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1 Introduction

Integral invariants in maximally supersymmetric theories, supergravity (MSG) or super

Yang-Mills (MSYM), can be viewed as possible higher-order corrections to string or brane

effective actions or as potential field-theoretic counterterms. Since no off-shell supersym-

metric actions are known for maximal theories, these invariants have to be constructed in a

perturbative fashion starting with expressions that are invariant under on-shell supersym-

metry. Broadly speaking, there are two main categories of on-shell invariants, those that

can be expressed as integrals over the full superspaces (with 16 or 32 odd coordinates for

MSYM and MSG respectively) of gauge-invariant integrands, and those that cannot. The

latter can usually be expressed as integrals over some subsuperspace, that is as superac-

tions [1], or as generalised chiral (harmonic superspace) integrals [2]. We shall refer to the

former as long and the latter, of which there are very few, as short, since the multiplets

of which the invariants are the top components have these properties. We can regard any

independent MSYM invariant as a possible deformation of the usual MSYM action. The

presence of such a deformation will alter the supersymmetry transformations and induce

higher-order terms as a consequence. In the case of full superspace integrals, there is no

problem in extending such an invariant to all orders in an expansion parameter, such as

α′, but this is not so obvious for short invariants.

In the current paper we investigate the question of invariants for MSYM in spacetime

dimensions 4 ≤ D ≤ 10, although we do not study their non-linear higher-order extensions.

There is a full classification for D = 4, N = 4 [3]. This is a special case because the starting

theory in D = 4 is superconformal, a fact that was exploited in [3] in the construction of

the invariants. The short invariants, of which there are just three, give rise to spacetime
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integrals that are the supersymmetric completions of terms of the form trF 4, tr2F 4 and

d2tr2F 4, where tr2 indicates a double-trace. The pure F 4 terms are one-half BPS, that is

they correspond to short multiplets that are independent of one-half of the odd coordinates

when the latter are appropriately chosen, while the d2tr2F 4 invariant is one-quarter BPS,

i.e. it is independent of one-quarter of the odd coordinates. However, it is sometimes useful

to think of the latter as “pseudo” one-half BPS, that is, to express it as an integral of a one-

half BPS-type superfield which is a descendant of the one-quarter BPS primary [4]. To do

this, recall that the field strength superfield for MSYM in D = 4, N = 4 is a scalar Wr in the

6 of SO(6). From this scalar one can construct two scalar bilinears, the Konishi multiplet,

K := tr(WrWr), and the supercurrent Jrs := tr(WrWs) −
1
6δrsK. The supercurrent is an

ultra-short one-half BPS multiplet; it has 128 + 128 components and has an expansion

that terminates at fourth order in the odd coordinates. It can be integrated over four

odd coordinates and gives rise to the on-shell action [1]. There are several independent

scalar multiplets that can be formed from the square of the supercurrent: the symmetric

traceless 105 is one-half BPS and gives rise to the tr2F 4 invariant, while the 84, which

has the symmetries of the Weyl tensor in six dimensions, is the one-quarter BPS multiplet

that gives rise to d2tr2F 4. The pseudo-one-half BPS superfield is obtained by inserting

two contracted spacetime derivatives, one on each factor, into the one-half BPS product

of two supercurrents. It is a descendant of the one-quarter BPS superfield up to a total

spacetime derivative.

A similar situation obtains for the short multiplets in dimensions 5 and 6 [4]. In D ≤ 9

the field strength superfield is a scalar, Wr, r = 1 . . . n where n = 10 − D, but in D = 7, 8

there are only one-half BPS multiplets and no one-quarter BPS ones because the latter

type of constraint is incompatible with manifest Lorentz symmetry in these dimensions.1

In D ≤ 8 the supercurrent is the traceless, symmetric product of two W s, and the Konishi

multipet is the singlet product. Although there are no one-quarter BPS superfields in

D = 7, 8, we can still form pseudo-one-half BPS fields by inserting a pair of contracted

spacetime derivatives in the one-half BPS product of two supercurrents, which is again a

symmetric, traceless fourth-rank SO(n) tensor.

In dimension 9, the field strength is a singlet W with trW 2 being the Konishi superfield.

The supercurrent is an antisymmetric Lorentz tensor Jab that has dimension three (in units

where the dimension of W is one), and has 128 + 128 components. However, in D = 10,

there are no physical scalar fields, and the supercurrent is a dimension-three, third-rank

antisymmetric tensor Jabc [5]. It combines the components of both the 128 + 128 and

Konishi multiplets and is not locally reducible into a the sum of the two. It is therefore

not so easy to generalise integral invariants of the BPS type to D = 9, 10.

The way round this problem is to make use of the so-called “ectoplasm” formalism [6–8].

This allows one to construct spacetime supersymmetric invariant integrals in D dimensions

starting from closed D-forms in the corresponding superspaces. The idea is to integrate

1Our definition of a BPS superfield is one that is independent of some sets of fermionic coordinates each

of which transform under the smallest spinor representation for the spacetime dimension in question. It

might be possible to consider splitting up the basic spinor representations, i.e. to use Lorentz harmonics,

but we do not do this here.
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the purely even part of the super-D-form, evaluated setting the odd coordinates θ = 0,

over spacetime. The superinvariance of the resulting integral is guaranteed by the fact that

the superform, LD say, is closed. Note that any exact D-form will integrate to zero so that

we are really concerned with the Dth cohomology class of super-forms.

In the next section we shall study supersymmetric invariants in D = 10. It is well-

known that the action itself and the F 4 invariants are Chern-Simons invariants, in the

sense that they can be constructed, using the ectoplasm formalism, from closed, Weil-

trivial (D + 1)-forms built from invariant polynomials [9]. A feature of the non-abelian F 4

invariants, not previously remarked upon, is that, unless one wishes to introduce explicit

dependence on the fermionic coordinates, the corresponding super-ten-forms have a more

complicated structure than those that have been constructed hitherto. We can also use this

formalism to construct the d2tr2F 4 invariant in D = 10 by the insertion of two contracted

spacetime derivatives. In this case, however, it turns out that the Chern-Simons nature

is only apparent and that there is a closed, strictly gauge-invariant superform. Since any

D = 10 invariant gives rise to a D = 4, N = 4 invariant with manifest SU(4) symmetry

by dimensional reduction it follows that there cannot be more invariants in D = 10 than

in D = 4, and this explicit construction shows that there are the same number of short

invariants in D = 10 and D = 4. A consequence of the existence of the d2tr2F 4 in D = 10

is that such an invariant exists and has maximal R-symmetry in all dimensions D ≤ 9;

furthermore, as will be discussed in more detail in section four, it has the same cocycle

type as the closed super-form for the action, and so is not protected by algebraic non-

renormalisation theorems. In addition to the short invariants, section two also contains a

discussion of various other features of D = 10 invariants, such as Konishi and d6F 4. In

section three, we explicitly show how to reduce invariants to lower-dimensional spacetimes

and in section five we state our conclusions.

