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ABSTRACT

We construct a new extension of the Poincaré superalgebra in eleven dimensions which contains

super one-, two- and five-form charges. The latter two are associated with the supermembrane and

the superfivebrane of M-theory. Using the Maurer-Cartan equations of this algebra, we construct

closed super seven-forms in a number of ways. The pull-back of the corresponding super six-

forms are candidate superfivebrane Wess-Zumino terms, which are manifestly supersymmetric, and

contain coordinates associated with the new charges.
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As is well known, supergravity theories in diverse dimensions admit a variety of super p-brane

solitons. It is now widely appreciated that these objects play an important role in nonperturbative

string physics. While it is difficult to analyze the dynamics of super p-branes in general, they do

possess some algebraic properties that are more amenable to study. One of these properties is the

modification of the Poincaré superalgebra in presence of super p-brane solitons [1, 2].

Let us consider the case of eleven dimensional supergravity. It admits supermembrane soliton

[3] which modifies the 11D Poincaré superalgebra as follows:

{Qα, Qβ} = γ
µ
αβ Pµ + γµναβ Zµν , (1)

where the topological charge Zµν arises due to the presence of a supermembrane configuration in

spacetime. The Poincaré supercharges QA = (Pµ, Qα) generate supertranslations in flat superspace

parametrized by the coordinates ZM = (Xµ, θα), µ = 0, 1, ..., 10, where θα are anticommuting 32

component Majorana spinors. The notation for the Dirac γ-matrices is self explanatory.

Given a supermembrane soliton in D = 11, the Noether supercharge per unit membrane area

is defined as an integral over an eight dimensional transverse space-like surface. The Poisson

bracket algebra of the supercharges yields the result (1). The p-form charges arising in this way

are variably referred to as topological charges, or Page charges, or sometimes as central charges.

Strictly speaking, they are not central because they do not commute with Lorentz generators,

except for p = 0.

The occurrence of the topological charge Zµν in 11D Poincaré superalgebra can also be un-

derstood from the supermembrane worldvolume point of view. As shown in [2], the presence of

a Wess-Zumino term in the supermembrane action, which is supersymmetric only up to a to-

tal derivative term, modifies the algebra of supercharges precisely as in (1), with the topological

charge realized as

Zµν =

∫

d2σ ǫ0ij∂iX
µ∂jX

ν , (2)

where σi (i = 0, 1, 2) are the worldvolume coordinates. These can also be viewed as the topological

charges associated with the identically conserved topological current J
iµν
T = ǫijk∂jX

µ∂kX
ν . If

at fixed time the membrane defines a nontrivial 2-cycle in space, then the above integral will be

nonzero [2].

It is known that D = 11 supergravity also admits a superfivebrane soliton [4]. Although the

corresponding superfivebrane action has yet to be constructed, it is reasonable to expect that

five-form topological charges will be associated with them.

Recently, it has been argued that [5] the p-brane topological charges discussed above are closely

associated with the boundaries of p-branes and as well as the topology of the background geometry
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in which they propagate. It is furthermore observed [5] that more general kinds of topological

charges may emerge in general backgrounds other than flat spacetime.

Sometime ago, Bergshoeff and the author [6, 7] indeed found an extension of the 11D Poincaré

superalgebra with the extra generators Zµν and Zµα. A Kac-Moody extension of the algebra

naturally led to the following generators:

Zµν(σ) = ǫ0ij L
µ
jL

ν
k , Zµβ(σ) = ǫ0ij L

µ
jL

β
k , Zαβ(σ) = ǫ0ij Lα

j L
β
k , (3)

where σ refers to the membrane worldvolume coordinates, and the supersymmetric line elements

are given by

L
µ
i = ∂iX

µ + 1
2γ

µ
αβ θα∂iθ

β , Lα
i = ∂iθ

α . (4)

Later, the extended version of 11D Poincaré superalgebra found in [6] was generalized to include

the generators Zαβ [8], and a spinor generator Zα [9]. As far as we know, there is no superstring

soliton in D = 11, and therefore the occurrence of the spinor generator Zα is somewhat of a mystery

at present (see, however, [10, 9]). Its occurrence in 10D Poincaré superalgebra is natural, and indeed

Green [11] discovered it sometime ago. This superalgebra was used in an interesting way by Siegel

[12], who introduced a new coordinate for the extra fermionic generator, and reformulated the

Green-Schwarz superstring such that the full action, including the Wess-Zumino term, exhibited

manifest supersymmetry. Siegel’s result forms an important part of our motivation for this work,

and therefore we shall come back to this point later.

