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Abstract –The wake field excitation in an unmagnetized plasma by a multi-petawatt, femtosec-
ond, pancake-shaped laser pulse is described both analytically and numerically in the regime with
ultrarelativistic electron jitter velocities, when the plasma electrons are almost expelled from the
pulse region. This is done, for the first time, in fluid theory. A novel mathematical model is
devised that does not break down for very intense pump strengths, in contrast to the standard
approach that uses the laser field envelope and the ponderomotive guiding center averaging. This
is accomplished by employing a three-timescale description, with the intermediate scale associated
with the nonlinear phase of the electromagnetic wave and with the bending of its wave front. The
evolution of the pulse and of its electrostatic wake are studied by the numerical solution in a
two-dimensional geometry, with the spot diameter & 100µm. It reveals that the optimum initial
pulse length needs to be somewhat bigger than & 1µm (1-2 oscillations), as suggested by simple
analytical local estimates, because the nonlocal plasma response tends to stretch very short pulses.

Introduction. – Tajima and Dawson proposed [1] in
1979 to accelerate charged particles by large amplitude
electron density waves, propagating through underdense
plasma in the wake of an intense laser pulse. Plasma
wakes can sustain electrostatic fields of several GV/cm,
103 times above the electric breakdown in conventional
accelerators, enabling the construction of low cost, minia-
ture laser-plasma accelerators (LPAs) [2]. Most powerful
LPA systems at present time, or planned for the near fu-
ture [3], include the Nd:Glass lasers with the wavelength
λ = 1.06µm, pulse duration T = 300 − 500 fs and power
P . 1 PW, and the facilities using Ti:Sapphire technology,
λ = 0.65 − 1.1µm, having shorter pulses, T = 25 − 60 fs,
and the power P = 0.1 − 1 PW. So far, the maximum
electron beam energy achieved in LPAs is & 1 GeV [4].
Fundamental limitation is set by the pump depletion. To
produce a 10 GeV electron bunch with a charge of 1 nC,
holding 10 J of kinetic energy, with a laser to particle beam
efficiency 1− 10%, laser energy of 100− 1000 J is needed,
i.e. P = 40− 400 PW, if the pulse duration is ∼ 25 fs.

In the terminology introduced in Ref. [5], an LPA is

said to be operating in the moderate (MIR) or in the
strong intensity regime (SIR) when the electron quiver
motion is mildly relativistic, p⊥0

. m0c or ultrarelativis-
tic, p⊥0

� m0c, respectively (here p⊥0
= eE⊥0

/ω and ω
and E⊥0 are the angular frequency and the amplitude of
the laser electric field). Simple scaling [5] reveals that in
the SIR the electron density perturbation is comparable
to the plasma density, i.e. that the ponderomotive force
entirely routs plasma electrons from the pulse area and
leaves a wake of immobile, positively charged ions. For a
spheroidal laser pulse, whose length and width are com-
parable to the plasma length, L‖ ∼ L⊥ ∼ 2πc/ωpe, the
threshold for the complete expulsion of the electrons was
estimated to be p⊥0

≥ 4m0c [6]. The phenomenological
theory [7] found that such plasma cavity, or bubble, de-
velops when the nonlinearities are sufficiently strong to
produce a plasma wave breaking after the first oscilla-
tion. 3D PIC simulations [8] confirmed the existence of
the bubble regime in LPA and showed that a bubble can
trap background electrons and accelerate them, with a
monoenergetic spectrum. Spheroidal bubbles are inher-
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ently electromagnetic [2], since the wake is encircled by a
sheath of relativistic electrons (return current) exerting a
Lorentz force on electrons. The balance of the Lorentz,
Coulomb and ponderomotive forces determines the size of
a 3D bubble. For self-similar 3D pulses, the optimum wake
generation [9,10] occurs for the pulse length L‖ ≤ ds/2 and

the laser spot diameter ds = (2c/ωpe)
√
eE⊥0

/ωm0c.

Writing the norm for the MIR (mildly relativistic) and
SIR (ultrarelativistic regime) in terms of laser intensity
I = wc, where w is the energy density of the e.m. (elec-
tromagnetic) wave, w = ε0E

2
⊥0
/2, we note that lasers with

λ . 1µm have I ∼ (ε0 c/2)(2πm0c
2/eλ)2 ∼ 1018 W/cm

2

in the MIR and I � 1018 W/cm
3

in the SIR. The diam-
eter ds of the laser spot is estimated from I = 4P/πd2s,
which in the SIR yields ds � 305λ

√
P/(1015 W). Thus,

a 100 TW class Ti:Saphire laser needs to be focussed to a
diameter comparable to the pulse length, ds � 60µm.

