
ar
X

iv
:h

ep
-t

h/
96

04
05

2v
3 

 6
 M

ay
 1

99
6

CTP-TAMU-14/96

hep-th/9604052

The Black Branes of M-theory

M. J. Duff †, H. Lü ‡ and C. N. Pope ‡
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1 Introduction

There is now a consensus that the best candidate for a unified theory underlying all physical

phenomena is no longer ten-dimensional string theory but rather eleven-dimensional M-

theory . The precise formulation of M-theory is unclear but membranes and fivebranes enter

in a crucial way, owing to the presence of a 4-form field strength F4 in the corresponding

eleven-dimensional supergravity theory [1]. The membrane is characterized by a tension T3

and an “electric” charge Q3 =
∫
S7 ∗F4. For T3 > Q3, the membrane is “black” [2], exhibiting

an outer event horizon at r = r+ and an inner horizon at r = r−, where r =
√

ymym

and where ym, m = 1, 2, ..., 8, are the coordinates transverse to the membrane. In the

extremal tension=charge limit, the two horizons coincide, and one recovers the fundamental

supermembrane solution which preserves half of the spacetime supersymmetries [3]. This

supermembrane admits a covariant Green-Schwarz action [4]. Similar remarks apply to the

fivebrane which is characterized by a tension T6 and “magnetic charge” P6 =
∫
S4 F4. It

is also black when T6 > P6 and also preserves half the supersymmetries in the extremal

limit [2]. There is, to date, no covariant fivebrane action, however. Upon compactification

of M-theory to a lower spacetime dimension, a bewildering array of other black p-branes

make their appearance in the theory, owing to the presence of a variety of (p + 2)-form

field strengths in the lower-dimensional supergravity theory [5, 6]. Some of these p-branes

may be interpreted as reductions of the eleven-dimensional ones or wrappings of the eleven-

dimensional ones around cycles of the compactifying manifold [7, 8, 9, 10]. In particular, one

may obtain as special cases the four-dimensional black holes (p = 1). It has been suggested

that, in the extremal limit, these black holes may be identified with BPS saturated string

states [11, 12, 13, 14]. Moreover, it is sometimes the case that multiply-charged black holes

may be regarded as bound states at threshold of singly charged black holes [11, 12, 15, 16].

Apart from their importance in the understanding of M-theory, therefore, these black p-

branes have recently come to the fore as a way of providing a microscopic explanation of

the Hawking entropy and temperature formulae [17-28] which have long been something of

an enigma . This latter progress has been made possible by the recognition that some p-

branes carrying Ramond-Ramond charges also admit an interpretation as Dirichlet-branes,

or D-branes, and are therefore amenable to the calculational power of conformal field theory

[29].

The compactified eleven-dimensional supergravity theory admits a consistent truncation

to the following set of fields: the metric tensor gMN , a set of N scalar fields ~φ = (φ1, . . . , φN ),
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and N field strengths Fα of rank n. The Lagrangian for these fields takes the form [30, 31]

e−1L = R − 1
2(∂~φ)2 − 1

2n!

N∑

α=1

e~aα·~φF 2
α , (1.1)

where ~aα are constant vectors characteristic of the supergravity theory. The purpose of

the present paper is to display a universal class of (non-rotating) black p-brane solutions to

(1.1) and to calculate their classical entropy and temperature.

As discussed in section 2, it is also possible to make a further consistent truncation to

a single scalar φ and single field strength F :

e−1L = R − 1
2(∂φ)2 − 1

2n!
eaφF 2 , (1.2)

where the parameter a can be conveniently re-expressed as

a2 = ∆ − 2dd̃

D − 2
, (1.3)

since ∆ is a parameter that is preserved under dimensional reduction [32]. Special solutions

of this theory have been considered before in the literature. Purely electric or purely

magnetic black p-branes were considered in [5] for D = 10 dimensions and in [6] for general

dimensions D ≤ 11 . All these had ∆ = 4. In the case of extremal black p-branes, these were

generalized to other values of ∆ in [32, 30]. Certain non-extremal non-dilatonic (a = 0)

black p-branes were also obtained in [33]

