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ABSTRACT

We construct a non-chiral anomaly-free theory of W3 gravity and inves-
tigate its spacetime interpretation as a theory of critical W3 strings.
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The existence of an anomaly-free chiral theory of W3 gravity in d = 2 dimensions [1]
opens up a vista of possible generalisations of string theory based upon W symmetry. A
first requirement for such a generalisation, since the spacetime coordinates of a string theory
necessarily involve both left and right-moving modes, is the creation of a non-chiral anomaly-
free theory of W3 gravity. In this paper, we begin by extending our previous results to
the non-chiral case. We then consider the classical dynamics of the W3 string theory and
show how the extra gauge symmetry effectively eliminates one specific coordinate. This
“frozen” coordinate is the only one whose appearance in the W3 current occurs other than
through its stress tensor, and is thus the one characteristically “non-stringy” coordinate.
This coordinate-freezing feature is obtained regardless of whether the extra dimension is
spacelike or timelike, so that it is possible to have a positive-energy classical theory of W
strings even in a theory with two “times.” Preliminary calculations in the quantised theory
suggest that this “time without time” phenomenon should persist also at the quantum level.

The key ideas that allowed the construction of an anomaly-free theory of W3 gravity in
[1] are:
1) That the construction of a nilpotent BRST operator Q [2] leads directly to the formula-
tion of the action of an anomaly-free quantum theory;

2) That the nilpotent BRST operator requires a quantum realisation Tpat, Winat of the Wy
algebra on the matter sector of the theory with central charge ¢ = 100 and;

3) That such matter realisations exist with arbitrary numbers n > 2 of scalar fields [3].

These ¢ = 100 matter realisations all involve background charges in Tyat, Wmat for some
of the scalar fields. The background charge terms may also be viewed as finite counterterms
necessary to eliminate matter-dependent anomalies in the Wj current algebra. A similar
phenomenon was found in the renormalisation of classical wy, gravity into quantum W,
gravity [4]. The necessity of including background charges to cancel anomalies has also been
discussed in refs. [5,6].

In order to build a non-chiral anomaly-free theory of W3 gravity, we start from the
formulation of classical non-chiral W3 gravity with auxiliary fields [7], but in a version [8] in
which the spin-2 and spin-3 gauge fields are treated on a similar footing. This will enable
us to treat the non-chiral case essentially as the direct sum of the left and the right sectors.
The classical non-chiral Lagrangian is [8]

L =—38'3¢" — J'T* + T'04' + oy 1)

The equations of motion for the auxiliary fields are

J" = &pi - ilj' - Ed;jkjjjk, (2)
J' = 8¢' — hJ' — Bdij JI T,
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which can be recursively solved to give J* and Ji as non-polynomial expressions in ¢* and
the gauge fields.
In momentum space, the kinetic terms for (' J?, j’) become
L', J, T /pp i ip\ (¢
ip 0 -1 J' ], (3)
ip -1 0 T

and upon inversion we find the (¢* J*, }') propagator,

, (~1 —ip —ip
p (—ip P 0 ) : (4)
—-ip 0 p?
From (1) one can see that the only fields that can occur inside loop diagrams are the auxiliary
fields J*, J* since these are the only fields that not only have propagators but also enter into
the vertices. For the internal lines of Feynman diagrams, only the lower right 2 x 2 submatrix
is relevant. Since this submatrix is diagonal, the entire diagrammatic perturbation theory
cleaves into separate chiral and antichiral parts. In other words, although d¢' and df
cannot be assigned purely to the chiral or antichiral sectors, the auxiliary fields J* and J*
can. Concretely, from (4), we see that they satisfy the operator-product expansions

k6%
(z —w)?’
e K64 (5)
JH(Z) () ~ ————

E7(@) ~ e

JHz2)J (D) ~ 0.

