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Forward single π0 production by coherent neutral-current interactions, νA → νAπ0, is investi-
gated using a 2.8×1020 protons-on-target exposure of the MINOS Near Detector. For single-shower
topologies, the event distribution in production angle exhibits a clear excess above the estimated
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background at very forward angles for visible energy in the range 1-8 GeV. Cross sections are ob-
tained for the detector medium comprised of 80% iron and 20% carbon nuclei with 〈A〉 = 48, the
highest-〈A〉 target used to date in the study of this coherent reaction. The total cross section for
coherent neutral-current single-π0 production initiated by the νµ flux of the NuMI low-energy beam
with mean (mode) Eν of 4.9 GeV (3.0 GeV), is 77.6± 5.0 (stat)+15.0

−16.8 (syst)× 10−40 cm2 per nucleus.
The results are in good agreement with predictions of the Berger-Sehgal model.

PACS numbers: 12.15.Mm, 13.15+g, 25.30.Pt

I. INTRODUCTION

A. ν NC(π0) coherent scattering

It is well established that single pions can be produced
when a neutrino or antineutrino scatters coherently from
a target nucleus [1]. These interactions can proceed ei-
ther as neutral-current (NC) or charged-current (CC)
processes in which the pion electric charge coincides with
that of the Z0 or W± vector boson emitted by the lep-
tonic current. Recent investigations, both experimen-
tal [2–6] and theoretical [7–16], have devoted attention
to neutrino-induced NC coherent production of single π0

mesons:

ν(ν̄) +A → ν(ν̄) +A+ π0. (1)

Reaction (1) is of theoretical interest as a process dom-
inated by the divergence of the isovector axial-vector neu-
tral current and therefore amenable to calculation using
the Partially Conserved Axial-Vector Current (PCAC)
hypothesis and Adler’s theorem [17]. The phenomeno-
logical model of Rein and Sehgal [18] invokes Adler’s
theorem to express the coherent cross section in terms
of the π-nucleon scattering cross section. The original
Rein-Sehgal model characterized coherent scattering at
incident energies Eν > 3 GeV, and served as a framework
for development of other PCAC-based models of coherent
π0 production [7–10]. In particular, the Berger-Sehgal
model [9] used in the present work improves upon Rein-
Sehgal by using π-carbon scattering data rather than π-
nucleon data as the basis for extrapolation.

An alternative class of models, appropriate for sub-
GeV to few-GeV neutrino scattering, has also received
considerable attention [11–16]. In these “dynamical
models” the amplitudes for various neutrino-nucleon re-
actions yielding the single pion final state are added co-
herently over the nucleus. Within the past decade the
theoretical descriptions of coherent NC π0 production
for Eν below a few GeV have achieved a level of detail
previously unavailable [19].

Experimental investigations of coherent NC(π0) pro-
duction to date have been limited to scattering on tar-
gets with an average nucleon number, 〈A〉, in the range

∗ Now at South Dakota School of Mines and Technology, Rapid
City, South Dakota 57701, USA.
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‡ Now at Lancaster University, Lancaster, LA1 4YB, UK.

〈A〉 ≤ 30 (see Table I). In the study reported here, the
cross section for Reaction (1) is measured using a high
statistics sample of neutrino interactions recorded by the
MINOS Near Detector [20, 21]. The Near Detector con-
sists of iron plates interleaved with plastic scintillator,
yielding an average nucleon number of 48. Thus the
MINOS measurement probes the coherent Reaction (1)
using a target with 〈A〉 distinctly higher than utilized
previously, as detailed in Sec. I C.

