosity function of Bouwens et al. (2007, 2011)
and the scatter of the M∗–MUV relation. None of the
plotted points include cosmic variance or other sources
of systematic uncertainties.

A major source of discrepancy in the GSMFs between
different studies may be attributed to the systematic un-
certainties associated with stellar mass estimation, as
already noted by many studies (e.g., Marchesini et al.
2009; Mobasher et al. 2015). Each study adopts different
assumptions on the SFH, dust law, metallicity, nebular
emission, etc., in their SPS modeling, of which effects
on the derived stellar mass can be significant. More-
over, many parameters are degenerate, thus making as-
sessment of the systematic effects induced by these dif-
ferent assumptions on the disagreement of the observed
GSMFs hard to achieve. While investigating the system-
atic effects caused by the different sets of assumptions
adopted in previous studies is beyond the scope of our
study, we stress that we have focused on deriving the in-
trinsic GSMFs by exploring the systematic effects inher-
ent in our analysis, minimizing them via our SAM+mock
galaxy simulations (see Section 4.3).

With these above caveats in mind, we now discuss
the discrepancy highlighted by the direct comparison be-
tween the GSMFs in Figure 9. First, we observe a dis-
greement in the normalization of the GSMFs between
ours and the estimates from the literature at all red-
shifts. At z = 4 and z = 5, although our normalization
is in good agreement with Lee et al. (2012) and Grazian
et al. (2015), a prominent discrepancy is observed with
González et al. (2011), Santini et al. (2012), and Duncan
et al. (2014). The GSMFs of González et al. (2011) are
found to lie systematically below ours and others in the
literature at z = 4 and z = 5, and the GSMFs of Santini
et al. (2012) at z ∼ 4 and Duncan et al. (2014) at all red-
shifts are found to lie above. At higher redshifts of z =
6–7, the normalization of our GSMFs is lower with re-
spect to those of Duncan et al. (2014) and Grazian et al.
(2015, at z = 6) but shows a good agreement with Stark
et al. (2009) (at the massive end; they do not correct for
incompleteness), González et al. (2011), and Grazian et
al. (2015, at z = 7). Although the overall difference in
the normalization of the GSMFs between different stud-
ies remains similar at z = 7, the larger error bars at z = 7
render any differences at that high redshift insignificant.

Examining the different mass regimes, we notice an in-
teresting disagreement at z = 4, where wide-area ground-
based surveys (Ilbert et al. 2013; Muzzin et al. 2013),
which are potentially more sensitive to more rare, mas-
sive galaxies, may be more robust. Specifically, in the
most massive bin of our study at log(M∗/M�) = 11.25,
both Muzzin et al. (2013) and Ilbert et al. (2013) found
a number density ∼ 0.1–0.3 dex higher than we find
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TABLE 2
Galaxy stellar mass function at z = 4–8

log M∗ log φ
(M�) (dex−1 Mpc−3)

z = 4 z = 5 z = 6 z = 7 z = 8

7.25 −1.57+0.21
−0.16 −1.47+0.24

−0.21 −1.47+0.35
−0.32 −1.63+0.54

−0.54 −1.73+1.01
−0.84

7.75 −1.77+0.15
−0.14 −1.72+0.20

−0.20 −1.81+0.23
−0.28 −2.07+0.45

−0.41 −2.28+0.84
−0.64

8.25 −2.00+0.13
−0.10 −2.01+0.16

−0.16 −2.26+0.21
−0.16 −2.49+0.38

−0.32 −2.88+0.75
−0.57

8.75 −2.22+0.09
−0.09 −2.33+0.15

−0.10 −2.65+0.15
−0.15 −2.96+0.32

−0.30 −3.45+0.57
−0.60

9.25 −2.52+0.09
−0.09 −2.68+0.07

−0.14 −3.14+0.12
−0.11 −3.47+0.32

−0.35 −4.21+0.63
−0.78

9.75 −2.91+0.12
−0.05 −3.12+0.09

−0.11 −3.69+0.12
−0.13 −4.11+0.41

−0.57 −5.31+1.01
−1.64

10.25 −3.37+0.09
−0.12 −3.47+0.16

−0.14 −4.27+0.38
−0.86 −4.61+0.72

−0.82 —

10.75 −4.00+0.20
−0.25 −4.12+0.25

−0.38 — −5.24+0.90
−0.57 —

11.25 −4.54+0.34
−0.55 −4.88+0.40

−0.61 — — —

Note. — The quoted 1σ errors include the uncertainties of the UV luminosity
function and the M∗–MUV relation.

TABLE 3
Best-fit Schechter function parameters of

our fiducial GSMFs

z log M∗ α φ∗

(M�) (10−5 Mpc−3)

4 10.50+0.30
−0.24 −1.55+0.08

−0.07 25.68+21.75
−12.80

5 10.97+0.68
−0.36 −1.70+0.08

−0.07 5.16+7.05
−4.08

6 10.72+0.29
−0.30 −1.91+0.09

−0.09 1.35+1.66
−0.75

(11.08+1.27
−1.04) (−1.90+0.12

−0.10) (0.57+7.70
−0.54)

7 10.78+0.29
−0.28 −1.95+0.18

−0.18 0.53+1.10
−0.38

(11.33+1.05
−1.11) (−1.96+0.20

−0.17) (0.13+2.37
−0.12)

8 10.72+0.29
−0.29 −2.25+0.72

−0.35 0.035+0.246
−0.030

(10.30+1.31
−1.08) (−2.12+0.87

−0.46) (0.125+5.057
−0.120)

Note. — The quoted best-fit values and 1σ errors of
the Schechter parameters represent the median and the
central 68% confidence interval of the marginal posterior
distribution of each parameter obtained from our MCMC
analysis. At 6 ≤ z ≤ 8, we show in parentheses the
results derived with a flat prior on M∗.