2 D = 10 invariants

2.1 Basic formalism

Our conventions are as follows: spacetime indices are a, b, . . ., running from 0 to D − 1,

while spinor indices are α, β . . . running from 1 to 16 and internal vector indices are r, s . . .,

running from 1 to n = 10−D; ten-dimensional 16×16 gamma-matrices are denoted by Γa

and the even (odd) coordinates of D = 10 superspace are (xa, θα). The supersymmetric

invariant basis forms are

Ea = dxa −
i

2
dθα(Γa)αβθβ ; Eα = dθα , (2.1)

and the dual invariant derivatives are ∂a and

Dα = ∂α +
i

2
(Γaθ)α∂a . (2.2)

With respect to this invariant basis an n-form splits into a sum of (p, q)-forms where

p+q = n and p (q) denotes the number of even (odd) indices. The exterior derivative splits

into three parts, d = d0 + d1 + t0 with bi-degrees (1, 0), (0, 1) and (−1, 2) respectively. The

– 3 –



J
H
E
P
0
5
(
2
0
1
1
)
0
2
1

operation t0, which is purely algebraic, converts a (p, q)-form into a (p−1, q+2)-form by the

contraction of one of the even indices of the form with the vector index of the dimension-

zero torsion Tαβ
c = −i(Γc)αβ and then by the symmetrisation of all (q + 2) odd indices on

the form and the torsion. It is not difficult to see that t20 = 0, so that there are associated

cohomology groups H
p,q
t [10]. In D = 10 these vanish for p > 6 while the cohomology for

p ≥ 1 is related to the five-index gamma matrix except for two additional contributions

in H
1,1
t and H

1,2
t whose existence is due to the single-index gamma-matrix [9]. For p = 0,

H
0,q
t is isomorphic to the space of pure q-spinors, i.e. symmetric, gamma-traceless (0, q)-

forms. We can also define an odd derivative that acts on t0-cohomology. It is defined by

ds[ωp,q] = [d1ωp,q], where the brackets denote t0-cohomology classes. It is easy to check

that the spinorial derivative ds is well-defined and that it squares to zero so that we can

define the so-called spinorial cohomology groups H
p,q
s [11, 12]. It is a generalisation of pure

spinor cohomology with which it coincides in the case p = 0 [13].

The field strength two-form in D = 10 superspace has Fαβ = 0 and Faβ = (Γa)βγΛγ .

The Lie-algebra valued field strength superfield Λα has the spinor field of the D = 10 SYM

multiplet as its leading component; it obeys the constraint

∇αΛβ = −
i

4
(Γab)α

βFab , (2.3)

where Fab is the (2, 0) component of the field strength whose leading component is the

spacetime Yang-Mills fields strength. The form of Faβ and (2.3) follow from the basic

constraint Fαβ = 0 which can be viewed as a pure spinor integrability condition [14, 15].

By use of the Bianchi identity one can then show that the field equations hold for Λα and

Fab. They are

Γa∇aΛ = 0

∇bFab = 2iΛΓaΛ , (2.4)

where the right-hand side is Lie-algebra valued because the quadratic expression in Λ forces

antisymmetry in the group indices.

The supercurrent is

Jabc = tr(ΛΓabcΛ) . (2.5)

The simplest full superspace integral of a gauge-invariant integrand that can be con-

structed in D = 10 is the integral of the square of the supercurrent, which leads to a

spacetime integral of d6tr2F 4. (The double-trace is required because the symmetrised

single-trace of Λ4 vanishes identically.2) Furthermore, there are no gauge-invariant BPS

superfields that one can construct. This means that the construction of invariants with

lower dimensionality requires a different approach to D ≤ 8. As we mentioned in the

introduction, this is the ectoplasm formalism. In D spacetime dimensions, given a closed

super D-form, LD, in superspace, the integral

I =

∫

dDx εm1...mDLm1...mD
(x, θ = 0) (2.6)

2There are other Λ4 possibilities involving ΛΓ1Λ or ΛΓ5Λ but these contain gauge commutators.
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is supersymmetric owing to the fact that LD is closed. Now suppose we are given a closed

super (D + 1)-form WD+1 = dZD, where ZD is an explicit potential form that is not

gauge-invariant, and such that WD+1 is Weil-trivial [16], i.e. WD+1 = dKD, where KD is

gauge-invariant, then LD = KD−ZD is closed and so can be integrated using the ectoplasm

formula. Such an invariant is called a Chern-Simons invariant owing to the presence of the

Chern-Simons form ZD. Green-Schwarz actions for branes are examples of this [17].

In order for a closed D-form to give rise to an invariant it must have a non-vanishing

LD,0 component, at least in flat superspace which is the case of interest here. It will have

a lowest non-zero component, Lp,q say, (lowest means lowest mass dimension, i.e. smallest

p) that must satisfy t0Lp,q = 0 and that must not be of the form t0Kp+1,q−2 since such a

term vanishes in t0 cohomology. So the lowest component will be defined by an element of

H
p,q
t , the cohomology associated with the nilpotent operator t0, and moreover it must be

ds-closed, i.e. it must be an element of H
p,q
s . In D = 10 H

p,q
t vanishes for p > 5 so that the

simplest possibility for the lowest non-vanishing component of a closed super-ten-form is

an L5,5 that must have the form L5,5 = Γ5,2M0,3 where ds[M0,3] = 0. The integral invariant

corresponding to such a form can be expressed as a Berkovits superaction integral over five

thetas [13]. The spacetime integrand of such an invariant is [D5]αβγ Mαβγ ; it involves the

contraction of two 42 · 16-dimensional representations with opposite chirality, [00030] and

[00003] in terms of Dynkin labels.

