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We carry out density functional theory calculations which demonstrate that the electron dynamics in the
skyrmion phase of Fe-rich Mn1−xFexGe alloys is governed by Berry phase physics. We observe that the mag-
nitude of the Dzyaloshinskii-Moriya interaction, directly related to the mixed space-momentum Berry phases,
changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al., Nature
Nanotech. 8, 723 (2013). The computed anomalous and topological Hall effects in FeGe are also in good
agreement with available experiments. We further develop a simple tight-binding model able to explain these
findings. Finally, we show that the adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.

Recently, there has been strong interest in skyrmionic sys-
tems for applications in spintronic devices. Skyrmions in
magnetic systems are whirls of magnetization that have a non-
zero topological charge, also known as the winding num-
ber. These topologically protected structures are particu-
larly promising in magnetic memory devices [1], where mem-
ory bits can be packed denser and are more robust due to
their topological nature. In addition, it has been experimen-
tally shown that current densities used to manipulate these
particle-like magnetic whirls are five orders of magnitude
lower than in magnetic switching devices based on spin-
transfer torque [2, 3].

Chiral skyrmions were first seen to exist in the so-called
B20 compounds, of which the most prominent representa-
tives are MnSi, FeCoSi, FeGe and MnGe based alloys [4–6].
What makes the B20 materials so special is the real space in-
version asymmetry, itinerant magnetism and often relatively
small spin-orbit interaction (SOI). The electronic and mag-
netic properties of these alloys are very sensitive to various
parameters, such as pressure, temperature and alloy composi-
tion. The phase diagram of many B20 compounds with re-
spect to temperature and magnetic field consists of several
phases. Most importantly, it often exhibits the A-phase char-
acterized by formation of a chiral skyrmion lattice below a
critical temperature in a finite external field [4, 7]. Recently,
it was shown experimentally that in Mn1−xFexGe alloys the
skyrmions in the A-phase drastically change their size and
chirality as a function of chemical composition [8, 9].

The fundamental interaction behind the formation of chi-
ral skyrmions in B20 compounds is the antisymmetric
Dzyaloshinskii-Moriya exchange interaction (DMI) [10–15].
The DMI arises in crystals with broken inversion symmetry
and it favors a certain chirality of the magnetization − the
condition, necessary for formation of chiral magnetic struc-
tures such as skyrmions or spin-spirals of unique rotational
sense. For slowly varying magnetic textures the contribu-
tion to the total energy of the system due to the DMI reads
EDM =

∑
i Di(m̂) · (m̂× ∂im̂), where i stands for carte-

sian coordinates, Di is the i’th Dzyaloshinskii-Moriya vector,

and m̂ is the unit vector of the space-dependent magnetiza-
tion. The DMI has been known since the 1950s from sym-
metry grounds, yet the physics which dictate its properties in
transition-metal compounds remain largely unexplored. Re-
cently, it was shown that in geometric terms the DMI is intrin-
sically related to the so-called mixed part of the Berry curva-
ture (BC) tensor which couples the real- and reciprocal space
evolution of the electronic states in chiral skyrmion lattices
with weak SOI [16]. As was unambiguously demonstrated for
MnxFe1−xSi alloys [17, 18], the transport facets of the purely
reciprocal- and real-space BC are the anomalous Hall (AHE)
and the topological Hall (THE) effects, respectively. Of the
two Hall effects, the THE in particular plays a crucial role in
detection of skyrmions by electrical means [18].

In this Letter, using first principles techniques and con-
necting to recent experiments, we show that the adiabatic
Berry picture governs the electron dynamics in the Fe-rich
MnxFe1−xGe alloys. This not only applies to the real-space
and reciprocal-space Berry phases as seen from the agreement
between the calculated THE and AHE and experiments on
FeGe, but also to the effects of the mixed Berry phases as
manifested by the dependence of the Dzyaloshinskii-Moriya
interaction on the Fe concentration. Namely, the change of
sign of the DMI at the critical concentration of x = 0.8 in
MnxFe1−xGe is in excellent agreement to observations re-
ported in Ref. [8, 9]. To further understand our findings,
guided by ab-initio insight, we develop a minimal tight-
binding model of the DMI, which accounts for its peculiar
sign change. We further show that the limits of the adia-
batic Berry phase paradigm are not met at the Mn-rich side
of MnxFe1−xGe alloys. Our findings should help the material
design of systems which exhibit skyrmionic states.