(and ∼0.2–0.3 dex higher than Duncan et al. (2014) and
Grazian et al. (2015)). This discrepancy may be at-
tributed in part to the fact that the median redshift of
these ground-based surveys is z = 3.5, lower than ours,
as well as the other studies shown (z ' 4). Moreover,
the former is derived from a shallow but wide (∼1.6 deg2

down to Ks ∼ 24) Ks-band (rest-frame optical) selected
catalog. Thus, they should be more complete and less
susceptible to cosmic variance and Poisson noise at the
high-mass end than other works that are based on small-
field, rest-frame UV-selected catalogs. Meanwhile, Ca-
puti et al. (2015), who investigated the high-mass end of
the GSMFs by adding the contribution of Ks-band faint
but 4.5µm bright ([4.5] < 23) galaxies to the previous de-
terminations of the Ks-band-selected GSMFs by Caputi
et al. (2011) and Ilbert et al. (2013), present consistent
results with ours, which may be attributed to the lower
normalization of the GSMFs of Caputi et al. (2011) with
respect to others.

At the high-mass end, GSMFs based on rest-frame UV-
selected galaxies (Stark et al. 2009; González et al. 2011;

Lee et al. 2012; Duncan et al. 2014; Grazian et al. 2015)
agree reasonably well with each other when the cosmic
variance is accounted for (see Section 7.2.2). However,
the high-mass end at z = 4 from Santini et al. (2012)
still shows a mild tension with ours due to their overall
higher normalization with respect to others.

Turning to the low-mass end, while our survey volume
is smaller than those of the ground-based surveys of Il-
bert et al. (2013) and Muzzin et al. (2013), the deep data
set in this study enables us to reach lower in mass than
these surveys can (log(M∗/M�) & 10), allowing more ro-
bust constraints on the low-mass-end slope. Starting at
z = 4, our results at the low-mass end are consistent with
most previous rest-frame UV-selected studies (González
et al. 2011; Lee et al. 2012; Duncan et al. 2014; Grazian
et al. 2015), with the exception of Duncan et al. (2014).

Because Grazian et al. (2015) restrict their analy-
sis to higher masses, the only points for comparison
at log(M∗/M�) . 9 are those from González et al.
(2011) and Duncan et al. (2014). Interestingly, the
largest disagreement at the low-mass end is found at the
lowest redshift of z = 4, where Duncan et al. (2014)
find significantly higher number densities (∼0.5 dex at
log(M∗/M�) ∼ 9) and a steeper low-mass-end slope
(α ∼ −1.9) with respect to the others. This may re-
sult from differences in the measured M∗–MUV relation,
as well as in the faint-end slope of the UV luminosity
function between our study and that of Duncan et al.
(2014). At z = 4, Duncan et al. (2014) found a shal-
lower M∗–MUV slope than what we find here. One differ-
ence in methods is that rather than using our hybrid ap-
proach of using individual high-mass galaxies and stacks
of lower-mass galaxies, Duncan et al. (2014) fit their
M∗–MUV distribution over a wide stellar mass range
down to log(M∗/M�) ∼ 8. As shown in their simula-
tions (see their Fig. 5), stellar masses for galaxies with
log(M∗/M�) < 9 are biased toward higher masses (a sim-
ilar result to what we find here), leading to their deriva-
tion of a shallower M∗–MUV slope. A shallower slope of
the M∗–MUV relation translates into a steeper low-mass-
end slope and a higher normalization of the GSMF: for
a given number density of galaxies in bins of UV lumi-
nosity (φL), the number density of galaxies in bins of
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stellar mass (φM ) is given by φM ∝ φL(dL/dM), and
is thus higher for a shallower M∗–MUV slope. We do
note, however, that Duncan et al. (2014) did not use this
M∗–MUV relation to measure their GSMF; they used a
1/Vmax method. However, the biases inherent in mea-
suring masses from individual poorly detected galaxies
may still be responsible for their steeper low-mass-end
slope at z = 4. Moreover, their faint-end slope of the
UV luminosity function at z ∼ 4 is steeper (by ∼0.2)
than that from Finkelstein et al. (2015), on which our
GSMF is based.

Unsurprisingly, differences are thus found in the evo-
lution of the low-mass-end slope with redshift. The
Schechter fit for our GSMF indicates steeper low-mass-
end slopes. While González et al. found a tentative
steepening in the low-mass-end slope with increasing red-
shift, the steepening is mild, from −1.43 at z = 4 to
−1.55 at z = 7. This is a combined effect of a steeper
faint-end slope of the updated UV luminosity function
by Finkelstein et al. (2015) used in our analysis and a
shallower M∗–MUV relation found in this study (Section
4.2). Grazian et al. (2015) and Duncan et al. (2014) both
find a nearly constant low-mass-end slope of α = −1.6
and α = −1.9, respectively, and no evidence of the steep-
ening that we observe.

At lower redshifts of z < 4, the consensus is that the
characteristic mass does not change but the normaliza-
tion evolves (e.g., Marchesini et al. 2009), although the
evolution of the low-mass-end slope remains controversial
as some find no evolution (Marchesini et al. 2009) while
others find a steepening low-mass-end slope with increas-
ing redshift (for a single Shechter function fit; Kajisawa
et al. 2009; Santini et al. 2012; Ilbert et al. 2013; Tom-
czak et al. 2014). In this study, at z & 4, the observed
evolution of the GSMF shows a low-mass-end slope that
steepens with redshift. Additionally, our results tenta-
tively confirm a roughly constant M∗, with a decreas-
ing φ∗ with increasing redshift, qualitatively similar to
results at lower redshift (e.g., Ilbert et al. 2013), though
we acknowledge that our relatively small volume prevents
robust constraints on M∗.