However, there can be other more general types of closed super-ten-forms as we shall

discuss below. Indeed, more generally, we can ask the question of when a ds-closed element

[ωp,q] of H
p,q
t determines a closed n-form, for n = p + q. The answer is that there is

a sequence of possible obstructions, [λp+1,q], [λp+2,q−1], [λp+3,q−2], . . ., each of which is ds

closed provided that the preceding ones in the sequence are ds exact. If they are all exact,

and if we set [λp+r,q−r+1] = ds[µp+r,q−r], then the entire closed n-form will be determined

by the sequence of elements [ωp,q], [µp+1,q−1], . . . . This is easy to see; suppose ωp,q is a

representative of [ωp,q], then there is an ωp+1,q−1 such that d1ωp,q + t0ωp+1,q−1 = 0. Hitting

this equation with d1 we find that d0ωp,q + d1ωp+1,q−1 := λp+1,q is t0-closed although not

necessarily exact. It is also easy to check that the associated t0-cohomology class, [λp+1,q],

is ds-closed. If this is ds exact, we can redefine ωp+1,q−1 and deduce the existence of an

ωp+2,q−2 such that d0ωp,q + d1ωp+1,q−1 + t0ωp+2,q−2 = 0, which is the (p + 1, q) component

of the equation for a closed (p + q)-form. We can then iterate this procedure by applying

d1 to this equation.

For D = 10 the t0-cohomology groups H
p,q
t can be related (via the five-index Γ-matrix)

to cohomology groups for pure spinor (q − 2)-forms taking their values in Λ5−pT0, where

T0 is the even tangent bundle, i.e. tensors with k = (5− p) antisymmetrised vector indices

in addition to (q − 2) spinorial form indices, modulo equivalences.3 We denote these

cohomology groups by H
0,q−2
t (ΛkT0). It is also possible to extend the definition of ds to

act on these groups [9], so the obstructions to a ds-closed (p, 10 − p)-form determining a

closed super-ten-form lie in the groups H
n,11−n
s

∼= H
0,9−n
s (Λ5−nT0), for n = p + 1, . . . 5.

3There are two exceptional cases: H
1,1
t and H

1,2
t , but they are not relevant to the forms we are interested

in here.
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Clearly 0 ≤ p ≤ 5, while the last obstruction will lie in H
0,4
s . If the lowest component of

the ten-form lies in H
5,5
s there are no obstructions (this is the usual case), but if the lowest

component has p < 5 there can be obstructions. This turns out to be the case for the

Chern-Simons F 4 invariants as we shall see below.

2.2 Chern-Simons invariants

The D = 10 Chern-Simons invariants are constructed from the invariant polynomials P4 :=

trF 2, P8 := trF 4 and P ′

8 := (trF 2)2. They are written in terms of Chern-Simons forms as

P4 = dQ3, P8 = dQ7 and P ′

8 = dQ′

7. Clearly a possible choice for Q′

7 is Q′

7 = Q3P4. The

on-shell action is itself of this type; the closed 11-form is

W11 = H7P4 , (2.7)

where dH7 = 0 and in flat superspace H7 is proportional to Γ5,2. It is easy to see that W11

is Weil trivial and that the lowest component of the corresponding K is

K8,2 ∼ iΓ5,2J3,0 + 3iΓ1,2 ⋆ J3,0 . (2.8)

To see this, note that the lowest component of P4 is P2,2 with

P2,2 ∼ it0J3,0 +
1

6
Γ2abc,2J

abc . (2.9)

We can choose Z10 = H7Q3 so that the lowest non-vanishing component of L is clearly

L5,5 = −Z5,5. In fact, one simply has M0,3 ∼ Q0,3.

The F 4 invariants involve P8 or P ′

8 multiplied by the closed three-form H3 which in

flat superspace is proportional to Γ1,2. Again it is not difficult to prove Weil triviality [9].

In both of these cases the lowest component of the corresponding K is K6,4. For the

double-trace,

K6,4 = iΓ1,2J3,0P2,2 +
i

2
Γ3ab,2J

ab
1,0P2,2 , (2.10)

and a similar analysis applies in the single-trace case with K6,4 ∼ trΛ4.

At this stage we have two options for Z10. The simpler one is to keep manifest Yang-

Mills gauge invariance and to choose a gauge for the ‘external’ two-form B, the potential

of H3. This involves the introduction of an explicit factor of θ into the problem, but its

simplicity makes it useful for other purposes. However, in order to understand the structure

of the cocycle relevant to non-renormalisation theorems within the framework of algebraic

renormalisation, it is important to consider a cocycle which does not depend explicitly on

θ, for which the components are related by supersymmetry in the normal fashion. This

requires the introduction of the Yang-Mills Chern-Simons seven-forms without specifying

any particular gauge, i.e. to choose the Wess-Zumino parts of the closed super-ten-forms

to be Z10 = H3Q7 and Z10 = H3Q3P4, respectively. It turns out that the closed super-ten-

forms in this second approach involve non-vanishing lowest components with even degree

less than five, whereas the former method leads to forms that start at L5,5.
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Chern-Simons cocycles. Consider first the double-trace F 4 invariant in this second

approach. The lowest component Z3,7 ∼ Γ1,2Q0,3P2,2 is t0-trivial, so that we can find a

cohomologically equivalent Z ′ which has lowest component

Z ′

4,6 ∼ Γ4a,2N
a
,4 , (2.11)

where N1,4 ∼ Ξ̂1,1Q̂0,3 is projected into the [10004] component.4 The lowest component of

the ten-form is therefore L4,6 = −Z ′

4,6. From the discussion at the end of subsection 2.1 we

see that N defines an element of H
0,4
t (T0) which must be ds-closed. This in turn leads to a

possible obstruction to the existence of a closed ten-form with this lowest component. It lies

in H
5,6
s

∼= H
0,4
s and must be trivial because L10 is closed. We therefore have a (0, 4)-form,

O0,4, such that [O0,4] = ds[M0,3] for some M0,3. If the form O0,4 were to be zero, then the

cocycle derived directly from L4,6 would have a vanishing top component, L10,0, because

D6N1,4 does not contain a singlet. Furthermore, there would have to be a ds-closed M0,3

in order to obtain a non-zero top component. In other words, the cocycle would split into

two irreducible multiplets, one with a standard Linv
5,5 first component defining the invariant,

and the other starting as Lcur
4,6 . The highest non-zero component of Lcur, say Lcur

9,1 , would

define a conserved current (in spacetime) which would not be a total derivative (i.e. its

divergence would only vanish because of the equations of motion). However, there is no

such conserved current within the multiplet of N1,4. It therefore follows that O0,4 cannot

vanish. Furthermore, there can be no independent ds-closed [M0,3] because there is only

one invariant. In the following we shall confirm these expectations explicitly.