B. Reaction phenomenology

In coherent scattering no quantum numbers are trans-
ferred to the target nucleus, and the square of the four-
momentum transfer to the nucleus, |t| = |(q − pπ)2|, is
very small. Figure 1 depicts the amplitude proposed by
Rein and Sehgal to describe coherent NC(π0) produc-
tion in the limit Q2 ≡ −q2 = −(p− p′)2 → 0 where both
the Conserved Vector Current (CVC) and the PCAC hy-
potheses apply. The differential cross section away from
Q2 = 0 can be estimated using the hadron dominance
model [22, 23]. In the Rein-Sehgal and Berger-Sehgal
models this is accomplished using a dipole term of the
form (M2

A/(M
2
A +Q2))2.

Fe
)(kA )'(kA

|))(||(| 2

πpqt P

)(π π

0 p
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)( 'pν)( pν
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FIG. 1. Mechanism for neutrino-nucleus NC(π0) coherent
scattering. The Z0 boson initiates virtual π0 elastic scattering
with exchange of a pomeron-like quantum (P) which transfers
four-momentum squared |t| to the nucleus.

The four-momentum of the final state lepton is not
measurable in NC reactions and so |t| cannot be ascer-
tained. However, the Q2 dependence can be related to
the observable ηπ which is a measure of the momentum
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transverse to the incident beam [6, 14]:

ηπ = Evis × (1− cos θshw). (2)

Here, Evis is the visible energy of the gamma conversions
resulting from π0 decay and θshw is the angle of the elec-
tromagnetic shower with respect to the beam direction.
Distributions of ηπ for coherent NC(π0) events exhibit a
distinctive peak at low values (see Sec. IV). However it is
cos θshw and Evis, rather than ηπ, that serve as the basic
observables for the MINOS measurement. The analysis
uses event distributions in these two variables to con-
struct its background model and to extract the signal.

C. Previous measurements

The first evidence for coherent neutrino-nucleus scat-
tering was obtained by the Aachen-Padova collabora-
tion using spark chambers constructed of aluminum
plates [24]. Other coherent scattering measurements
were carried out during the 1980s using neutrino beams
with different spectra and different target nuclei [25–
28]. More recently, the NOMAD and SciBooNE exper-
iments have measured the coherent NC(π0) cross sec-
tion on carbon [4, 5]. The MiniBooNE experiment
has determined the ratio, fcoh, of NC(π0) coherent to
coherent-and-resonant production on carbon: fcoh =
0.195 ± 0.011(stat)±0.025(sys) [6]. The latter measure-
ments, together with searches for coherent CC(π±) scat-
tering by K2K [2] and SciBooNE [3], stimulated further
theoretical work [29]. The coherent NC(π0) cross sec-
tions for all previous experiments are summarized in Ta-
ble I.

Experiment

Cross Section per nucleus

< Eν > Target 〈A〉 Eminπ0 σ σ/σR−S σB−S
ν(ν̄) ν(ν̄)

[GeV] [u] [GeV] 10−40cm2 - 10−40cm2

Aachen-
2

Aluminum
0.18

29±10 -
31

Padova [24] 27 (25±7) -

Gargamelle
3.5

Freon
0.2

31±20 -
45

[25] CF3Br - 30 (45±24) -

CHARM 31 Marble
6.0

96±42 -
82

[27] 24 CaCO3 - 20 (79±26) -

SKAT
7

Freon
0.2 52±19

-
62

[26] CF3Br - 30 -

15’ BC
20

Neon
2.0

-
0.98±0.24 71

[28] NeH2 - 20 -

NOMAD
24.8

Carbon+
0.5 72.6±10.6

-
53

[4] 12.8 -

SciBooNE
0.8

Polystyrene
0.0

-
0.96±0.20 9

[5] C8H8 - 12 -

TABLE I. Previous cross section measurements for Reac-
tion (1). Cross sections as directly reported are displayed in
column 5; values reported as ratios to Rein-Sehgal σR−S are
listed in column 6. Cross sections obtained using ν̄ beams
are given in parentheses. Column 7 lists corresponding pre-
dictions (σB−S) from the Berger-Sehgal model.

