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We report an analytic solution for a three–level atom driven by arbitrary time-dependent electro-
magnetic pulses. In particular, we consider far–detuned driving pulses and show an excellent match
between our analytic result and the numerical simulations. We use our solution to derive a pulse
area theorem for three–level V and Λ systems without making the rotating wave approximation.
Formulated as an energy conservation law, this pulse area theorem provides a simple picture for a
pulse propagation through a three–level media.

I. INTRODUCTION

The classic McCall-Hahn theorem [1] shows that a soli-
ton with an even-π pulse area propagates freely through
a strongly interacting two–level atomic media. This fun-
damental result has generated much interest in studying
pulse propagation in two-level systems [2], in particu-
lar, in attempting to find accurate analytic expressions
for a driven two–level system beyond the rotating wave
approximation (RWA) [3–5], arbitrary pulse propagation
through a two-level media [6–8], and control of a soliton
propagation [9, 10].

The success in two-level media encouraged considera-
tion of pulse propagation in three level media where new
physical phenomena such as electromagnetically induced
transparency in the Λ scheme [11–13] and lasing without
inversion in the V scheme [14–16] were discovered. De-
spite the advances in three level media, a theory of soliton
propagation and in particular a pulse area theorem for
three level systems is currently missing. So far, soliton
propagation in three level media has only been consid-
ered numerically [17] or analytically treated for limited
special cases [18–21].

In this paper we explore the dynamics of three-level
systems driven by two arbitrary time-dependent electro-
magnetic fields, without using the RWA. First we intro-
duce a method based on the time evolution operator,
which allows us to derive an analytic solution for three–
level systems. Then we compare our analytic results with
numerical simulations, to establish when our approach is
useful. In particular, we show that the obtained solution
works well for far-detuned pulses, when the ratio of the
peak Rabi frequency to the detuning of central field fre-
quency can be regarded as a small parameter. Based on
this solution we derive a pulse area theorem for three–
level systems. In the special case of a single resonant field
treated within the RWA, the pulse area theorem reduces
to the classic McCall-Hahn theorem.

The pulse area theorem was motivated by the recent
development of the new type of laser, based on quan-
tum amplification by superradiant emission of radiation
(QASER). [22, 23]. The two-level atomic media in the
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FIG. 1. (Color online) The three level V and Λ–systems in-
teracting with the electromagnetic pulses Ωs(t) and Ωp(t).
The atomic transition frequencies are ωab = ωa − ωb and
ωcb = ωc − ωb. The initial state is prepared in the ground
state, |ψ(t0)〉 = |b〉.

QASER description is driven by a strong far-off resonant
field where the RWA breaks down. Therefore the clas-
sic McHall-Hahn theorem cannot be applied for this case.
We have successfully applied the pulse area theorem that
is valid beyond the RWA and achieved the parametric ex-
citation of a driven two–level atomic media [24].

II. TIME EVOLUTION OPERATOR FOR

DRIVEN THREE–LEVEL ATOMS

The exact Hamiltonian of a driven three-level V system
in the interaction picture is

HV
int(t) = −h̄




0 Ωs(t)e
iωabt 0

Ω∗
s(t)e

−iωabt 0 Ω∗
p(t)e

−iωcbt

0 Ωp(t)e
iωcbt 0


 .

(1)
Here the time-dependent amplitudes, Ωs(t) =
ΩsΣs(t) cos(νst) and Ωp(t) = ΩpΣp(t) cos(νpt), are
defined for arbitrary time–dependent electromagnetic
pulse envelopes Σs(t) and Σp(t). The peak Rabi fre-
quencies Ωs = ℘abEs/h̄ and Ωp = ℘cbEp/h̄ are defined
in terms of the maximal values of the electromagnetic
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fields Es and Ep that drive the population between the
ground state |b〉 and the excited states |a〉 and |c〉. The
carrier driving frequencies are νs and νp. The matrix
elements of the dipole moments are ℘ab = e〈a|r|b〉 and
℘cb = e〈c|r|b〉. The relative atomic transition frequencies
ωab = ωa − ωb and ωcb = ωc − ωb are defined in terms of
the energies of the individual atomic levels ωa, ωb, and
ωc.
We start with the derivation of an analytical solution

for a three–level system interacting with an arbitrarily
time-dependent electromagnetic field. Our approach is
based on the time evolution operator U(t) represented
by the time-ordered T exponent of the Hamiltonian for a
driven three–level system. The time evolution operator
U(t) keeps both slowly and rapidly oscillating terms in
the Hamiltonian and therefore leads to a solution valid
for an arbitrary time-dependent electromagnetic field be-
yond the RWA. The time ordering procedure can be ac-
complished by breaking the total time interval (tf − ti)
into N infinitesimal intervals ∆τ = (tf − ti)/N and for
each discrete time, tk = ti + [(2k − 1)/2]∆τ, we evalu-
ate the original Hamiltonian Hint(tk). Then the time-
evolution operator is represented by

U(t) = T̂ exp

[
−
i

h̄

∫ tf

ti

dt′Hint(t
′)

]
=

exp

[
−
i

h̄
∆τHint(tN )

]
× · · · × exp

[
−
i

h̄
∆τHint(t1)

]
.

