

```
MRC Technical Summary Report #2540
```

A FREE-BOUNDARY PROBLEM ARISING FROM A GALVANIZING PROCESS

Thomas I. Vote

Mathematics Research Center
 University of Wisconsin-Madison
 610 Walnut Street
 Madison, Wisconsin 53706

July 1983
(Received March 23, 1983)

Approved for public release Distribution unlimited

Sponsored by
U. S. Army Research office
F. O. Box 12211

Research Triangle Park
North Carolina 27709
National Science Foundation
Washington, D.C. 20550

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

A FREE-BOUNDARY PROBLEM ARISING FROM A GALVANIZING PROCESS

Thomas I. Vogel

Technical Summary Report *2540 July 1983

ABSTRACT

$$
0, m e y .1
$$

A free-boundary problem which arises from a galvanizing process is studied. The physical problem is that of an infinite cylinder $\widehat{\Omega^{\circ}} \times \mathbf{R}$ withdrawn from a fluid bath. Formally, this is a gravity-driven unidirectional viscous fluid flow on the exterior of the cylinder ($\Omega^{\circ} \times$. The existence of a unique classical solution is shown under certain conditions on (Ω^{0}, and asymptotic rerults for the thickness of the coat are obtained for large and mall withdrawal speeds. If $\Omega{ }^{r}$ is a convex set, then the region bounded by the free surface of the fluid is shown to be convex, using level curve techniques. Finally, level curve techniques are used to bound the curvature of the free boundary in terms of that of the fixed boundary.

AMs (MOS) Subject Classification: 35R35, 35J20

Key Words: Free-boundary problem, galvanizing, variational inequality, level curves

Work Onit Number 1 - Applied Analysis

[^0]
SIGNIFICANCE AND EXPLANATION

Coating processes are important in many industrial applications, and are currently receiving much attention from applied mathematicians. Recently, a mathematical model for continuous hot-dip galvanizing has been proposed by Tuck, Bentwich, and van der Hoek. The physical process described is that of a steel wire or sheet pulled vertically from bath of molten zinc. The coating of zinc which adheres to the steel gradually solidifies. In the present paper, this galvanizing problem is analysed using modern variational methods. The results presented here, especially the asymptotic dependence of the thickness of the coat, will help in an evaluation of the Tuck-Bentwichvan der hoek model.

The responsibility for the wording and views expressed in this descriptive sumary lies with MBC, and not with the author of this report.

A FRET-EOUMDARY BROALEM ARIEING prow A GndVarizitu process

Thomas I. Vogel
11. Introdnction. Many induatrial processes involve applying a thin coat of liquid to som material. To coat an infinitely long cylinder, a comon method le to pull it out of a Ilquid bath 50 that the gravity vector polnte parallel to the generators of the cylinder. This is typlaally uned for galvaniaing, where the cylinder (not necesearlly circular) is a wire or sheet of mteel, and the liquid is molten sinc. As the cylinder moves up, it carrles with it a coat of liquid, which gradually molidifles. over a subetantial length of the cylinder, the flow of the liquid le eteady and atralght down, with the outer boundary of the region of flow tree urface. The driving forces are gravity and viscosity.

Tuck, Bentwich, and van der Hoek [7] (hereafter reforred to as 2mil) have recently given a formulation of this problem. let $a^{\prime} z^{2}$ be the crome acetion of the cyllader. and let Σ be ite boundary. Let Ωj^{2} be the crose section of the region of flow plus the cylinder, and let 5 be the boundary of a (whieh is free). The ceglon of flow is exterior to the given Ω^{\prime}. Then they show that under certain asauptions, the upmard velocity field w(x,y) met satiefy

$\Delta w=g / v$	$\ln a=\bar{\Omega}^{\prime}$
$w=W_{B}$	on r
$w=W_{B} / 2$	on r
$\frac{\partial w}{\partial n}=0$	on r.

Here g is the dommard acceleration tue to gravity, v is the kinematic viecosity of the iiquid, and W_{B} is the withdrawal apeed of the cylinder. it is important to keep in

Sponsored by the United states Axyy under Contract Ro. DNAG29-80-C-0041. This material is based upon work mupported by the Mational science Foundation under Grant Mo. mcs-7927062, Mod. 2.

```
condition that the above aystem has a solution. The fact that we impose both Dirichlet
and Neumann boundary conditions on r will prevent a solution w from existing for a
general \Omega. This situation is typical of free boundary problems, where the fact that the
boundary conditions are overdetermined is compensated by the freeness of the boundary.
    The model of TBH neglects surface tension and assumes that the net rate of transport
\[
Q=\iint_{\Omega-\bar{\Omega},} w(x, y) d x d y
\]
\[
\text { is maximized. More precisely, they show that if } w(x, y ; U) \text { satisfies }
\]
\begin{tabular}{ll}
\(\Delta w=g / N\) & in \(U-\bar{\Omega}\) \\
\(w=B\) & on \(\Sigma\) \\
\(\frac{\partial w}{\partial n}=0\) & on \(\partial u\),
\end{tabular}
then if }Q(U)=\int\int{\mp@code{U
be obtained when w(U) \equiv\frac{\mp@subsup{W}{B}{}}{2}\mathrm{ on 2R.}
    In this paper, we will work with the normalization:
                                    u=v(w-\frac{WB}{2})/g and
                                    c= v (uB
so that the equations become
(1.1)
\begin{tabular}{ll}
\(\Delta u=1\) & in \(\Omega=\bar{\Omega}\) \\
\(u=c\) & on \(\Sigma\) \\
\(u=0\) & on \(\Gamma\) \\
\(\frac{\partial u}{\partial n}=0\) & on \(\Gamma\)
\end{tabular}
Notice that the last condition is equivalent to \(|\nabla u|=0\) on \(r\), since \(r\) is a level surface of \(u\). If the dependence on \(c\) is to be emphasized, we will write \(r_{c}\) and \(u_{c}\). In Section 2, we show the existence of a classical solution of (1.1) in \(n\) dimensions if \(\Omega^{\prime \prime}\) is starshaped with respect to a ball. This section consists mainly of
```