We have carried out density functional theory (DFT) calcu-
lations of bulk Mn1−xFexGe alloys using the full-potential
linearized augmented plane wave method as implemented
in the Jülich DFT code FLEUR [19], and the Perdew-
Burke-Ernzerhof (PBE) [20] parametrization of the exchange-
correlation potential. To treat the effect of disorder we em-
ployed the virtual crystal approximation (VCA) [21]. Starting
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Figure 1. (Color online) Strength of the DMI as a function of con-
centration x in Mn1−xFexGe alloys. The total value of the DMI
(filled squares) is decomposed into the contributions coming from
the transition-metal (red dots) and Ge (blue dots). The inset depicts
the crystal structure of the studied B20 compound, with light grey
and dark grey spheres representing the transition-metal (TM) and Ge
atoms, respectively.

from the experimental lattice constants of pure MnGe [22] and
FeGe [23] we used Vegard’s lattice constants for 0 < x < 1.
The collinear ferromagnetic calculations yield a magnetic mo-
ment of 2.2µB and 1.2µB in MnGe and FeGe respectively,
which compare well with the corresponding experimental val-
ues of 2.3µB and 1.0µB [23]. More details on computation
of the electronic structure, transport properties and setup of
the minimal tight-binding model are given in Supplementary
Information.

When computing the DMI we neglect the anisotropy of the
DMI vector with respect to m̂, which we have found to be
very small in the studied alloys. In this case the impact of the
DMI can be accounted for by a single constantD, which char-
acterizes an energy difference between the flat (non-conical)
spin-spiral states of opposite rotational sense. Changing the
sign of D would result in a change of the rotational sense of
the energetically preferred spin-spiral solution. To compute
the value of D, we used two methods, which gave very sim-
ilar results for the considered alloys. The first one is based
on the expression for the DMI obtained from the Berry phase
theory in the weak SOI limit (Eq. 11 in Ref. 16). The second
one is based on evaluating the linear slope of the dispersion
energy of the long wavelength flat spin-spiral solutions when
including the SOI within first order perturbation theory (see
Supplementary Information) [24]. The two methods coincide
in the limit of weak SOI strength for cubic crystals. In this
work, we present the values obtained with the second method,
since it allows for a transparent decomposition of the DMI
into contributions coming from different atomic species.

The results of our calculations of the DMI strength D in
Mn1−xFexGe alloys are presented in Fig. 1 as a function of

concentration x. We first focus on the Fe-rich side (x → 1).
Our most remarkable finding is the change of the sign of D
at the critical concentration xc = 0.8, which results in the
change of magnetic helicity of skyrmions in excellent agree-
ment with the recent experimental observations in theA-phase
of Mn1−xFexGe alloys [8]. At xc the DMI strength D van-
ishes, which theoretically should result in an infinite pitch λsk
of the skyrmions at this concentration, since λsk ∼ J/D, with
J being the Heisenberg exchange in the system [8, 9]. In ad-
dition experiments observe a fall-off law λsk ∼ |xc − x|−1
in the vicinity of xc, predicted by our calculations as a direct
consequence of the linear behavior of the DMI strength at the
critical concentration D ∼ (xc − x). The sign of D to the left
(positive) and to the right (negative) of xc, which determines
the sense of magnetic helicity, is also in agreement to experi-
ments, given that the structural chirality of the B20 lattice of
our alloys is kept constant as a function of x, and is the same
as for MnSi [25].

Within our approximation of disorder, the B20 lattice for
0 < x < 1 consists of two atomic species: Ge atoms, and ef-
fective transition-metal (TM) atoms, whose atomic properties
are a mixture of those of Fe and Mn atoms [21]. Our method
allows us to decompose the DMI into contributions coming
from these two different atomic species. As seen in Fig. 1,
where this decomposition is presented, the overall trend of the
DMI as a function of x is almost solely determined by the con-
tribution from the TM. Since a contribution to the DMI from
a given atom is directly proportional to the SOI strength on it,
we conclude that it is the SOI coming from the TM which is
responsible for the DMI in this family of alloys.

When decreasing the concentration away from xc we first
observe a rapid increase of D, which reaches as much
as 10 meV Å at x = 0.4. This is in agreement with exper-
iments as well, which predict a rapid decrease of λsk with
increasing |x − xc|. This is confirmed by our calculations
for which the Heisenberg exchange interactions do not change
significantly when going from pure FeGe to MnGe, and thus
the relation λsk ∼ 1/D should be satisfied. However, upon
further decreasing x, the DMI strength decreases, constituting
a small value of 1.2 meV Å for MnGe. Thus, close to pure
MnGe we are unable to explain the experimental finding of
monotonously decreasing λsk down to zero with decreasing
x, resulting in an observation of ultra-small size of skyrmions
in MnGe on the order of 3 nm [26]. Since we believe that our
ab-initio description of the electronic structure of MnGe is re-
liable, we attribute this discrepancy for Mn-rich Mn1−xFexGe
to the breakdown of the assumption of slowly varying magne-
tization, used to evaluate the D, i.e., the breakdown of adi-
abatic approximation. Another possible explanation for this
discrepancy could be that the real spin structure in MnGe is
more complex than a simple skyrmion lattice. The very small
value of λsk makes current experimental measurement chal-
lenging and leaves ambiguity in the structure of the spin lattice
in MnGe [8, 27].