A particularly interesting class of solutions are the dyonic p-branes. Dyonic p-brane

occur in dimensions D = 2n, where the n-index field strengths can carry both electric

and magnetic charges. There are two types of dyonic solution. In the first type, each

individual field strength in (1.1) carries either electric charge or magnetic charge, but not

both. A particularly interesting example, owing to its non-vanishing entropy even in the

extremal limit [34], is provided by the four-dimensional dyonic black hole. This is the a = 0

(Reissner-Nordstrom) solution, recently identified as a solution of heterotic string theory

[11], but known for many years to be a solution of M-theory [35, 36]. The construction of

black dyonic p-branes of this type is identical to that for the solutions with purely electric

or purely magnetic charges, discussed in section (3).

In section (4), we shall construct black dyonic p-branes of the second type, where there

is one field strength, which carries both electric and magnetic charge. Special cases of these

have also been considered before: the self-dual threebrane in D = 10 [5, 37], the extremal

self-dual string [6] and extremal dyonic string in D = 6 [41], a black self-dual string in D = 6

[33, 19] and a different dyonic black hole in D = 4 [30]. See also [38] for the most general
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spherically symmetric extremal dyonic black hole solutions of the toroidally compactified

heterotic string.

Black multi-scalar p-branes, the extremal limits of which may be found in [31], are

discussed in section (5).

The usual form of the metric for an isotropic p-brane in D dimensions is given by

ds2 = e2A(−dt2 + dxidxi) + e2B(dr2 + r2dΩ2) , (1.4)

where the coordinates (t, xi) parameterise the d-dimensional world-volume of the p-brane.

The remaining coordinates of the D dimensional spacetime are r and the coordinates on a

(D − d − 1)-dimensional unit sphere, whose metric is dΩ2. The functions A and B depend

on the coordinate r only, as do the dilatonic scalar fields. The field strengths Fα can carry

either electric or magnetic charge, and are given by

Fα = λα ∗ǫD−n , or Fα = λα ǫn , (1.5)

where ǫn is the volume form on the unit sphere dΩ2. The former case describes an elementary

p-brane solution with d = n − 1 and electric charge λα = Qα; the latter a solitonic p-brane

solution with d = D − n − 1 and magnetic charge λα = Pα.

Solutions of supergravity theories with metrics of this form include extremal supersym-

metric p-brane solitons, which saturate the Bogomol’nyi bound. The mass per unit p-volume

of such a solution is equal to the sum of the electric and/or magnetic charges carried by

participating field strengths. More general classes of “black” solutions exist in which the

mass is an independent free parameter. In this paper, we shall show that there is a universal

recipe for constructing such non-extremal generalisations of p-brane solutions, in which the

metric (1.4) is replaced by

ds2 = e2A(−e2fdt2 + dxidxi) + e2B(e−2fdr2 + r2dΩ2) . (1.6)

Like A and B, f is a function of r. The ansätze for the field strengths (1.5) remain the

same as in the extremal case. Remarkably, it turns out that the functions A, B and ~φ take

exactly the same form as they do in the extremal case, but for rescaled values of the electric

and magnetic charges. The function f has a completely universal form:

e2f = 1 − k

rd̃
, (1.7)

where d̃ = D−d−2. If k is positive, the metric has an outer event horizon at r = r+ = k1/d̃.

When k = 0, the solution becomes extremal, and the horizon coincides with the location of

the curvature singularity at r = 0.
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The temperature of a black p-brane can be calculated by examining the behaviour of

the metric (1.6) in the Euclidean regime in the vicinity of the outer horizon r = r+. Setting

t = iτ and 1 − kr−d̃ = ρ2, the metric (1.6) becomes

ds2 =
4r2

+

d̃2
e2B(r+)

(
dρ2 +

d̃2

4r2
+

e2A(r+)−2B(r+)ρ2dτ2 + · · ·
)

. (1.8)

We see that the conical singularity at the outer horizon (ρ = 0) is avoided if τ is assigned

the period (4πr+/d̃)eB(r+)−A(r+). The inverse of this periodicity in imaginary time is the

Hawking temperature,

T =
d̃

4πr+
eA(r+)−B(r+) . (1.9)