12. Exiatence and Reqularity

Let $g^{\prime} C \mathrm{~m}^{\mathrm{n}}$ be a bounded open set which is starshaped with respect to all points contained in some ball, and let c be positive constant. Suppose that $\Sigma=2 \Omega^{\prime}$ is sufficiently smooth. Then we will prove in this section that there exists a set
a containing Ω^{\prime} with $\Gamma=\partial \Omega$ analytic, and a non-negative function which eatiefies equation (1.1). This will be done variationally by using the functional (2.1)

$$
J_{R}(v)=\int_{s_{R}}\left|\nabla_{v}\right|^{2}+2 v .
$$

where B_{R} is a ball containing \bar{n}, of some sufficiently large radius R centered in Q'. J_{R} will be minimized over the eet $X_{C, R}=\left\{v \in L^{1}\left(R^{n}\right), \nabla v \in L^{2}\left(R^{n}\right)\right.$, $v=c$ in $\Omega \cdot v=0$ in $R^{n}-B_{R}, V \geqslant 0$ everywhere\}
meorean2.1 If Q^{\prime} is a bounded set in m^{n} and $\Sigma\left(=\partial \Omega^{\prime}\right)$ is in $c^{2+\alpha}$, then there exist: a unique $u \in R_{c, R}$ euch that

$$
J_{R}(u)=\inf _{\operatorname{ve} \mathrm{K}_{\mathrm{C}, R}} J_{R}(v)
$$

 Gilberg and Trudinger (5)). Moreover, u is analytic in $\Omega-\bar{\Omega}$, and $\Delta u=1$ there, where $\Omega=\{u>0\}$.

Proof: This follows from standard theorems (Friedman [2], sections 1.3 and 1.4).
Mote: The relation between the above variational formulation and equations (1.1) can now he demonstrated. Let t he contained in $C_{0}^{-}(\Omega-\bar{\Omega})$. For amall enough c, $v=u+\varepsilon \zeta e_{\mathrm{c}, \mathrm{R}^{\circ}} \quad$ since

$$
J_{R}(u+\varepsilon \zeta) \geqslant J_{R}(u) .
$$

it follows that

$$
\int_{\Omega-\bar{\Omega} .}(\nabla u \cdot \nabla \zeta+\zeta)=0 .
$$

Integrating by parts,

$$
\int_{\Omega-\bar{\Omega}}(\Delta u-1) s=0
$$

The free boundary conditions now follow assuming $\bar{\Omega} \cap \partial B_{R}=川$, for on $r=\partial\{u>0\}$, we have $|\nabla u|=0$ by the continulty of ∇u in $B_{R}=\bar{\Omega} \cdot$. In section 3, we will see that for R_{0} sufficiently large, $\Omega \cap \partial B_{R_{0}}=0$. It is clear that for any R_{1}, R_{2}, R_{0}, the minimisers $u_{R_{1}}$ and $u_{R_{2}}$ will be identical. We will assume from now on that R is larger than this R_{0}, thus eliminating the dependence of u on R. Corollary 2.2: The minimizer obtained in theorem 2.1 satisfles $0<u<c$. Proof: One easily checks that

$$
J_{R}(u \wedge c) \leqslant J_{R}(u)
$$

where $u \wedge c=m i n(u(x), c)$. Moreover, $u \wedge c \in K_{c, R}$. so that the uniqueness part of 2heorem 2.1 applies.

Deflaition: A region 0 is almote gear=ike with respect to a point P U if the characteriatic function X_{U} is non-increasing along rays from P. The difference between an almont mear-like region and a mar-like region la that an almost star-like region may contain a portion of a ray through P in its boundary.
Lenan 2.3: If $2 \Omega^{\prime \prime}$ is $c^{2+\alpha}$ and Ω^{\prime} is almost star-like with respect to the origin, then $\frac{\partial u}{\partial r}<0$ in $\Omega-\bar{\Omega}^{\prime}$ and Ω is almont star-like with respect to the origin. (Here $r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$,
Proog: This is proven in wa [7] for $n=2$ by showing that $r \frac{\partial u}{\partial r}$ is subharmonic in $\Omega-\bar{\Omega}^{\prime}$ with non-positive boundary values. The proof is the same in n dimensions. The almost star-likeness of Ω follow, since u and hence X_{Ω} is non-increasing along rays.
meoren 2.4: If $\Omega^{\prime \prime}$ is starlike with respect to each point contained in a ball s_{ε}. then r is analytic, and u satisties:

$\Delta u=1$	in $\Omega-\bar{n}$,
$u=c$	on r
$u=0$	on r
$\frac{\partial u}{\partial n}=0$	on r.

