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ABSTRACT-

A free-boundary problem which arises from a galvanizing process Is

studied. The physical problem is that of an infinite cylinder -)x R

withdrawn from a fluid bath. Formally, this Is a gravity-driven -..-

unidirectional viscous fluid flow on the exterior of the cylinder x R.

The existence of a unique classical solution Is shown under certain conditions

on and asymptotic rerults for the thickness of. the coat are obtained for

large and mall withdrawal speeds. If is a convex set, then the region

bounded by the free surface of the fluid Is shown to be convex, using level

curve techniques. Finally, level curve techniques are used to bound the

curvature of the free boundary In terms of that of the fixed boundary.
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SIGNIFICANCE AND EXPLANATION

Coating processes are important in many industrial applications, and are

currently receiving much attention from applied mathematicians. Recently, a

mathematical model for continuous hot-dip galvanizing has been proposed by

Tuck, Dentwich, and van der Hoek. The physical process described is that of a

steel wire or sheet pulled vertically from a bath of molten zinc. The coating

of zinc which adheres to the steel gradually solidifies. In the present

paper, this galvanizing problem is analyzed using modern variational

methods. The results presented here, especially the asymptotic dependence of

the thickness of the coat, will help in an evaluation of the Tuck-Dentwich-

van der Hoek model.
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A FRE-OONDARY PROBLEM ARISING
PUON A GALVANIZING PROCES

Thomas I. Vogel

11. Introduction. manny industrial processes involve applying a thin coat of Liquid to

som material. To coat an Infinitely long cylinder, a cmmon method is to pull it out of

a liquid bath so that the gravity vector points parallel to the generators of the

cylinder. This is typically used for galvanixing, where the cylinder (not necessarily

circular) is a wire or sheet of steel, and the liquid in molten zinc. As the cylinder

moves up, it carries with it a coat of liquid, which gradually solidifies. Over a

substantial length of the cylinder, the flow of the liquid is steady and straight down,

with the outer boundary of the region of flow a free surface . The driving forces are

gravity and viscosity.

Tuck, Dentwich, and van der Nonk (71 (hereafter referred to as TM3) have recently

given a formulation of this problem. Let ' R2 be the cross section of the cylinder,

and let Z be its boundary. Let 2 I be the cross section of the region of flow plus

the cylinder, and let r be the boundary of 0 (which is free). The region of flow is

exterior to the given ' . Then they show that under certain asso mptions, the upward

velocity field w(x,y) mt satisfy

9wing in Ga'
wi.% on

w % /2 on r

--n 0  on rn ,

Here g Is the downward acceleration due to gravity, v is the kinematic viscosity of

the liquid, and W i Is the withdrawal speed of the cylinder. It is important to keep in

Sponsored by the United States Army under Contract No. DAAG2-80-C-0041h This material in
based upon work supported by the National Science Foundation under Grant No. NMC-7927062,
Nod. 2.
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condition that the above system has a solution. The fact that we impose both Dirichlet

and Neumann boundary conditions on r will prevent a solution w from existing for a

general 9. This situation is typical of free boundary problems, where the fact that the

boundary conditions are overdetermined is compensated by the freeness of the boundary.

The model of TBH neglects surface tension and assumes that the net rate of transport

Q f f w(x,y)dx dy

is maximized. More precisely, they show that if w(x,y;U) satisfies

Aw - g/v in U-n'

w -W on EB
aw
-=0 on 3U,
in

then if Q(U) J f w(x,y;U)dx dy is maximized over all admissible U, the maximum will

be obtained when w(U) - on a.

In this paper, we will work with the normalization:

u v (w-Y_)/g and
2

v wC 3,
2g

so that the equations become

Au I in - '

(1.1) u c on E

u. 0  
on r

au7-. 0 on r
an

Notice that the last condition is equivalent to IVul - 0 on r, since r is a level

surface of u. If the dependence on c is to be emphasized, we will write rc and uc

In Section 2, we show the existence of a classical solution of (1.1) in n

dimensions if 9' is starshaped with respect to a ball. This section consists mainly of

-2-
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arguments in 133 placed on firmer theoretical grounds. In Section 3, we obtain asymptotic

results in two diueonsions for c large and c small, and also *am useful comparison

results. In particular, as c tends to infinity, the free surfaces r tend to circles
c

of radius 2 in section 4, we will prove the convexity of the set
log 2c

(u > t) for c ) t i 0 if 01 In convex, and in Section 5, we sho that for n -2, If

n' is convex, then each point of the ridge of fA is closer to F than to r.