The [10004] projection of N is given by

Na
,4 = Ξ̂a

,1Q̂0,3 +
7

96
Γb

,2Γ
αβ
b Ξ̂a

αQ̂0,2β +
1

96
Γb,2Γ

a,αβΞ̂b
αQ̂0,2β +

1

16
[ΓaΓb],1

αΞ̂b
,1Q̂0,2α

+
1

192
[ΓaΓb],1

αΓc
,2Γc,

βγΞ̂b
γQ̂0,1αβ , (2.12)

with Ξ̂a the gamma-traceless component of the supersymmetry current

Ξ̂a ≡
i

10
tr

([

− 8F abΓb + FbcΓ
abc

]

Λ
)

, (2.13)

and Q̂0,3 the [00003] component of Q0,3

Q̂αβγ ≡ Qαβγ −
3

20
Γa

(αβΓδη
a Qγ)δη . (2.14)

Z ′

4,6 is not t0-trivial, and the super-ten-form associated to the double-trace F 4 invariant

thus does not admit a representative with a vanishing L4,6.

A possible obstruction to the definition of the (5, 5) component would be associated

to a (4, 7) t0-cohomology class

d1Z
′

4,6(N) ∼ Γ4a,2O
a
,5(N) (2.15)

4The notation in this equation signifies that one of the even indices on Γ5,2, labelled by a, is contracted

with the even vector index on N . This notation is used in the following for both even and odd indices.
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where O1
,5 would be an operator in the [10005]. However, DN1,4 vanishes in the [10005],

and so there is no such obstruction. The obstruction to the definition of the (6, 4) compo-

nent is associated to a (5, 6) t0-cohomology class given by

d0Z
′

4,6(N) + d1Z
′

5,5(N) ∼ Γ5,2 O0,4(N) (2.16)

where O0,4 is an operator in the [00004]. There are two distinct components in this repre-

sentation descending from N1,4, so that

[O0,4] ∼ [D2]abc [Γab]1
αN c

,3α + c ∂aN
a
,4 (2.17)

for some coefficient c determined such that [d1O0,4] = 0. This is possible because the only

component of D3N1,4 in the [00005] is the total derivative

[d1∂aN
a
,4] ∼ Γ5

,2P̂4,0d0Q̂0,3 , (2.18)

where5

P̂abcd ≡ tr F[abFcd] −
i

2
∂[aJbcd] . (2.19)

To discuss O0,4 more explicitly, let us describe some relevant components of the su-

perfield Q̂0,3. DQ̂0,3 decomposes into two irreducible components of Q1,2 and Sabc,αβ ≡
1
16Γγδ

abcDγQαβδ, as

DδQ̂αβγ =
15i

8
Γa

δ(αQ̂′

a,βγ) −
3i

8
Γa

(αβQ̂′

a,γ)δ +
1

4
Γabc

δ(αŜabc,βγ) ; (2.20)

where the [10002]

Q̂′

1,2 ≡
2

5

(

Q1,2 +
1

96
Γ1,2Γ

a,αβQa,αβ −
1

96
Γa

,2Γ1,
αβQa,αβ −

5

96
Γa,2Γ

a,αβQ1,αβ

−
1

12
[Γ1Γ

a],1
αQa,1α

)

−
i

20

(

Γab
,1

αS1ab,1α +
1

6
Γb

,2Γ
a,αβS1ab,αβ

−
1

12
[Γ1Γ

abc],1
αSabc,1α +

1

12
Γab

,1
α[Γ1Γ

c],1
βSabc,αβ

)

(2.21)

and the [00102] Ŝ3,2 is the corresponding component of S3,2. D2Q̂0,3 decomposes similarly

into Q̂′

2,1 in the [01001], Ŝabcd,α in the [00012], Ŝabc,d,α in the [10101] and Ŝabcd,ef,α in the

[01012].

Using representation theory, one computes that (where Ξα ≡ Γab,α
βtrFabΛ

β)

[

O0,4

]

∼ c1Ξ̂
a
,1∂aQ̂0,3 + c2∂aΞ̂

a
,1Q̂0,3 + c3[Γ

ab]1
α∂aΞ̂b,1Q̂0,2α + c4[Γ

ab]1
α∂c(d1Jabc) Q̂0,2α

+Γabcde
,2

(

c5P̂abcdQ̂
′

e,2+c6∂
fJabf Ŝcde,2+c7∂

fJabcŜdef,2+c8P̂abc
f Ŝdef,2+c9Ξ̂a,1Ŝbcde,1

+c10[Γ
fg]1

αΞ̂aαŜbcde,fg,1

)

+ c11[Γ
ab]1

αΞ̂a,1∂bQ̂0,2α + c12[Γ
a]1αΞα∂aQ̂0,3

∼−d1M0,3 , (2.22)

5This differs slightly from the component that occurs in the superconformal multiplet.
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with

M0,3 ∼ c′1TQ0,3 + c′2[Γ
ab]1

α∂cJabc Q̂0,2α + c′3[Γ
abcd]1

αP̂abcdQ̂0,2α + c′4Ξ̂
a
,1Qa,2

+c′5Ξ̂
a
,1Q̂

′

a,2 + c′6Γ
a
,1αΞαQ̂′

a,2 + c′7[Γ
ab]1

αΞ̂c
αŜabc,2 + c′8[Γ

abc]1αΞαŜabc,2 . (2.23)

Therefore

Z ′

5,5 = Z ′

5,5(N) + Γ5,2M0,3 , (2.24)

but M0,3 is clearly not a descendant of N1,4 since DN1,4 does not have a [00003] component.