Recently, measurements of charged-current coher-
ent scattering cross sections on carbon and on argon,

νµ (ν̄µ) + A → µ∓ + A + π±, have been reported by
MINERνA [30] and by ArgoNeuT [31] respectively. The
neutrino fluxes for these measurements, obtained with
operation of the NuMI beam in low energy mode, are
similar to the neutrino flux used for the present study.
For neutrino-nucleus scattering at Eν > 3 GeV, the
PCAC models predict the final-state pion kinematics for
coherent NC(π0) scattering to be very similar to the kine-
matics observed in coherent CC(π±) scattering. Conse-
quently the distributions reported for the full range of Eπ
from CC(π±) coherent scattering [30] provide guidance
for estimation of the coherently-produced π0 rate below
the MINOS threshold for electromagnetic (EM) shower
detection.

II. ANALYSIS OVERVIEW

Measurement of the NC(π0) coherent scattering cross
section requires that this rare reaction, predicted to con-
stitute about 0.2% of all neutrino interactions in the
exposure, be detected amidst a copious background of
neutrino reactions having topologies that are dominated
by an EM shower. The background is mostly composed
of NC reactions wherein an incoherently produced, en-
ergetic π0 dominates the final-state. Backgrounds also
arise from energetic π0 initiated by CC νµ interactions
with large fractional energy transfer to the hadronic sys-
tem, and from quasielastic-like CC νe interactions.

This analysis uses a reference Monte Carlo (MC) event
sample simulated using the NEUGEN3 event genera-
tor [32] and other codes of the standard MINOS soft-
ware framework [33]. The reference MC sample includes
NC(π0) coherent scattering generated according to the
Berger-Sehgal model.

Candidate events are isolated by requiring contain-
ment within the fiducial volume, absence of charged par-
ticle tracks, and visible energy sufficient to reconstruct
an EM shower with Evis > 1.0 GeV. Further background
reduction is achieved by distinguishing electromagnetic
from hadronic-shower behavior using a multivariate anal-
ysis classification algorithm known as Support Vector
Machines [34, 35].

Subsamples of the selected MC sample are organized
and handled as binned event distributions that are
functions of the kinematic variables cos θshw and Evis.
An event distribution of this kind constitutes a “tem-
plate” over the plane of cos θshw-versus-Evis (discussed
in Sec. VI). Each of the different background reaction cat-
egories is embodied by its template distribution. These
subsample templates extend over the signal region (de-
fined by a relatively high signal-to-background ratio) and
over the sidebands (kinematic regions adjacent or close
to the signal region with low predicted signal content).

The background templates are constrained by fitting
to data events in the sidebands. The fit adjusts the nor-
malizations and shapes of the background templates us-
ing normalization fit parameters plus two systematic pa-
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rameters; the latter account for the effects of specific
sources of uncertainty capable of generating template
shape distortions. Fitting to sidebands is restricted to
regions that, according to the MC, have signal purity less
than 5%, since optimization studies showed this cut to
minimize the total uncertainty propagated to the mea-
surement. The ensemble of templates, fit to the side-
bands, define a background model that also extends over
the signal region of the cos θshw-vs-Evis plane.

The formalism used to subtract background from data
in the signal region is discussed in Secs. VII and VIII.
The delineation, evaluation, and method of treatment of
systematic uncertainties are presented in Sec. IX. At this
point the foundation is set for fitting the background
model to the data sidebands. Results of this fit are
given in Sec. X, and the background rate over the sig-
nal region is thereby established. The subtraction of the
background from the data in the signal region yields the
measured number of NC(π0) coherent scattering events
(Sec. XI), enabling the scattering cross sections to be
determined (Sec. XII). Section XIII discusses the MI-
NOS cross sections in the context of previously reported
NC(π0) coherent scattering measurements and summa-
rizes the observational results of this work.

Data blinding protocols were used throughout the de-
velopment of the analysis. Data bins for which the sig-
nal purity was predicted by the MC simulation to exceed
20% were always masked. Additionally, protocols were
followed that forbade data versus MC comparisons and
fits involving the data sidebands until all work to estab-
lish the fit procedure was completed.