I need not be $c^{2+\alpha}$, although it is clearly Lipachitz continuous.
proof: First we assume that $2 \Omega^{\prime}$ is in $c^{2+\alpha}$. Since r is almost starlike with respect to each point in B_{E}. it is therefore Lipschitz continuous. This is enough to apply a theorem of Caffarelli (Friedman [2], p. 162) to show that r is c^{1} and hence analytic. Once we have the moothnese of r. the boundary conditions on will necessarily be satisfied.

If Σ is not $c^{2+\alpha}$, then we may approximate Ω^{\prime} by an increasing nested series of sets Ω_{i}^{\prime} with $2 \Omega^{\prime} ;$ smooth and $\Omega^{\prime \prime}$, starlike with respect to each point in B_{ε}. To see this, let $f(\theta)$ be the radius of Σ at angle θ. This continuous function can be approximated from below by wooth functions $f_{i}(\theta)$ whose graph will be the $2 \Omega_{i}^{\prime}$'s. Let u_{i} be the minimizer corresponding to Ω_{i}^{\prime}. We shall see (Theorem 3.1) that $\left\{u_{i}(x)\right\}$ is a bounded, increasing sequence for each x. Let $u(x)=\mathcal{I}^{i n} u_{i}(x)$. Then $u(X)$ clearly is equal to c on Ω^{\prime} and zero outside of B_{R}.

We may bound $J_{R}\left(u_{i}\right)$ uniformly by considering a radial function v which is equal to C on a ball B_{p} with $\Omega \subset B_{p} \subset B_{R^{\prime}} \quad 0$ on $B_{R^{\prime}}$ and C on R^{n}. Then each $J_{R}\left(u_{i}\right)$ is lese than $J_{R}(v)$. Thus $\int_{B_{n}}\left|\nabla u_{i}\right|^{2}$ is uniformiy bounded, so that there is a weakly convergent subsequence to $\nabla_{u}{ }^{B_{R}} \quad$ we therefore have

$$
J_{R}(u) \leqslant \underset{i+\infty}{\lim \inf } J_{R}\left(u_{i}\right)
$$

But

$$
J_{R}(u) \geqslant J_{R}\left(u_{i}\right)
$$

for each 1, so that

$$
J_{R}(u)=\lim _{i+\infty} J_{R}\left(u_{i}\right)
$$

I claim that u is minimal over the class of functions equal to c on Ω^{\prime} and 0 outside of $\mathbf{B}_{R^{\prime}}$. For, if this is not true, then for some v with $J_{R}(v)<J_{R}(u)$. we must have $J_{R}(v)<J_{R}\left(u_{i}\right)$ for large enough i. since $\Omega_{i} \subset \Omega^{\prime}$, this is a contradiction.

The free boundaries r_{i} increase out to r, the boundary of $\{u \geqslant 0\}$. since each r_{i} is starshaped with respect to B_{ε}, so is Γ. But then we apply the same argument as before to say that r is analytic and u satisfies the correct boundary conditions on Γ.

Theoren 2.5 (Uniqueness) If $\Omega^{\prime \prime}$ is starlike, then there exists at most one solution (u, I) to (1.1).

Proof: Suppose there are two solutions, (u, Γ) and (u^{*}, Γ^{*}), to (1.1). We assume that』' is starlike with respect to the origin. Define

$$
\begin{aligned}
& u_{r}=u(r x) \\
& \Omega_{r}=\frac{1}{r} \Omega \\
& \Omega_{r}=\frac{1}{r} \Omega^{\prime} \\
& r_{r}=\frac{1}{r} r \\
& \Sigma_{r}=\frac{1}{r} r
\end{aligned}
$$

Since Ω^{\prime} is starshaped, $\Omega^{\prime} \subset \Omega_{r}^{\prime}$ tor $r<1$. Let $=\sup \left\{r \mid\left(\Omega^{\prime \prime}\right)^{\prime} \subset \Omega_{r}^{\circ}\right\}$. We may assume without loss of generality that $s \leqslant 1$, for we could exchange the role of u and u* if this were not so. Then r_{s} and Γ^{*} are tangent at some point X. The boundary of $\Omega * C\left(\Omega_{s} \bar{\Omega}^{\prime} \bar{z}^{\prime}\right.$ consists of $\Gamma^{*} \cap\left(\Omega_{s} \bar{\Omega}^{\prime}\right)^{\prime}$ and Σ_{s}. on both of these surfaces, $u_{s} \geqslant u^{*}$, so that $u_{s} \geqslant u^{*}$ everywhere in $\Omega^{*} \cap\left(\Omega_{s} \bar{\Omega}^{*}\right)$. Rowever, at Y we have $\frac{\partial u}{\partial n}=\frac{\partial u^{\prime}}{\partial n}=0$, to that $u_{s}=u *$ on $\Omega^{*} \cap\left(\Omega_{s}-\bar{\Omega}_{s}\right)$ by the strong maximum principle. Hence $s=1$ and we have the desired uniqueness.

Combining Theorens 2.4 and 2.5 , we see that there existe a unique eolution to (1.1) if $\Omega^{\prime \prime}$ is starlike with respect to all the points in some $B_{E} \cdot$ If Ω^{\prime} is starlike with respect to only one point, then there is at most one matution to (1.1).

\{3. Agymptotic Pasulte

The following comparison theorem is basic to our work, and is needed in the proof of Theoren 2.4.