Moreover, two terms in M0,3 involve the trace of the energy momentum tensor T , which is

not a descendant of Ξ̂1
,1, and the component of Q1,2 in the [00011] which is not a descendant

of Q̂0,3. To show that O0,4 indeed appears with a non-vanishing coefficient, it is enough to

compute that one coefficient does not vanish, say c10. We have

Γ4a,2N
a
,4 = Γ4a,2Ξ̂

a
,1Q̂0,3 + t0V5,4 (2.25)

with

V5,4 ≡
7i

96
Γ4a,2Γ1,

αβΞ̂a
αQ̂0,2β +

i

96
Γ4a,2Γ

a,αβΞ̂1,αQ̂0,2β −
i

16
[Γ5Γa],1

αΞ̂a
,1Q̂0,2α

−
i

192
Γ4a,2[Γ

aΓb],1
αΓ1,

βγΞ̂b
γQ̂0,1αβ . (2.26)

One computes

d1 (Γ4a,2N
a
,4) = −t0

(

Γ4a,2Ξ̂
a
,1Q̂

′

1,2 − iΓ4a,2

(

T̂1
a +

i

5
∂bJ1

ab

)

Q̂0,3

−
6i

5
Γ1,2P̂4Q̂0,3 +

3i

5
Γ3

ab
,2P̂2abQ̂0,3 + d1V5,4

)

, (2.27)

and

d0 (Γ4a,2N
a
,4) + d1

(

Γ4a,2Ξ̂
a
,1Q̂

′

1,2 + · · · + d1V5,4

)

+t0

(

− i

[

Γ4a,2

(

T̂1
a +

i

5
∂bJ1

ab

)

+
6

5
Γ1,2P̂4 −

3

5
Γ3

ab
,2P̂2ab

]

Q̂′

1,2 + d0V5,4

)

= Γ4a,2

(

Ξ̂a
,1(d0Q̂0,3 + d1Q̂

′

1,2) − d0Ξ̂
a
,1Q̂0,3

)

+id1

[

Γ4a,2

(

T̂1
a +

i

5
∂bJ1

ab

)

+
6

5
Γ1,2P̂4 −

3

5
Γ3

ab
,2P̂2ab

]

Q̂0,3 . (2.28)

O0,4 does not appear here explicitly, but one must take into account that the Z ′

5,5 rep-

resentative that we have used involves the components of Ξ̂a
,1Q̂′

a,2 and Γabcd
,1

αP̂abcdQ0,2α

in the [00003] which do not appear in DN1,4. One computes in the same way that d1V5,4

involves a non-vanishing [Γab]1
αΞ̂c

αŜabc,2 term in the [00003], exhibiting that c′7 = − 11i
1152 .

Because

d1[Γ
ab],1

αΞ̂c
αŜabc,2 ∼ Γabcde

,2 Γfg
,1

αΞ̂a,αŜbcde,fg,1 + · · · (2.29)

in pure spinor cohomology, and because such a term can only be cancelled by the corre-

sponding terms in d1V5,4 involving the components of Ξ̂1,1Ŝ3,2 in the [20003], the [01003],
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the [00014] and the [10103] which appear in the corresponding components of DN1,4,

we conclude that c10 is also non-zero. In particular, as exhibited in (2.28), the unpro-

jected Γ4a,2Ξ̂
a
,1Q̂0,3 only contribute to O0,4 through terms in D2Ξ̂1,1Q̂0,3, Ξ̂1,1d0Q̂0,3 and

Ξ̂1,1d1Q̂
′

1,2, and therefore only contribute to the coefficients (c2, c3, c4), (c1, c11) and c9,

respectively.

M0,3 is not a supersymmetry descendant of N1,4, but O0,4 is a supersymmetry descen-

dant of both M0,3 and N1,4, and thereby provides the ‘bridge’ which relates the double-trace

invariant to N1,4. The field M0,3 satisfies the constraint

d1M0,3 ∼ −[D2]abc [Γab]1
αN c

,3α − c ∂aN
a
,4 (2.30)

in pure spinor cohomology, which is weaker than the conventional linear constraint, but

strong enough in order for [D5]αβγMαβγ to define a supersymmetry invariant in space-

time. To see this one makes a supersymmetry variation, i.e. one applies another D to

[D5]αβγMαβγ , and verifies that the result can only be a spacetime divergence. This makes

use of the fact that the component of D7N1,4 in the [00001] is a total derivative by repre-

sentation theory.

Note that this implies that this cocycle differs in structure from a cocycle associated

to an ordinary superspace integral in another sense, namely that, although L9,1 usually

only involves a [00010], this cocycle has, in addition, a component in the [10001] represen-

tation i.e.

L9,1 ∼ Γ9,1α[D4]αβγδMβγδ + [D5]αβγN9,1αβγ . (2.31)

The discussion of the single-trace invariant is rather similar. In this case, the lowest

component

Z1,9 ∼ Γ1,2 Q0,7 , (2.32)

is again t0-trivial, so that one can choose a cohomologically equivalent representative Z ′

such that its lowest component is

Z ′

2,8 ∼
1

6
Γ2abc,2Ŝ

abc
,6 , (2.33)

where S3,6 ≡ [Γ3]
αβDαQ0,6β projected into the [00106]. Again Z ′

2,8 is neither t0-trivial nor

d1-exact, and there is no super-ten-form representative of the invariant with a vanishing

(2, 8) component. The supermultiplet structure of the super-ten-form is similar to the

one of the double-trace invariant, although one must encounter at least two ‘bridges’ as

in (2.16), (2.22), (2.24), instead of just one, in order to obtain the last component Z ′

2,8

from the invariant L10,0.
6

B-field cocycles. As discussed in the beginning of this section, one can also remove the

lowest component in order to obtain a gauge invariant cocycle starting as L5,5 ∼ Γ5,2M0,3,

at the cost of introducing an explicit dependence on the fermionic coordinates θ. In order

to do this we shall take Z10 = B2P8 where dB2 = H3. In flat superspace one can choose

6One ‘bridge’ is necessarily associated to a (5, 6) t0 cohomology class, and the second could be associated

to either a (3, 8) or a (4, 6) t0 cohomology class, or all three of them could be necessary.
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B1,1 = ιθΓ1,2 where ιθ indicates the contraction of a form with the odd vector field θαDα.

After some gamma-matrix algebra, one can show that the double trace L5,5 ∼ B1,1P2,2P2,2

is equivalent (up to t0-exact terms) to an expression of the standard form, Γ5,2M0,3, with

M0,3 ∼ ιθΓa,2Y
a
,2 (2.34)

where

Yaβγ = (Γbcdef )βγJabcJdef . (2.35)

In this expression, we can take the product of the two supercurrents to be in the [10002]

representation of the Lorentz group owing to the self-duality of the gamma-matrix and the

fact that the four-form trace in J2 gives a t0-exact term in (2.35). It is not difficult to see

that L5,5 ∼ B1,1P4,4 has the correct form in the single trace case as well.

Any pure spinor integral can be trivially rewritten as

∫

d10x [D5]αβγ Mαβγ =

∫

d10x [D4]aαβ [DM ]aαβ , (2.36)

where the integrand in the second expression is in the [10002] representation, but no longer

obeys a simple linear constraint in D. If we do this for the double-trace invariant, we can

get rid of the explicit θ and rewrite it in the form

I =

∫

d10x[D4]aαβ Yaαβ , (2.37)

where Y1,2 is given by (2.35).