-3-
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I2. Nistence and Regularity

Let 0' C n  be a bounded open set which\is starshaped with respect to all points

contained in some ball, and let c be a positive constant. Suppose that E - 30' is

sufficiently smooth. Then we will prove in this section that there exists a met

9 containing 9' with r - an analytic, and a non-negative function u which

satisfies equation (1.1). This will be done variationally by using the functional

(2.1) J1(v) - Iv, 2 + 2v.

where % is a ball containing 5' of some sufficiently large radius R centered in

1n 2n
' 

3R will be minimized over the set (v e L(3P), Vv e L (3).

v - c in 9', v - 0 in I? - BR , v ; 0 everywhere)

Theorem 2.1 If 9' in a bounded set in i And Z (90.') is in C2 +* '  then there

exists a unique u e x such thatc R

R(u)- inf JR(v).
R ve K R

CIR

Moreover, u e w 2, ( B R -2 ,0(a -') for all p< - where W2 ,p ( Z
R lo R

P -2 - I-(v e L (33-9'), Vv e L ( *')• As a consequence, u is C in R - (see

Gilbarg and Trudinger I51). Moreover, u is analytic in Q - 0' and Au = I there,

where a - fu > 0).

Proog, This follows from standard theorems (Friedman E2), Sections 1.3 and 1.4).

ote : The relation between the above variational formulation and equations (1.1) can now

be demonstrated. Let C he contained in C (09'). For small enough C,

04i

v-=u + SK . Since
c,R"

3 (u~z) c ()

it follows that J (uV+)-0

-- L

I -4-
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Integrating by parts,

f (BU-I)c - 0,

hence Au I in SI.

the free boundary conditions now follow assuming 9 r) 
3
t. . I, for on r , u>,

we have IVul - 0 by the continuity of Vu In B - . n Section 3, we will see that

for R0 sufficiently large, 17fl () a % . It Is clear that for any R1 , R2 > %, the

0
minimizers u and UpR will be Identical. We will assume from now on that R is

larger than this Ro , thus eliminating the dependence of u on R.

CorollEr 2.2: The minimizer obtained in Theorem 2.1 satisfies 0 4 u C c.

Proofs One easily checks that

JR(UAC) C JRIU) ,

where u A C - mis (u(X),C). Moreover, a A c e x , so that the uniqueness part of

Theorem 2.1 applies.

Definition: A region U Is almost star-like with respect to a point P e U if the

characteristic function Is non-increasing along rays from P. The difference between

an almost star-like region and a star-like region Is that an almost star-like region may

contain a portion of a ray through P in its boundary.

Le/ia 2.3: If a3' is C
2
4 and n' is almost star-like with respect to the origin,

then r < 0 in 0 - i' and 0 is almost star-like with respect to the origin. (Here

r I- Is1" "J

Proofs 2his is proven in TiD (7] for n - 2 by showing that r is subharmonic in
Sr

- w with non-posIltive boundary values. The proof is the same in n dimensions. The

almost star-likeness of A follows, since u and hence ) i non-increasing along

rays.

Theorem 2.4. If 0' is starlike with respect to each point contained in a ball

9 C then r is analytic, and u satisfies:

%.-
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Au 1 "in a- '

u c on

u 0 on r
au

X need not be C although it is clearly Lipschitz continuous.

24u
ProofX First we assume that WS' is in C Since r is almost starlike with

respect to each point in B9 * it is therefore Lipschitz continuous. This is enough to

apply a theorem of Caffarelli (Friedman [2], p. 162) to show that r is C and hence

analytic. Once we have the smoothness of r, the boundary conditions on u will

necessarily be satisfied.

2+a
If E is not C then we may approximate WZ by an increasing nested series of

sets A' with 30'1 smooth and A'; starlike with respect to each point in B.. To see
i

this, let f(e) be the radius of E at angle e. This continuous function can be

approximated from below by smooth functions f (0) whose graphs will be the

29' 'a. Let u, be the minimizer corresponding to 11' w le shall see (Theorem 3.1)

that {u (W)) is a bounded, increasing sequence for each X. Let u(X) - Tim u(X)

Then u(X) clearly is equal to c on 0' and zero outside of SR -

we may bound Jt(ui) uniformly by considering a radial function v which is equal
S n.

to c on a ball 3 with 0 C %BC P 0 on _%, and e on Then each

2
33 (UR ) is les than JR(v). Thus J Iui is uniformly bounded, so that there is a

weakly convergent subsequence to Vu. e therefore have

3 R(u) < lim inf JR (u)

out J(u) ; J(u)

for each i. so that

3R u) = lir* 3R (ui
J+ft

-6-
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I claim that u is minimal over the class of functions equal to c on 0' and 0

outside of B Ror, if this is not true, then for some v with J Rv) < JR (u),

we must have JC(v) < JR(ui) for large enough i. Since 91 C Q', this is a

contradiction.