T (2) I (w) ~

The above observations make the construction of the non-chiral theory into a simple
direct sum of left-moving and right-moving parts. In particular, the full non-chiral BRST
operator ig just N

Qiot = Q@ + @, (6)
where not only Qi but also  and () separately are nilpotent. Concentrating for now on
the left-moving sector, the BRST operator ) may be written as [2]

Q= fdz (C(Tmat + %Tgh) + '}'(Wmat + %Wgh))s (7)

where T, and Wihnat must generate the W3 algebra with central charge cpay = 100. The
ghost currents Ty and Wy are given by [2]

Ty = —2b3c— dbe — 389y — 2087 (8a)
Wep = —08c— 36 0c— % [3(5’7 Tmat) + b0 Tmat]
+ g5rh (27 8% + 907 6% + 150° 0b + 105°1 b), (85)
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where the ghost-antighost pairs (¢,b) and (v,5) correspond respectively to the T' and W
generators in the left-moving sector. As a general rule, the matter currents of the left and
right sectors of the non-chiral theory are constructed by replacing the quantities 8¢* occuring
in the purely chiral theory by J* or Ji respectively, as, for example, in the classical currents
appearing in {1). Thus following (3], we take for the W3 currents in the left-moving sector

Tnat = %JiJi + VhadJ", (9a)
Wanat = §dijrd* 7 I* + Vhe; J'0J7 + Lfid2J". (95)
Using the OPEs (5), these will generate a cmat = 100 realisation of the full quantum W3
algebra provided that the coefficients o, d;ji, €i; and f; satisfy certain algebraic conditions,
which are given in [3].
The transformation rules corresponding to the left-moving BRST operator @ can be
deduced from those in [1] by replacing d¢* by J*:

' = cJ' + qdijr JII* 4 Biby 0y
+ VA( = cude + (ei5 — e55)70J7 — ejidy 7 — #red(707)) + hfidty,
8h = e+ cOh — Bch + 4 (70B — 3yB)J'J* + 32 VE(70B — 8yB)a;dJ*
+ 53574 (270°B — 381 9°B + 39°7 0B — 20°y B),
6B =0vy+cOB—20cB+2y0h—0vh,
be = cOc + fg—l'y oy J' T + + 57 Vhoyy 0y 8J" + 52l 261 h(2y 8 — 38y 8%4)
by = c Oy — 20cH,

ob=m, émy = 0,
68 = =g, omg = 0.

(10)

Since we shall work in a 1.5-order formalism, the variations of the auxiliary fields J* will not
be relevant.

For the right-moving sector, we introduce ghost-antighost pairs (,) and (5,8) for the
right-moving W3 symmetry. The right-moving ghost and matter currents will be analogous
to (8a,b) and (9a,b), but with & replaced by 8, and all ghosts and auxiliary fields replaced
by their tilded versions. There will be a.na.logous BRST transformation rules corresponding
to Q Note that the total variation of ¢*' will be the sum of §p* as given in (10) and its
counterpart §* from the right-moving sector.

The Lagrangian for non-chiral W3 gravity may now be written as
L= _lapia‘:oi - Jiji + jia‘Pi + JiB‘Pi - hTma.t - BWma‘l‘. - BTmat - Ewmat
+ 5(b(h hback) + B(B — Bba.ck)) + 5( (h — hbac) + B(B - Bbax;k))
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Using (10), and the right-moving counterpart, we can write the Lagrangian as

L =—180'00" — J'T* + T8 + J'By* — bBc — BBy — b0E — Po7
+ ﬂ‘b(h — hba.ck) + Wﬁ(B - Bba.ck) - h(Tma.t + Tgh) - B(Wmat + Wgh) (12)

e and

+ ﬁ'b(f" - j;'ba.clll) + ﬁ'ﬁ(g - Eba,ck) - h(Tma.t + Tgh) - E(Wmat + Wgh)'

As in the chiral W3 gravity discussed in [1], the A-independent terms in the Lagrangian
and transformation rules describe the classical theory and its symmetries. The %-dependent
terms in the Lagrangian (12), where the currents are given by (8a, b) and (9a, b), correspond
to counterterms needed for the explicit cancellation of anomalies. The fi-dependent terms
in the transformation rules (10), and their right-moving counterparts, correspond to renor-
malisations that are also needed for anomaly cancellation. The resulting theory is free of
all anomalies. Because of the diagonal nature of the propagators for the auxiliary fields J*
and J¥, it follows that all connected Feynman diagrams with external gauge fields involve no
mixing between left-moving and right-moving fields. In particular, the non-renormalisation
theorem given in [1] for the chiral case, which excludes all but those infinities that may
be removed by normal ordering, may now straightforwardly be carried over to the present
non-chiral case. Moreover, because the OPEs (5) for the J ' currents have the same form as
the OPEs for Oy* currents in the chiral case, and similarly for ji, the potential anomalies in
each chiral sector are cancelled by the same mechanisms that were exhibited in [1] for the
purely chiral theory.