A. Flux-averaged cross section measurement

For coherent NC(π0) events, the visible energy of the
final-state π0 is only a fraction of the incident neutrino
energy, Eν . Extraction of the reaction cross section as a
function of Eν is therefore problematic. Nevertheless, a
flux-averaged cross section, 〈σ〉, representative of a des-
ignated Eν range can be measured. Let NT denote the
number of target nuclei in the Near Detector fiducial
volume. The total neutrino flux for the experiment is
Np × Φ, where Np is the total number of protons on
target (POT) and Φ is the integral over Eν of the flux
spectrum per POT at the front surface of the fiducial
volume, φ(Eν): Φ =

´
φ(Eν)dEν . The number of reac-

tions after correction for detection inefficiencies, NCoh,
is given by

NCoh = NT Np

ˆ
σ(Eν)φ(Eν) dEν , (3)

so that

〈σ〉 =
NCoh

NT Np Φ
. (4)

The constants NT , Np, and Φ are determined by the ex-
perimental setup and running conditions. The fully cor-
rected count of signal events, NCoh, effectively measures
the flux-averaged cross section.

III. BEAM, DETECTOR, DATA EXPOSURE

A. Neutrino beam and Near Detector

During the running of the MINOS experiment, the
Neutrinos at the Main Injector (NuMI) beam [36] used a
primary beam of 120 GeV protons delivered by the Main
Injector in 10µs spills every 2.2 s. The protons were di-
rected onto a graphite target, producing large numbers
of hadronic particles. The produced hadrons traversed
two magnetic focusing horns whose current polarity was
set to focus positively charged particles (mostly π+ and
K+ mesons), directing them into a 675 m long cylindri-
cal decay pipe. Positioned downstream of the decay pipe
was the hadron absorber, followed by 240 m of rock to
stop the remaining muons. Along the first 40 m of rock
there were three alcoves, each containing a plane of muon
monitoring chambers that measured the muon flux.

The Near Detector data were obtained using the low-
energy (LE) beam configured with the downstream end
of the target inserted 50.4 cm into the first (most up-
stream) horn and with 185 kA currents in the two horns.
With the LE beam in neutrino mode, the wide-band neu-
trino spectrum peaked at 3.0 GeV and had an average
neutrino energy 〈Eν〉 = 4.9 GeV. The relative rates of CC
interactions by incident neutrino type were estimated to
be 91.7% νµ, 7.0% ν̄µ, 1.0% νe, and 0.3% ν̄e. Details
concerning beam layout, instrumentation, and neutrino
spectrum are given in Ref. [36].

The MINOS Near Detector is a sampling tracking
calorimeter of 980 metric tons located 1.04 km down-
stream of the beam target in a cavern 103 m under-
ground. The detector is composed of interleaved, ver-
tically mounted planes. Each plane contains a 2.54 cm
thick steel layer and a 1.0 cm thick scintillator layer, pro-
viding 1.4 radiation lengths per plane. The plastic strips
of a scintillator plane are oriented 45° from the horizon-
tal, with each plane (a “U-plane” or “V-plane”) rotated
90° from the previous plane. The detector steel is mag-
netized with a toroidal field having an average intensity
of 1.3 T.

The requirements of full containment, isolation from
hadronic (non-EM) showers, and optimal reconstruc-
tion for candidate EM showers are the same here as
for the MINOS νe appearance measurements, conse-
quently the same fiducial volume within the Near De-
tector is used [38–40]. The fiducial volume is a cylinder
of 0.8 m radius and of 4.0 m length in the beam direc-
tion. Full descriptions of the scintillator strip configura-
tion, event readout, and off-line processing, are given in
Refs. [20, 21].