In this letter, a theoretical study of the ultrarelativistic
regime in the laser wake field generation is for the first
time carried out in fluid theory. We consider the propaga-
tion, in a cold unmagnetized plasma, of a pancake-shaped,
ultra-short laser pulse, with the energy ≥ 100 J and
the intensity I ∼ 1020 W/cm

2
. A multi-petawatt pulse

reaches an ultrarelativistic intensity that strongly perturbs
the electron density (causing almost complete expulsion)
even if focussed to a large spot, ds ∼ 100µm � 305λ√
P/(1015 W) ∼ 1000µm, much bigger than the length

of a 25 fs pulse (L‖ ∼ 7.5µm). Some authors argue that
a ”pancake” shape is beneficial for LPA [11], because a
tight laser spot ds ∼ 10µm gives an acceleration length of
only a few mm (estimated as twice the Rayleigh length),
restricting the electrons’ energy gain. Although a suitably
preformed plasma and the nonlinear self-guiding may en-
able a tightly focussed laser pulse to propagate well be-
yond two-three Rayleigh lengths [10,12,13], its strong ra-
dial electric field expels most electrons, permitting only a
few to be trapped and accelerated by a 3D potential [11].

A SIR involves vastly different scalings in the core and at
the pulse edges. The core is almost devoid of electrons and
the e.m. pulse practically propagates in vacuum, featuring
linear properties. The nonlinear self-organization [5, 11]
occurs at the edges, which are in the MIR. For laser in-
tensities I ∼ 1020 W/cm

2
we employ new model equations

that describe both the SIR core and the MIR edges. This
is not possible in the classical two-timescale description
of a slowly varying amplitude of the laser pulse. We de-
velop a three-timescale description, with an intermediate
timescale associated with the intensity-dependent phase of
the e.m. pulse. At SIR intensities, the nonlinear phase is
resolved within the (Wentzel-Kramers-Brillouin) approxi-
mation. The phase introduces new nonlinear terms in the
wave equation that suppress, in the core, both the nonlocal
nonlinearity and the dispersion of the e.m. wave. Our 2D
numerical result reveals that, as the core of the pulse runs
at a higher group velocity than the leading edge, an initial

steepening of the pulse’s front edge takes place, which is
known to occur in the absence of nonlocality (i.e. spatial
dispersion) in the plasma response [14]. Soon, the latter
produce an effective mixing of the rapid core of the pulse
with its slow front edge, pushing it forward and producing
a frontward stretching of the laser pulse. Remarkably, the
stretched pulse propagates in the plasma several mm, con-
sistent with the results of self-injection experiments [15].

Mathematical model. – Due to their extreme com-
plexity, analytic studies of the laser-plasma interaction
with intensities suitable for LPA have been attempted
only for quasi 1D, pancake-shaped pulses, using the ”qua-
sistatic” approximation and in a cold-fluid description, see
the classical papers [11,16–18] and references therein. Re-
cently, in the mildly relativistic regime, the evolution of
the plasma wake and of the laser pulse (depletion, fre-
quency redshifting) was satisfactorily described using a
reduced wave equation and a quasistatic plasma response
[19], with a good agreement with full Maxwell-fluid results.
Such fluid calculations provided an additional insight into
purely particle phenomena, e.g. by establishing the ap-
propriate thresholds for the electron trapping and wave
breaking, and showed that the electron dephasing (rather
than laser depletion) limits the LPA’s energy gain. Fol-
lowing these works, considering an unmagnetized plasma,
assuming ∇⊥ � ∂/∂z, and taking that the solution is
slowly varying in the frame that moves with the velocity
u~ez, we have derived our system wave equation + Pois-
son’s equation, (1), (2). Their derivation is given in [5] and
we note that Eqs. (1) and (2) are valid also for ultrarela-
tivistic electrons, p⊥0

� m0c. Being affected by the return
electron current, a wake is innately electromagnetic, but
for sufficiently broad pulses, both pancake-shaped [5, 19]
and spherical [20], the electromagnetic effects are weak
and we consider the wake as purely electrostatic.