(2)

By collecting the infinitesimal contributions in the limit
of an infinitely small time interval ∆τ −→ 0 and infinitely
large number of steps N −→ ∞ we arrive at the Magnus
expansion [25],

U(t) = exp

[
∞∑

n=1

S(n)

]
. (3)

The first few terms in the Magnus expansion can be ob-
tained by means of the Baker–Campbell–Hausdorff for-
mula

S(1)(t) = −
i

h̄

∫ t

0

dt1Hint(t1), (4)

S(2)(t) =

(
−
i

h̄

)2
1

2

∫ t

0

dt1

∫ t1

0

dt2[Hint(t1), Hint(t2)].

(5)
This procedure can be further generalized to get an ex-
plicit expression for the nth term in the Magnus expan-
sion S(n)(t) in terms of integrals over sums of nested com-
mutators [26].
Now we introduce our only approximation for a far-

detuned field. In this case we can perform perturbation
theory by truncating the infinite series in the exponen-
tial keeping solely the leading order term in the Magnus
expansion, given by Eq (4). Here we will first focus on

the V scheme, and later apply the same method to the Λ
scheme. By projecting the time-evolution operator onto
the ground state,

|ψ(t)〉 = U(t)|b〉, (6)

we obtain the solution of a three-level V scheme be-
yond the rotating wave approximation for a general time-
dependent pulse shape. In order to find the state given
by Eq. (6) we need to diagonalize the matrix S(1)(t)
which is a simple task after rewriting it in terms of the
complex pulse areas

θs(t) =

∫ t

0

dt Ωs(t) exp [iωabt], (7)

θp(t) =

∫ t

0

dt Ωp(t) exp [iωcbt]. (8)

Here Ωs(t) is the entire time dependence of the field in-
cluding the arbitrary time-dependent pulse shape along
with slow and fast oscillations. This matrix can be easily
diagonalized using the standard method of eigenvalues
and eigenvectors. Then the three eigenvalues of the ma-
trix are zero, positive and negative effective pulse areas,

θ(t) =
√
|θs|2 + |θp|2. (9)

With the initial condition for the population prepared in
the ground state, the solution for a three-level V scheme
is,

|ψV (t)〉 = iθs(t)
sin [θ(t)]

θ(t)
|a〉+ cos [θ(t)] |b〉+

iθp(t)
sin [θ(t)]

θ(t)
|c〉. (10)

The same approach can be applied to the Λ system,
described by the exact Hamiltonian HΛ

int(t) in the inter-
action picture,

HΛ
int(t) = −h̄




0 Ωs(t)e
iωabt Ωp(t)e

iωact

Ω∗
s(t)e

−iωabt 0 0
Ω∗
p(t)e

−iωact 0 0


 .

(11)
Following the same method as for the V scheme, we ob-
tain the solution for the Λ scheme in terms of the complex
field areas

|ψΛ(t)〉 =
iθs(t) sin [θ(t)]

θ(t)
|a〉+

(
|θp(t)|

2
+ |θs(t)|

2
cos [θ(t)]

)

|θ(t)|2
|b〉

+
θsθ

∗
p

|θ(t)|2
(cos [θ(t)]− 1) |c〉, (12)

where the pulse area θs is given by Eq. (7), while the
pulse area θp is now modulated by the atomic transition
frequency ωac = ωa−ωc for a Λ scheme compared to ωcb
in the V scheme,

θp(t) =

∫ t

0

dt Ωp(t) exp [iωact]. (13)
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In the special case of a resonant continuous wave (CW)
driving field treated within the RWA, i.e. Ωs(t) =
Ωse

−iνst and Ωp(t) = Ωpe
−iνpt, we can simplify the com-

plex area variables into

θs(t) =
Ωst

2
, (14)

θp(t) =
Ωpt

2
. (15)

Then from Eq. (10), we immediately obtain the conven-
tional RWA solution for a three-level V system,

|ψV (t)〉 =
iΩs
Ω

sin

[
Ωt

2

]
|a〉+cos

[
Ωt

2

]
|b〉+

iΩp
Ω

sin

[
Ωt

2

]
|c〉,

(16)
where the effective Rabi frequency is

Ω =
√
Ω2
s +Ω2

p. (17)

Likewise for the Λ scheme, the solution given by Eq. (12)
simplifies under the resonant CW driving field to the con-
ventional RWA solution,

|ψΛ(t)〉 =
iΩs
Ω

sin

[
Ωt

2

]
|a〉+

1

Ω2

(
Ω2
p +Ω2

s cos

[
Ωt

2

])
|b〉

+
ΩsΩp
Ω2

(
cos

[
Ωt

2

]
− 1

)
|c〉, (18)

where the effective Rabi frequency Ω is given by (17).