The bulk mass of the detector resides in its steel plates.
The scintillator strips and other components account for
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less than 5% of the mass. Uncertainty in the fiducial
mass reflects measurement errors for the widths and mass
of the steel plates; it is estimated to be±0.4% [20]. There
are (3.57±0.01)×1029 nuclei within the fiducial volume of
which ∼80% are iron nuclei and ∼20% are carbon nuclei,
yielding an average atomic mass of 〈A〉 = 48 u.

The electromagnetic and hadronic shower energies are
determined using calorimetry. The absolute energy scale
for the Near Detector EM shower response has been de-
termined to within ±5.6% [20, 41, 42].
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FIG. 2. Simulation of coherent ν + Fe → ν + Fe + π0 in
the Near Detector, showing the locations of hits projected
in U-view (upper plot) and V-view (lower plot). The right-
most scale gives the energy deposition in scintillator. Dashed
black and solid cyan lines show trajectories of the final state
neutrino and π0 respectively.

B. Data exposure and neutrino flux

The data are obtained from a total exposure of 2.8 ×
1020 POT, from MINOS runs of May 2005 through July
2007. The POT count is accurate to within 1.0% [37].
The data set was estimated at the outset to be enough
to ensure that the measurement would be limited by sys-
tematics rather than statistics. The final results vindi-
cate that estimate; the statistical uncertainties are gen-
erally smaller than systematic uncertainties.

A determination of the LE beam νµ flux for the data
used in this work was obtained as part of the MINOS
measurement of the inclusive CC-νµ cross section [21].

The determination was based upon analysis of a CC sub-
sample characterized by low energy transfer, ν, to the
hadronic system. The data rate in this subsample mea-
sures the νµ flux because, in the limit of low-ν, the differ-
ential cross section dσν/dν approaches a constant value
independent of Eν [43, 44]. Binned values for the νµ flux
and uncertainties for 3.0 < Eν < 50 GeV are given in
Table II of Ref. [21].

In a separate determination, the muon fluxes down-
stream of the beam decay pipe were measured at vari-
ous target positions and for different horn currents using
monitoring chambers deployed in the three rock alcoves.
An ab initio simulation of the νµ flux was then adjusted
to match the muon flux observations [45]. The two de-
terminations gave similar neutrino fluxes for the the Eν
range above 3.0 GeV where they overlap. For the analy-
sis of this work, the more precise νµ flux determination of
Ref. [21] is used for Eν > 3.0 GeV, while the νµ flux cal-
culation constrained by measured muon fluxes is used for
Eν < 3.0 GeV. The neutrino flux integrated from 0.0 to
50 GeV is (2.93±0.23) ν/m2/104 POT. The average Eν is
4.9 GeV and the spectral peak is at 3.0 GeV. The range
of neutrino energies about 〈Eν〉 that contains 68% of the
flux is 2.4 ≤ Eν ≤ 9.0 GeV. Based upon the measure-
ments reported in Refs. [21] (Eν > 3.0 GeV) and [45]
(Eν < 3.0 GeV), an uncertainty of 7.8% is assigned to
the integrated flux.

IV. COHERENT NC(π0) EVENTS

An example simulation of a NC(π0) coherent interac-
tion in the Near Detector is shown in Fig. 2. A single
π0 meson of energy 1.31 GeV is produced at a vertex
located two scintillator planes upstream of the gamma
conversions. The two gamma conversions appear as a
single 1.28 GeV electromagnetic shower. In general, elec-
tromagnetic showers and hadronic showers of individual
events can be distinguished using the reconstructed en-
ergy deposition patterns.