2.3 The d2tr2F 4 invariant

We can also use the double-trace Chern-Simons invariant to construct the d2tr2F 4 invariant

in D = 10. This can be done by inserting two contracted spacetime derivatives into the

eleven-form H3P
′

8 = H3P4P4. We can write this as H3∂
aP4∂aP4, where the derivative of

a form is the form with the derivative acting on its components. The above analysis goes

through in exactly the same way in the presence of the derivatives. For H3P4P4, we have

seen in the last section that there is a representative defined by M0,3 ∼ θJ2 (2.35), so when

the derivatives are inserted we shall simply get θ∂aJ∂aJ leading to a spacetime integrand

of a similar form to that discussed in the introduction for this type of invariant in lower-

dimensional spacetimes. Note that such a procedure cannot be used for the single-trace

invariant as the derivatives would either have to sit outside the trace, leading to a total

derivative, or, if taken inside, would have to be covariant and hence spoil closure of the

W -form.

We have therefore succeeded in constructing the double-trace d2F 4 invariant in D = 10,

but it actually turns out to be expressible in terms of a strictly gauge invariant closed super-

ten-form. To see this, note first that ∂aω = Laω, where ω is a form and La denotes the Lie

derivative along the basis vector Ea = ∂a in flat superspace. We therefore have

LaP = ιadP + dιaP = dιaP , (2.38)
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where ιa denotes the interior product with the basis vector Ea and P is an invariant

polynomial form. Therefore the eleven-form Ŵ11

Ŵ11 := H3LaP4L
aP4 = H3(dιaP4)L

aP4

= d(H3ιaP4L
aP4) := dV̂10 , (2.39)

since dLa = Lad. But we already knew that the left-hand side can be written as dK̂10, for

some K̂10 (and also as dẐ10), so that Linv
10 := K̂10−V̂10 is closed and strictly gauge-invariant.

We shall now argue that Linv
10 cannot be exact. To see this, let us go back to the

superform L̂10 = K̂10 − Ẑ10. Since Ẑ10,0 = 0 it follows that the spacetime integrand is

given by K̂10,0. We know that this is not zero because it is simply the same as that for the

tr2F 4 invariant but with two inserted derivatives. But similarly, we can see that V̂10,0 = 0

and so the new, gauge-invariant Linv
10 also gives rise to a spacetime integral of K̂10,0. If

K̂10 − V̂10 were exact, this integral would have to vanish, which it does not, as we have

just argued. This means that there is a d2tr2F 4 invariant in D = 10, and that it can be

derived from a strictly gauge-invariant closed superform.

The lowest component of K̂10 is K̂6,4, which can simply be obtained from (2.10) by

inserting derivatives. So the lowest component of Linv is determined by V̂ . As defined,

this is actually V̂4,6, so we first have to show that this is t0 exact. This turns out to be the

case with

V̂4,6 = Γ1,2ιaP2,2L
aP2,2 = −t0N5,4 , (2.40)

where

N5,4 = ιaP2,2X
a
4,2 , (2.41)

and where

Γ1,2L
aP2,2 = t0X

a
4,2 . (2.42)

In fact, a similar equation to (2.42) holds for P2,2 without the derivative, so that

Xa ∼ ∂aJ . So now, if we add a term dN to V̂ , where N has lowest component N5,4, the

resulting object will have a (5, 5) lowest component which is t0 closed, and we just have

to rewrite this in the form Γ5,2M
inv
0,3 to find the lowest component of the gauge-invariant

superform for d2tr2F 4. After some algebra one finds that

M inv
3 ∼ Γabcde

,2 ∂aΞ̂b,1 Jcde , (2.43)

up to t0-exact terms. One can also check explicitly that this expression is not trivial

in spinorial cohomology, thereby obtaining a direct proof that this closed super-ten-form

really does give rise to the required invariant.

This is the main result of the D = 10 analysis. We have now shown how all the short

D = 4 invariants can be derived from D = 10 invariants, and that they are of Chern-Simons

type, except for d2tr2F 4, for which there is a gauge-invariant super-ten-form. Before we

move on to discuss the dimensional reduction of these special invariants we shall make

some brief comments about other invariants in D = 10.
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2.4 Other D = 10 invariants

The first is the single-trace d2F 4 invariant. It was shown in [3] that, in D = 4, this is

given by the full superspace integral of the Konishi superfield, a result that generalises to

all dimensions except D = 10 where there is no independent Konishi supermultiplet. The

supercurrent does admit a non-local decomposition into 128 + 128 together with a scalar

superfield [5], so that the latter can be projected out. This is the way that this invariant

was constructed in [18]. However, there is a local alternative, which is to integrate a scalar

projection of the Chern-Simons three-form over the whole of superspace. The formula is:

I =

∫

d10x d16θ (Γa)αβQaαβ . (2.44)

Although the integrand is not gauge-invariant, it changes by a total derivative under

gauge transformations, and so its integral is an invariant. It clearly has the same dimension

as the Konishi superfield and hence will give rise to the same invariant. We shall verify

this explicitly when we dimensionally reduce it to nine dimensions in the next section.

There are two further possible invariants of this type. They are given by contracting

the (5, 2) components of the single- and double-trace Chern-Simons forms with Γ5,2. These

are d6F 4 invariants; the single-trace example was discussed in [18]. In principle one could

get invariants of the same type by integrating Λ4 over the full superspace, but it is easily

seen that there is no scalar in the symmetrised single-trace case owing to the Grassmann

nature of Λ. However, in the double-trace case there is, because the Λ4 integrand is just

J2. It is likely that the double-trace Chern-Simons seven-form integral is equivalent to

this, but we have not explicitly checked this.

In D < 10, full superspace integrals of W 4 give rise to d4F 4 type invariants. Such

invariants cannot be constructed in an obvious fashion in D = 10 owing to the absence of

a scalar field in the SYM multiplet. In the abelian case, it is known that there is such an

invariant from superembedding considerations. It is easy enough to reproduce this result

using the ectoplasm formalism because we can insert two pairs of contracted derivatives

into H3F
4. This does not generalise to the non-abelian case, at least not in the single-

trace case. In fact, it was shown sometime ago [19], using completely different methods,

that there should be a single-trace d4F 4 term in the string effective action and that it

goes together with other terms of the same dimension such as F 6. Recently, this has been

confirmed from a supersymmetric viewpoint: the single-trace F 4 term in the action induces

higher-order terms through the action of non-linear supersymmetry transformations, and

these terms do indeed include d4F 4 [20].7 So the fact that there is no independent invariant

of this type in D = 10 is perfectly consistent because this term is induced from F 4. On the

other hand, there should be an independent double-trace d4F 4 invariant because we can

repeat the argument made above for d2F 4 starting from two pairs of derivative insertions.