Interestingly enough, extensions of the 11D Poincaré superalgebra which contains some of the

generators mentioned above were considered long ago, before the discovery of higher super p-branes.

In particular, D’Auria and Fré [13] considered the extra generators Zµν , Zµ1···µ5 and Zα, in their

attempts to gauge the D = 11 supergravity. The issue of whether the dual formulation of D = 11

supergravity with a six-form potential existed also emerged in a related study which used these

extensions [14].

It is clearly of interest to unify and extend the results mentioned above, in a way that would take

into account the existence of the superfivebrane in D = 11. Further motivations for studying the

general topological extensions of 11D Poincaré superalgebra are: (a) They may provide a powerful

tool, in the framework of an extended super Poincaré geometry with new p-form coordinates,

for probing supermembrane-superfivebrane duality, (b) the topologically extended super Poincaré

geometry may provide important ingredients for the construction of the elusive eleven dimensional

superfivebrane action and (c) knowledge of their representations may shed some light some algebraic

aspects of M-theory, including the spectrum of nonperturbative states [5].
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In this paper, we shall give the most general extension of the 11D Poincaré superalgebra moti-

vated by some geometrical considerations which will be spelled out below, and that contains super

one-, two- and five-form charges

Zµ1···µkαk+1···αp , p = 1, 2, 5 ; k = 0, 1, ..., p , (5)

in addition to the usual super Poincaré generators Pµ and Qα. Our result contains the ones in

[6, 8, 9, 13] as special cases. For short, we will refer to this algebra as the M-algebra. We have in

mind, of course, the role it is expected to play in M -theory. Interestingly, we find that the existence

of the super five-form charges in the algebra necessarily requires the presence of the super two-form

charges, while the reverse is not true. Moreover, it turns out that some of the super two-form

charges cease to (anti) commute with each other.

We expect that there will be a number of interesting properties of the M-algebra which will be

uncovered in the future. For the purposes of this note, however, it will suffice to (a) present the

algebra, and (b) to construct closed super seven-forms that live on the full supergroup manifold.

At the end of the paper, we shall comment on their possible use in the construction of candidate

Wess-Zumino terms for the eleven dimensional superfivebrane.

We now turn to the description of the M-algebra. Let us denote the generators of the algebra

collectively as T
Â
. We consider the generators

T
Â
= (QA, ZA, ZAB, ZA1···A5) , QA = (Pµ, Qα) , (6)

where the Z-generators are totally graded antisymmetric. The M-algebra can be written as

[T
Â
, T

B̂
} = f

ÂB̂
Ĉ T

Ĉ
, (7)

where the structure constants will be given shortly. In the dual basis, one defines the Maurer-Cartan

super one-forms

eÂ = dZM̂ L
M̂

Â , (8)

where dZM̂ are the differentials on the supergroup manifold based on the M-algebra. We can also

define the supersymmetric line elements

LA
i = ∂iZ

M̂L
M̂

Â . (9)

Explicit expressions for these objects can be obtained straightforwardly from

U−1∂iU = LÂ
i T

Â
, (10)
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where U is a group element, which can be parametrized in terms of the usual superspace coordinates,

and the new φ-coordinates associated with the Z-generators as follows:

U = eφµ1···µ5
Zµ1···µ5

· · · eφα1···α5
Zα1···α5

eφµνZ
µν

· · · eφαβZ
αβ

eφµZ
µ

eφαZ
α

eX
µPµ eθ

αQα . (11)

The details of LÂ
i , as well as the M-group transformations under which they are invariant, are

not particularly illuminating. However, the interested reader can find useful formulae for their

computation, as well as explicit expressions for LÂ
i in the case of QA and ZAB generators in [8].