Monte Carlo distributions without selections are
shown in Figs. 3 and 4 for kinematic variables of Re-
action (1). The shaded portions of these distributions
denote events that have Evis greater than 1.0 GeV. The
remaining events (clear histogram regions) cannot be re-
liably identified as EM shower events and are excluded
from the analysis. The distribution of cos θshw for coher-
ent events (Fig. 3a) is sharply peaked, with 61% of the
total sample having cos θshw > 0.97. The distribution of
visible energy, Evis, peaks below 1.0 GeV and falls with
increasing energy (Fig. 3b). It is predicted that 48% of
signal events deposit more than 1.0 GeV, and that 93%
have Evis less than 4.0 GeV. The cos θshw and Evis dis-
tributions reflect a peaking of signal events at low values
of ηπ, as is apparent in Fig. 4, where NC(π0) coherent
events are clustered at ηπ ≤ 0.050 GeV. Broader ηπ dis-
tributions are predicted for incoherent NC reactions with
topologies dominated by EM showers.
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FIG. 3. Monte Carlo distributions for NC(π0) coherent in-
teractions (Berger-Sehgal model) in the Near Detector for
the LE beam exposure. (a) Shower-angle cosine of final-state
showers with respect to the ν beam, and (b) Event visible
energies. Shaded regions show events with Evis > 1 GeV.

V. BACKGROUND REACTIONS

Background interactions originate from one of four
neutrino reaction categories, namely NC, CC-νµ, CC-νe,
and purely leptonic interactions. It is useful to divide
the NC and CC-νµ categories according to the final-state
hadronic processes used in MC modeling. The relevant
processes are resonance production (RES) and deep in-
elastic scattering (DIS). Electromagnetic showering par-
ticles dominate the reconstructed shower in all of the
background categories.

Neutral-current reactions. The dominant background
arises from non-coherent NC events with final-state neu-
tral pions that deposit significant shower energy and lit-
tle additional energy above the MINOS detection thresh-
olds. Their final-state shower angles with respect to the
beam, however, are more broadly distributed than those
of NC(π0) coherent scattering.

CC-νµ reactions. There is a subset of CC-νµ events in
which the muon track is not identified, and the hadronic

shower is dominated by a single π0.

CC-νe reactions. Beam νe (ν̄e) neutrinos can initiate
events having single, prompt electrons (positrons) with
no evidence of recoil nucleons or other hadronic activity.
This CC-νe background is mainly composed of quasi-
elastic (QE) scattering, however resonance production
and DIS processes also contribute. The reconstructed en-
ergy distribution peaks at ∼2.0 GeV, and extends more
broadly to higher energies than the distribution of signal
events. Evidence that the MC simulation accurately de-
scribes CC-νe quasielastic-like events is provided by the
differential cross-section measurements of Ref. [46].

Purely leptonic interactions. A small background arises
from purely leptonic interactions that initiate energetic
single electrons or positrons. It consists of νµ-electron
scattering, together with much smaller contributions
from νe-electron scattering and from the corresponding
antineutrino-electron reactions. These reactions were not
included in the NEUGEN3 event generator, and so the
neutrino generator GENIE [47] was used as input to a full
simulation. (A check on this GENIE prediction for the
NuMI LE beam is provided by a recent MINERνA mea-
surement [48].) Purely leptonic scattering is estimated to
be 1.2% of the selected data sample, and (9.7± 0.8)% of
the extracted coherent signal. The background amount,
calculated for the data POT exposure, was subtracted
from the cos θshw-vs-Evis template of the data prior to
further analysis steps.
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Evis > 1 GeV. The dashed histogram shows ηπ for incoherent
NC production of resonances that decay into single-π0 chan-
nels. The latter distribution is shown area-normalized to the
signal distribution to elicit differences in shape.
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VI. EVENT SELECTION

A preselection was applied to the data. Events were
required to have been recorded when both detector and
beamline were fully operational. The shower vertex and
cluster of hits were required to be fully contained within
the fiducial volume and to have visible energy above 1
GeV. Events with multiple showers, multiple tracks, or
single tracks longer than 2 m were rejected. For events
that passed the data quality and the fiducial volume
containment requirements, the subsequent cut on visible
energy removes an estimated 47% of coherent NC(π0)
events. Additional losses of signal are incurred by re-
moval of events having multiple reconstructed showers
or having muon-like topologies; the losses are at the sub-
percent level for each of the latter cuts. A cutoff was im-
posed on Evis at 8.0 GeV as few coherent events are pre-
dicted to occur above this value. Additionally, K-decay
rather than muon decay begins to dominate CC-νe pro-
duction above 8.0 GeV. This means that regions above
8.0 GeV are not predictive of background in the signal
region and cannot be used as sidebands. This require-
ment is estimated to remove 2.9% from the total signal
(including signal with Evis < 1.0 GeV).