Using the normalizations ~p → ~p/m0c, ~v → ~v/c, φ →
−eφ/m0c

2, ~A → −e ~A/m0c, u → u/c, t → ωpet, ~r →
(ωpe/c)(~r − ~ez ut), our basic equations take the form[

∂2

∂t2 − 2u ∂2

∂t ∂z −
(
1− u2

)
∂2

∂z2 −∇
2
⊥ + 1

1−φ

]
~A⊥

= −
(
∂
∂t − u

∂
∂z

)
∇⊥φ, (1)

∂2φ

∂z2
=

(φ− 1)2 − 1− ~A 2
⊥

2 (φ− 1)2
. (2)

Remarkably, Eqs. (1) and (2) describe, beyond the pon-
deromotive guiding center approximation [21], the spatio-
temporal evolution of an e.m. pulse of arbitrary intensity,
interacting with a Langmuire wave via nonlocal nonlinear-
ities arising from relativistic effects. Although the PIC al-
gorithms are now getting very fast, it is argued that fluid
models for the plasma response may still be useful [22],
because the simulations of the next generation of LPA ex-
periments (meter-scale, 10 GeV) will increase the compu-
tational requirements around 1000-fold. The performance
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Ultrarelativistic wakefield

of LPA simulations can be vastly improved using the pon-
deromotive guiding center averaging procedure and mod-
eling the envelope evolution of the laser field rather than
the field itself [23], but such procedure breaks down for
very intense pump strengths. We overcome this limitation
introducing a three-timescale procedure, and seek the so-
lution of Eq. (1) as the sum of its slowly and rapidly vary-
ing components, allowing the phase of the latter to vary

on an intermediate time scale. We take ~A⊥ = ~A
(0)
⊥ + ~̃A⊥,

where ~A
(0)
⊥ is the vector potential of the self-generated

quasistationary magnetic field and ~̃A⊥ is associated with
the electromagnetic wave of the laser,

~̃A⊥ = ~A⊥0
(t2, ~r2) ei[ϕ(t1,~r1)−ω

′t+k′(z+ut)] + c.c. (3)

The dimensionless frequency ω′ and the wavenumber k′

are defined as ω′ = ω/ωpe, k
′ = ck/ωpe = λp/λ, while

ω, k, and λ are, respectively, the frequency, the wavenum-
ber, and the wavelength of the electromagnetic wave prop-
agating in an unperturbed plasma, that satisfy the lin-

ear dispersion relation ω =
√
c2k2 + ω2

pe. We drop the

primes and write the dimensionless dispersion relation as
ω =
√
k2 + 1 . The arguments of the laser phase ϕ(t1, ~r1)

and amplitude A⊥0(t2, ~r2) in Eq. (3) are given by

t1 = ε t− ε−1uz , ~r1 = ~exx+ ~eyy + ε−1~ez z, (4)

t2 = ε2t1 = ε3t− ε uz , ~r2 = ε~r1 = ε (~exx+ ~eyy) + ~ezz.

These are identified as the slow and intermediate scales,
respectively, since under typical LPA conditions, with the
plasma density n0 ≤ 1019 cm−3, we have ω ≈ k > 12 and
the quantity ε ≡ 1/ω � 1 comprises a small parameter.

We adopt u to be the group velocity of an e.m. wave,
u = dω/dk = k/ω, and introduce an auxiliary function
κ(φ), localized and well-behaved, which is defined as

κ(φ) =
[
(∇1ϕ)

2
+ 2 (∂ϕ/∂t1)− (∂ϕ/∂t1)

2
]1/2

. (5)

These permit us to rewrite Eqs. (1) and (2) as

2 Re
{
ei[ϕ(t1,~r1)−

t
ω+kz]

[
α ~A⊥0

− 2 i ε2
(

1− ∂ϕ
∂t1

)
∂ ~A⊥0

∂t2

− 2 i ε (∇1ϕ · ∇2) ~A⊥0
+ ε4

∂2 ~A⊥0

∂t22
− ε2∇2

2
~A⊥0

]}
=

ε
(
ε ∂
∂t2
− u ∂

∂z2

)
∇2⊥φ−

(
ε4 ∂2

∂t22
− ε2∇2

2 − 1
1−φ

)
~A
(0)
⊥

(6)(
∂
∂z2
− ε u ∂

∂t2

)2
φ =

(φ−1)2−1− ~A 2
⊥

2(φ−1)2 , (7)

where α = κ2(φ) + φ/(1− φ) − i(∇2
1ϕ − ∂2ϕ/∂t21) and

∇k = ~ex(∂/∂xk) + ~ey(∂/∂yk) + ~ez(∂/∂zk), k = 1, 2.
The right-hand-side of the wave equation (6) is slowly

