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The problem of projective lag synchronization of coupled neural networks with time delay is investigated. Bymeans of the Lyapunov
stability theory, an intermittent controller is designed for achieving projective lag synchronization between two delayed neural
networks systems. Numerical simulations on coupled Lu neural systems illustrate the effectiveness of the results.

1. Introduction

In the past few years, synchronization of neural networks
has been extensively investigated due to their successful
application in many areas, such as communication, mod-
eling brain activity, signal processing, and combinatorial
optimization. There are several different synchronization
schemes including complete, lag, projective, generalized,
phase, and anticipated synchronization [1–9]. In projective
synchronization, the master-slave systems can be synchro-
nized up to a scaling factor. Due to the potential applications
in secure communication, projective synchronization has
attracted increasing attention [10–13]. In [10], the authors
study the projective synchronization for different chaotic
delayed neural networks via sliding mode control approach.
Function projective synchronization of two-cell Quantum-
CNN chaotic oscillators using adaptive method is investi-
gated in [11]. It is worth noting that the propagation delay
may exist in remote communication systems. However, to the
best of the authors’ knowledge, few results (if any) for the
projective lag synchronization of neural networks with time
delay have been reported in the literature.

In this paper, we will deal with the analysis issue for
projective lag synchronization of neural networks with time

delay by intermittent control approach. Recently, we have
employed this method to stabilize and synchronize chaotic
systems [14–16]. In this paper, by using Lyapunov stability
theory and intermittent control technique, the intermittent
controllers and corresponding parameter update rules are
designed to obtain projective lag synchronization of neural
networks. The rest of the paper is organized as follows.
In Section 2, we formulate the problem of projective lag
synchronization of coupled neural networks. In Section 3,
a general scheme for the projective lag synchronization is
presented. Numerical simulations are given in Section 4.
Finally, conclusions are given in Section 5.

2. Problem Formulation and Preliminaries

In this paper, we consider the chaotic cellular neural networks
described by
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or, in a compact form,

�̇� (𝑡) = 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏)) , 𝑡 > 0,

𝑥 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(2)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡)] ∈ 𝑅

𝑛 denotes the state
vector,𝐶,𝐴, and𝐵 ∈ 𝑅𝑚×𝑚 are constantmatrices, 𝜏 is the time
delay, and𝑓, 𝑔 : 𝑅𝑚 → 𝑅

𝑚 are nonlinear functions satisfying
the Lipschitz condition, namely; there exist positive constants
𝐿

𝑓
, 𝐿
𝑔
such that, for all 𝑥, 𝑦 ∈ 𝑅𝑛,
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≤ 𝐿
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𝛼 − 𝛽









.

(3)

Consider the corresponding slave system given in the
following form:

̇𝑦 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝑢 (𝑡) ,

𝑡 > 0,

𝑦 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(4)

where 𝑦(𝑡) ∈ 𝑅𝑛 denotes the state vector, 𝐶, 𝐴, and 𝐵 ∈
𝑅

𝑛×𝑛 are constant matrices, and 𝑢(𝑡) denotes the intermittent
feedback control defined as follows:

𝑢 (𝑡) = {

𝐻 (𝑡) + 𝐾 (𝑡) , 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝐻 (𝑡) , 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇,

(5)

where 𝑘 denotes the control strength, 0 < 𝜎 < 1 denotes the
switching rate, 𝑇 denotes the control period, and 𝐻(𝑡) and
𝐾(𝑡) are the active control functions.

Let 𝜃 be the transmittal delay. Defining the projective lag
synchronization error between systems (2) and (4) as 𝑒(𝑡) =
𝑦(𝑡) −𝛼𝑥(𝑡 − 𝜃), where 𝛼 denotes projective scaling factor, we
have the following error dynamical system:

̇𝑒 (𝑡) = ̇𝑦 (𝑡) − 𝛼�̇� (𝑡 − 𝜃)

= 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝑢 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+ 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) .

(6)

Under the control of the form (5), the system (6) can be
rewritten as

̇𝑒 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡) + 𝐾 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

̇𝑒 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) ,

𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(7)

Definition 1. The master system (2) and the slave system (4)
are said to be projective lag synchronization if there exist

a compact set 𝛼, 𝜎 and delay time 𝜃 such that, for any initial
values 𝜑(𝑡

0
), 𝜓(𝑡

0
) ∈ Ω, 𝑡

0
∈ [−𝜏, 0], the error system is

exponentially stable; that is,

lim
𝑡→∞

‖𝑒 (𝑡)‖ = lim
𝑡→∞









𝑦 (𝑡) − 𝛼𝑥 (𝑡 − 𝜃)









≤ ‖𝑒 (0)‖ 𝑒

−𝜎𝑡
,

∀𝑡 ≥ 0.