A. Multivariate algorithm classification

Further isolation of candidate events was achieved us-
ing a Support Vector Machine (SVM) classification algo-
rithm. The output of the SVM is a discriminant value
assigned to each event, hereafter referred to as the Signal
Selection Parameter (SSP). The SVM output for a set
of input variables, or “attributes”, was developed from
training samples of MC events [49]. The SVM can ac-
commodate large numbers of input variables whose in-
formation content carries various degrees of redundancy;
its performance improves in accordance with the total
amount of discriminatory information provided. For
this analysis, thirty-one different reconstructed quanti-
ties were fed to the SVM for each event. The variables
represented five categories of information: shower size,
shower shape, shower fit, hadronic activity, and track
fit. Intentionally omitted were reconstructions of shower
direction and shower visible energy. These observables
were reserved for use in the fitting of backgrounds to the
data.

The SVM algorithm constructs a border surface in the
high-dimensional attribute space. The SSP is a mea-
sure of “distance” to the border. Signal-like regions and
background-like regions receive positive and negative val-
ues respectively; locations on the border have a value of
zero. Events with energy depositions that have shower-
like clusters, are devoid of vertex activity, and have very
few remote hits, are to be found in locations having pos-
itive and larger SSP values.

Figure 5a compares the SSP distribution of the refer-
ence MC sample (histogram) to the unblinded portion

of the data (black circles); display of the latter distribu-
tion is restricted to SSP < 1.2. The MC signal frac-
tion, or purity, for selected (sel) events, ρ = NCoh

sel /

(NCoh
sel +NBkg

sel ), is displayed as a function of SSP by the
dashed line (with scale to the right). Figure 5b shows the
SSP region that is enriched with isolated shower events
(SSP > 0.9), with the MC simulation broken out into
signal and background contributions. For the region in
Fig. 5a in the vicinity of SSP = 0 that contains the bulk
of the unblinded data, the simulation matches the data
to within 5%. However Fig. 5b shows that, for the un-
blinded SSP bins that lie adjacent to the signal-enriched
region and contain the black-circle data points, the MC
simulation reproduces the slope of the data but predicts
a higher event rate. This discrepancy motivates the de-
velopment of further analysis methods to constrain the
background model using data measurements. The data
in Fig. 5b displayed with blue-shade circles are shown for
completeness; their bins were blinded in the analysis.
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FIG. 5. (a) Comparison of SSP distribution (left scale) of
the unblinded data (black circles) to the MC prediction (his-
togram). The unblinded data were restricted to the region
with estimated sigal purity < 20%; the MC simulation is
shown over the full SSP range. The dashed histogram shows
the signal fraction per SSP bin (right scale). (b) SSP dis-
tributions in an interval of enhanced signal content (denoted
by the arrow in (a)). Histograms show the predicted rate
broken out into signal and background contributions. In the
unblinded portion of the signal-enriched region populated by
the black-circle data points, the simulation reproduces the
shape but overestimates the rate of the data.
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B. Signal-enriched sample and sidebands

The background estimation can be significantly con-
strained using information available in sideband samples
that lie close to the signal phase-space but have low sig-
nal content. To this end, selections are used to isolate a
signal-enriched sample and to define two separate side-
band samples. These selections are made in two stages.
In the first stage, a piece-wise linear boundary is defined
over the plane of SSP versus ηπ [49]. The boundary de-
fines regions in such a way as to isolate samples enriched
with certain desired properties. (The specifics of bound-
ary placement are stated below.) Two such regions are
defined, one contains the selected sample, and the other
contains the near-SSP sample. In the second stage, the
events of the two samples are re-binned as a function
of cos θshw-vs-Evis and are then separated into regions
of high purity (the signal region) and of low purity (the
sideband). The samples and the selection criteria are
elaborated below.