The free boundaries r increase out to r, the boundary of {u > 0). Since each

r i is starshaped with respect to Be, so is r. But then we apply the same argument as

before to say that r is analytic and u satisfies the correct boundary conditions on

F.

Theorem 2.5 (Uniqueness) If Q1 is starlike, then there exists at most one solution

(u,r) to (1.1).

Proof: Suppose there are two solutions, (um) and (u*, re), to (1.1). We assume that

0' is starlike with respect to the origin. Define

u= urX)r

r r

r r
r r

r r

Since 01 is starshaped, 0' C l tor r < 1. Let a s sup fri (Do)t C '). We mayrr

assume without loss of generality that a 4 1, for we could exchange the role of u and

u' if this were not so. Then r and rF are tangent at scme point Y.

The boundary of Q* C (0-0') consists of r* nA (a-Q' ) and Z. Onbothof

these surfaces, u a u, so that u ) u everywhere in C, n (-4' ., However, atau•

-0 3u*Ywe have 3n - in 0, so that us u* on (2 a -(D -' 9) by the strong maximum

principle. Hence a = I and we have the desired uniqueness.

Combining Theorems 2.4 and 2.5, we see that there exists a unique solution to (1.1)

if n' is starlike with respect to all the points in some B . If 0' is starlLke with

respect to only one point, then there is at most one solution to (1.1).

%-::
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13. Asvmtotic Results

The following comparison theorem is basic to our work, and is needed in the proof of

Theorem 2.4.

Thoorom 3.1t Let 0' and a1; satisfy the hypotheses of Theorem 2.1 with

0; C (', and let c1 4 C. Lot u and ul minimize JR with boundary values c on

E and C€I on Z respectively. Then u A u everywhere.

Proof: We have

JR (uA'u) + JR (uvu) JR (u) + JR(ul)

by a simple computation (here uAUI - min (UU), and uvu1 - max (uul. But

uAU 6 (K1)c 1 ,R and uvu KC so the uniqueness result of Theorem 2.1 applies.

We may use the same technioue of proof to give an interesting characterization of u.

Theorem 3.2: Let u. a', ; be as above, and let vA minimize

3A(v) - f IVvt2 + 2v,A

1 2
where A C %, over the set (v e L (A), Vve L2(A), v - cI on Ef v . 0 on 9A)

(here we are not requiring v to be non-negative). Then u ; VA everywhere.

Proof: This is proven by the same argument as in the proof of Theorem 3.1.

Corollary 3.3 We may therefore characterize u(I) when Z is C2 +a  and 0' is

starshaped with respect to a ball as:

u(X) - sup vA(X),
AD A'
3A smooth

where vA (X) solves the Dirichlet problem

VA c on Z

VA - 0 on BA

Av - I in A-Z'
A

VA(X) will not in general be non-negative.

We now deal exclusively with the case n - 2.

• I -8-
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To determine the asymptotic behavior of r as c * * and c 0 0, it is necessary

to look at radial solutions. That is, given p, the radius of the circular fixed

boundary, and c ) 0, we seek a v oc(r) to solve:

v" (r) + v' Cr)-(r
pIc r PIC

(3.1) v (p) = c
Vo,c(

v ()0v,c

V,(Y 0,

where Y, to be determined, is the radius of the free boundary. One can calculate that

Y is given by the implicit relation:
2 2 2

(3.2) c - 4l-+ 2
- 

log(I)

4 2 P
where c > 0, p > 0, y > p, ard log is log

Lema 3.4: For R 0- R (cS)') sufficiently large, fl O 3B = R , where c is fixed and0 0
0

aR is centered in 0'.

0
Proof: Since n is contained in some ball B # the result will follow if it is proven

for symetric solutions. But Y in equation (3.2) will be bounded if p and c .re

bounded, since the highest order term in y on the right hand side, y log y, must be

bounded.