6. STELLAR MASS DENSITY

To measure the stellar mass density at z = 4–8, we
integrated the best-fit Schechter function at each red-
shift from 8 < log(M∗/M�) < 13, an often adopted
interval for stellar mass density estimates at high red-
shift in the literature. Table 4 lists our estimates of the
stellar mass density along with their 1σ uncertainties,
calculated as the minimum and maximum stellar mass
densities allowed by the 3-dimensional 1σ contour of the
Schechter parameters obtained in Section 5.2. Figure
12 presents the evolution of the stellar mass density at
z = 4–8, alongside values compiled from the literature
(converted to a Salpeter IMF when necessary). Most
data points from the literature are taken from the com-
pilation by Madau & Dickinson (2014), with the excep-
tion of González et al. (2011), which Madau & Dickinson
(2014) corrected for nebular emission. We instead show
the uncorrected (original) points together with Stark et
al. (2013), which are the González et al. values corrected
for nebular emission. We also add the recently published
works of Duncan et al. (2014) and Grazian et al. (2015).
The error bars from most of the studies include only ran-
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Fig. 12.— Evolution of the stellar mass density. The stellar
mass densities were obtained by integrating the best-fit Schechter
functions for our fiducial GSMFs between M∗ = 108 M� and
M∗ = 1013 M� (red circles). The error bars indicate the minimum
and maximum values of stellar mass density allowed by the 1σ
contour of the Schechter parameters. Small symbols are the com-
pilation of the stellar mass densities from the literature by Madau
& Dickinson (2014) (using their colors and symbols) along with re-
cent estimates from Stark et al. (2013), Duncan et al. (2014), and
Grazian et al. (2015), listed in the legend. All points and lines are
converted to a Salpeter IMF. The solid black curve marks param-
eterization of the time integral of SFRD from Madau & Dickinson
(2014) after gas recycling (R = 0.27) is accounted for, represent-
ing the prediction for the stellar mass density. The stellar mass
densities predicted for the two scenarios suggested by Oesch et al.
(2014) for the SFRD evolution at z > 8 are denoted as the black
and blue dashed lines (see Section 6 for more details). Our stellar
mass densities show a remarkable agreement with estimates of the
stellar mass density from the SFRD. Other colored solid curves are
stellar mass densities predicted from the three SAMs introduced in
Section 7.1.1, and the cyan hatched region denotes the 95% poste-
rior range of the Lu et al. (2014) model. For reference, we denote
fractions of the local stellar mass density measurement (Baldry et
al. 2012) as horizontal dotted lines.

dom errors.
Our estimates of the stellar mass density at z = 4–5 are

in broad agreement with previous measurements within
the uncertainty, with the exception of Caputi et al. (2011)
at z = 5 and Duncan et al. (2014) at z = 4. Duncan et al.
found a ∼0.5 dex higher stellar mass density at z = 4, a
deviation at 1.9σ, mainly due to their steeper low-mass-
end slope compared to ours. The stellar mass density at
z ∼ 5 from Caputi et al. shows a value lower by about
0.8 dex than our estimates (a deviation at 4.2σ), which
is surprising, given that their median redshift is slightly
lower (z ∼ 4.6). However, the sample selection of Caputi
et al. is very different from ours, such that their sample
is selected in the IRAC 4.5 µm band, which, while more
complete for very red galaxies, may underestimate the
incompleteness to star-forming galaxies.

At higher redshifts of z = 6–7, our measurements are
∼0.5–0.7 dex lower than those of González et al. (2011)
and Duncan et al. (2014) but show an excellent consis-
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TABLE 4
Cosmic Stellar Mass Density at z =

4–8

z log ρ∗
(M�Mpc−3)

4 7.17 +0.22
−0.13

5 7.09 +0.28
−0.19

6 6.48 +0.31
−0.18

(6.53 +0.55
−0.26)

7 6.19 +0.62
−0.40

(6.24 +0.88
−0.45)

8 5.50 +0.83
−0.81

(5.51 +1.64
−1.80)

Note. — Stellar mass estimates by inte-
grating the best-fit Schechter functions for
our GSMFs over 8 < log(M∗/M�) < 13.
The quoted 1σ error bars represent the min-
inum and maximum values of stellar mass
density allowed by the 3-dimensional 1σ con-
tour of the Schechter parameters. The values
in parentheses at 6 ≤ z ≤ 8 are the results
from the best-fit Schechter function derived
with a flat prior on M∗, displaying negligi-
ble difference from our fiducial stellar mass
estimates.

tency with the recent estimate of Grazian et al. (2015).
The agreement in the stellar mass density in spite of the
difference in the normalization of the GSMFs between
our study and Grazian et al. (2015) at z = 6 (their higher
normalization compared to ours) is a consequence of their
shallower low-mass-end slope by 0.4, which compensates
the difference in the stellar mass density due to their
higher normalization when integrating the GSMFs. As
the GSMFs are less well constrained at these high red-
shifts, our stellar mass density is only in mild tension
with other studies at z = 6 (< 2σ). At z = 7, although
the estimates of the stellar mass density from different
studies differ up to 0.7 dex, the increased error bars mean
that these differences are not currently statistically sig-
nificant.