We may also calculate the entropy per unit p-volume of the black p-brane, which is given

by one quarter of the area of the outer horizon. Thus we have

S = 1
4rd̃+1

+ e(d̃+1)B(r+)+(d−1)A(r+)ωd̃+1 , (1.10)

where ωd̃+1 = 2πd̃/2+1/(1
2 d̃)! is the volume of the unit (d̃ + 1)-sphere

In subsequent sections, we shall generalise various kinds of extremal p-brane solutions

to obtain black single-scalar elementary and solitonic p-branes, black dyonic p-branes and

black multi-scalar p-branes. The metric ansatz (1.6) gives rise to non-isotropic p-brane

solutions for d ≥ 2, in the sense that the Poincaré symmetry of the d-dimensional world

volume is broken. When d = 1, however, the black hole solutions remain isotropic. In the

extremal black hole solutions, the quantity dA + d̃B vanishes, where A and B are defined

in (1.4); whilst in the non-extremal cases, this quantity is non-vanishing. Isotropic p-brane

solutions with dA + d̃B 6= 0 were discussed in [42].

2 Single-scalar black p-branes

The Lagrangian (1.1) can be consistently reduced to a Lagrangian for a single scalar and a

single field strength

e−1L = R − 1
2(∂φ)2 − 1

2n!
eaφF 2 , (2.1)

where a, φ and F are given by [30]

a2 = (
∑

α,β

(M−1)αβ)−1 , φ = a
∑

α,β

(M−1)αβ ~aα · ~φ ,

(Fα)2 = a2
∑

β

(M−1)αβ F 2 , (2.2)
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and Mαβ = ~aα · ~aβ. The parameter a can conveniently be re-expressed as

a2 = ∆ − 2dd̃

D − 2
, (2.3)

where ∆ is a parameter that is preserved under dimensional reduction [32]. Supersymmetric

p-brane solutions can arise only when the value of ∆ is given by ∆ = 4/N , with N field

strengths participating in the solution. This occurs when the dot products of the dilaton

vectors ~aα satisfy [31]

Mαβ = 4δαβ − 2dd̃

D − 2
. (2.4)

An interesting special case is provided by the four-dimensional black holes with a2 =

3, 1, 1/3, 0, i.e N = 1, 2, 3, 4 whose extremal limits admit the interpretation of 1, 2, 3, 4-

particle bound states at threshold [11, 15, 16]. Their D = 11 interpretation has recently

been discussed in [39, 40].

To begin, let us consider the more general metric

ds2 = −e2udt2 + e2Adxidxi + e2vdr2 + e2Br2dΩ2 . (2.5)

It is straightforward to show that the Ricci tensor for this metric has the following non-

vanishing components

R00 = e2(u−v)
(
u′′ − u′v′ + v′2 + (d − 1)u′A′ + (d̃ + 1)u′(B′ +

1

r
)
)

,

Rij = −e2(A−v)
(
A′′ − A′v′ + A′u′ + (d − 1)A′2 + (d̃ + 1)A′(B′ +

1

r
)
)
δij ,

Rrr = −u′′ + u′v′ − u′2 − (d − 1)A′′ + (d − 1)A′v′ − (d − 1)A′2 − (d̃ + 1)B′′ ,

+
d̃ + 1

r
v′ − 2(d̃ + 1)

r
B′ + (d̃ + 1)v′B′ − (d̃ + 1)B′2 , (2.6)

Rab = −e2(B−v)
(
B′′ + (B′ +

1

r
)[u′ − v′ + (d − 1)A′ + (d̃ + 1)(B′ +

1

r
)] − 1

r2

)
gab + d̃gab ,

where a prime denotes a derivative with respect to r, and gab is the metric on the unit

(d̃+1)-sphere. For future reference, we note that the ADM mass per unit p-volume for this

metric is given by [43]

m =
[
(d − 1)(e2A)′rd̃+1 + (d̃ + 1)(e2B)′rd̃+1 − (d̃ + 1)(e2v − e2B)rd̃

]∣∣∣
r→∞

. (2.7)

The Ricci tensor for the metric (1.6) is given by (2.6) with u = 2(A+f) and v = 2(B−f).