Having established that the non-chiral W3 gravity theory is anomaly free, it follows that
one may, as in the classical theory, use the local spin-2 and spin-3 symmetries to choose
gauges in which A, &, B and B are all zero. In this gauge, the equations of motion for J*
and J' reduce to

F=ds,  F=dg (13)

The “Gauss’ Law” constraints, given by the equations of motion for the gauge fields, become,
at the classical level,
T= %acp"&p" =0, (14)
W = 14,51 8p'007 80 = 0,
together with the corresponding right-moving counterparts.

We now consider the physical consequences of the W3 constraints. Classically, the totally-
symmetric coefficients d;,z are simply required to satisfy the conditions

di; ™ dkgym = A26(3568e), (15)

where X is a constant. However, the requirement that the currents (9a,b) should satisfy
the W3 algebra at the quantum level implies the full set of conditions given in [3], which
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include further restrictions on the coefficients d;;z. In particular, it is shown in [3] that these
restrictions on d;;; may be solved, without loss of generality, by taking it to have the form

di11 = A, d1ap = —Abgp, 2<a<n (16)

with all other components not related to these by symmetry vanishing.

In order to see the consequences of the constraints, we begin with the chiral case. From
(14) and (16), the classical chiral T' and W currents take the forms

T = 3(8¢1)* +1, (17a)
W = 3A(8¢1)° — 2X0¢1 ¢, (178)

where t is the stress tensor for the (n — 1) scalar fields ¢°:
t = 38¢°0¢°. (18)
The specific form of the W current (17%) allows it to be reorganised into the form*
W = 3)(8p1)® — 2)0p1 T. (19)

Thus after the T constraint has been imposed, the new information contained in the W
constraint is just

(6‘191)3 =0, (20)

and hence Jyp; = 0. The W constraint has therefore singled out the ¢; coordinate, and
removed its z dependence.

In the non-chiral case we start from the classical terms in the 7 and W currents (9a, )
and their right-moving counterparts, again with d;;; taking the form (16). For the same
reason as in the chiral case, the W current can be reorganised into

W = SA(1)* — 2\ T, (21)

and similarly for the 7% right-moving current. Consequently, the left-moving and right-
moving constraints, taken together with the Virasoro constraints, imply J; = J; = 0. Then,
one may use the equations of motion for J; and J; given in (2) to obtain

Ji = Oy + BI + 2B(2(0)? - 2T) =0,
~ (22)
Ty — By + by + AB (2(J1)2 - 2T) = 0.

*  This separation of the W current into a part involving only ©,, and a remainder involving the total

stress tensor T, persists at the quantum level [3].



Using the Virasoro constraints again, we find
dp1 = Bpy = 0. (23)

Thus in the non-chiral W3 gravity theory, the W and W constraints imply classically that
the 1 field is “frozen.” Note that the derivation of (23) does not require any gauge choice
to be made. Note also that the freezing of ¢ occurs regardless of whether it is a spacelike
or a timelike spacetime coordinate.

We now proceed to consider the quantum theory of Wj strings. The fully renormalised
matter currents [1,3] are, in the gauge h =h = B = B = 0,

Tt = T + 3(301)° + 5(82)? + VA(e10%01 + a28%p2) (240)

Wnat = {;;‘7(3901)3 — Bp1(0p2)? + VA(01818%p1 — 200001 0% 03 — 0104020% )
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v261
+ h(3ad0%01 — 1008°p3) — 2001T — caVROT |, (245)

where T is the stress tensor for the D = n — 2 free scalar fields without background charges
o, u=3,...,n:
T = Log*op", (25)

together with their right-moving counterparts. The background charges a3 and a3 for ¢

and ¢y are given by™ [1]
2 _ 49
al = -3
a = %(D - 922)’

giving a total matter central charge cmat = 100.