As the stellar mass is to first order the time integral of
past star formation activity, a comparison of the stellar
mass density with the time integral of the SFRD should
yield similar values if both estimates are accurate. At
high redshifts, however, both quantities have large uncer-
tainties. The limiting factor in determining an accurate
SFRD is a determination of dust attenuation, for which
the observed UV luminosity density is corrected, without
a direct observation of the dust-obscured star formation
for most cases. Likewise, the uncertainties involved in
the determination of the stellar mass density (the sys-
tematics in stellar mass estimates, the uncertainties on
the abundance of low-mass galaxies, etc.) can impact the
stellar mass density and potentially result in a mismatch
between the integral of the SFRD and the stellar mass
density.

Figure 12 compares the time integral of the SFRDs
with the stellar mass density derived in this work. In
Figure 12, the black solid line indicates the parameter-
ization by Madau & Dickinson (2014) of the time inte-
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Fig. 13.— Redshift evolution of our fiducial GSMFs at z = 4–8.
For reference, the gray thick line denoting the z ∼ 0 GSMF (Baldry
et al. 2012) is shown.

gral of the SFRD.24 The black dashed line shows the
stellar mass density inferred by the SFRD parameteriza-
tion of Finkelstein et al. (2015, log SFRD ∝ (1 + z)−4.3),
which used updated values for the SFRD at z = 4–8.
Finally, the blue dashed line is from Oesch et al. (2014),
who suggested from a dearth of z > 8 galaxy candi-
dates that the SFRD appears to decline more rapidly
at z > 8 (log SFRD ∝ (1 + z)−10.9) than predicted from
the evolutionary trend in the SFRD at lower redshifts
of 4 < z < 8, though given the large uncertainty in the
SFRD estimates at z > 8, this claim currently remains
controversial.

While at low redshift the expected stellar mass den-
sity from the SFRD systematically exceeds the observed
stellar mass density by ∼0.3 dex (see Conroy 2013 for
summary and discussion on recent improvements), at
4 < z < 7 we do not observe such a trend. In particu-
lar, with the updated SFRD measurements from Finkel-
stein et al. (2015), the expected stellar mass density from
the SFRD is in good agreement with our stellar mass
densities within the uncertainties, which is a somewhat
remarkable result given the potential systematic uncer-
tainties in the measurements of both the SFRD and the
stellar mass density. In a scenario in which galaxies un-
dergo episodic star formation with a timescale longer
than 100 Myr (the timescale traced by UV), they would
have a UV-“dark” phase, and thus the stellar mass den-
sity would be lower than the time integral of the SFRD
when both measurements are based on the UV-“bright”
sample. Therefore, the agreement between the two es-
timates implies that on average the duty cycle of star
formation in relatively massive star-forming galaxies is
high and episodic accretion is not the dominant mode of
star formation. This is also hinted at in Section 4.1 and
is in agreement with other studies (e.g., Papovich et al.

24 All the time integral of the SFRDs presented in this paper
account for a gas recycling fraction of R = 0.27 for a Salpeter
IMF.
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2011). Nonetheless, we cannot rule out short-term fluctu-
ations (<100 Myr) in the SFH, which would still give an
agreement between the two quantities if measured from
the rest-frame UV-selected sample.

At z = 8, there is an intriguing steep drop in the stel-
lar mass density, which results in it being consistent with
the steep dropoff in the SFRD inferred by Oesch et al.
(2014), although still consistent with a smooth extrapo-
lation from the SFRD evolution from Finkelstein et al.
(2015) and Madau & Dickinson (2014). However, the
constraints on the stellar mass density at z = 8 are weak,
due to the large uncertainties in the M∗–MUV relation,
which is based on two stacked points consisting of only
11 galaxies. Thus, a larger sample of z = 8 galaxies,
combined with deeper IRAC imaging, is necessary to ro-
bustly measure the z = 8 stellar mass density.

Our estimates imply that the stellar mass density has
increased by a factor of 10+30

−8 from z = 7 to z = 4, and
0.4%, 0.7%, 3.0%, and 3.5% of the present-day stellar
mass density is formed by z = 7, 6, 5, 4, respectively.

The inferred steep low-mass-end slope at high redshift
indicates that the contribution of low-mass galaxies be-
low our mass limit that we are missing (M∗ < 108 M�)
to the total stellar mass density may be significant if the
extension of the Schechter fit is valid at smaller masses
than those probed by our sample. Using our best-fit
Schechter function parameters, the stellar mass density
at z = 4, 5, 6, and 7 would increase by factors of 1.1,
1.1, 1.5, and 1.6, respectively, if the low-mass end of the
integral were log(M∗/M�) = 6.

7. DISCUSSION

7.1. Physical Implications

Figure 9 shows the halo mass functions determined by
volume-averaging the Bolshoi snapshot mass functions
(Behroozi et al. 2013) over the same redshift ranges as
those defining our galaxy samples. Comparing the shape
of the halo mass function to that of our GSMF, we can
see that the shapes become more similar with increasing
redshift. Specifically, while at z = 4 the low-mass-end
slope is clearly shallower than the halo mass function, in
contrast to some other studies that found a low-mass-end
slope scaling closely with the halo mass function (see Sec-
tion 5.4), the steepening of our observed GSMF at low
masses leads to a more similar slope at z ≥ 7. This im-
plies that whatever the physical cause of the suppression
of galaxy formation in low-mass halos is at z ≤ 4, it
gradually becomes less relevant at z → 7.