As is well known, the Maurer-Cartan structure equations 2

deÂ = −1
2 eB̂ ∧ eĈ f

ĈB̂
Â , (12)

contain equivalent information about the algebra. The fact that the Jacobi identities are satisfied

is, of course, encoded in the integrability condition d2eÂ = 0. It is convenient to present our results

first in the form of Maurer-Cartan equations. The strategy we have followed to determine these

equations is very simple: We have parametrized the algebra in the most general possible way that

contains the components of the following super forms as structure constants:

T µ = −1
2e

α ∧ eβ γ
µ
αβ , (13)

H
(0)
3 = eµ ∧ eα ∧ eβ γµαβ , (14)

H4 = 1
4e

µ ∧ eν ∧ eα ∧ eβ γµναβ , (15)

H
(0)
7 = 1

5!e
µ1 ∧ · · · ∧ eµ5 ∧ eα ∧ eβ γµ1···µ5αβ . (16)

Noting that the structure equations for eµ and eα will not be modified compared to those in ordinary

Poincaré superspace, one can verify that the four-form H4 is closed, thanks to the following well

known identity

γµν(αβ γ
ν
γδ) = 0 , (17)

which holds in D = 4, 5, 7, 11 [17]. The super-forms H
(0)
3 and H

(0)
7 are not closed. However, as we

will see later, they can be modified so as to be closed in the full M-algebra.

The occurrence of (13) and (15) can be understood from the structure of the known super p-

brane actions [6, 7, 16]. The inclusion of (16) is motivated by superfivebrane considerations, and the

assumption that there may exist a dual formulation of 11D supergravity in which, both, the three-

form and six-form potentials occur. Finally, we have included (14) for the sake of completeness; a

point which will become more transparent below.

2Our conventions for super p-forms are those of [15]. In particular, the components of a super p-form F are

defined by F = 1

p!
eM1 ∧ · · · eMp FMp···M1

, and the exterior derivative by dF = 1

p!
eM1 ∧ · · · eMp ∧ eM ∂MFMp···M1

.

Furthermore, given a super q-form G, we have the rule: d(F ∧G) = F ∧ dG+ (−1)q dF ∧G.
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The parametrization of the ansatze in a manner described above contains a large number of

parameters. We have determined these parameters by explicit computation of all the integrability

conditions d2eÂ = 0. These conditions not only are sufficient to determine all the parameters in

our ansatze, but they also provide several cross checks, since we obtain an overdetermined system

of equations for these parameters. It is also worth mentioning that, in addition to repeated use of

(17), we have also used the following identity [14]

γλ(αβγ
λµνρσ
γδ) − 3γ

[µν
(αβγ

ρσ]
γδ) = 0 . (18)

Also useful are the following identities

γµ(αβγ
µ
γδ) +

1
10γµν(αβγ

µν
γδ) = 0 , (19)

γµ(αβγ
µ
γδ) +

1
720γµ1···µ5(αβγ

µ1···µ5

γδ) = 0 . (20)

The identities (18) and (19) follow straightforwardly from the main identity (17), and the identity

(20) can be easily derived from (18).