As in the case of isotropic p-brane solutions, the equations of motion simplify dramatically

after imposing the ansatz

dA + d̃B = 0 . (2.8)
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Furthermore, the structure of the equations of motion implies that it is natural to take

f ′′ +
d̃ + 1

r
f ′ + 2f ′2 = 0 , (2.9)

which has the solution given by (1.7). Note that we have chosen the asymptotic value of f

to be zero at r = ∞. This is necessary in order that the metric (1.6) be Minkowskian at

r = ∞. The equations of motion then reduce to the following three simple equations:

φ′′ +
d̃ + 1

r
φ′ + 2φ′f ′ = −ǫa

2
s2e−2f ,

A′′ +
d̃ + 1

r
A′ + 2A′f ′ =

d̃

2(D − 2)
s2e−2f , (2.10)

d(D − 2)A′ + 1
2 d̃φ′2 + 2(D − 2)A′f ′ = 1

2 d̃s2e−2f ,

where s is given by

s = λe−
1
2 ǫaφ+dA r−(d̃+1) , (2.11)

and ǫ = 1 for elementary solutions and ǫ = −1 for solitonic solutions. The last equation

in (2.10) is a first integral of the first two equations, and hence determines an integration

constant. The first two equations in (2.10) imply that we can naturally solve for the dilaton

φ by taking φ = a(D−2)A/d̃. The remaining equation can then be easily solved by making

the ansatz that the function A takes the identical form as in the extremal case, but with a

rescaled charge, i.e. it satisfies

A′′ +
d̃ + 1

r
A′ =

d̃

2(D − 2)
s̃2 , with s̃ = λ̃e−

1
2 ǫaφ+dA r−(d̃+1) . (2.12)

This has the solution e−(D−2)∆A/(2d̃) = 1 + λ̃
√

∆/(2d̃) r−d̃. Thus from (2.10) we have

2A′f ′ = (A′′ +
d̃ + 1

r
A′)(−1 +

λ2

λ̃2
e−2f ) , (2.13)

implying
λ2

λ̃2
− e2f = c(1 +

λ̃
√

∆

2d̃
r−d̃) , (2.14)

where c is an integration constant. Substituting (1.7) into this, we deduce that

e−(D−2)∆A/(2d̃) = 1 +
k

rd̃
(
λ2

λ̃2
− 1)−1 , (2.15)

Thus it is natural to set λ̃ = λ tanh µ, giving

e−(D−2)∆A/(2d̃) = 1 +
k

rd̃
sinh2 µ. (2.16)
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The blackened single-scalar p-brane solution is therefore given by

ds2 =
(
1 +

k

rd̃
sinh2 µ

)− 4d̃

∆(D−2) (−e2fdt2 + dxidxi)

+
(
1 +

k

rd̃
sinh2 µ

) 4d

∆(D−2) (e−2fdr2 + r2dΩ2) ,

e
ǫ∆
2a

φ = 1 +
k

rd̃
sinh2 µ , e2f = 1 − k

rd̃
, (2.17)

with the two free parameters k and µ related to the charge λ and the mass per unit p-volume,

m. Specifically, we find that

λ =
d̃k√
∆

sinh 2µ , m = k
(4d̃

∆
sinh2 µ + d̃ + 1

)
. (2.18)

The extremal limit occurs when k −→ 0, µ −→ ∞ while holding ke2µ =
√

∆λ/d̃ = constant.

If k is non-negative, the mass and charge satisfy the bound

m − 2λ√
∆

=
k

∆

[
(d̃ + 1)∆ − 2d̃ + 2d̃e−2µ

]
≥ 2kd̃2(d − 1)

∆(D − 2)
≥ 0 , (2.19)

where the inequality is derived from ∆ = a2+2dd̃/(D−2) ≥ 2dd̃/(D−2). The mass/charge

bound (2.19) is saturated when k goes to zero, which is the extremal limit. In cases where

∆ = 4/N , the extremal solution becomes supersymmetric, and the bound (2.19) coincides

with the Bogomol’nyi bound. Note however that in general there can exist extremal classical

p-brane solutions for other values of ∆, which preserve no supersymmetry [30].