Our observations cannot constrain the characteristic
mass M∗ at z ≥ 6. This may imply that our volume is
too small to capture the needed numbers of rare, massive
galaxies. However, the absence of a distinct turnover may
also imply that the mechanisms suppressing the massive
end of the GSMF are less severe at high redshift. Over
the past few years, a number of studies have found that
the exponential cutoff of the UV luminosity function ap-
pears to weaken at z ≥ 7 (Bowler et al. 2014; Finkel-
stein et al. 2015; Bowler et al. 2015). Those observations
could have been interpreted in two ways: either as a re-
sult of a decreasing efficiency for feedback processes (or
other mechanisms of suppression), or as a reduction in
the impact of dust extinction. Because the GSMF is
not primarily affected by dust attenuation (modulo its

impact on sample selection), a similar observation with
the GSMF would imply that the reduced amplitude of
an exponential cutoff is due to a cause other than dust,
potentially less efficient feedback.

The steepening of the low-mass-end slope with increas-
ing redshift we observe has an implication for the dif-
ferential mass growth of galaxies. Figure 13 shows the
evolution of the GSMF with redshift, presenting a steep
increase of more than one order of magnitude in number
density of high-mass galaxies (log(M∗/M�) ∼ 10.5) over
the redshift range 4 < z < 7. On the other hand, for
low-mass galaxies (log(M∗/M�) ∼ 8), we detect only a
mild evolution of a factor of two increase between z = 7
and z = 4. This suggests that the evolution of the low-
mass-end slope between z = 7 and z = 4 is driven by
the buildup of intermediate- and high-mass galaxies rel-
ative to low-mass galaxies, while the number density of
low-mass galaxies remains nearly constant, showing the
seemingly opposite of the “downsizing” seen at z < 4.
For a galaxy population that forms the star-forming main
sequence with a less-than-unity slope (e.g., Salmon et al.
2015), this behavior is in contrast to what is predicted
for the stellar mass growth dominated by a pure smooth
in-situ star formation: in such a scenario, the specific
stellar mass growth rate for low-mass galaxies is larger
than for high-mass galaxies; thus, the GSMF is expected
to steepen with time. Therefore, the observed flatten-
ing of the low-mass-end slope with time may indicate
that other processes, such as hierarchical merging or low
duty cycle in low-mass galaxies, must be important in the
physical processes governing the stellar mass buildup of
galaxies at high redshifts. A more detailed exploration of
the underlying physical processes can be undertaken by
linking galaxies to halos at each redshift and constraining
the galaxy stellar mass growth history across time. This
can be done by combining techniques such as abundance
matching and the mass accretion history of halos inferred
from dark matter simulations. We will investigate this
in a follow-up paper and show how this observed “upsiz-
ing” can be explained without invoking any unplausible
scenarios.

7.1.1. Comparison with theoretical studies

Figure 14 compares our GSMFs at 4 < z < 8 with
the predictions from galaxy formation models. First, we
compare our measurements with three SAMs described
in Lu et al. (2014) and briefly summarized in Section
4.3. These SAMs are based on the same halo merger
trees extracted from the Bolshoi N-body simulations, but
each employs different recipes for modeling the baryonic
physics and makes different predictions for the observ-
ables. One difference is the different implementation
for the outflow mass-loading factor due to stellar-driven
winds, which is the ratio of mass ejection to the star for-
mation rate. While these SAMs parameterize the out-
flow mass-loading factor as the same functional form of
a power law in halo circular velocity, the values of param-
eters describing the function—the normalization and the
power-law slope (β)—vary between models. This is be-
cause, while the velocity of outflows can be constrained
relatively well from observations of blushifted interstel-
lar absorption lines probing the material in outflows, it
is hard to place a tight constraint on the mass of the out-
flowing material directly from observations (e.g., Heck-
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Fig. 14.— Comparison of the observed GSMFs (red circles) and their best-fit Schechter functions (gray solid lines) in this work with
theoretical predictions. We show the results from a set of hydrodynamical simulations (the Illustris simulation [Genel et al. 2014], Choi
& Nagamine 2012, and Dayal et al. 2014) and SAMs (the Croton model, the Somerville model, the Lu model [described by Lu et al.
2014], and the Munich model [Clay et al. 2015]). The GSMFs predicted from the SAMs are convolved with a lognormal distribution of
redshift-dependent standard deviation σ = 0.2–0.4 dex to account for the measurement errors in stellar mass.
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man et al. 1990; Martin 2005). Lu et al. (2014) com-
pared the observables predicted from these SAMs and
found that the low-mass-end slope of the GSMFs has a
clear correlation only with the parameters describing the
outflow mass-loading factor or the timescale for ejected
gas to return to the disk and not with other parameters.
This suggests that the low-mass-end slope of the GSMFs
may be able to provide an alternative constraint on the
physics of outflows and can provide insights into the pro-
cesses responsible for the deficit of baryons in galaxies
relative to the cosmological baryonic fraction.

Figure 14 compares our GSMFs at z = 4–6 with the
SAMs.25 Focusing on the low-mass-end slope, the Lu
model, which implements the strongest outflows in low-
mass galaxies (i.e., set by a steep dependence of the
mass-loading factor on halo circular velocity of −3.3 <
β < −9.9), predicts somewhat shallower low-mass-end
slopes of α = −(1.52 → 1.61) at z = 4 → 6 than ob-
served, while the Croton model with the weakest out-
flows in low-mass galaxies (β = 0) has steeper slopes of
α = −(1.68→ 2.17) at z = 4→ 6. The Somerville model
with β = −2.25 displays the most similar low-mass-end
slopes to ours (α = −(1.64 → 1.93) at z = 4 → 6).26

However, none of the models match the observed GSMFs
over the entire redshift range. As noted by Lu et al.
(2014), the three models are consistent within the 1σ
confidence level of the Lu model, demonstrating the need
for further constraints from observations.