(8)

3. Main Results

This section addresses the projective lag synchronization
problem of coupled neural networks.

Theorem 2. Suppose that there exist constants 𝛼, the coupling
strength 𝑘, time delay 𝜃, and the functions𝐻(𝑡),𝐾(𝑡) such that

(i) 𝐶 + 𝐶𝑇 − 2𝑘𝐼 + 𝑔
1
𝐼 ≤ 0;

(ii) 𝐶 + 𝐶𝑇 − 𝑔
2
𝐼 ≤ 0;

(iii) 𝐻(𝑡) = −𝐴𝑓(𝑦(𝑡)) − 𝐵𝑔(𝑦(𝑡 − 𝜏)) + 𝛼𝐴𝑓(𝑥(𝑡 − 𝜃)) +
𝛼𝐵𝑔(𝑥(𝑡 − 𝜏 − 𝜃));

(iv) 𝐾(𝑡) = −𝑘(𝑦(𝑡) − 𝛼𝑥(𝑡 − 𝜃));
(v) 𝑔
1
𝜎 − (1 − 𝜎)𝑔

2
> 0.

Then, the projective lag synchronization error system (7) is
globally exponentially stable, that is; the projective lag synchro-
nization between themaster system (2) and the slave system (4)
under intermittent control (5) is achieved.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) = 𝑒(𝑡)

𝑇
𝑒 (𝑡) .

(9)

When 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇+𝜎𝑇, the derivative of (9) with respect
to time 𝑡 along the trajectories of the first subsystem of the
system (7) is calculated and estimated as follows:

̇

𝑉 (𝑡) = 2𝑒(𝑡)

𝑇
̇𝑒 (𝑡)

= 2𝑒(𝑡)

𝑇
[𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏))

+ 𝐻 (𝑡) + 𝐾 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃)))]

= 𝑒(𝑡)

𝑇
[𝐶 + 𝐶

𝑇
− 2𝑘𝐼 + 𝑔

1
𝐼] 𝑒 (𝑡) − 𝑔1

𝑒(𝑡)

𝑇
𝑒 (𝑡)

≤ −𝑔

1
𝑒(𝑡)

𝑇
𝑒 (𝑡) .

(10)

Similarly, when 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇, one obtains

̇

𝑉 (𝑡) = 2𝑒(𝑡)

𝑇
̇𝑒 (𝑡) = 2𝑒(𝑡)

𝑇

× [𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃)+𝐴𝑓 (𝑥 (𝑡 − 𝜃))+𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃)))]

= 𝑒(𝑡)

𝑇
[𝐶 + 𝐶

𝑇
− 𝑔

2
𝐼] 𝑒 (𝑡) + 𝑔2

𝑒(𝑡)

𝑇
𝑒 (𝑡)

≤ 𝑔

2
𝑒(𝑡)

𝑇
𝑒 (𝑡) .

(11)
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Therefore,
̇

𝑉 (𝑡) ≤ −𝑔1
𝑉 (𝑡) , 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

̇

𝑉 (𝑡) ≤ 𝑔2
𝑉 (𝑡) , 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(12)

Then, one observes that

𝑉 (𝑡) ≤ ‖𝑉 (𝑛𝑇)‖ exp (−𝑔1 (𝑡 − 𝑛𝑇)) ,
𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ ‖𝑉 (𝑛𝑇 + 𝜎𝑇)‖ exp (𝑔2 (𝑡 − 𝑛𝑇 − 𝜎𝑇)) ,
𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(13)

By (12) and (13), we can obtain the following.
(1) For 0 ≤ 𝑡 < 𝜎𝑇,

𝑉 (𝑡) ≤









𝑉 (𝑡

0
)









exp (−𝑔
1
𝑡) ,

𝑉 (𝜎𝑇) ≤









𝑉 (𝑡

0
)









exp (−𝑔
1
𝜎𝑇) .

(14)

(2) For 𝜎𝑇 ≤ 𝑡 < 𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝜎𝑇)‖) exp (𝑔2 (𝑡 − 𝜎𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑡 − 𝜎𝑇)) ,

𝑉 (𝑇) ≤ (









𝑉 (𝑡

0
)









) exp (−𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑇 − 𝜎𝑇)) .