It follows from (1.9) and (1.10) that the Hawking temperature and entropy of the black

p-brane (2.17) are given by

T =
d̃

4πr+

(
cosh µ

)−
4
∆ , S = 1

4rd̃+1
+ ωd̃+1

(
cosh µ

) 4
∆ . (2.20)

In the extremal limit, they take the form

T ∝ (eµ)
2(a2−

2d̃2

D−2 )/(∆d̃)
, S ∝ eµ(4/∆−2(d̃+1)/d̃) . (2.21)

Thus the entropy becomes zero in the extremal limit µ → ∞, unless the constant a is zero

and d = 1, since the exponent can be rewritten as µ(4/∆ − 2(d̃ + 1)/d̃) = −2µ
(
2(d −

1)d̃/(D−2)+(d̃+1)a2/d̃)/∆. In these special cases the dilaton φ vanishes and the entropy

is finite and non-zero. The situation can arise for black holes with ∆ = 4/3 in D = 5, and

∆ = 1 in D = 4. The temperature of the extremal p-brane is zero, finite and non-zero, or

infinite, according to whether (a2 − 2d̃2

D−2) is negative, zero or positive.
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3 Black dyonic p-branes

Dyonic p-brane occur in dimensions D = 2n, where the n-index field strengths can carry

both electric and magnetic charges. There are two types of dyonic solution. In the first

type, each individual field strength in (1.1) carries either electric charge or magnetic charge,

but not both. The construction of black dyonic p-branes of this type is identical to that

for the solutions with purely electric or purely magnetic charges, which we discussed in the

previous section.

In this section, we shall construct black dyonic p-branes of the second type, where there

is one field strength, which carries both electric and magnetic charge. The Lagrangian is

again given by (2.1), with the field strength now taking the form

F = λ1 ǫn + λ2 ∗ǫn . (3.1)

As in the case of purely elementary or purely solitonic p-brane solutions, we impose the

conditions (2.8) and (2.9) on B and f respectively. The equations of motion then reduce to

φ′′ +
n

r
φ′ + 2φ′f ′ = 1

2a(s2
1 − s2

2)e
−2f ,

A′′ +
n

r
A′ + 2A′f ′ = 1

4(s2
1 + s2

2)e
−2f , (3.2)

d(D − 2)A′2 + 1
2 d̃φ′2 + 2(D − 2)A′f ′ = 1

2 d̃(s2
1 + s2

2)e
−2f ,

where

s1 = λ1e
1
2aφ+(n−1)A r−n , s2 = λ2e

−
1
2aφ+(n−1)A r−n . (3.3)

We can solve the equations (3.2) for black dyonic p-branes by following analogous steps to

those described in the previous section, relating the solutions to extremal dyonic solutions.

In particular, we again find that the functions A, B and φ take precisely the same forms

as in the extremal case, but with rescaled values of charges. Solutions for extremal dyonic

p-branes are known for two values of a, namely a2 = n−1 and a = 0 [30]. When a2 = n−1,

we find that the black dyonic p-brane solution is given by

e−
1
2aφ−(n−1)A = 1 +

k

rn−1
sinh2 µ1 , e

1
2aφ−(n−1)A = 1 +

k

rn−1
sinh2 µ2 , (3.4)

with f given by (1.7). The mass per unit volume and the electric and magnetic charges are

given by

m = k(2 sinh2 µ1 + 2 sinh2 µ2 + 1) , λα = (ak/
√

2) sinh(2µα) . (3.5)

For the non-negative values of k, the mass and the charges satisfy the bound

m − (λ1 + λ2) = k(n − 2 + e−2µ1 + e−2µ2) ≥ 0 . (3.6)
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The bound is saturated in the extremal limit k −→ 0. The solution (3.4) corresponds to

the black dyonic string with n = 3 and ∆ = 4 in D = 6, and the dyonic black hole with

n = 2 and ∆ = 2 in D = 4. In both cases, the extremal solution is supersymmetric and the

bound (3.6) coincides with the Bogomol’nyi bound. Using (1.9) and (1.10), we find that

the Hawking temperature and entropy of the non-extremal solutions are given by

T =
d̃

4πr+

(
cosh µ1 cosh µ2

)−
2

n−1 , S = 1
4rn

+ ωn

(
cosh µ1 cosh µ2

) 2
n−1 . (3.7)

When a = 0, the equations of motion degenerate and the dilaton φ decouples. We find

the solution

φ = 0 , e−(n−1)A = 1 +
k

rn−1
sinh2 µ , (3.8)

where again f is given by (1.7). The constant µ is related to the electric and magnetic

charges by
√

λ2
1 + λ2

2 = k sinh 2µ. In this case, unlike the a2 = n − 1 case, the solution is

invariant under rotations of the electric and magnetic charges, and hence it is equivalent

to the purely electric or purely magnetic solutions we discussed in the previous section.