With the preliminaries thus explained, we are now ready to present our results. We propose

the following set of Maurer-Cartan equations:

deµ = −1
2 eα ∧ eβ γ

µ
αβ ,

deα = 0 ,

de′µ = −1
2e

α ∧ eβ γµαβ ,

de′α = −eβ ∧ eµ γµαβ + (1− λ− τ) eβ ∧ e′µ γ
µ
αβ − λ

10 eβ ∧ eµν γ
µν
αβ

− τ
720 eβ ∧ eµ1···µ5

γ
µ1···µ5

αβ ,

deµν = −1
2e

α ∧ eβ γµναβ ,

deµα = −eβ ∧ eν γµναβ − eβ ∧ eµν γναβ ,

deαβ = 1
2e

µ ∧ eν γµναβ − 1
2eµν ∧ eµ γναβ − 1

4eµγ ∧ eγ γ
µ
αβ − 2eµα ∧ eγ γ

µ
βγ ,

deµ1···µ5
= −1

2e
α ∧ eβ γµ1···µ5αβ ,

deµ1···µ4α = eβ ∧ eτ γτµ1···µ4αβ + eβ ∧ eτµ1···µ4
γταβ − 6eβ ∧ eµ1µ2

γµ3µ4αβ ,

deµνραβ = 1
2e

σ ∧ eτ γστµνραβ − 1
2eµνρστ ∧ eσ γταβ + 1

4eµνρτγ ∧ eγ γταβ

−2eτµνρα ∧ eγ γτβγ +
3
2e

τ ∧ eτµ γνραβ − 3eτ ∧ eµν γρταβ

−3
4e

γ ∧ eµγ γνραβ − 6eγ ∧ eµα γνρβγ +
3
2eτµ ∧ eνρ γταβ ,

deµναβγ = 2eσ ∧ eστµνα γτβγ + eδ ∧ eτµνδα γτβγ + 5eδ ∧ eτµναβ γτγδ

−10eτ ∧ eµα γντβγ − 5eδ ∧ eαβ γµνγδ − 2eτ ∧ eτα γµνβγ
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−eδ ∧ eδα γµνβγ − 6eτµ ∧ eνα γτβγ − 2eτα ∧ eµν γτβγ ,

deµα1···α4
= −eν ∧ eµντα1α2

γτα3α4
− 3

10e
γ ∧ eµνγα1α2

γνα3α4
− 6

5e
γ ∧ eµνα1α2α3

γνα4γ

+3eν ∧ eα1α2
γµνα3α4

+ 2eµν ∧ eα1α2
γνα3α4

+ 3eνα1
∧ eµα2

γνα3α4
,

deα1···α5
= −3

5e
µ ∧ eµνα1α2α3

γνα4α5
+ eγ ∧ eµγα1α2α3

γµα4α5
+ 7

2e
γ ∧ eµα1···α4

γµα5γ

+6eµα1
∧ eα2α3

γµα4α5
, (21)

where it is understood that the obvious symmetries of indices on the left hand side are to be

implemented on the right hand side, with unit strength (anti) symmetrizations. The parameters

λ and τ are arbitrary. Of course, by rescaling various one-forms, one can introduce a number of

new parameters. However, the consistency of any contraction has to be checked carefully. We shall

come back to this point shortly.

The world indices can be raised and lowered with the 11D Minkowski metric, and the fermionic

indices with the charge–conjugation matrix, as usual. However, we have found it convenient not

to do so in our calculations, and to always keep the world and spinor indices in a fixed position

(see comment (iii) below). Nevertheless, to avoid any confusion between the one-forms associated

with the supertranslation generators QA, and the topological charge ZA, we have used a prime to

distinguish the latter from the former.

To see the structure of the algebra that underlies the Maurer-Cartan equations (21) more

explicitly, it is convenient to go over to the dual basis. This is easily done by using (7) and (12),

and we thus find the following (anti) commutation rules:

{Qα, Qβ} = γ
µ
αβ Pµ + γµαβ Zµ + γµναβ Zµν + γµ1···µ5αβ Zµ1···µ5 ,

[Pµ, Qα] = γµαβ Zβ − γµναβ Zνβ − γµν1···ν4αβ Zν1···ν4β ,

[Pµ, Pν ] = γµναβ Zαβ + γµνµ1···µ3αβ Zµ1···µ3αβ ,

[Qα, Z
µ] = (1− λ− τ) γµαβ Zβ ,

[Pλ, Z
µν ] = 1

2δ
µ
λ

(

γναβ Zαβ − 3γρσαβ Zνρσαβ
)