III. ANALYTIC SOLUTION VS. NUMERICAL

SIMLATIONS

To compare our solution with the exact numerics we
consider pulses of a general form

Ω(t) = ΩRΣ(t) cos(νt), (19)

where ν is the central frequency of the pulse, ΩR =
℘abE0/h̄ is the peak pulse Rabi frequency, and Σ(t) is
the pulse envelope. Here we restrict our examples to
pulses with the varying envelope function

Σ(t) = tanh [10q(t+ τp)/τp]− tanh [10q(t− τp)/τp] ,
(20)

which gives pulse envelopes of duration 2τp and with a
shape controlled by the parameter q. For q ≥ 1 we es-
sentially have a square pulse as shown in Fig.(3). With
q < 1 the square pulse smooths out until for q = 0 the
envelope is nearly Gaussian as can be seen in Fig.(2).
Now we can examine the approximation of dropping all

but the first term of the Magnus expansion. Considering
the fields defined by Eq. (19) it can be seen that the n-
th term in the Magnus expansion is proportional to the
n-th power of the integral over the CW square pulse in
the RWA

∫ t

0

dt Ω(t) exp [iωt] ≃
ΩR
∆

sin

[
∆t

2

]
exp[i∆t/2]. (21)

Thus the approximation of dropping higher order terms
in the Magnus expansion of the evolution operator is es-
sentially a perturbation theory in the evolution operator
with the small parameter, ΩR/∆ ≪ 1. Here ∆ = ω−ν is
the detuning between the central field frequency and the
transition frequency (either ωab or ωcb). To get higher
accuracy one should keep the higher order terms given
by Eq. (5), but for the far-detuned case the leading term
describes the dynamics of the light-matter interaction ex-
ceptionally well, as one can see from the agreement be-
tween the analytic solution and numerical simulations.
For both adiabatic Gaussian-like pulse (as shown in Fig.
2) and non-adiabatic square pulse (as shown in Fig. 3)
there is a strong match between our analytic solution and
the numerical simulations.

IV. PULSE AREA THEOREM FOR

THREE-LEVEL ATOMS

The obtained solution allows us to formulate the pulse
area theorem for a driven three-level V and Λ systems.
The Maxwell-Schrödinger equations in the slowly varying
amplitude approximation for V system are given by,

(
∂

∂t
+ c

∂

∂z

)
∂

∂t
θs(t) = −iΩ2

aρab, (22)

(
∂

∂t
+ c

∂

∂z

)
∂

∂t
θp(t) = −iΩ2

cρcb (23)

Here Ωa, and Ωc are the collective frequencies propor-
tional to the dipole moments associated with the transi-
tions between the levels a and b and the levels c and b
correspondingly,

Ω2
a =

3

8π
nλ2abγc, (24)

Ω2
c =

3

8π
nλ2cbγc (25)

Here n is the atomic density, λab and λcb are the atomic
wavelengths, and γ is the spontaneous decay rates.

If we consider optically thin media then we can safely
disregard space propagation in the Maxwell–Schrödinger
equations (22) and (23). Combining the Maxwell–
Schrödinger equations for θs(t) and θp(t), multiplying
them by ∂θ∗s/∂t and ∂θ

∗
p/∂t, correspondingly, and adding

the complex conjugates counterparts, the left hand side
of Eqs. (22) and (23) becomes a full-time derivative,

∂

∂t

(
1

Ω2
a

∣∣∣∣
∂

∂t
θs(t)

∣∣∣∣
2

+
1

Ω2
c

∣∣∣∣
∂

∂t
θp(t)

∣∣∣∣
2
)

(26)

Due to the density matrix equations the right hand sides
of Eqs. (22) and (23) turn into full–time derivative of the
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FIG. 2. (Color online) Atomic three-level V-system interacting with a far detuned electromagnetic continuous wave pulses,
Ωs(t) = ΩsΣ(t) cos(νst) and Ωp(t) = ΩpΣ(t) cos(νpt) with νs = 3, Ωs = 3/5, and νp = 2, Ωp = 1/2. The pulse envelope is given
by Eq. (20) with parameters q = 0 and τp = 10. The driven atom has ωab = 12 and ωcb = 10. Here the dashed (blue) line is
our approximate analytic solution from Eq. (10) and the solid (red) line is the numerical solution. For this case the two are
almost perfectly matched. Here we plot several key variables: (a) pulse envelope, (b) population in level a, (c) population in
level c, (d) imaginary part of the coherence ρab, (e) imaginary part of the coherence ρcb, (f) imaginary part of the coherence
ρac.
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FIG. 3. (Color online) Same as Fig. (2) but for q = 1 and τp = 10

population in the ground state,

−i

[
ρ∗ab(t)

∂θs
∂t

− ρab(t)
∂θ∗s
∂t

]
(27)

−i

[
ρbc(t)

∂θp
∂t

− ρ∗bc(t)
∂θ∗p
∂t

]
=
∂ρbb
∂t

.