This lo was already used extensively in Section 2.

From the radial solutions we may investigate the behavior as c +. for a larger

class of III Is.

Theorem 3.5: Lot a' be a bounded set containing a ball B (0) around the origin. Then

both d(¢,O) - inf IJx and dI (rc,0) - sup ,XJ are equal to

Xer xer
c c

log 2c + o log 2c

as c * -. (Here r is subscripted to emphasize the dependence on c). Less formally,

r is asymptotic to a circle of radius 2 c as c tends to infinity.C 'log 2c

I1

-9-
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Proof: From Theorem 3.1, we know that r is contained in the annulus centered at the€C

origin vith inner radius y(e,c) and outer radius y(pc), where 3 contains 0'.
P

Therefore, we must show that if y(p.c) satisfies (3.2). then as c * -.

c
log 2c log 2c

where dependence on p will only appear in the second term.

First, it is clear from (3.1) that y cannot stay bounded as c tends to infinity,

and that > 0. Dividing by c we obtains
ac

2 +2 2 lgY Y2 o0
4c 4c 2c 2c

For the largest order term on the right hand side, we must have

2o

___ 2c

and the other terms must go to zero.

If we write

then
log 2c

2 [lo92 + 1/2 log c 1/2 1og(log2c) + log f(c)

(3.3) ha 2f2(c) log 2 + log c

We can observe from the above expression that f(c) is bounded. The largest order

term on the left of (3.3) is

f2(c) log c
f~)logo c log 2

which must approach 1 as c + -. The other term in (3.2) will go to zero. We then

conclude that

c+W 2 Of- 1
log 2c

so that y(p,c) - 2 log 2c o as desired.

We now examine the thickness of the coat 0 - 50 as c tends to zero if

e c . Fix a point P on Z * and let p and p1  be two radii so that a ball of

-10-
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radius p in contained in 21 and tangent to E at P, and a ball of radius Pl is

exterior to AI' and tangent to . at P. One choice for p is Iic(E) where sc(E) is

the maximum curvature of Z. If n)' is convex, then P1  can be chosen to be infinity.

From Theorem 3.1, we have

d(r,P) ) Y(p,c) " p

For an upper bound on d(r,P), we must look at interior radially symmetric

solutions. That is, for the fixed radius PV we seek a function v solving

equations (3.1) for a value Y 1 < P1  The same calculation as before yields that I

solves the implicit relation (3.2). Here, now, we seek a root Y, less than P1 . We

conclude:

(3.4) P1 - Y1 (Plc) ) d(r,P) o Y(pc) - P

A straightforward calculation using (3.2) yields that:

lin - c lm C -12c4.0 10-¥) 2  CO (101-Y1 )

for p 1 3 0 . If p1 - ,then the upper bound for the thickness of the coat is

To sharpen the asymptotics in (3.4), we must analyze p - y and p1 - more

closely for small c. One can calculate that

(3.5) li -1 -1/2
c+O P'V (P*Y)

2 2 )

by substituting (3.2) in for c, and taking the limit as y approaches p.

Now, letting p - Y 2c f(c). where lim f(c) - -1, and substituting into
c+O

(3.5), one obtains:

lim 1+f(c) _ 1 
/

c-*0 /- 3p'-

after some manipulation. Therefore,

Sy- -2- + _*c +o(c)
3P

-11-
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Sinmiliarly, for the interior radially symetric solution,

PI - Y M / + -3 - + o(c)3p1

We have proven the following theorem:

Theorem 3.6: Let 2' be a set with C boundary E satisfying the hypothesis of

Theorem 2.4. Let P be a point of E , and let p and p1  be the radii of disks

tangent to Z at P which are interior and exterior to 0' respectively. Then

- - + o(c) d(PT) < 1 + -+ o(c) * If n' is convex, then the right hand
3p 3

side is simply fi

Note: This is similiar to a result obtained by Friedman and Phillips [3] for an interior

free boundary problem for a more general equation.

Remark: If E has an angle at P, then the free boundaries for the scaled functions

u - I u(/c X) will approach the free boundary corresponding to a wedge as fixed
c c

boundary. Thus, to investigate the asymptotic thickness for small c when E has

corners, one must look at wedge solutions (see T5H[7] for some numerical results).

-12-

IS

% % 5



14. Convexity

In this section we investigate what results if n' is assumed to be convex.