+ 3γλραβ Zµνραβ ,

[Qα, Z
µν ] = − λ

10γ
µν
αβ Zβ + γ

µ
αβ Zνβ − 6γρσαβ Zµνρσβ ,

[Pµ, Z
να] = −2δνµ γλτβγ Zλταβγ + 10γµτβγ Zνταβγ ,

{Qα, Z
µβ} = 1

4δ
β
α γ

µ
γδ Zγδ + 2γµαγ Zβγ + 3

4δ
β
α γνργδ Zµνργδ + 6γνραγ Zµνρβγ ,

[Qγ , Z
αβ] = −5γµνγδ Zµναβδ − δαγ γµνδǫ Z

µνβδǫ ,

[Pµ, Z
αβ] = −3γµνγδ Zναβγδ ,

[Zµν , Zρσ] = −3γµαβ Zνρσαβ ,

[Zµν , Zρα] = −6γµβγ Zνραβγ + 2γραβ Zµναβγ ,
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[Zµν , Zαβ] = −2γµγδ Zναβγδ ,

{Zµα, Zνβ} = −3γµγδ Zναβγδ ,

[Zµα, Zβγ ] = 6γµδǫ Z
αβγδǫ ,

[Qα, Z
µ1···µ5 ] = − τ

720γ
µ1···µ5

αβ Zβ + γ
µ5

αβ Zµ1···µ4β ,

[Pλ, Z
µ1···µ5 ] = 1

2δ
µ1

λ γ
µ2

αβ Zµ3···µ5αβ ,

{Qα, Z
βµ1···µ4} = 1

4δ
β
α γ

µ1

γδ Zµ2···µ4γδ + 2γµ1

αδ Zµ2···µ4βγ ,

[Pλ, Z
βµ1···µ4 ] = 2δµ1

λ γ
µ2

γδ Zµ2µ3βγδ ,

[Qα, Z
µνρβγ ] = δβα γ

µ
δǫ Z

νργδǫ + 5γµαǫ Z
νρβγǫ ,

[Pλ, Z
µνρβγ ] = −δ

µ
λ γνδǫ Z

ρβγδǫ ,

{Qδ, Z
µναβγ} = − 3

10δ
α
δ γµǫκ Zνβγǫκ − 6

5γ
µ
δǫ Z

ναβγǫ ,

[Pλ, Z
µναβγ ] = −3

5δ
µ
λ γνδǫ Z

αβγδǫ ,

[Qβ, Z
µα1···α4 ] = δα1

β γ
µ
γδ Zα2···α4γδ + 7

2γ
µ
βγ Zα1···α4γ . (22)

Several comments are in order:

(i) The existence of the algebra (22) is highly nontrivial. To show that the Jacobi identities are

satisfied, one makes crucial use of the γ-matrix identity (17) and its consequences (18)-(20). As is

well known, the identity (17) holds in D = 4, 5, 7, 11 [17], i.e. precisely the dimensions in which the

supermembrane action of [15] exists.

(ii) While in the absence of the super five-form generators all the remaining Z-charges (anti)

commute with each other, this ceases to be the case once the super five-form generators are intro-

duced. This is a surprising feature, since one normally thinks of the topological charges as coming

from antisymmetric products of Lµ
i and Lα

i , which are expected to have vanishing Poisson brackets

with each other.

(iii) The form of the algebra is suggestive of a geometrization in which one works with the

generators QA, Z
A, ZAB, ZA1···A5 and use the super torsion tensor TAB

C , and the graded antisym-

metric tensors HABC , HABCD and HA1···A7
defined in (13)-(16) as structure constants. This would

correspond to a rigid version of a curved superspace algebra. Surprisingly, this does not work, as

it can already be established at the level of the subalgebra containing only the ZAB as the new

generators. This may suggest the existence of an improved version of the algebra which can be

geometrized. Whether this is indeed possible remains to be seen.