varying in space and time and can not be resonant with
the high-frequency oscillations on the left-hand-side. The

slow vector potential, A
(0)
⊥ , comes from the quasi station-

ary magnetic field generated in the laser-plasma interac-
tion, for whose accurate description one needs to include

also the kinetic effect that are responsible e.g. for the off-
diagonal terms in the stress tensor for electrons [24, 25],
for the return electron current [26–28], etc. As the deriva-
tion of our equations is based on a cold and unmagnetized
plasma model [11, 17, 18], they are valid only when the
right-hand side of Eq. (6) is negligible. A scaling analysis

of Eqs. (6), (7) shows that the slow vector potential ~A
(0)
⊥

and the self-generated magnetic field can be neglected if

max(φ, | ~A⊥0
|, | ~A(0)

⊥ |) < (ε ∇2⊥)−1 ∂/∂z2. (8)

As κ(φ) is a localized, well-behaved function of its argu-
ment the left-hand-side of Eq. (5) varies on the same spa-
tial and temporal scales as the wake potential φ(t2, ~r2),
see Eq.s (2) and (7). In other words, the function κ2(φ)
is adopted to be a slowly varying function of the spa-
tial variables ~r1 and a very slowly varying function of
the variable t1. Then, the fundamental solution for the
phase ϕ obtained from Eq. (5) is slowly varying with t1,
viz. ∂ϕ/∂t1 � 1. Using the new variables ~ρ = ~r1 and

τ = t1 −
∫ ~r1
−∞

~dl · ∇1ϕ (∇1ϕ)
−2

, Eq. (5) becomes

(∇ρϕ)
2 − κ2 (φ) = O

(
ε4
)
, (9)

where derivatives with respect to the retarded time τ ap-
pear only in small terms, of order O(ε4). Consistently
with the stationary, 1D approximation used in the deriva-
tion of the Poisson’s equation (2), which is accurate to ε2,
the right-hand-side of Eq. (9) can be neglected.

Particularly simple is the case of a circularly polarized
laser wave, ~A⊥0

= (A⊥0
/
√

2)(~ex + ~ey), when we have
~A 2
⊥ = |A⊥0 |2, i.e. the second harmonic is absent. Sim-

ilarly, for a linearly polarized wave, we will neglect the
second harmonic, whose contribution is nonresonant, and
use ~A 2

⊥ ≈ |A⊥0
|2, where ~A⊥0

= A⊥0
~ex. Now, with the

accuracy to ε2, our basic system of equations reduces to

[αRe (φ) + i αIm (φ)]A⊥0 − 2 i ε2 ∂A⊥0/∂t2 −
2 i ε (∇ρϕ · ∇2)A⊥0 − ε2∇2

2A⊥0 = 0, (10)

2 ∂2φ/∂z22 = 1−
(

1 + |A⊥0
|2
)
/ (φ− 1)

2
, (11)

(∇ρϕ)
2

= κ2 (φ) , (12)

where (12) is an eikonal equation (the geometrical optics’
limit), while αRe and αIm are the real and imaginary parts
of α, respectively. With the accuracy to ε2 we have

αRe (φ) = φ/(1− φ) + κ2 (φ) , αIm (φ) = −∇2
ρϕ. (13)

We adopt an auxiliary function κ(φ) which, asymptoti-
cally, in the MIR and SIR reduce to the limits elucidated
in [5]. In the MIR, |φ| ∼ ε2, a Schrödinger equation with
nonlocal cubic nonlinearity is to be recovered, which is re-
alized within the scaling αRe(φ) ∼ κ(φ) ∼ ϕ ∼ O(ε2), viz.[

2i ω ∂/∂t+ ω−2 ∂2/∂z2 +∇2
⊥ − φ

]
A⊥0 = 0, (14)

2
(
∂2/∂z2 + 1

)
φ = −|A⊥0

|2. (15)
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In the ultrarelativistic regime (i.e. SIR), 1� φ . 1/ε (for
φ > 1/ε one may not neglect the self-generated magnetic
field), we have φ = −|A⊥0 | and |∇ρϕ| = 1 and the wave
equation describes an e.m. wave propagating in vacuum,(