Theoren 3.1: Let Ω^{\prime} and R_{1}^{\prime} satisfy the hypotheses of Theorem 2.1 with $a_{1} \subset \Omega^{\prime}$, and let $c_{1} \leqslant c$. Let u and u_{1} minimise J_{R} with boundary values c on Σ and c_{1} on Σ_{1} reapectively. Then $u \geqslant u_{1}$ everywhere.

Proof: We have

$$
J_{R}\left(u \wedge u_{1}\right)+J_{R}\left(u \vee u_{1}\right)=J_{R}(u)+J_{R}\left(u_{1}\right)
$$

by a simple computation (here $u u_{1}=\min \left(u, u_{1}\right)$, and $u v_{u_{1}}=\max \left(u, u_{1}\right)$). But

We may use the same techniave of proof to give an interesting characterization of u. Theoren 3.2: Let $u, \Omega^{\prime}, \Omega_{1}^{\prime}$ be as above, and let v_{A} minimize

$$
J_{A}(v)=\int_{A}|\nabla v|^{2}+2 v
$$

where $A \subset B_{R^{\prime}}$ over the at $\left\{v \in L^{1}(A), \nabla v \in L^{2}(A), v=c\right.$, on $V_{1}, v=0$ on $\left.\partial A\right\}$ (here we are not requiring v to be non-negative). Then $u \geqslant v_{A}$ everywhere. Proof: This is proven by the aame argument as in the proof of Theorem 3.1. Corollary 3.3: We may therefore characterize $u(X)$ when I is $c^{2+\alpha}$ and Ω is starshaped with respect to a ball ase

$$
u(x)=\sup _{\lambda} \sin _{\Omega^{\prime}} \nabla_{\lambda}(x),
$$

where $\nabla_{A}(X)$ solves the Dirichlet problem

| v_{A} | $=C$ | on Σ |
| ---: | :--- | ---: | :--- |
| v_{A} | $=0$ | on ∂A |
| Δv_{A} | $=1$ | in $A-\bar{\Omega}$ |

$V_{A}(x)$ will not in general be non-negative.
We now deal exclusively with the case $n=2$.

To determine the asymptotic behavior of Γ as $c \rightarrow \infty$ and $c \rightarrow 0$, it is necessary to look at radial solutions. That is, given ρ, the radius of the circular fixed boundary, and $c>0$, we seek a $v_{\rho, c}(r)$ to solve:

$$
\begin{aligned}
v_{\rho, c}^{\infty}(r)+\frac{1}{r} v_{\rho, c}^{\prime}(r) & =1 \\
v_{\rho, c}(\rho) & =c \\
v_{\rho, c}(\gamma) & =0 \\
v_{\rho, c}^{\prime}(\gamma) & =0
\end{aligned}
$$

where Y, to be determined, is the radius of the free boundary. One can calculate that
γ is given by the implicit relation:

$$
\begin{equation*}
c=\frac{\rho^{2}-y^{2}}{4}+\frac{r^{2}}{2} \log \left(\frac{y}{\rho}\right) \tag{3.2}
\end{equation*}
$$

where $c>0, p>0, \gamma>\rho$, and $\log i s \log { }^{*}$
Leman 3.4: For $R_{0}=R_{0}\left(c, \Omega^{\prime}\right)$ sufficiently Large, $\Omega \cap \partial B_{R_{0}}=\phi$, where c is fixed and $B_{R_{0}}$ is centered in Ω^{\prime}.
Proof: since Ω is contained in some ball B_{p}, the result will follow if it is proven for symmetric solutions. But γ in equation (3.2) will be bounded if p and c ire bounded, since the highest order term in γ on the right hand side, γ^{2} log γ, must be bounded.

This lema was already used extensively in section 2.

From the radial solutions we may investigate the behavior as $c+\infty$ for a larger clast of $\Omega^{\prime \prime}$ 。

Theoren 3.5: Let Ω^{\prime} be bounded met containing a ball $B_{8}(0)$ around the origin. Then both $d\left(r_{c}, 0\right)=\inf _{\operatorname{xer}_{c}}|x|$ and $d_{1}\left(r_{c}, 0\right)=\sup _{\operatorname{xer}_{c}}|x|$ are equal to
$2 \sqrt{\frac{c}{\log 2 c}}+o\left(\sqrt{\frac{c}{\log 2 c}}\right)$

Abstract

$a s c+\infty$. (Here Γ is subscripted to emphasize the dependence on c). Less formally, r_{c} is ammptotic to circle of radius $2 \sqrt{\frac{c}{\log 2 c}}$ as c tends to infinity.

Proof: From Theorem 3.1, we know that r_{c} is contained in the annulus centered at the origin with inner radius $Y(\varepsilon, c)$ and outer radius $\gamma(p, c)$, where p_{p} contains Ω^{\prime}. Therefore, we must show that if $\gamma(\rho, c)$ satisfies (3.2), then as $c \rightarrow \infty$,

$$
\gamma=2 \sqrt{\frac{c}{\log 2 c}}+\quad 0\left(\sqrt{\frac{c}{\log 2 c}}\right)
$$

where dependence on p will only appear in the aecond term.
First, it is clear from (3.1) that γ cannot atay bounded as c tends to infinity, and that $\frac{\partial y}{\partial c}>0$. Dividing by c we obtain:

$$
1=\frac{\rho^{2}}{4 c}-\frac{r^{2}}{4 c}+\frac{r^{2} \log r}{2 c}-\frac{r^{2} \log \rho}{2 c} .
$$