The comparison in Figure 14 also includes the results
from cosmological hydrodynamics simulations by Genel
et al. (2014), Choi & Nagamine (2012), and Dayal et al.
(2014), among which we limit our discussion here to the
cosmological smoothed particle hydrodynamics simula-
tion Illustris (Genel et al. 2014), in which energy-driven
outflows are implemented (β = −2.0; Vogelsberger et al.
2013). The simulation with a dark matter mass resolu-
tion of 6.26×106 M� was run in a box ∼(100 Mpc)3 and
was tuned to reproduce the observed GSMF at z ∼ 0 and
the evolution of the cosmic SFRD. Figure 14 shows that
the predictions from Illustris are consistent with our ob-
servations at all masses at z = 6–7 and at log(M∗/M�) >
9 (10) at z = 5 (z = 4). However, this model increas-
ingly overestimates the abundance of low-mass galaxies
with the discrepancy increasing from z = 6 to z = 4.
Thus, while the model is in qualitative agreement with
our results in that it predicts a steepening of the low-
mass-end slope with increasing redshift, the evolution in
the model is milder than observed in that the z = 4 low-
mass-end slope is much steeper than we observe. The
simulation is also known to overpredict the number den-
sity of low-mass galaxies at z ∼ 0 and also at intermedi-
ate redshifts z = 1–2 (Genel et al. 2014). This suggests
that the recipes regulating the stellar mass growth via,
e.g., stellar feedbacks in simulations are still overly sim-
plified. The Illustris model does provide a good match
at the low-mass end to the observed GSMFs at z = 4 by
Duncan et al. (2014) and Grazian et al. (2015), but at

25 The lack of sufficient time resolution in the simulation hinders
a reliable construction of the SAM GSMF at z = 7–8. This problem
will be solved in the final release of the light cones, and predictions
for the z = 7–8 GSMFs will be presented in Yung et al. (2016, in
preparation).

26 We parameterize the SAM GSMF at 8.0 < log(M∗/M�) <
11.5 with a single Schechter function.

z ≥ 5, the normalization of the GSMF from the model is
lower than theirs, in a better agreement with ours. The
good agreement in the high- and intermediate-mass range
between the model prediction from the Illustris and our
observed GSMFs may be attributed to the fact that the
model has an extra tuning to match the evolution of the
cosmic SFRD in addition to the local GSMF.

Lastly, we compare our GSMFs with the Munich SAM
from Clay et al. (2015). In its latest version of the model
(Henriques et al. 2015), they tuned their model parame-
ters to reproduce the observed evolution of the GSMFs
and passive fractions of galaxies at z ≤ 3. Among the
model parameters, they found that the problem of over-
producing the number density of low-mass galaxies at
z > 1, which has been known to be common to many the-
oretical models, can be solved by implementing a halo-
mass-dependent timescale for the reincorporation of gas
ejected by winds onto the disk. In this new scheme,
strong winds and a long timescale for the reincorpora-
tion of ejected material in low-mass galaxies delay their
growth at high redshift until the ejected gas is finally re-
turned at lower redshift (z < 2; Henriques et al. 2015).
By applying the same model parameters (except the dust
model) at higher redshifts, Clay et al. (2015) predicted
the properties of galaxies at 4 ≤ z ≤ 7, which are com-
pared with our GSMFs in Figure 14. As shown in the fig-
ure, the agreement is remarkable: the model predictions
show an excellent agreement with our measurements in
the normalization, as well as in both the high- and low-
mass-end slopes, except that the model slightly overpre-
dicts the abundance of low-mass galaxies at z ∼ 4 (<0.2
dex at log(M∗/M�) = 8.5). Especially, the normaliza-
tion of the model at z ≥ 6 is lower than that in other
observations but is consistent with ours. Understand-
ing what physical process in the model is responsible for
the lower normalization at z ≥ 6 would be interesting to
investigate in the future.

7.2. Uncertainties

Section 5.4 compared our GSMFs with other estimates
from the literature and found considerable discrepancy
between different studies. Although one of our two fields
used here (GOODS-S) was also used by Duncan et al.
(2014) and Grazian et al. (2015), and thus cosmic vari-
ance is not likely to explain the discrepancy, none of the
previous GSMF studies includes cosmic variance in their
error bars. We explore the uncertainties in our GSMFs
due to cosmic variance to see whether it can resolve the
observed discrepancies.

7.2.1. Cosmic Variance

Deep surveys, probing small volumes, are subject to
an uncertainty in the number density of galaxies due to
underlying large-scale density fluctuations (in addition
to the general Poisson uncertainty in the counting of ob-
jects). This fractional variance in number density is re-
ferred to as “cosmic variance”, given as the product of
the dark matter cosmic variance (=f(z)) and galaxy bias
(=f(M∗, z); the clustering of galaxies relative to dark
matter) squared. Cosmic variance can be quantified em-
pirically by comparing GSMFs from well-separated (un-
correlated) multiple fields. Because we have only two
independent fields, GOODS-S and GOODS-N, our data
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Fig. 15.— Fractional uncertainty on the number density due to
cosmic variance, as a function of stellar mass for our survey area
(approximated as two 10′× 16′ fields for log(M∗/M�) > 8.5 [cir-
cles], and a single HUDF-sized field at lower masses [star symbols]).
The solid lines represent this quantity estimated from the SAMs
(Somerville et al. 2016, in preparation). Dashed lines are values
obtained from the tool getcv (Moster et al. 2011), and dotted lines
(plotted on the lower right side) are from quickcv (Newman &
Davis 2002; dark matter only, single value at each redshift).

set is insufficient to quantify cosmic variance, so we turn
to other means to estimate its potential impact on our
results.