2i ω ∂/∂t+∇2
⊥
)
A⊥0

= −A⊥0
/φ → 0, (16)

while φ is found from 2 ∂2φ/∂z2 = 1− |A⊥0
|2 /φ2. These

are realized when αRe → 1/φ → −ε and κ → 1. Close to
the edges of an ultrarelativistic laser pulse, in the region
where φ ∼ O(1), αRe(φ) needs to be sufficiently small,
so that the nonlinear term αA⊥0 has the same scaling as
the linear terms in the wave equation. We adopt a simple
expression αRe(φ) = φ(1+φ2)/(1−φ)4, and consequently:

κ(φ) = − [φ/ (1− φ)]
[
1 + 2/(1− φ)

2
] 1

2

. (17)

Numericalal results. – For an efficient LPA, one
needs to find, within the technical constraints of the avail-
able lasers, the parameters that optimize the system’s per-
formance. To initiate such optimization, first we make an
’educated guess’ about the most stable lengthscale of the
laser pulse, by finding an analytic stationary solution of
Eqs. (10)-(12) and (17) under simplified, albeit unphys-
ical, conditions. For this, we neglect all transverse ef-
fects, ∂/∂x = ∂/∂y = 0, and the nonlocality effects in the
Poisson’s equation (11), viz. (∂/∂z2 − ε u ∂/∂t2)2φ → 0.
The wave equation is then readily solved in the form
~A⊥0

= aL(t2, z2) exp{i[δk z2 − δω t2 − ϕ(t1, z1)]}, where
aL, δk and δω are purely real quantities and the subscript
L denotes a local solution. Separating real and imaginary
parts of Eq. (10), and after some algebra, we have

a−1L (∂2aL/∂z
2
2) + ε−2

[
1−

(
1 + a2L

)−1/2]
= δk2, (18)

which is easily integrated by quadratures

z2 − δk t2 =
(
ε/
√

2
)∫

daL

[
c1a

2
L +

(
1 + a2L

)1/2 − 1
]−1/2

.

(19)
Here c1 ≡ (ε2/2)(δk2 − 2 δω − 1/ε2) is arbitrary constant
and the maximum value of aL is amax = (1/c1)

√
1 + 2c1.

A numerical integration of Eq. (19), with a typical LPA
experimental value ε = 1/12 and with the maximum laser
vector potential amax = 14.12, which is well within the
ultrarelativistic regime determined by a ≥ 4 [6], reveals a
typical bell-shaped profile. Its e-folding length L‖ef , i.e.
the separation between the points where the intensity is
reduced by the factor e, a2L(L‖ef/2) = a2max/e, is given by
L‖ef = 0.65, or L‖ef = 1.1µm in non-scaled variables.

In the next step, we study the influence of the finite
width and of the nonlocal effects on the pulse evolution.
We solve numerically Eqs. (10)-(12) and (17) in 2D (with
∂/∂y2 = 0), in an initially quiescent plasma φ (x2, z2, 0)
= ϕ (x2, z2, 0) = 0. The initial shape of the laser pulse was
adopted in the form of the stationary local solution (19),
but with a Gaussian transverse profile with the width Lx,

A⊥0(x2, z2, 0) = aL(z2/Lz) exp(i δk z2) exp (−x22/2L2
x).

Here aL is given by (19) and we take δk = −0.5, Lx = 7.5,
and Lz = 0.8. Such laser pulse has the initial root mean
square width (in non-scaled variables) L⊥rms = 150µm,
the laser energy E ≈ 125 J and the power P ≈ 50 PW.
The solution, displayed in Figs. 1–3, was followed up to
t2max & 1. During such short time no transverse contrac-
tion was observed. The folding of the pancake pulse to a
V-shape, known in the MIR [5, 11] was not observed ei-
ther. Due to the stretching in the forward direction, the
laser amplitude rapidly dropped, to |Amax| ∼ 5, which is
still within the ultrarelativistic regime, |A⊥0 | ≥ 4. By the
time t2max the maximum forward stretching was reached.
It occurred mostly in the central part of the pulse, where
the amplitude was the largest. Inside the pulse, almost
all electrons had been pushed out by the ponderomotive
force and the laser light practically propagated in a vac-
uum, i.e. the core of the pulse propagated with the speed
of light and the nonlinear effects were weak. The nonlocal-
ity produced an effective mixing with the front edge of the
pulse (that tends to propagate with the group velocity),
which is then pushed forward by the core. An electrostatic
wake with a rather large first potential minimum |φmax|
& 1.5 developed roughly during the time t2 = 0.5 and
grew steadily until the maximum time was reached. The
nonlinear phase ϕ emerged simultaneously with the wake,
producing a substantial bending of the laser wave front.
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Fig. 1: Evolution, in an ultrarelativistic regime, of the en-
velope |A⊥0(x2, z2, t2)| of a pancake-shaped laser pulse. The
initial condition is A⊥0(x2, z2, 0) = aL(z2/Lz) exp (−x22/2L2