(15)

(3) For 𝑇 ≤ 𝑡 < 𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝑇)‖) exp (−𝑔1 (𝑡 − 𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑇 − 𝜎𝑇) − 𝑔1 (

𝑡 − 𝑇)) ,

𝑉 (𝑇 + 𝜎𝑇)

≤ (









𝑉 (𝑡

0
)









)

× exp (−𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑇 − 𝜎𝑇) − 𝑔1 (

𝑇 + 𝜎𝑇 − 𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−2𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑇 − 𝜎𝑇)) .

(16)

(4) For 𝑇 + 𝜎𝑇 ≤ 𝑡 < 2𝑇,

𝑉 (𝑡) ≤ (









𝑉 (𝑡

0
)









)

× exp (−2𝑔
1
𝜎𝑇 + 𝑔

2 (
𝑇 − 𝜎𝑇) + 𝑔2 (

𝑡 − 𝑇 − 𝜎𝑇)) ,

𝑉 (2𝑇) ≤ (









𝑉 (𝑡

0
)









) exp (−2𝑔
1
𝜎𝑇 + 2𝑔

2 (
𝑇 − 𝜎𝑇)) .

(17)

By induction, we have the following.
(5) For 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝑛𝑇)‖) exp (−𝑔1 (𝑡 − 𝑛𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−𝑔
1 (
𝑡 − 𝑛𝑇))

× exp (−𝑛𝑔
1
𝜎𝑇 + 𝑛𝑔

2 (
𝑇 − 𝜎𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−𝑛𝑔
1
𝜎𝑇 + 𝑛𝑔

2 (
𝑇 − 𝜎𝑇)) .

(18)

Note that (𝑡 − 𝜎𝑇)/𝑇 ≤ 𝑛 < 𝑡/𝑇; in this case, we can obtain

𝑉 (𝑡) ≤ (









𝑉 (𝑡

0
)









)

× exp(−
(𝑔

1
𝜎𝑇 − 𝑔

2 (
𝑇 − 𝜎𝑇)) (𝑡 − 𝜎𝑇)

𝑇

)

≤ (









𝑉 (𝑡

0
)









) exp (− (𝑔
1
𝜎 − 𝑔

2 (
1 − 𝜎)) (𝑡 − 𝜎𝑇)) .

(19)

(6) For 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇

𝑉 (𝑡) ≤ (‖𝑉 (𝑛𝑇 + 𝜎𝑇)‖) exp (−𝑔2 (𝑡 − 𝑛𝑇 − 𝜎𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (−𝑔
2 (
𝑡 − 𝑛𝑇 − 𝜎𝑇))

× exp (− (𝑛 + 1) 𝑔1𝜎𝑇 + 𝑔2 (𝑛 + 1) (𝑇 − 𝜎𝑇))

≤ (









𝑉 (𝑡

0
)









)

× exp (− (𝑛 + 1) 𝑔1𝜎𝑇 + 𝑔2 (𝑛 + 1) (𝑇 − 𝜎𝑇)) .

(20)

Note that 𝑡/𝑇 ≤ 𝑛 + 1 < (𝑡 + 𝑇 − 𝜎𝑇)/𝑇; in this case, we can
obtain

𝑉 (𝑡) ≤ (









𝑉 (𝑡

0
)









)

× exp (− (𝑛 + 1) 𝑔1𝜎𝑇 + 𝑔2 (𝑛 + 1) (𝑇 − 𝜎𝑇))

≤ (









𝑉 (𝑡

0
)









) exp (− (𝑔
1
𝜎 − 𝑔

2 (
1 − 𝜎)) (𝑡 − 𝜎𝑇)) .

(21)

Therefore, for any 𝑡 ≥ 0,

‖𝑒 (𝑡)‖

2
= 𝑉 (𝑡)

≤ (









𝑉 (𝑡

0
)









) exp (− (𝑔
1
𝜎 − 𝑔

2 (
1 − 𝜎)) (𝑡 − 𝜎𝑇)) .

(22)

This implies that the projective lag synchronization error
system (7) is globally exponentially stable, and the following
estimate holds:

‖𝑒 (𝑡)‖ ≤ (
√









𝑉 (𝑡

0
)









) exp(−
(𝑔

1
𝜎 − 𝑔

2 (
1 − 𝜎)) (𝑡 − 𝜎𝑇)

2

) .

(23)

This implies that the projective lag synchronization
between the master system (2) and slave system (4) is
achieved.