To understand the origin of the sign change in the DMI we
develop a minimal tight-binding model for a finite trimer sys-
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Figure 2. (Color online) Strength of the DMI as a function of elec-
tron occupation computed within simple tight-binding model of a
finite trimer. The inset shows the structure of the trimer designed to
mimic the breaking of local inversion symmetry of the bond between
the transition-metal (light grey) and Ge (dark grey), which gives rise
to the DMI. The direction of the left (S1) and right (S2) spin lies in
the xy plane, and the DMI vector is pointing out-of-plane.

tem (inset in Fig. 2), positioned in the xy-plane. Within our
model, the trimer of atoms mimics the bond between the two
TM and one Ge atom in B20 structure (see inset in Fig. 1).
This model is derived in a similar way as our previous model
for 3d-5d transition metal chains [28], and it captures the es-
sential physics of the DMI in our Mn1−xFexGe alloys. Based
on the DFT results, in our model we neglect the SOC on the
Ge atom, while the effects of non-collinearity and SOC on
TMs lead to a finite DMI strength, D = |D|, via contribution
to the energy of the type EDM = D · (S1 × S2), with S1 and
S2 as spin moments of two TM atoms. The Ge atom is rep-
resented with one px orbital per spin (spin-degenerate), while
the TM is represented with dxy and dx2−y2 orbitals per spin
(exchange split), and only Ge px and TM dxy, dx2−y2 orbitals
are allowed to have non-zero inter-atomic hopping. Within
this model a finite DMI is estimated from the difference in en-
ergy between two configurations of S1 and S2: S1 at an angle
of +π

4 (−π4 ) and S2 at an angle of −π4 (+π
4 ) from the x-axis,

with both spins lying in the xy-plane. In this setup the vector
D lies out-of-plane.

We mimic the change of concentration x in Mn1−xFexGe
by changing the electronic occupation of the orbitals, tuning
the change in the spin moment and relative positions of the
px, dxy and dx2−y2 orbitals in accordance with first princi-
ples calculations of the electronic structure of the alloys (see
Supplementary material for more details). The results of our
model calculations for the DMI strength as a function of x,
presented in Fig. 2, are very similar to those obtained from
first principles, Fig. 1. The minimal number of ingredients
entering our model help us pin down the main mechanism be-
hind the peculiar behavior of the DMI in Mn1−xFexGe alloys.
Namely, it is the dynamics of the dx2−y2 -like states − which
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Figure 3. (Color online) Computed anomalous Hall conductivity
σxy and the absolute value of topological Hall constant Rtop

yx as a
function of concentration x in Mn1−xFexGe alloys. Thin line marks
the critical concentration xc = 0.8.

move from above the Fermi energy, become occupied and en-
ter the region of dxy-states of opposite spin with increasing
the concentration x − that is responsible for the change of
sign and local peak in the DMI strength in the vicinity of xc.

In the language of Berry phases the DMI is directly re-
lated to the off-diagonal component of the BC tensor Ω
which mixes real (R) and reciprocal (k) spaces [16]. The
fact that our calculations for the DMI agree with experi-
ments on Fe-rich Mn1−xFexGe suggests the validity of the
Berry phase physics in these systems, but also poses a ques-
tion as to whether such an agreement extends also to the
other effects which hinge on the diagonal components of the
BC tensor, namely, the real-space and reciprocal-space BCs,
ΩRR and Ωkk, respectively. Important transport manifesta-
tions of the latter two BCs are the anomalous and topolog-
ical Hall effects, currently studied intensively in skyrmionic
systems [17, 18, 26, 29–33]. The dynamics of an electron
in a given band which travels through a skyrmionic system
is completely determined by the full BC tensor [16]. The
exact expression for, e.g., the k-part of the BC tensor reads
Ωkk,ij = −2Im

〈
∂u
∂ki

∣∣∣ ∂u∂kj

〉
, where i and j mark Cartesian

components. The lattice-periodic part of an electron in the
considered band, u = u(k,R), is computed for a ferromag-
netic crystal with the magnetization direction m̂(R) deter-
mined by the position R within the skyrmion. The other two
components of the BC tensor, ΩRk and ΩRR, are computed
analogously.