To get mass- and redshift-dependent estimates of cos-
mic variance for our survey area, we used eight realiza-
tions of the GOODS-S field from the SAM of Somerville
et al. (2016, in preparation). These SAMs are a rea-
sonable tool for our study, as they have been modi-
fied to match the luminosity functions of Finkelstein et
al. (2015) used here (the modification was a removal of
the birth-cloud component of the dust attenuation; see
Finkelstein et al. 2015 for more details). The combined
area coverage is about a factor of 40 larger than that of
the combined GOODS (N+S) CANDELS fields, allowing
us to extract volumes from these catalogs to estimate cos-
mic variance. We approximate our survey geometry as
the two GOODS fields (two 10′× 16′ fields), because the
two HUDF parallel fields are small (∼10 arcmin2) com-
pared to the GOODS-S field, and galaxies in these fields
likely correlate with those in the GOODS-S field given
their close proximity.

We cut the full GOODS-S SAM catalog into inde-
pendent subregions so that their shapes and areas are
the same as a single GOODS field (10′× 16′). Then,
we calculated the number of galaxies as a function of
stellar mass at each redshift (N(M∗, z)). The 1σ frac-
tional uncertainty on the number density, σcv/N , for
the GOODS-S field was calculated by bootstrap resam-
pling galaxies in a given stellar mass bin at each red-
shift. Then, the uncertainty for the total survey volume
was calculated by adding the variance for two GOODS-
sized fields in quadrature and presented in Figure 15. For
log(M∗/M�) < 8.0 (8.5) at z = 4 (z = 5–8), our galaxies
primarily come from the HUDF main field alone. Thus,
for those mass bins we estimated the cosmic variance
uncertainty for a single HUDF-sized field (2.′4 × 2.′4).

Figure 15 also shows calculations of cosmic variance
using the recipe of Moster et al. (2011) with the tool
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includes Poisson uncertainties), and due to Poisson uncertainties
alone. The Poisson errors were computed as the half-width of the
68% confidence interval using the recipe of Gehrels (1986).

getcv and the method of Newman & Davis (2002) with
quickcv. The latter gives lower limits on cosmic vari-
ance, as it is for dark matter only and therefore does
not account for the possible biased clustering of galaxies
relative to the dark matter. While the former does in-
clude an estimate of galaxy bias as a function of stellar
mass, it depends on the extrapolation of the stellar mass–
dark matter halo mass relation inferred at lower redshifts
(z < 4) to higher redshifts, where the stellar mass–dark
matter halo mass relation is poorly constrained and the
extrapolation may not be valid (Behroozi et al. 2013).
Our values for cosmic variance computed from the SAMs
are on average a factor of 2 smaller compared to those of
Moster et al.

7.2.2. Comparison of Different Sources of Uncertainties

Figure 16 compares fractional uncertainties in the
number density of galaxies in the GSMFs due to cos-
mic variance to those currently shown in Figure 9, which
are due to the combination of uncertainties on the UV
luminosity function (which includes Poisson errors) and
on the M∗–MUV relation.

In general, cosmic variance increases with stellar mass
and redshift. Specifically, for a given stellar mass, the
larger galaxy bias with increasing redshift leads to larger
values for cosmic variance as redshift increases. For a
given redshift, as massive galaxies are more clustered,
cosmic variance increases toward the massive end of the
GSMF. For example, at z = 4, cosmic variance reaches
up to 40% (∼0.15 dex) for log(M∗/M�) = 11.25, while
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The Galaxy Stellar Mass Function at z = 4–8 25

TABLE 5
Best-fit Schechter function parameters of

our fiducial GSMFs refitted with the
uncertainties including cosmic variance

z log M∗ α φ∗

(M�) (10−5 Mpc−3)

4 10.49+0.33
−0.26 −1.54+0.08

−0.07 26.15+24.11
−14.08

5 10.95+0.56
−0.38 −1.69+0.09

−0.08 5.43+8.22
−4.04

6 10.73+0.30
−0.30 −1.90+0.10

−0.10 1.32+1.74
−0.77

(10.97+1.35
−1.00) (−1.89+0.14

−0.11) (0.75+9.18
−0.71)

7 10.75+0.29
−0.29 −1.94+0.24

−0.21 0.52+1.23
−0.40

(11.08+1.24
−1.31) (−1.93+0.29

−0.21) (0.21+6.20
−0.20)

8 10.72+0.29
−0.30 −2.16+1.06

−0.42 0.04+0.34
−0.03

(10.26+1.42
−1.10) (−1.99+1.13

−0.56) (0.15+5.78
−0.14)

Note. — The quoted best-fit values and 1σ uncer-
tainties of the Schechter parameters represent the median
and the central 68% confidence interval of the marginal
posterior distribution of each parameter obtained from
our MCMC analysis. The error bars include the uncer-
tainties due to cosmic variance, as well as the uncertain-
ties of the UV luminosity function and the M∗–MUV re-
lation. Results in parentheses were derived with a flat
prior on M∗.

for low-mass galaxies it decreases to ∼7% (0.03 dex) for
log(M∗/M�) = 8.25. However, as the stellar mass bins
at the low-mass end of the GSMFs are dominated by
galaxies from the much smaller HUDF, the effect of cos-
mic variance rises again to ∼20% at z = 4 and ∼50% at
z = 8.