Let 𝑔
1

∗
= −𝜆max(𝐶 + 𝐶

𝑇
) + 2𝑘 and 𝑔

2

∗
= 𝜆max(𝐶 + 𝐶

𝑇
),

where 𝑔
1

∗
≥ 𝑔

1
, 𝑔
2

∗
≤ 𝑔

2
. If we replace the first condition

in Theorem 2 with 𝑔
1

∗, 𝑔
2

∗, then Theorem 2 also can hold.
In addition, one can obtain the following corollary from
Theorem 2.

Corollary 3. Suppose that there exist positive scalars 𝑘 and 𝜎
satisfying 0 < 𝜎 < 1 such that

𝑔

1

∗
𝜎 − (1 − 𝜎) 𝑔2

∗
> 0, (24)

where 𝑔
1

∗
= −𝜆max(𝐶 + 𝐶

𝑇
) + 2𝑘 and 𝑔

2

∗
= 𝜆max(𝐶 + 𝐶

𝑇
).

Then, the system (7) is exponentially stable, and the projective
lag synchronization between themaster system (2) and the slave
system (4) under intermittent control (5) is achieved.

Remark 4. If 𝛼 = 1, it is clear that the lag synchronization
between the system (2) and system (4) will occur.

Remark 5. It is clear that when the time delay vanishes, that
is, 𝜃 = 0, we have 𝑒(𝑡) = 𝑦(𝑡) − 𝛼𝑥(𝑡), which implies that
the projective synchronization between master system (2)
without delay and system (4) without delay will occur.
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Remark 6. From Corollary 3, one observes that the control
strength 𝑘 can be estimated as follows:

𝑘 > 𝑘

∗
=

𝜆max (𝐶 + 𝐶
𝑇
)

2𝜎

> 0.

(25)

Note that𝐶 are determined only by the system itself, and𝜎
is control parameter.Then,we can estimate the feasible region
𝐷 of control parameters (𝑘, 𝜎) as follows:

𝐷 = {(𝑘, 𝜎) | 𝑘 > 𝑘

∗
=

𝜆max (𝐶 + 𝐶
𝑇
)

2𝜎

> 0, 0 < 𝜎 < 1} .

(26)

4. Numerical Example

In this section, Lu neural oscillator [17] is presented as
an example to verify the effectiveness of Theorem 2. The
programs DDE23 in MATLAB are used to solve numerically
the delay differential equations.

Example 1. Consider the Lu neural oscillator [17]

�̇� (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 1)) , (27)

where

𝐶 = (

1 0

0 1

) , 𝐴 = (

3.0 5.0

0.1 2.0

) , 𝐵 = (

−2.5 0.2

0.1 −1.5

) ,

(28)

and 𝑓(𝑥(𝑡)) = 𝑔(𝑥(𝑡)) = tanh(𝑥(𝑡)).
This model was investigated by Lu in [17] where it was

shown to be chaotic, as shown in Figure 1.The corresponding
slave system is given by

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝑢 (𝑡) . (29)

From Theorem 2, the controller can be obtained as
follows:

𝑢 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

−𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘 (𝑦 (𝑡) − 𝛼𝑥 (𝑡 − 𝜃)) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

−𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇.

(30)

So, when 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇, we have

𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1))

− 𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1))

+ 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘𝑒 (𝑡)

= −𝐶𝑦 (𝑡) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+ 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘𝑒 (𝑡) .

(31)
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Figure 1: The chaotic attractor of the Lu oscillator described by (7)
with initial value 𝑥

1
(𝜃) = 0.2, 𝑥

2
(𝜃) = −0.5, for 𝜃 ∈ [−1, 0].

When 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇, we have

𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1))

− 𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1))

+ 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃))

= − 𝐶𝑦 (𝑡) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) .

(32)

Noting that 𝜆max(𝐶 + 𝐶
𝑇
) = 2, the feasible region of

control parameters (𝑘, 𝜎) is 𝐷 = {(𝑘, 𝜎) | 𝑘 < 𝑘∗ = −1/𝜎, 0 <
𝜎 < 1}, as shown in Figure 2. For numerical simulation, we
select 𝛼 = 2, 𝜃 = 0.01, 𝜎 = 0.1, and 𝑘 = 10 and plot the
normof projective lag synchronization errors curve, as shown
in Figure 3. As the time 𝑡 goes to infinity, the projective lag
synchronization error system is stable. Hence, the projective
lag synchronization between system (27) and system (29) is
achieved.

5. Conclusions

This paper addressed projective lag synchronization of cou-
pled neural networks with time delay. Based on Lyapunov
stability theory and adaptive control techniques, several
criteria for projective lag synchronization of identical neural
networks with time delay have been established. With the
proposed method, the simulations of projective lag between
coupled Lu systems have showed the effectiveness of theoret-
ical result.
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