If this is the case, then it would not necessarily imply that the double-trace F 4 term in the

action does not induce a d4F 4 term automatically, although this could be the case if there

is only one such term.

7In [20] the gauge group is U(k).
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3 Dimensional reduction

In this section we shall study what happens to the D = 10 invariants when they are reduced

to D ≤ 9.8 We shall see that both of the F 4 Chern-Simons invariants retain this property

in D = 9, but below that they can be replaced by gauge-invariant super D-forms and that

the latter are what one expects from direct computations in these dimensions. We shall

underline ten-dimensional vector indices and set Ea = (Ea, Er), where r = 1 . . . 10−D = n.

We shall also underline ten-dimensional forms, but continue to write spinor indices as 16-

component. For the SYM potential we have

A := A + ErWr , (3.1)

where Wr are the scalars in D dimensions. The ten-dimensional field strength is

F = (F + GrWr) + ErDWr −
1

2
EsEr[Wr,Ws] . (3.2)

Here D denotes the gauge-covariant exterior derivative in D dimensions, all fields are

independent of the compactified coordinates and Gr = dEr is the dimension-zero torsion

in the extra dimensions. We can easily read off the constraints on the lower-dimensional

field-strength tensor from the D = 10 ones using this equation.

For an arbitrary p-form ωp we have

ωp = ωp + Erωp,r + . . .
1

n!
Ern . . . Er1ωp−n,r1...rn

. (3.3)

If ωp is closed, then it is only the last term in the expansion that is closed by itself in

the lower dimension.

Now consider the D = 10 Chern-Simons F 4 invariants. They can be derived starting

from a closed eleven-form W 11 = H3P 8, where P 8 can be single- or double-trace. Moreover,

W 11 = dK10. If we reduce this to nine dimensions, then we find, with W 11 = W11+E9W10,

and similarly for K, that W10 = dK9. And we also have

W 11 = W11 + E9W10

= (H3 + E9H2)P 8 (3.4)

where H3 = H3 + E9H2. Since P 8 = P8(A), i.e. is a polynomial determined by A, and

since A = A + E9W , we know, from the general properties of such polynomials, that

P8(A) = P8(A) + d(E9X6), where X6 is some gauge-invariant six-form in nine dimensions.

We therefore find

W10 = H2(P8 + G9X6) − H3dX6

= H2P8 − d(H3X6) , (3.5)

since dH3 = −G9H2. So the natural D = 9 Chern-Simons object, H2P8, is Weil trivial

and is equal to the exterior derivative of K9 + H3X6. We can therefore construct a super-

nine-form starting from this point. The lowest component of K9 is K5,4, but the lowest

8The construction of invariants by dimensional reduction was first discussed in [21].
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component of H3X6 actually has bidegree (1, 8), the point being that the natural F 4

Chern-Simons construction in D = 9 leads to a superform whose lowest component is L1,8

as opposed to the L4,5 one would have obtained by direct dimensional reduction of the

super-ten-form in D = 10.

We can now repeat this manouevre and go from D = 9 to D = 8 starting from the

natural H2P8 form in D = 9. Now, however, we find that there is no H1: it is identically

zero. Instead, we find that there is a natural closed, gauge-invariant eight-form given by

K8 − H2X
′

6, where K8 is derived by dimensional reduction from K9 + H3X6 and X ′

6 is

derived from P8 in a similar fashion to X6, but in one fewer dimension. This means that

we now have a gauge-invariant super-eight-form in D = 8 that gives rise to an F 4 invariant

by the ectoplasm construction. So the two F 4 invariants are of Chern-Simons type in

D = 9, 10 but in all lower dimensions they are given by gauge-invariant super-D-forms

whose lowest component is in L0,D.

The other Chern-Simons type invariant in D = 10 is the on-shell action which can

be obtained starting from the eleven-form H7trF
2. In flat superspace H7 ∼ Γ5,2, and so

the Chern-Simons nature of the action is maintained for D ≥ 5. In D = 4 it reduces to a

gauge-invariant expression which is equivalent to the four-θ superaction formula given in [1].

We now consider the dimensional reduction of the integral of the Chern-Simons three-

form given in (2.44). We have

Q3(A) = Q3(A + E9W ) = Q3(A) + E9tr(2WF (A) + G9W 2) + d(tr(AE9W )) , (3.6)

and, from (3.2) and the D = 10 constraints,

Fαβ = i(Γ9)αβW . (3.7)

The integrand in (2.44) can be written as

(Γa)αβQaαβ(A) = (Γa)αβQaαβ(A) + (Γ9)αβQ9αβ , (3.8)

and (3.6) implies that the second term on the right is proportional to trW 2 up to a derivative

term that integrates to zero. The first term can be evaluated by contracting all four spinor

indices in the relation P0,4 = d1Q0,3 + t0Q1,2 with two factors of Γ9. The derivative term

will again drop out in the integral, and thus we find, since P0,4 ∝ (Γ9)2trW 2, that the first

term on the right in (3.8) is also proportional to trW 2. We have therefore shown that

I =

∫

d10x d16θ (Γa)αβQaαβ → const

∫

d9x d16θ trW 2 (3.9)

under dimensional reduction to D = 9. Since trW 2 is the Konishi superfield in D = 9 this

confirms the claim made below (2.44).

4 Implications for ultra-violet divergences

In the algebraic approach to the renormalisation of MSYM in various dimensions, admis-

sible counterterms are those that can be associated with a closed super-D-form that has
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the same structure as that of the action [22]. This result is derived in the component

formalism starting from the putative counterterm considered as a spacetime D-form and

then deducing the existence of a sequence of spacetime (D − k)-forms by descent. This

descent series is then equivalent to a super-D-form of the type we have been considering

in the ectoplasm approach.

The F 4 invariants, as we have seen, are given by Chern-Simons type expressions in

D = 9, 10 but can be replaced by gauge-invariant super-D-forms in D ≤ 8. These gauge-

invariant super-forms certainly have a distinct structure to that of the action which allows

one to prove that counterterms of this type are forbidden within the algebraic approach [22].