(iv) The first line of this algebra can be put into a 10 + 2 dimensional form

{Qα, Qβ} = γµ̂ν̂αβ Z µ̂ν̂ + γµ̂1···µ̂6αβ Z
µ̂1···µ̂6

+ , (23)

where µ̂ = 0, 1, ..., 10, 12, Qα is a 32 component Majorana-Weyl spinor, and the 66 component Z µ̂ν̂ ,
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together with the self-dual 462 component Z
µ̂1···µ̂6

+ add up to 528 generators. However, it is far

from obvious if the full algebra presented above can be casted into a 10 + 2 dimensional form.

(v) While the presence of the super two- and five-form generators are related to the existence of

the supermembranes and superfivebranes of eleven dimensional supergravity, the occurrence of the

super one-form generator ZA is somewhat unexpected, and it is a surprising feature of the above

algebra. See, however, [10, 9] where the issue of superstring in D = 11 is discussed. In particular,

let us note the existence of the following closed super three-form

H3 = eµ ∧ eα ∧ eβ γµαβ + eα ∧ eβ
(

(λ+ τ − 1) e′µ γ
µ
αβ + λ

10 eµνγ
µν
αβ + τ

720 eµ1···µ5
γ
µ1···µ5

αβ

)

. (24)

Indeed dH3 = 0, and expressing H3 = dC2, and using the Maurer-Cartan equations (21), one finds

that

C2 = −eα ∧ e′α . (25)

One might envisage using the pull-back of this super two-form in constructing a Wess-Zumino term

for a superstring action in D = 11. Interestingly enough, this form turns out to play a role in the

construction of a novel Wess-Zumino term for superfivebrane, as we shall show later. However,

these constructions raise a number of questions, among which is the interpretation of the new

coordinates involved in the action.

(vi) Once the five-form generator Zµ1···µ5 is included in the algebra, it is clear that one has

to also include the two-form generator Zµν , as can be seen from the {Q, {Q,Q}} Jacobi identity

and the γ-matrix identity (18). The reverse is not true, i.e. one can have the two-form generator

without having to introduce the one- and/or five-form generators, in view of the γ-matrix identity

(17). In fact, the super one- and/or five-form generators can be contracted away consistently.

Note in particular that the generators ZA decouple from the algebra if we set λ = τ = 0 and

redefine the translation generator as Pµ + Zµ ≡ P ′

µ. While it may be thought that Zµ can always

be redefined away, there are some global subtleties in doing so, and at least in the case of 10D

superstrings, they have an interesting role to play in the description of the string winding states

[22].

(vii) The fact that the super five-form generator requires the presence of the super two-form

generator is related to the fact that a dual formulation of D = 11 supergravity containing only

the six-form potential is not possible [19, 14]. The coexistence of the super two- and five-form

generators in the M-algebra on the other hand, suggests a formulation of D = 11 supergravity

theory in which both the three-form and the six-form potentials are used. However, a duality

relation has to be imposed on the relevant field strengths, which then leads to non-localities [20].

(viii) Contracting away the super five-form generators yields the algebra of [9]. Contracting
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away the super one-form generator as well, one obtains the algebra of [8]. Setting equal to zero

Zαβ in addition gives the result of [6]. Keeping only the generators Zα, Zµν and Zµ1···µ5 gives the

algebra studied in [13].

(ix) The fermionic generators Zα and Zα1···α5 commute with all the other generators, except

Lorentz generators.

(x) Dimensional reduction of the algebra (22) to ten and lower dimensions is expected to produce

similar algebras for super p-branes existing in those dimensions. Aspects of these reductions will be

treated elsewhere. It should be noted, however, that the Type IIB Poincaré superalgebra in 10D,

as well as its M-algebra extension, if any, cannot be obtained in this way.