For the largest order term on the right hand side, we must have

$$
\lim _{c \rightarrow \infty} \frac{r^{2} \log x}{2 c}=1 \text {. }
$$

and the other terms must go to zero.
If we write

$$
Y=2 f(c) \sqrt{\frac{c}{\log 2 c}}, \quad \text { then }
$$

We can observe from the above expression that $f(c)$ is bounded. The largest order term on the left of (3.3) is

$$
f^{2}(c) \frac{\log c}{\log c+\log 2} .
$$

which must approach 1 as $c+\infty$. The other terms in (3.2) will go to zero. we then
conclude that

$$
\lim _{\cos } \frac{\gamma(\rho, c)}{2 \sqrt{\frac{c}{\log 2 c}}}=1
$$

so that $Y(\rho, c)=2 \sqrt{\frac{c}{\log 2 c}}+o\left(\sqrt{\frac{c}{\log 2 c}}\right)$, as desired.
We now examine the thickness of the coat $\Omega-\bar{\Omega}$, as c tends to zero if $\Sigma \mathrm{ec}^{2+\alpha}$. pix a point p on Σ, and let ρ and ρ_{1} be two radil so that a ball of
radius ρ is contained in Ω^{\prime} and tangent to F at P, and a ball of radius ρ, is exterior to Ω^{\prime} and tangent to δ at P. One choice for p is $1 / K(\Sigma)$ where $k(\Sigma)$ is the maximum curvature of Σ. If Ω^{\prime} is convex, then $p, ~ c a n ~ b e ~ c h o s e n ~ t o ~ b e ~ i n f i n i t y . ~$ From Theorem 3.1, we have

$$
d(r, P)>\gamma(p, c)-p
$$

For an upper bound on $d(\Gamma, P)$. we must look at interior radially symatric solutions. That is, for the fixed radius ρ_{1}, we seek a function ρ_{ρ}, c solving equations (3.1) for a value $\gamma_{1} \leqslant \rho_{1}$. The same calculation as before yields that γ_{1} solves the implicit relation (3.2). Here, now, we seek a root Y_{1} lass than ρ_{1}. We conclude:

$$
\begin{equation*}
\rho_{1}-Y_{1}\left(\rho_{1}, c\right) \geqslant d(\Gamma, P) \geqslant Y(p, c)-0 \tag{3,4}
\end{equation*}
$$

A straightforward calculation uaing (3.2) yields that:

$$
\lim _{c \rightarrow 0} \frac{c}{(p-\gamma)^{2}}=\lim _{c \rightarrow 0} \frac{c}{\left(p_{1}-\gamma_{1}\right)^{2}}=1 / 2 \text {. }
$$

for $\rho_{1} \neq+\infty$. If $\rho_{1}=+\infty$, then the upper bound for the thickness of the coat is $\sqrt{2 c}$.

To sharpen the asyaptotics in (3.4), we mast analyze $p-\gamma$ and $p_{1}-\gamma_{1}$ more closely for mall c. One can calculate that

$$
\begin{equation*}
\lim _{c \rightarrow 0} \frac{1}{p-Y}\left(\frac{c}{(p-\gamma)^{2}}-1 / 2\right)=\frac{-1}{6 p} . \tag{3.5}
\end{equation*}
$$

by substituting (3.2) in for c, and taking the limit as Y approaches p.
Now, letting $p-\gamma=\sqrt{2 c} f(c)$. where $\underset{c \rightarrow 0}{\lim } f(c)=-1$, and substituting into (3.5), one obtaing:

$$
\lim _{c \rightarrow 0} \frac{1+f(c)}{\sqrt{c}}=\frac{1}{3 \rho \sqrt{2}}
$$

after some manippalation. Therefore,

$$
\rho-\gamma=-\sqrt{2 c}+\frac{c}{3 p}+o(c) .
$$

Eimiliarly, for the interior radially myetric solution,

$$
\rho_{1}-\gamma_{1}=\sqrt{2 c}+\frac{c}{3 p_{1}}+o(c) .
$$

We have proven the following theorem:
Theorm 3.6: Let Ω^{\prime} be aet with $c^{2 t a}$ boundary Σ satisfying the hypothesis of Theorem 2.4. Let P be point of Σ, and let p and p_{p} be the radii of disks tangent to Σ at P which are interior and exterior to Ω ' respectively. Then $\sqrt{2 c}-\frac{c}{3 \rho}+o(c) \leqslant d(P, \Gamma)<\sqrt{2 c}+\frac{c}{3 \rho}+o(c)$. If Ω^{\prime} is convex, then the right hand side is simply $\sqrt{2 c}$.

Note: This is similiar to result obtained by Friedman and Phillips [3] for an interior free boundary problem for a more general equation.

Remark: If Σ has an angle at P, then the free boundaries for the scaled functions $u_{c}=\frac{1}{c} u(\sqrt{c} x)$ will approach the free boundary corresponding to a wedge as fixed boundary. Thus, to investigate the asymptotic thickness for mall c when Σ has corners, one mast look at wedge solutions (see TBHi7] for some numerical results).