With the population in the ground state,

ρbb(t) = cos2
(√

|θs|2 + |θp|2
)

(28)

we obtain the conservation law,

∂

∂t

(
1

Ω2
a

∣∣∣∣
∂

∂t
θs(t)

∣∣∣∣
2

+
1

Ω2
c

∣∣∣∣
∂

∂t
θp(t)

∣∣∣∣
2
)

(29)

= −
∂

∂t
cos2

(√
|θs|2 + |θp|2

)

Taking into account the initial conditions for both Ωs
and Ωp pulses,

∣∣∣∣
∂

∂t
θ(t0)

∣∣∣∣
2

= |θ(t0)|
2 = 0 (30)

we arrive at the pulse area theorem for three–level V
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system in terms of the pulse areas of Eqs. (7) and (8),

1

Ω2
a

∣∣∣∣
∂

∂t
θs(t)

∣∣∣∣
2

+
1

Ω2
c

∣∣∣∣
∂

∂t
θp(t)

∣∣∣∣
2

= sin2
(√

|θs|2 + |θp|2
)

(31)
In terms of the energy densities of the fields we obtain,

∣∣∣∣
Ωs(t)

Ωa

∣∣∣∣
2

+

∣∣∣∣
Ωp(t)

Ωc

∣∣∣∣
2

= sin2
(√

|θs|2 + |θp|2
)

(32)

The pulse area theorem states that energy density of the
fields Ωs(t) and Ωp(t) is transferred to the atomic popu-
lation in the excited state of the system, which in turn is
expressed in terms of the pulse areas θs(t) and θp(t).

The preceding procedure applied for a Λ scheme yields
the Pulse Area Theorem for a Λ–system, expressed in
terms of the pulse areas Eqs. (7) and (13),

1

Ω2
a

∣∣∣∣
∂

∂t
θs(t)

∣∣∣∣
2

+
1

Ω2
c

∣∣∣∣
∂

∂t
θp(t)

∣∣∣∣
2

=

|θs|
2 sin2

(√
|θs|

2
+ |θp|

2

)

|θs|
2 + |θp|

2 .

(33)

We see that the pulse evolution θs(t) affects the evolu-
tion of the θp(t) and vice versa, through the modulation
of the population in the excited state. Thus the pulse
area theorem can be used to control and analyze pulse
propagation through a three-level media.

To take into account the influence of decay mechanism
and broadening phenomena one should solve the density
matrix equations that includes the decay matrix Γ,

∂

∂t
ρ(t) = −

i

h̄
[H(t), ρ(t)] −

1

2
{Γ, ρ} (34)

in terms of the commutator [H(t), ρ(t)] and anticom-
mutator {Γ, ρ}. Now we introduce the effective non-
Hermitian Hamiltonian

H (t) = H(t)−
i

2
h̄Γ (35)

which is given in terms of the Hermitian Hamiltonian

H† = H and the decay matrix Γ† = Γ. Using the stan-
dard definition of the density matrix,

ρ(t) =
∑

Pψ|ψ(t)〉〈ψ(t)|, (36)

one can show that the Schrödinger equation with the ef-
fective non-Hermitian Hamiltonian H (t),

∂

∂t
|ψ(t)〉 = −

i

h̄
H (t)|ψ(t)〉 (37)

is equivalent to the density matrix equation (34) that in-
cludes the decay matrix Γ. Therefore in order to take into
account the decay mechanism and broadening phenom-
ena into the current approach based on the time evo-
lution operator U(t), one should consider the effective
non-Hermitian Hamiltonian (35).

V. CONCLUSION

In conclusion we investigated the dynamics of three-
level systems driven by two arbitrarily time-dependent
electromagnetic fields, without referring to the rotating
wave approximation (RWA). In particular, we consid-
ered far-detuned driving pulse envelopes where the ro-
tating wave approximation breaks down and show ex-
cellent agreement between the analytic solution and the
numerical simulations. The solution is based on the time
evolution operator that operates with a time–dependent
Hamiltonian and allows us to keep both slowly and
rapidly oscillating terms. With the solution we formu-
late the pulse area theorem for three–level V system and
Λ systems without making the rotating wave approxi-
mation. Formulated as the energy conservation law, the
pulse area theorem for three–level systems provides a tool
for pulse manipulation and coherent control of three–level
atoms.
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