We now turn to the issue of Wess-Zumino terms based on the algebra (22). First of all we

observe that the super four-form (15) is closed within the full algebra, and writing H4 = dC3, we

find [8]

C3 = −1
6e

µ ∧ eν ∧ eµν −
3
20e

µ ∧ eα ∧ eµα + 1
30e

α ∧ eβ ∧ eαβ . (26)

As shown in [8], taking the standard D = 11 supermembrane action of [15], but using the pull-back

of this C3 as Wess-Zumino term, one finds an alternative formulation of the supermembrane, that

generalizes a similar construction for the superstring due to Siegel [12]. In doing so, one introduces

coordinates for all the generators, including φAB , but the dependence on the new coordinates

comes as a total derivative term. This is due to the fact that the exterior derivative of C3 defined

in [15] and that of C3 defined above give the same result, namely the super-four form (15), which

in turn has no components along the new directions. Computing the Noether symmetry algebra

corresponding to the full left group action, one directly finds the full algebra of these generators,

without the occurrence of boundary terms in the Noether current that arise in a formulation with

the usual non-manifestly supersymmetric version of the Wess-Zumino term.

To construct a Wess-Zumino term for the superfivebrane in eleven dimensions, we need a super

seven-form. The obvious guess would be (16), but that form is not closed, as mentioned earlier.

The γ-matrix identity (18) suggests the way to modify (16) to obtain a closed super seven-form as

follows:

H7 =
1
5! e

µ1 ∧ · · · eµ5 ∧ eα ∧ eβ γµ1···µ5αβ +H4 ∧ C3 , (27)

Using the equations (21) and the identity (18), we see that indeed dH7 = 0. Furthermore, writing

H7 = dC6, we find that C6 is given by

C6 =
1

5!×77 (−
77
3 eµ1 ∧ · · · ∧ eµ5 ∧ eµ1···µ5

+ 281
6 eµ1 ∧ · · · ∧ eµ4 ∧ eα ∧ eµ1···µ4α

+104
3 eµ ∧ eν ∧ eρ ∧ eα ∧ eβ ∧ eµνραβ − 47

6 eµ ∧ eν ∧ eα ∧ eβ ∧ eγ ∧ eµναβγ

+5 eµ ∧ eα1 ∧ · · · ∧ eα4 ∧ eµα1···α4
− 5

9 e
α1 ∧ · · · ∧ eα5 ∧ eα1···α5

9



−131
3 eµ ∧ eν ∧ eρ ∧ eα ∧ eµν ∧ eρα + 50

3 eµ ∧ eν ∧ eα ∧ eβ ∧ eµν ∧ eαβ

+20
3 eµ ∧ eα ∧ eβ ∧ eγ ∧ eµα ∧ eβγ ) . (28)

Interestingly, the super-form (27) was considered long ago [14] within the framework of a sub-

algebra of (22) in which only Zα, Zµν and Zµ1···µ5 are kept in addition to the super Poincaré

generators.

The same super-form was also considered in [20] within the framework of the usual 11D Poincaré

superalgebra. It was shown in [20] that defining in curved superspace

H4 = 1
4e

a ∧ eb ∧ eα ∧ eβ γabαβ + ea1 ∧ · · · ∧ ea4 Ha1···a4 , (29)

H
(0)
7 = 1

5!e
a1 ∧ · · · ∧ ea5 ∧ eα ∧ eβ γa1···a5αβ + ea1 ∧ · · · ∧ ea7 ǫa1···a7c1···c4 Hc1···c4 , (30)

one finds, via the Bianchi identities dH4 = 0 and dH
(0)
7 = H4 ∧H4, the correct equation of motion

for D = 11 supergravity. However, as was emphasized in [20], if one wishes to work with a super-six

form potential C6 alone, then one has a non-local relationship between H
(0)
7 and C6.

Turning to the super six-form (28) which is defined in the M-extended Poincaré superspace, we

can write down a Wess-Zumino term for a superfivebrane as follows

IWZ =

∫

C6 , (31)

where C6 is the pull-back of C6. We use a notation in which the underlining of a target space form

indicates its pull-back. This action is manifestly invariant under the M-group transformations,

including supersymmetry. However, H7 = dC6 equals an expression that contains C3 as shown in

(27), which in turn has nonvanishing components in the eAB directions, as shown in (26). Therefore,

the Wess-Zumino action (31) contains the coordinates φAB associated with the generators ZAB such

that they are not confined to a total derivative term. This is in contrast to the supermembrane

case where all the dependence on the new coordinates is contained in a total derivative term [8].