14. Convextity

In this section we investigate what results if $\Omega^{\prime \prime}$ is assumed to be convex. mheorg 4.1: If Q^{\prime} is convex, then the sets $\{u>r\}, r \geqslant 0$ are convex, including $\Omega=\{u>0\} . \quad$ (This is true in n dimencions)

Proof: (This approach was suggested by Daniel Phillips.) Assume firat that $\partial \Omega^{\prime \prime}$ is smooth. From Caffarelil and spruck [1], we know that if u_{p} satisfies the free boundary problen: $\quad \Delta u_{p}=u_{p}^{p}$ in $\Omega_{p}-\bar{\Omega}^{\prime}$ $u_{p}=1$ on Σ $u_{p}=0$ on r_{p} $\left|\nabla_{p}\right|=0$ on r_{p}. then Ω_{p} and all the eets $\left\{u_{p}>r\right\}, r>0$ are convex. We deal with the particular u_{p} which minimizes

$$
J_{p}(v)=\int_{B_{R}-\frac{1}{R}} \frac{\left|\nabla_{v}\right|^{2}}{2}+\frac{1}{p+1} v^{p+1}
$$

These functions have been atudied by Fhililps [6]. It is not difficult to show that the functions u_{p} are uniformiy bounded in $w^{1,2}\left(B_{R}\right)$ as p tends to zero. Therefore a subsequance converges weakly in $w^{1,2}$ to mome function u, which maret be the unique minimizer to our original functional (2.1). Daing the Rallich leman, $u_{p}(x) * u(x)$ pointwise almost everywhere in $B_{R^{\prime}}$, by going to another eubeeguence. (This is a standard technique s see Friedman [2]). Iet $A \subset B_{R}$ be the set on wich u_{p} converges pointwise to u. If the level sets of u are not convex, then there are three colinear points X. Y, z in B_{R} with $u(Y)<m i n(u(x), u(\%))$, and Y between X and z. since $\mu(A)=\mu\left(B_{R}\right)$, where μ is tebesque measure, we may assume that X, Y, and z are contained in A. But thie, combined with the pointwise convergence of $\left\{u_{p}\right\}$ contradicts the convexity of the level sets of u_{p}. I now present an independent proof of the convexity of the free arface in 2 dimensions wich is more elementery.

Equa 4.2: Let $(x(s), y(s)), 0 \lll<$ be parametrisation of the free boundary curve I. suppose at $x_{0}=\left(x\left(s_{0}\right), y\left(s_{0}\right)\right), x(s)$ has a local oxtremum. Then there is a level curve $\left\{u_{y}=0\right\}$ extending into Ω from x_{0}.

Proof: Let $\varepsilon_{k} \rightarrow 0$ be decreasing sequence such that $\left\{u=\varepsilon_{k}\right\}$ is a $c^{\text {e curve. We }}$ have that $\left\{u=\varepsilon_{k}\right\}$ will contain a point X_{k} near X_{0} with a locally extreme x value for anall enough ε_{k}, with $\lim _{k \rightarrow \infty} X_{k}=x_{0}$. since $\left\{u=\varepsilon_{k}\right\}$ has a vertical tangent at $x_{k}, u_{y}\left(x_{k}\right)=0$. But u_{y} is harmonic in $\Omega-\bar{\Omega} \cdot$. so that the properties of its level curves are well known. In particular, the set $u_{y}=0$ must consist of piecewise analytic curves with a finite number of branch points. Therefore, some analytic curve along which $u_{y}=0$ must start at x_{0} and extend into Ω.

Alternate proof of convexity of \cap for $n=2$: Suppose that Ω is not convex. Assume first that $\partial \Omega^{\prime}$ is smooth. We can then rotate the coordinate system so that the x coordinate has a local extremum on r for at least four points x_{1}, x_{2}, X_{3}, and X_{4}, at each point X_{i} there is a level curve γ_{i} on which $u_{y}=0$ extending into Ω. since u_{y} is identicaliy zero on Γ and u_{y} is harmonic, it follows that no r_{i} can both start and end on r, nor can any two $Y_{i}{ }^{\prime} s$ meet at branch point or a point of Σ. Since Y_{i} cannot terminate in the region $\Omega-\bar{\Omega}$. it follows that these curve must terminate at four distinct points y_{i} e $[$. However, the normal derivative of u is non-zero on Σ. so that u_{y} can equal zero only at the two points of Σ where the normal is horizontal, since I is amooth. This contradicts the fact that the Y_{i} are distinct. If Σ is not smooth, we can approximate from within by mooth sets Ω_{k}^{\prime}.
Note: The method of the alternate proof generalizes to elliptic operators with constant coefficients

$$
a^{i j_{u_{i j}}+b^{i} u_{i}+c u=f(u), 1, j=1,2, ~}
$$

with $c \leqslant 0$ and $f^{\prime}(u) \geqslant 0$, and with the same boundary conditions on Σ and r as before.

5. The Rade of 0

In this section we prove that edch point of the ridge(detined leter) of Ω mast be closer to Ω^{\prime} than I if Ω° is convex. we Eirat need another level curve lemas.
 constant b. Then u_{θ} is strictiy monotone along Y_{b}. specielcally if Y_{b} is traversed so that $\{\psi>b\}$ lies to the right and $\{\psi<b\}$ Lies to the left, then u_{0} is strictly increasing. Init doe not depend on where the origin for polar coordinates is placed.

Proof: The functions ψ and u_{0} se hartonic confugates, so that this follow from a well-known result. Bee Friedman and Vogel [4] For a proof.