Theore 4.1: If W. is convex, then the sets (u > r), r 0 are convex, including

0 = (u > 0). (This is true in n dimensions)

Proofs(This approach was suggested by Daniel Phillips.) Assume first that 312 is

smooth. From Caffarelli and Spruck (11, we know that if u satisfies the free boundary
P

problems Au up  in a-f'
P P P
urn 1  on E

p

up 0 on rp

IVuI- o an r

then 2 and all the sets (u > r), r > 0 are convex. We deal with the particular up
p p

which minimizes 2 VV,2 4 - V p+ '

P, D- 2 p4.1

These functions have been studied by Phillips 16]. it is not difficult to show that the

functions Up are uniformly bounded in wl' 2 (DR) as p tends to zero. Therefore a

subsequence converges weakly in W1 , 2  to some function u, which must be the unique

minimizer to our original functional (2.1). Using the Rellich lema, up (x) + u(x)

pointwise almost everywhere in Sit, by going to another subsequence. (This is a standard

technique t see Friedman 21). let A C DR  be the set on which uP converges pointwise

to u. if the level sets of u are not convex, then there are three colinear points X,

Y, z in DR with uY) < min(u(X), u(Z)), and Y between X and Z. Since

IS(A) - (B ), where V is Lebesque measure, we may assume that X, Y, and Z areR

contained in A. But this, combined with the pointwise convergence of (u I contradicts
p

the convexity of the level sets of uI. I nov present an independent proof of the

convexity of the free surface in 2 dimensions which is more elementary.

La 4.2: lot (x(), y(s)), 0 4 a 4£ be a parametrization of the free boundary curve

r. Suppose at xo - (x(so), y(%o)), x(s) has a local extremum. Then there is a level

curve (u y 0) extending into A from Xo .

-13-
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Proof: Let C* 0 be a decreasing sequence 'uch that (u - is a C curve. we

have that fu - k ) will contain a point Xk  near X. with a locally extreme x value

for small enough C, with lin Xk = X * Since (u- k ) has a vertical tangent at
o Ic 0 •I Xk, uy(Xk ) - 0. But uy is harmonic in n - 0', so that the properties of its level

curves are well known. In particular, the set uy - 0 asnt consist of piecewise analytic

curves with a finite number of branch points. Therefore, some analytic curve along

which uy - 0 must start at X0 and extend into 0.

Alternate proof of convexity of Q for n - 2 : Suppose that n is not convex. Assume

first that 30' is smooth. We can then rotate the coordinate system so that the x

coordinate has a local extremum on r for at least four points XI, X2 , XV3 and X4. At

each point Xi there is a level curve y on which uy = 0 extending into 0. Since

uy is identically zero on r and uy is harmonic, it follows that no Y can both start

and end on r, nor can any two yOs meet at a branch point or a point of I. Since

Yi cannot terminate in the region 0 - 0', it follows that these curves must terminate

at four distinct points Y e E. However, the normal derivative of u is non-zero oni
E, so that uY can equal zero only at the two points of I where the normal is

horizontal, since I is smooth. This contradicts the fact that the Yi are distinct.

If E is not smooth, we can approximate from within by smooth sets

Note: The method of the alternate proof generalizes to elliptic operators with constant

coefficients

aiJuij + biui + cu - f(u) , i'j - 1,2,

'with c 4 0 and f'(u) ) 0, and with the same boundary conditions on E and r as

before.

-14-
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|5. The Ridge of 1
In this section we prove that each point of the ridge-(defined later) of 0 must be

closer to 01' than r if a' is convex. we first need another level curve lemsa.
2

Lemma 5.1 Let b C fl be a smooth curve along which (r, 6) 2 ru i a

constant b. Then u8  is strictly monotone along Yb" Specifically, if Yb is

traversed so that (9 ) b) lies to the right and (9 < b} lies to the left, then ue  is

strictly increasing. This does not depend on where the origin for polar coordinates is

placed.

Proof: The functions * and u8  are harmonic conjugates, so that this follows from a

well-known result. See Friedman and Vogel (4) for a proof.

Lemms 5.2: At every point P e r, there initiates at least one level curve of 9. If

P is a local extreos= of * restricted to r, (we will write this as then there

are at least two level curves of * initiating at P and going into Q.

Proof: Since u. and * are harmonic conjugates, the normal derivative of * at P

equals the tangential derivative of u. at P which is zero (since u, - 0 on B). By

the boundary point lemma, # cannot attain a local extremum on r, hence every point of

r is the start of a level curve of 9.