Note that in the dyonic solution (3.4), when the parameter µ1 = µ2, i.e. the electric and

magnetic charges are equal, the dilaton field also decouples. For example, this can happen if

one imposes a self-dual condition on the 3-form field strength in the dyonic string in D = 6.

However, this is a different situation from the a = 0 dyonic solution, since in the latter case

the electric and magnetic charges are independent free parameters. In fact the a = 0 dyonic

solution with independent electric and magnetic charges occurs only in D = 4.

4 Black multi-scalar p-branes

To describe multi-scalar p-brane solutions, we return to the Lagrangian (1.1) involving N

scalars and N field strengths. As we discussed previously, it can be consistently truncated to

the single-scalar Lagrangian (2.1), in which case all the field strengths Fα are proportional

to the canonically-normalised field strength F , and hence there is only one independent

charge parameter. In a multi-scalar p-brane solution, the charges associated with each field

strength become independent parameters. After imposing the conditions (2.8) and (2.9),

the equations of motion reduce to

ϕ′′
α +

d̃ + 1

r
ϕ′

α + 2ϕ′
αf ′ = −1

2ǫe−2f
N∑

β=1

Mαβ S2
β ,

A′′ +
d̃ + 1

r
A′ + 2A′f ′ =

d̃

2(D − 2)
e−2f

N∑

α=1

S2
α , (4.1)
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d(D − 2)A′2 + 1
2 d̃

N∑

α,β=1

(M−1)αβ ϕ′
α ϕ′

β + 2(D − 2)A′f ′ = 1
2 d̃e−2f

N∑

α=1

S2
α ,

where ϕα = ~aα · ~φ and Sα = λαe−
1
2 ǫϕα+dA r−(d̃+1). We again find black solutions by taking

A and ϕα to have the same forms as in the extremal case, with rescaled charges. Extremal

solutions can be found in cases where the dot products of the dilaton vectors ~aα satisfy

(2.4) [30]. Thus we find that the corresponding black solutions are given by

e
1
2 ǫϕα−dA = 1 +

k

rd̃
sinh2 µα , e2f = 1 − k

rd̃
,

ds2 =
N∏

α=1

(
1 +

k

rd̃
sinh2 µα

)−
d̃

D−2 (−e2fdt2 + dxidxi) (4.2)

+
N∏

α=1

(
1 +

k

rd̃
sinh2 µα

) d
D−2 (e−2fdr2 + r2dΩ2) .

The mass per unit volume and the charges for this solution are given by

m = k(d̃
N∑

α=1

sinh2 µα + d̃ + 1) , λα = 1
2 d̃k sinh 2µα . (4.3)

For non-negative values of k, the mass and charges satisfy the bound

m −
N∑

α=1

λα = 1
2kd̃

N∑

α=1

(e−2µα − 1) + k(d̃ + 1) ≥ kd̃(d − 1)

d
≥ 0 . (4.4)

The bound coincides with the Bogomol’nyi bound. The Hawking temperature and entropy

are given by

T =
d̃

4πr+

N∏

α=1

(cosh µα)−1 , S = 1
4rd̃+1

+ ωd̃+1

N∏

α=1

(
cosh µα

)
. (4.5)

In the extremal limit k −→ 0, the bound (4.4) is saturated, and the solutions become

supersymmetric.

5 Conclusions

We have presented a class of black p-brane solutions of M-theory which were hitherto known

only in the extremal supersymmetric limit and have calculated their macroscopic entropy

and temperature. It would obviously be of interest to provide a microscopic derivation of the

entropy and temperature using D-brane techniques and compare them with the macroscopic

results found in this paper. Agreement would both boost the credibility of M-theory and

further our understanding of black hole and black p-brane physics.
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