(26)

Up until now, we have not made any specific choices for the signature of our scalar-
field metric, but have followed initially the Euclidean assignment of [1] (which actually
corresponds to all fields initially being timelike). Although we shall not make a detailed
analysis of the compactification problem in this paper, we note that since a background
charge breaks Lorentz invariance in the dimension in which it occurs, the eventual recovery
of lower-dimensional Lorentz invariance would require that the dimensions with background
charges be compactified. In order to compactify such a dimension, with coordinate ¢y, the
background charge of this dimension should be imaginary [9], @, = i@«. This is necessary
in order that the path integral measure e~! be invariant under constant shifts ¢, — @, +
(27/Q)r, r € Z (as can be seen by considering the background charge to arise from a
dilaton coupling linear in ¢,), thus allowing compactification.

* Note that the specific details of the construction of the stress temsor 7 are not important for obtaining a

realisation of Wj; any realisation of the Virasoro algebra with central charge D will suffice. In particular, we
could choose a realisation with 24 free scalars and a real free fermion, thereby effectively having D = 523 and

hence giving as = 0. The 25 scalars ¢, ¢* would then occur on an equal footing, appearing only through
their free unimproved stress tensor.



The @1 coordinate is the one that we have shown to be “frozen” at the classical level.
We shall see below that this feature should be maintained at the quantum level. Thus, the
issue of compactification does not seem to be necessary for ¢;. In this paper, we shall not
make a definite choice of the metric signature for 3, but shall for simplicity stay with the
initial timelike signature given in [1]. The situation for g is different: there is no constraint
that specifically kills this coordinate, and so compactification is necessary if one wishes to
have Lorentz invariance in the lower dimensions. From (26) we see that, relative to our
initial signature choice, by choosing the dimension D appropriately one may make og real
(for D > 25) or imaginary (for I < 24). If one wants to keep the real “time” as one of the
Lorentz-covariant dimensions ¥, then there is no room for another (unfrozen) time. Thus,
g and D — 1 of the ¢* should be Wick-rotated into spatial directions:

wa — 1Y
A, iyA-3 _ (27)
w? = 1X A=4,...,n
The coordinate 3 is then the real time coordinate,
@ — X° (28)

In order for the background charge for Y to be imaginary so that it can be compactified, oo
should be real, requiring D > 25.

In this paper, we shall not carry out a full quantum analysis of the spectrum and unitarity
properties of the theory defined by the above choices. Some preliminary information on the
spectrum may be derived, nonetheless, in the standard way by expanding the scalar fields in
oscillators, picking a Fock vacuum and proceeding to the construction of states satisfying the
T and W constraints. One could do this either using the full BRST formalism or by applying
the Tmat and Whpat constraints to states with no ghost excitations. We have followed the
latter procedure, imposing the Ly, and Wy, constraints for m > 0, where T'(2) = 3, L2z~ "2
and W(z) = 3, Waz "3, Actually, the full content of these constraints is obtained simply
by imposing Ly, L;, Ly and Wy and their right-moving counterparts, since the rest of the
imposed constraints may be obtained by commutation.

It is already known from consideration of the nilpotence of the BRST operator @ that
the intercept for Lg is —4 while that for Wy is zero [2]. Thus, the constraints to be imposed
are

Lo—4=0, L;i=0, Ly=0, W;=0, (29a)
Lo—4=0, Li=0, Ly=0, Wo=0 (295)
acting on physical states. The incorporation of the background charges into this standard
calculation goes straightforwardly, as in [9], and similarly for the imposition of the W con-

straints. The lowest-lying state satisfying the constraints is a scalar just as in ordinary
bosonic string theory; for it the Ly constraint gives the equation of motion:

M?=(p + Q1) — (p2 + @)® + (p°)% — p'p* = L(2 - D), (30)
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where a3 = 1();. The only other non-trivial constraints at this leve] are the W constraints,
which freeze the ¢, field in a generalisation of our classical result (20):

@' +QUE' + 8@ +5Q1) =0. (31)

If we pick the first root of (31), ;1 = —@Q1, then the (mass)? operator in the unfrozen
directions takes the value 1%(2 — D); the other two roots give a value 5;(1 ~ 2D). Thus,
with the first root of the W constraint, the scalar is massless for D = 2, whilst for D > 2
the scalar is tachyonic.