x)
exp(i δk z2), with δk = −0.5, Lz = 0.8, and Lx = 7.5 and
φ (x2, z2, 0) = ϕ (x2, z2, 0) = 0. In the non-scaled variables,
the initial pulse length and width are ∼ 0.9µm and ∼ 150µm.
Dimensionless time t2max = 1 corresponds to 9.69 × 10−12 s,
during which time the pulse travels 2.9 mm. (color online).

Conclusions. – In this letter we have studied, using
a semi-analytic hydrodynamic description, a SIR regime
of the propagation of pancake-shaped laser pulses through
an unmagnetized plasma, with specifications envisaged for
the next generation of LPA experiments. We derive novel
model equations, based on a three-timescale description,
that account for the evolution of the nonlinear phase of
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Fig. 2: The electrostatic wake potential φ(x2, z2, t2), produced
by the laser pulse displayed in Fig. 1. (color online)

the laser wave. At very large laser intensities this gives
a smooth transition to a nondispersive e.m. wave and
the saturation of the nonlocal nonlinearity. These equa-
tions are solved numerically in the regime when the ul-
trarelativistic electrons are almost expelled by the radi-
ation pressure of a femtosecond laser pulse focussed to
a & 100µm spot. We could follow the pulse during its
travel along a 2.9 mm long path, which coincides with the
dimensions of the He plasma in the self-injection LPA ex-
periment [2]. Practically no transverse self-focussing and
fillamentation have been observed for such broad pulse,
but its Raleigh length is sufficiently long to allow for an
efficient electron acceleration without self-guiding. The
plasma wake, whose peak potential is φ & 1.5, preserves
its length (∼ λp), while the nonlocality effects stretch the
laser pulse almost tenfold in the forward direction. A mod-
erate stretching has been known in the mildly relativistic
(MIR) regime [5, 11], arising from the dispersion of the
laser pulses if, initially, they were sufficiently shorter than
the plasma length. Pulses that are & λp, undergo longi-
tudinal compression into a ”laser piston” [29]. For them,
a mild stretching may be desirable [30], because it com-
pensates the nonlinear red-shift and delays the formation
of the ”piston”, which reduces the dark current.

Our calculations have been performed for a laser with
the energy ∼ 125 J per pulse and the duration T . 10 fs,
providing the power of several tens of petawatts and the
intensity I ∼ 1020 W/cm

2
. Lasers with such energy spec-

ifications are planned for the near future, mostly in the
Nd:Glass technology. The Vulcan upgrade [31, 32] will
have a new laser beamline with 300 J in 30 fs (10 PW), that

can be focussed to 1023 W/cm
2
. Extreme Light Infrastruc-

ture (ELI) [33] will produce in its second section, planned
for a later phase, a 10 PW beamline compressed to 130 fs,
providing an on-target power density I > 1023 W/cm

2
.

The electron acceleration to 2 − 5 GeV is expected to be
reached by 2019 and up to 50 GeV after 2020. Ultra-strong
Ti:Sapphire lasers have also been planned, such as Astra-
Gemini [31], a dual beam upgrade to a PW class of the ex-

isting Astra facility that will supply 1022 W/cm
2

on target.
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Fig. 3: The nonlinear phase ϕ(x2, z2, t2) of the laser pulse dis-
played in Fig. 1. (color online)

Each beam will have 15 J compressed to 30 fs, supplying
0.5 PW. Further compression to ∼ 5 fs (∼ 2 oscillations),
is possible by the use of photon deceleration or thin plasma
lenses [34,35], and the transverse filamentation can be sta-
bilized by a periodic plasma-vacuum structure [36]. Our
semi-analytic fluid theory may be a valuable tool for the
predictions and the analyses of LPA experiments in the ul-
trarelativistic regime with these lasers, focussed to a spot
& 100µm, for which it can provide an estimate for the ac-
celerating wakefield and its dynamics. While the oversim-
plified local model preferred very short (single oscillation)
laser pulses, the observed stretching implies that an op-
timized LPA system may require a longer pulse. Kinetic
effects, such as the plasma wave-breaking, the trapping
of resonant particles and their subsequent acceleration, is
not included in the present analysis. They are the subject
of our study in progress, to be presented later.
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