We first consider the reciprocal space and evaluate the
k-resolved and summed over all occupied states BC Ωkk

for [001]-direction of the magnetization in our ferromagnetic
Mn1−xFexGe crystal for all x. Our calculations show that the
anisotropy of Ωkk with respect to the direction of the mag-
netization is rather small. The manifestation of Ωkk is the
intrinsic contribution to the AHE [34], with the anomalous
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Hall conductivity (AHC) σxy given by the Brillouin zone in-
tegral of the non-vanishing k-space BC component Ωkk,xy .
The dependence of the computed AHC on the concentration
x in Mn1−xFexGe alloys, presented in Fig. 3, is ragged, which
is typical for transition-metal ferromagnets upon changing the
parameters of the electronic structure. Our values can be di-
rectly compared to experimental measurements of the AHC
in the ferromagnetic phase of MnGe and FeGe, which consti-
tute 150 and 38 S/cm, respectively [26, 30]. Clearly, there is
a good qualitative agreement in magnitude, sign and trend be-
tween our calculations and experiments, while the remaining
differences can be attributed to, e.g., extrinsic contributions to
the AHE [35, 36].

The major contribution to the real-space BC can be esti-
mated already without taking SOI into account owing to the
small spin-orbit strength of the studied alloys. In this case
ΩRR can be computed from the knowledge of the magne-
tization distribution in the skyrmion as ΩRR,ij = ± 1

2m̂ ·
(∂Rim̂ × ∂Rjm̂), with “+” and “−” for spin-up and spin-
down electrons. The effect of the real-space BC is that of the
spin-dependent magnetic field which exerts the Lorentz force,
opposite for electrons of opposite spin. The averaged over the
skyrmion magnitude of ΩRR is known also as the emergent
field, Be, and the resulting Hall effect is called the THE. The
topological Hall resistivity, ρtopyx , can be thus computed from
the spin-resolved diagonal and off-diagonal Hall components
of the conductivity tensor σ as

ρtopyx =
σOHE,↑
xy − σOHE,↓

xy

(σ↑xx + σ↓xx)2
, (1)

assuming that the modulation of the magnetization occurs
within the xy-plane and the emergent field is pointing along
the z-axis. In order to access the conductivities from ab-
initio electronic structure without SOI, we assume the Boltz-
mann approach within the constant relaxation time approxi-
mation [16]. Within this approximation ρtopyx decomposes into
the product of the emergent field, and the so-called topologi-
cal Hall constantRtop

yx , ρtopyx = Rtop
yx Be. The topological Hall

constant can be determined solely from the electronic struc-
ture of a material without the need for any parameters which
characterize the scattering off disorder.

The absolute value of Rtop
yx as a function of x in

Mn1−xFexGe is shown in Fig. 3. One of the most striking
features in this dependence is the change in the magnitude of
Rtop
yx by orders of magnitude as x is varied. Such a behavior is

pronounced especially in the vicinity of the critical concentra-
tion x = 0.8, where also the AHE undergoes a change in sign.
We note that although the variation of the THE, AHE and the
DMI with x is driven by the very same redistribution of the
electronic states around the Fermi energy, there is in general
little correlation between the concentration dependence of the
three fundamental phenomena.

For pure alloys, the sign of the THE which we pre-
dict agrees with the experimental values. In the case of
FeGe the value of Rtop

yx constitutes 88×10−11 Ωm/T and

compares remarkably well with the experimental value of
72×10−11 Ωm/T, computed from the experimental values
for ρtopyx and Be [30]. In MnGe we obtain a value of
25×10−11 Ωm/T for Rtop

yx , which is two orders of magnitude
larger than the experimental value of 0.4×10−11 Ωm/T [26].
The overestimation of the topological Hall constant in this
case, in analogy to the DMI in this limit, can be attributed
to the breakdown in the adiabatic approximation, essential in
the Berry phase viewpoint, owing to the inability of a conduc-
tion spin to follow the rapidly changing magnetization of the
skyrmion lattice. The physics of the electron dynamics and
Hall effects in this regime, and its proper description with first
principles methods, present an important direction to tackle,
especially in the light of recent intensive interest in nano-scale
non-trivial spin textures arising at surfaces and interfaces [37–
39].
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Y. Mokrousov, Phys. Rev. Lett. 107, 106601 (2011).

[36] B. Zimmermann, K. Chadova, D. Ködderitzsch, S. Blügel,
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