However, as we saw in section 2.2, the D = 10 Chern-Simons cocycles for the F 4 invariants

are already longer than that of the action due to the fact that their lowest components have

bi-degrees (4, 6) or (2, 8) instead of (5, 5). If we reduced these directly, we would expect to

retain this structure in lower dimensions. Either way, these invariants would be protected

purely by algebraic renormalisation. There is a third argument one could use which is

that, because Chern-Simons type operators can only get renormalised by gauge-invariant

operators [23], one does not need to consider the possibility that these invariants could be

defined as the top component of Chern-Simons type super-D-forms of the same structure

as that of the action.

Finally, we consider the one-quarter BPS invariant d2tr2F 4. As we have seen, this

has a gauge-invariant super-ten-form compatible with the Lagrangian, which can be re-

duced straightforwardly to any lower dimension. We therefore conclude that the algebraic

method does not protect this operator from renormalisation. This is only relevant in

D = 5, 6, 7, since in D ≥ 8 it can only occur in D = 10 at one loop where the algebraic

non-renormalisation theorem is not valid. In D = 7 this invariant corresponds to a two-

loop counterterm which was found to be non-zero in [24, 25]. In D = 6, however, recent

computations [26] based on the unitarity method have shown that this invariant, which

now occurs at three loops, is in fact ultra-violet finite. The algebraic method therefore does

not explain this, although it appears that string-based arguments can [27] (see also [28] for

a recent discussion based on a first-quantised pure spinor approach). In [4] it was argued

that there is a difference between D = 7 and D = 6 in that the cocycle for the former could

be shown to be equivalent to that of the action while this was not true in D = 6. One might

think that one could simply reduce the D = 7 expression to D = 6, but this would not

automatically lead to a fully D = 6 R-symmetric super-form. However, a closer analysis of

the cohomology reveals that there is not a problem with this. The cohomological analysis

in D = 6 and D = 5 is somewhat involved, but the construction of the invariant in D = 10

simplifies the analysis considerably as it is now obvious that the one-quarter BPS invariant

is not protected by the algebraic method in any dimension.

The finiteness of D = 6 MSYM at three loops in the double-trace sector therefore

remains a puzzle from a purely field-theoretic point of view. It seems difficult to envisage

a mechanism that can allow a counterterm in one dimension but not in another based on

symmetry principles. There is one difference between D = 6 and D = 7, however. In

D = 6 this invariant is strictly one-quarter BPS, while in D = 7, as we mentioned in

the introduction, this notion is not compatible with Lorentz symmetry. If one takes the
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J
H
E
P
0
5
(
2
0
1
1
)
0
2
1

product of two supercurrents, for D ≤ 6, the lowest scalar components define four different

multiplets: one-half BPS, one-quarter BPS, and non-BPS, long and short types. This last

multiplet satisfies a higher-order differential constraint (in terms of Ds). For example, in

D = 4, the square of the supercurrent in the real 20-dimensional representation of SU(4)

satisfies a second-order constraint which leads to its being a protected operator even though

it is not BPS [29].9 In D = 7, on the other hand, the square of the supercurrent splits into

three scalar superfields, of which one is one-half BPS, one is long, and the third obeys a

higher-order constraint. It is this third one that contains the d2tr2F 4 invariant. It may be

the case that the sum of the one-quarter BPS and short multiplets is no longer reducible

in D = 7, or perhaps that one can separate them at higher dimension. Either way, it does

seem that there is a real difference but it is not clear that the algebraic method can detect

this in the analysis of divergences. It might be that there is some, as yet unknown, off-shell

formalism that is subtly different in the different dimension, but this is purely conjectural.

5 Summary and conclusions

In this article we have studied the invariants of maximally supersymmetric Yang-Mills

theory with gauge group SU(k), in D = 4, . . . 10 using superspace techniques. We have

focused on the short invariants because the long invariants, corresponding as they do to

full superspace integrals, are much simpler to deal with. As we have seen, for D ≤ 6, all

of the short invariants are of BPS type except for the on-shell action itself, and this is also

expressible as a gauge-invariant superaction in D = 4. There does not seem to be any good

reason to expect this situation to change in 1 ≤ D ≤ 3, although we have not investigated

this fully. For D > 6, the multiplet structure starts to change, and in particular, in

D = 9, 10 we have seen that the F 4 invariants are of Chern-Simons type. We have also

shown how one can construct further invariants by inserting spacetime derivatives and

have made use of this trick to express the d2tr2F 4 invariant in terms of a gauge-invariant

closed super-ten-form via the ectoplasm formalism. In [18] a classification of single-trace

invariants, mainly in D = 10, was given. The authors of this paper used completely

different cohomological techniques to the ones we have used here, and in particular, did

not make the connection between invariants and short multiplets so explicit.

The results of our investigations are summarised in table 1 on the next page.

Combining these results with algebraic renormalisation techniques we were able to

confirm that the single- and double-trace F 4 invariants cannot mix with the action, owing

to the fact that they have different cocycle structures. On the other hand, the existence of

a gauge-invariant closed super-ten-form for the d2tr2F 4 in D = 10 dimensions implies that

the cocycle structure associated with this invariant will be the same as that of the action

in all lower-dimensional spacetimes and hence that one is not able to conclude that it is

protected by this argument even though it is known that it is finite in D = 6. There is

a difference for this invariant in D = 7 in that it is only truly one-quarter BPS in D ≤ 6

9This operator was found to be non-renormalised by direct calculation in the context of AdS/CFT in

refs. [30, 31].
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tr F 2 tr F 4, tr2 F 4 d2tr2 F 4 d2tr F 4

D = 10
∫

LCS
D,0

∫

LCS
D,0

∫

Linv
D,0

∫

d10x d16θ Q

D = 9 ” ” ”
∫

dDx d16θ K

D = 7, 8 ” 1
2 BPS ” ”

D = 5, 6 ” ” 1
4 BPS ”

D = 4 1
2 BPS ” ” ”

Table 1. Some MSYM invariants and their construction in various dimensions. The short invariants

are, besides the action, the single and double trace F 4 invariants as well as the double trace d2F 4

invariant. Q denotes the projection of the CS three-form and K is the Konishi superfield. The

one-half BPS integral for the action in D = 4 is special (ultra-short) in that it is an integral over

four θs rather than 8. For 1 ≤ D ≤ 3 the situation is expected to be the same as in D = 4.

and below, but it is not clear from the algebraic point of view why this distinction should

affect its ultra-violet properties.
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