Iemin 5.2. At every point P ef. there initiates at least one level curve of ψ. If
 are at least two level curves of ψ initiating at P and going into Ω.
proof since u_{0} and ψ are harmonic conjugates, the noral derivative of p at p
 the boundary point lemes, ψ cannot atealn a locel extremum on I, bence every point of I is the start of a level curve of ψ.

To prove the second aseartion of the lema, aprese that $\psi(P)$ is atrict local
 follows that there is a region $Q=\{\psi<\psi(P)\}$ which contains P in its closure. But 2Q containe no points of T except for P in eome neighborhood of P, wonclude that there are at least two curves $\{\psi=\psi(P)\}$ initiating at P and going into, as desired.

Now, suppose that the origin 0 for polar coordinates is placed outelde of Ω.
Then I introduce the following notation.

$$
\begin{aligned}
& \Sigma_{1}=\left\{x \in \Sigma \mid u_{x}(x)>0\right\} \\
& \Sigma_{2}=\left\{x \in \Sigma \mid u_{r}(x)<0\right\} \\
& \Sigma^{+}=\left\{x \in \Sigma \mid u_{0}(x)>0\right\} \\
& \Sigma^{-}=\left\{x \in \Sigma \mid u_{0}(x)<0\right\}
\end{aligned}
$$

In addition, $\mathcal{I}_{1}^{+}, \Sigma_{1}^{-}$, te., are internections of the appropriate above sets. Lome 5.3: There is precisely one point on r_{i} at which $u_{0}=0$, and this is the closest point of E to 0 .

Proof: suppose Y e E stisfiea $u_{0}(Y)=0, u_{r}(Y)>0$. Then the tangent i to Σ at Y is perpendicular to the line $0 Y$, and Ω^{\prime} lies to one side of ℓ. Since $u_{r}(Y) \geqslant 0, \Omega^{\prime}$ lies on the far aide of 2 lrom 0 . It if clear then, that y is the unique closest point of Σ to 0 .

Hence wnow that Σ_{1} is divided into two egments, Σ_{1}^{+}and Σ_{1}^{-}and a point Σ_{1}^{0} where $u_{\theta}=0$.

Definition: The ridge R of Ω is the oet of all points $x_{0} a$ uch that $d(x) \equiv d i s t(x, \partial 8)$ is not in $c^{1,1}(v)$ for any neighborhood v of x.

Let $R_{0}=\left\{X_{0} \in \Omega\left|d\left(X_{0}\right)=\left|X_{0}-Y\right|=\left|x_{0}-z\right|\right.\right.$ for two dietinct $\left.Y, Z E \quad r\right\}$, and $R_{1}=\left\{x_{0}\right.$ en there existe precisely on point $y \in \Gamma$ with $d\left(X_{0}\right)=\left|x_{0}-Y\right|$ and x_{0} is the conter of the osculating circle at Y. Then $R=R_{0} \cup R_{1}$ and, aince a is convex, $R=\bar{R}_{0}$ (Friedman (2] Chapter 2, Bection 7).
Theoren 5.4 If $X_{0} e R_{0}$ and Ω^{\prime} is convex, then dist $\left(X_{0}, r\right)>\operatorname{dift}\left(X_{0}, E\right)$. In consequence, if $X_{0} \in R_{1}$ then diet $\left(X_{0}, \Gamma\right) \geqslant d i s t\left(x_{0}, \Sigma\right)$.
Proof: Suppose this is not the case, and let x_{0} be the polar origin. Let f_{1} and P_{2} be pointe of r auch that $d\left(X_{0}\right)=\left|x_{0}-P_{1}\right|=\left|x_{0}-P_{2}\right|=t$. since u_{r} $\equiv 0$ on I. $\|_{T}$ has local minimum at P_{1} and P_{2}. Therefore, from Lama 5.2, there are level curves $\gamma_{1}^{+}, \gamma_{1}^{-}$atarting at P_{1}, and $\gamma_{2}^{+}, \gamma_{2}^{-}$atarting at P_{2} on which $\dagger \equiv t^{2} / 2$. As γ_{1}^{+}and γ_{2}^{+}are traversed in the direction away from r_{0}, u_{θ} increases, and as \bar{Y}_{1}^{-}and \bar{Y}_{2} are traversed in this direction, u_{θ} decreases. since by aseumption, the distance from x_{0} to each point of Σ is greater than t, all of the
level curves $\gamma_{1}^{ \pm}, \gamma_{2}^{*}$ mast terminate on Σ_{1}. Indeed, γ_{1}^{+}and γ_{2}^{+}mugt and on Σ_{1}^{+}, and Y_{1}^{-}and Y_{2}^{-}mast end on Σ_{1}^{-}.

Let $0 \subset \Omega-\bar{\Omega}$, be the open set wose boundary consiste of γ_{1}^{+}, the segment of Σ_{1}^{+} betwen the endpoints of γ_{1}^{+}and $\gamma_{2}^{+}, \gamma_{2}^{+}$and r from P_{1} to P_{2}. Bere the condition that $v \subset \Omega-\bar{\Omega}$ forces the direction that I is traversed from P_{1} to P_{2} for 2Ω. Let $v^{+}=\left\{x \in u \mid \phi(x) \geqslant t^{2} / 2\right\}$ and $u^{-}=\left\{x \in U \mid \psi(x)<t^{2} / 2\right\}$. Then neither u^{+} nor 0^{-}is empty, and either $\gamma_{1}^{+} \subset \partial u^{+}$and $\gamma_{2}^{+} C$ au or vice versa. For if this were not the case, then isman 5.1 would be violated, since Y_{1} and Y_{2} both have a region where $t>t^{2} / 2$ lying to their right as they are traversed from r to L.
we are now led to a contradiction, since there must then be a curve $\gamma * C U$ on which $\dagger \equiv t^{2} / 2$ which goes from Σ^{+}to r to separate u^{+}and U^{-}. Then u_{θ} will be increasing along γ^{*} from \sum^{+}to r, violating the free boundary condition.