Due to the small number of galaxies observed at the
high- and low-mass ends, cosmic variance for a field com-
parable to our survey volume is not a dominant source
of uncertainty in the number density of galaxies in our
GSMFs at the redshifts and stellar masses probed in this
study (Figure 16). While the contribution of cosmic vari-
ance is comparable to the contribution of Poisson noise
to our uncertainty budget, our formal uncertainty, which
is the combination of the uncertainty of the UV lumi-
nosity function and the M∗–MUV relation, is a factor of
two larger than cosmic variance. Nonetheless, we exam-
ined the impact of the added uncertainty due to cosmic
variance on our GSMF. We calculated the total 1σ un-
certainties as the quadrature sum of the two components,
σ = (σ2

CV + σ2
LF+(M−L))

1/2. While the increased uncer-

tainties alleviate the tension between different studies to
some degree at the massive end, a statistically significant
level of discrepancy is still present at all stellar masses
and redshifts. This indicates that systematic uncertain-
ties between studies are the likely explanation for the
observed differences, as discussed in Section 5.4.

With the increased error bars, we re-fit a Schechter
function to our GSMFs with our MCMC analysis (Fig-
ure 17). From the fit, we derived the best-fit Schechter
parameters listed in Table 5, which show a negligible dif-
ference from our fiducial results. In summary, including
the impact of cosmic variance on our GSMFs does not
change our finding of a steepening of the low-mass-end
slope of the GSMFs with increasing reshift.

8. CONCLUSIONS

This paper demonstrates the power of combining HST
with Spitzer to explore the stellar mass buildup of galax-
ies out to z ∼ 8. Our study is based on a sample of
∼4500 galaxies selected via photometric redshifts over
∼280 arcmin2 in the GOODS-South and North fields,
where deep near-IR and mid-IR imaging data exist from
the CANDELS, HUDF, and S-CANDELS surveys.

Our results improve on previous studies in three ways:

• The three-layered depth of CANDELS leads to an
increased dynamic range, allowing us to constrain
both the high-mass end of the GSMF using data
from wide-area, shallow survey fields and the low-
mass end using data from deep fields.

• Using the deepest available mid-IR data from the
S-CANDELS and the IRAC Ultra Deep Field 2010
surveys with accurate deblending photometry, we
have estimated stellar masses more robustly for
low-mass galaxies, and subsequently better con-
strained the low-mass-end slope of the GSMF.

• We have explored and minimized the systematic
and random uncertainties inherent in our stellar
mass estimation and determination of the M∗–
MUV relation via simulations using SAMs, which
highlight the need for a comprehensive analysis to
quantify and minimize the systematics. With the
aid of stacking, we can constrain the slope of the
M∗–MUV relation to within ± < 0.1 of the intrin-
sic slope at z ≤ 6 (and also robustly constrain the
normalization when fixing the slope at z = 7 and
8), lending credence to our GSMFs.

Our main results are summarized as follows:

• Stellar mass and rest-frame UV absolute
magnitude are correlated at all redshifts for
log(M∗/M�) . 10. The best-fit M∗–MUV relation
has a slope marginally steeper than a constant
mass-to-light ratio, indicating a higher M/L ratio
for massive galaxies than for low-mass galaxies.
The slope remains constant over the redshift range
4 < z < 6, while the normalization shows a weak
evolution toward a lower M/L ratio with increasing
redshift.

• Taking advantage of the fact that the complete-
ness of the UV luminosity function is relatively
well known, we convolved the M∗–MUV distribu-
tion with a published rest-frame UV luminosity
function to derive GSMFs. Our new GSMFs show
a clear trend of an evolving low-mass-end slope to-
ward a steeper value with increasing redshift, from
α = −1.55+0.08

−0.07 at z = 4 to α = −1.95+0.18
−0.18 at

z = 7, providing support for an extension of the
trend that is seen at lower redshift but has not
been shown (or only marginally hinted at) in previ-
ous studies at similar redshifts. Conversely, we find
no statistically significant evolution in the charac-
teristic mass, M∗, although a larger survey volume
will be required to break the degeneracy between
M∗ and α.

• Our GSMFs at 4 < z < 8 are indicative of differ-
ential mass growth of galaxies, where the number
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density of massive galaxies increases more rapidly
than low-mass galaxies, which is the opposite of the
observed behavior at lower redshifts.

• Our estimates of stellar mass density (over 8 <
log(M∗/M�) < 13) indicate a factor of 10+30

−2 in-
crease between z = 7 and z = 4, driven mainly by
the evolution in the normalization φ∗ of the GSMF,
compensated partially by the evolving α toward a
shallower slope with decreasing redshift. Compar-
ing our stellar mass density with the time integral
of SFRD estimates at similar redshifts shows an
excellent agreement at 4 < z < 7.

While this study provides better constraints on the
GSMF at z = 4–8, the uncertainties of the GSMFs on
both mass ends and at the highest redshift probed in this
study are still substantial. Although the advent of JWST
will make strong advances in this area, the combination
of ongoing and planned surveys targeting wide or deep
fields will allow us to extend this work to higher and lower
masses in the near future. Progress on the high-mass
end of the GSMF can also be made with ALMA by plac-
ing a more robust constraint on the abundance of dusty
star-forming galaxies at high redshift that our current
rest-frame UV selection may be missing. On the low-
mass end, the Hubble Frontier Field data set, benefit-

ting from magnification due to gravitational lensing, en-
ables us to observe galaxies that are intrinsically fainter
than the limits of current unlensed surveys. Including
the six “blank fields” located near the Hubble Frontier
Field clusters, all covered by Spitzer/IRAC to the same
depth as the S-CANDELS fields, will soon yield more
robust constraints on the evolution of the low-mass-end
slope of the GSMF.
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