To prove the second assertion of the lemma, asse that #(P) is a strict local

minimum of *tr. since 9(P) cannot be a local minimum of # in any Sr(p) n 0, it

follow that there is a region Q < (((P)) which contains P in its closure. But

3Q contains no points of r except for P in some neighborhood of P, we conclude

that there are at least two curves (9 - 9(P)) initiating at P and going into 0, as

desired.

Now, suppose that the origin 0 for polar coordinates is placed outside of '.

Then I introduce the following notation.
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S{x e I Ur(X) > 0)

E2  (x e I ur(X) < 0),

S-(X e I uO(x) > 0)

- fxe E I uOCX) < 0).
" -

In addition, I1, E, etc., are intersections of the appropriate above sets.

Leas 5.3: There is precisely one point on E at which u6 - 0, and this is the closest

point of E to 0.

Proof Suppose Y e E satisfies uo(Y) - 0, u r(Y) > 0. Then the tangent Z to E

at T is perpendicular to the line OY, and III lies to one side of 1. Since

ur (Y) > 0, 0' lies on the far side of t from 0. it is clear then, that T is the

unique closest point of E to 0.

Hence we know that E1  is divided into two segments, E+ and E and a point E1

where u0 - 0.

Definition: The ridge R of fl is the set of all points X 0e n such that
0

d(X) 0 dist(X,30) Is not in CI'1 (V) for any neighborhood V of X.

Let R 0 {X 6 f0d(X o ) - IX° - TJ- IX 0 - ZI for two distinct Y, z e r}, and

R1 - (2 0 011 there exists precisely one point Y e r with d(Xo ) - IXo " YI and

Xo  Is the center of the osculating circle at Y). Then R - Ro U R1  and, since A is

convex, R - (riedasn 121 Chapter 2, Section 7).

Theorem 5.4 If X e R and ' is convex, then dist(X ,) > dist(X ,E). inO 0 0 0

consequence, if X 0 R, then dist( aer) ) dist(X ,E.

Proof: Suppose this is not the case, and let Xu  be the polar origin. Let P, and

P2 be points of r such that d(Xo ) - tXo - P11 = 1Xo - P21 - t. Since ur

= 0 on r, 'r has a local minimum at P1  and P2. Therefore, from Lemma 5.2, there

are level curves YI, y, starting at P1, and y2 * Y2  starting at P2 . on which

t t 2 /2. As a and a + re traversed in the direction away from r, u6  increases,

and as aY and y are traversed in this direction, u. decreases. Since by

assumption, the distance from Xo  to each point of E is greater than t, all of the

. .. " """ ... ""i~y ,i- . .......... ........... , * ...... .. t. .
% - .. .
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level cuve Y1 Y 2 most terminate on ined adY2mstada. i

and Y and Y mut and on Z

+ +
Let V C a -9' be the open set whose boundary consists of Y18 the segment of r

between the endpoints of y and Y2 , Y2 and r from P1  to P 2 . Here the condition

that 0 C 2 - 0 forces the direction that r is traversed from PI to P2  for 30.

+. 2 -2TAt i+  ( el • I *(X) > t2/2) and U (X e U I $(X) < t2/21. Then neither U+

nor U7 is empty, and either I1 C auD+  and Y C 3-- or vice versa. Tor if this were

22not the case, then Loma 5.1 would be violated, since Y I and y 2 both have a region

where ) t 2/2 lying to their right as they are traversed from r to r.

we are now led to a contradiction, since there must then be a curve Y* C U on which

St2 /2 which goes from z +  to r to separate U+  and U-. Then u. will be

increasing along y* from E+  to r, violating the free boundary condition.

As a corollary, we get a rough bound on the curvature of r.
Corollary 5.5: Assume that 0' is convex, and I is C * and let (r ) be the

maximum of the curvature of F, and K(Z) he the maximum of the curvature of E. Then

2

Y~'/K(E) I/C()

Proof: At each point X of E we may place a circle of radius 11/c(l) contained in

9' and tangent to Z at X. From the proof of Theorem 3.6, we know that at each point

X e Z the distance from X to r is at least y(c,1/ ) - I/() Now consider the

ball al/c(F) of radius 1/s(r) osculating at the point of greatest curvature of r.

From Theorem 5.4, B1/(F) mst contain a point of E, hence

2 - y (c,1/ue(K)) -1/()

yielding the desired result.
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