The next-to-lowest states are created by acting on the Fock vacuum with a linear com-
bination of creation operators in each of the left and right sectors, making states with spins
up to 2. They also have to satisfy the usual Virasoro Lo — Lo = 0 constraint for closed
string theories. As with the ordinary bosonic string theory, the holomorphic factorisation
discussed earlier allows one to consider the effect of the constraints in each sector separately.
The linear combination of creation operators applied to the Fock vacuum is specified by a
polarisation vector £'. One then finds from the Ly constraint the mass-shell condition

M? = (p' + Q1) — (p2 + ) + (0°)% — p*p* = (26 — D), (32)
and from L1 one finds the generalised transversality condition

P& +2(Q1é1 + azés) = 0. (33)

The W constraints at this level give results depending on whether or not £; vanishes. In
the case §; = 0, one finds egn. (31) once again, with no further conditions on the remaining
components of the polarisation vector. If £; # 0, then one obtains (p'+ %r—lQl)(pl +1.7—0Q1) =0,
again freezing the momentum p!, and also a restriction on the polarisation vector, £, =
paé1(3pt + 4Q1)71. Note that in this case there is only a single independent polarisation.
It is interesting to note that if {; = 0 and if we pick the first root of eqn. (31), then there
would be a massless spin-2 state for ) = 26.

To conclude, we have constructed in this paper a non-chiral critical W3 gravity theory
and have begun the task of formulating a space-time interpretation of it as a W3 string
theory. At the classical level, the additional W and W constraints congpire to freeze out all
the degrees of freedom in one of the coordinates, thus leaving an ordinary bosonic closed
string theory in one dimension less. At the quantum level, we have found that this basic
pattern persists in the first few levels that we have investigated.

Many important questions remain to be investigated before one can have a full picture
of the properties of W3 strings. In particular, we have not yet investigated the unitarity
properties of the theory. Because of the anomaly freedom of the theory, one may expect to
be able to impose a light-cone gauge choice where unitarity would be manifest.



ACKNOWLEDGMENTS

We are grateful to L. Alvarez-Gaumé, E. Bergshoefl, J. Ellis, P.S. Howe, D. Liist, C.M.
Hull, E. Sezgin and X. Shen for discussions, and to the Theory Division at CERN for
hospitality.

REFERENCES

[1} C.N. Pope, L.J. Romans and K.S. Stelle, “Anomaly-free W3 gravity and critical Ws
strings”, preprint CERN-TH.6171/91, Phys. Lett. B (in press).

[2] J. Thierry-Mieg, Phys. Lett. 197TB (1987) 368.

[3] L.J. Romans, Nucl. Phys. B352 (1991) 829.

[4} E. Bergshoeff, P.S. Howe, C.N. Pope, E. Sezgin, X. Shen and K.S. Stelle, “Quantisation
Deforms wq, to W, Gravity,” preprint CTP TAMU-25/91, Imperial/TP/90-91 /20, ITP-
SB-91-17, Nucl. Phys. B (in press).

[5] C.M. Hull, Phys. Lett. 240B (1989) 110;

K. Li and C.N. Pope, “Aspects of anomaly structures in W gravity,” preprint, CTP
TAMU-105/90, Class. Quantum Grav. (in press);

K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, “Loop calculations in BRST-
quantised chiral W3 gravity,” preprint, ITP-SB-91-13;

A.T. Ceresole, M. Frau, J. McCarthy and A. Lerda, “Anomalies in Covariant W-Gravity,”
preprint, CALT-68-1725;

C.M. Hull and L. Palacios, “W-Algebra Realisations and W-Gravity Anomalies,”
preprint, QMW /PH/91/15.

[6] C.M. Hull, “W-Gravity Anomalies with Ghost Loops and Background Charges,” preprint
QMW /PH/91/14.

[7] K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, Phys. Lett. B248 (1990) 245.

[8] E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin, X. Shen and K.S. Stelle, Phys. Lett.
243B (1990) 350.

[9] I. Antoniadis, C. Bachas, J. Ellis and D.V. Nanopoulos, Nucl. Phys. B328 (1989) 117.



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