Using the super three-form C3 of the standard D = 11 supermembrane action [15] in the

definition of H7, on the other hand, would yield a closed super seven-form that strictly lives in

the usual Poincaré superspace. However, the resulting Wess-Zumino term would not be manifestly

supersymmetric.

In the context of usual Poincaré superspace, let us focus our attention to the case of purely

bosonic target space background, and consider the two-form gauge transformations δC3 = dλ2.

From H7 = H
(0)
7 + H4 ∧ C3, noting that H

(0)
7 is invariant, one sees that C6 must transform as

δC6 = C3 ∧ dλ2 [20]. Of course, IWZ given in (31) is not invariant under these transformations.

However, it has been observed that [21], since the worldvolume fields of the superfivebrane include

10



a fundamental two-form B2, there is a way to write down a manifestly tensor-gauge invariant

Wess-Zumino term, namely IWZ =
∫

(C6 + dB2 ∧ C3), with B2 transforming as δB2 = λ2.

Turning to the case of superfivebrane in the context of the M-extended Poincaré superspace,

we can consider, in analogy with the case discussed above, the following Wess-Zumino term:

I ′WZ =

∫

(C6 + dB2 ∧C3) , (32)

where, we recall that C6 and C3 are given in (28) and (26). This term, just as in the case of

(31) discussed earlier, contains coordinates other than Xµ and θα, which are not contained in a

total derivative term. The target space is flat or curved M-extended superspace. In the latter case

relations similar (29) and (30) can be utilized. However, since super-form coordinates occur in the

action, it is not altogether clear what this implies for D = 11 supergravity, and whether it can lead

its dual formulation in a novel way.

Going back to the issue of Wess-Zumino terms, it should be emphasized that one can construct

a number of distinct and manifestly supersymmetric Wess-Zumino terms, within the context of the

M-algebra, by taking various Lorentz-invariant combinations of the left-invariant super-one forms

LÂ. However, presumably not all of these terms are relevant for the seeked superfivebrane action

with the right properties.

To illustrate the point about the variety of ways in which a superfivebrane Wess-Zumino term

can be constructed in our framework, we present an example which is particularly interesting

because it makes use of the stringy coordinates ZA. Consider the super seven-form

H ′′

7 = H4 ∧H3 , (33)

where H4 is defined in (15) and H3 in (24). Since H4 and H3 are closed, so is H7. Moreover, writing

H ′

7 = dC ′

6, we have

C ′′

6 = C3 ∧H3 , (34)

(up to an irrelevant closed form) where C3 is given in (26) and H3 in (24). Unlike in the case

of H7 which can be formulated in ordinary Poincaré superspace, the existence of H ′′

7 requires the

M-extended superspace based on the M-algebra, or a suitable subalgebra thereof. Using (34), we

can construct a third kind of Wess-Zumino term given by

I ′′WZ =

∫

C ′′

6 . (35)

This is manifestly supersymmetric and tensor-gauge invariant. However, whether it can be used in

the construction of a sensible superfivebrane action, and if so, exactly whichD = 11 supersymmetric

field theory it may describe, remains to be seen.
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So far, we have discussed the superfivebrane Wess-Zumino terms. As far as the kinetic term

is concerned, matters are somewhat more complicated. Even in the case of a minimal target

superspace without any new coordinates, the full kinetic term is not known. For the progress made

in this front, and a discussion of various related matters, see [21, 22, 23, 24, 25]. The problem is

further complicated in the M-extended superspace, because of the presence of new coordinates. To

avoid the propagation of any unwanted degrees of freedom, one has to find new kinds of fermionic

and bosonic local symmetries, analogous to the more familiar κ-symmetry.
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