As a corollary, we get a rough bound on the curvature of r. Corollagy 5.5: Aesume that A^{\prime} is convex, and Σ is c^{2+0}, and let $k\left(r_{c}\right.$) be the maximu of the curvature of r_{c}, and $K(\Sigma)$ be the maximum of the curvature of Σ. Then

$$
-\frac{2}{\gamma(c, 1 / k(\Sigma)-1 / k(\Sigma)}>x\left(T_{c}\right)
$$

Proof: at each point x of I wey place a circle of radius $1 / K(E)$ contained in Ω^{\prime} and tangent to \mathcal{E} at X. From the proof of Theorem 3.6, we know that at each point $x \in \Sigma$ the distance from x to r is at least $\gamma\left(c, 1 / K(\Sigma)=1 / K(\Sigma)^{\text {. Now consider the }}\right.$ ball $B_{1 / K}(\Gamma)$ of radius $1 / k(\Gamma)$ osculating at the point of greatest curvature of I. From Theorem 5.4. B1/k(T) must contain a point of Σ, hence

$$
\frac{2}{k(\Gamma)} \geqslant \gamma(c, 1 / k(\Sigma))-1 / k(\Sigma)
$$

yielding the desired reault.

Aeknowledrument:

I would like to thank Arner Friedman, Frnie Tuck, and Daniel Phillipe for valuable conversations.
[1] Caffarelii, L.A., and spruck, J., Convexity properties of solutions to some classical variational probleas, Comen. in PDE, 7(11), 1337-1379, (1982).
[2] Friedman, A., Variational Principles and Free-Boundary Probleas. John Wiley $:$ Sons, New York, 1982.
[3] Friedian A., and Phillips, D., The free boundary of a semilinear elliptic equation, to appear.
[4] Friedman, A. and Vogel, T.I., Cavitational flow in a channel with oscillatory wall, to appear in Non-1in. Anal.
[5] Gilbarg, D. and Trudinger, N.S. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.
[6] Fhiliips, D., A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana U. Math. J., vol. 13, no. 1, 1-17. (1983).
[7] Tuck, E.O., Bentwich, M., and van der Hoek, J., The free-boundary problem for gravity-iriven unidirectional flow, to appear in I.M.A. Journal of Applied Math.

TIV; jgb
sECURITY CLASSIFICATION OF THIS PAGE (Whm Dene Entored

REPORT DOCUMENTATION PACE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER \#2540 2. GOVT ACCEESION MO. AR-A132 853	3. RECIPIENT'S CATALOG MUMEER
4. TITLE (and Swettile) A Free-Boundary Problem Arising From a Galvanizing Process	3. TYPE OF REPORT A PERIOD COVEREO Summary Report - no specific reporting period
	6. PERFORMING ORG. REPORT MUMEEA
7. AUTMOTM(Thomas I. Vogel	C. COMTRACT OR GRAMT NUMEEA(O) $\begin{aligned} & \text { DAAG29-80-C-004 } 18 \\ & \text { NCS- } 7927062, \operatorname{Mod} 2 \end{aligned}$
9. PERFORMING ORGANIZATIOM NAME ANO ADONESS Mathematics Research Center, Universtty of 610 Walnut Street Wisconsin Madison. Wisconsin 53706	16. PROGRAMELEMEMT. PROJECT, TASK anta wonk unit numsers Work Unit Number 1 - Applied Analysis
11. CONTROLLIWG OFFICE MAME AND ADDRESS	12. REPORT OATE July 1983
See Item 18	12. mumgen of Pages 18
	15. sECunity CLass. (ot thio mport) UNCLASSIFIED
	TE GECASBIFICATIOW/DOWNGRADING
Approved for public release; distribution unlimited.	
U. S. Army Research Office National	al Science Foundation
P. O. Box 12211 Washin	gton, D.C. 20550
Research Triangle Park North Carolina 27709	

18. KEY wORDS (Ceminno on meveree oldo If nececcery end llently br block mimber)
19. AESTRACT (Contlmue on reverce alde II nocesecry and ideatify by bleek memben)

A free-boundary problem which arises from a galvanizing process is studied. The physical problem is that of an infinite cylinder $\Omega^{\prime} \times R$ withdrawn from a fluid bath. Formally, this ls a gravity-driven unidirectional viscous fluid flow on the exterior of the cylinder $\Omega^{\prime \prime} \times R_{0}$ The existence of a unique claseical solution is shown under certain conditions on Ω^{\prime}. and asymptotic results for the thickness of the coat are obtained for large and mall withdrawal speeds. If Ω^{\prime} is a convex set, then the region

```
ABSTRACT (Continued)
bounded by the free aurface of the fluid is shown to be convex, using level curve techniques. Finally, level curve techniques are used to bound the curvature of the free boundary in teras of that of the fixed boundary.
```


[^0]: Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National science Foundation under Grant Mo. MCs-7927062, Mod. 2.