The selected sample: Events are chosen that populate a
contiguous region of the SSP-vs-ηπ plane having highest
purity and containing≥ 10% of estimated coherent signal
events. These events (approximately 0.24% of the MC
sample shown in Fig. 5a) comprise the selected sample.
Specifically, events of the selected sample are required to
have SSP > 0.5 for ηπ < 0.2, or else SSP > max{(1.3 −
4 × ηπ), − 0.9} for ηπ > 0.2. (An illustrative plot is
available as Fig. 6.2 of Ref. [49].)
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FIG. 6. Distributions of the MC selected sample over the
cos θshw-vs-Evis plane for (a) signal events, (b) the sum of NC
resonance plus NC DIS background templates, (c) the CC-νe
background template, and (d) the sum of CC-νµ resonance
and CC-νµ DIS background templates. Bin-by-bin shading
(scale on the right) depicts the event populations. The signal
region enclosed by the solid-line border shown on all plots is
excluded from fitting to the background.

Distributions of the selected MC sample over the
cos θshw-vs-Evis plane, shown separately for signal and
backgrounds, are plotted in Fig. 6. The black-line bor-
der separates the bins into two regions according to their
signal purity as described below. A large fraction of the

sample consists of background events; the relatively large
contribution from NC background can be seen in Fig. 6b.

• Selected sample, signal region: The region of the
cos θshw-vs-Evis plane with bins predicted to have
ρ > 5%, comprises the signal region of the analy-
sis. Its outer boundary is shown by the black-line
border superposed on the cos θshw-vs-Evis distri-
butions of Fig. 6.

• Selected sample, sideband: The selected-sample
population lying outside of the signal region on
the cos θshw-vs-Evis plane is predicted to have bins
with ρ < 5%. These events provide information
concerning signal-like backgrounds; they comprise
the sideband portion of the selected sample.

The near-SSP sample: A second sample, designated the
near-SSP sample, populates regions adjacent to, but on
the opposite side of, the border previously specified that
encloses the selected sample on the SSP-vs-ηπ plane.
Like the selected sample sideband, the near-SSP also
contains signal-like background events. Its inclusion pro-
vides additional statistical power to the background fits.

• Near-SSP, sideband: There is a region of the near-
SSP cos θshw-vs-Evis plane where the binned event
populations have ρ < 5% in each bin. The events
that are contained in this region comprise the near-
SSP sideband sample.

• Near-SSP, excluded region: The remainder of the
near-SSP has purity above 5% and is excluded from
the near-SSP sideband. The purity in this region
is too low for use as a signal region, as uncertain-
ties on the subtracted backgrounds overwhelm the
modest gains from statistics. Consequently this
subsample is excluded from the analysis altogether.

As part of the blinding protocol, data in the two side-
band samples were not investigated until the sideband
fitting procedure was fully developed based on mock data
studies. Similarly, the data in the signal region were not
evaluated until the fit to the sideband samples was com-
plete, and the background rates in the signal region and
their associated uncertainties were fully determined.

As elaborated in Sec. VII, the templates comprising
the background model are tuned via fitting to match the
data of the sideband samples. The background estimate
to be subtracted from the data is thereby anchored in the
sidebands but it also encompasses the signal region. The
number of data events in the signal region that exceed
the estimated background population, represents the co-
herent scattering signal.

Figure 7 shows the distributions of cos θshw and Evis
for the MC selected sample, normalized to the data expo-
sure. These depict projections of the distributions shown
in Fig. 6. The sample contains 935 coherent NC(π0)
events (19.1% of the sample), together with 3,960 back-
ground events. The composition of the background is
81.8% NC, 9.3% CC-νµ, and 8.9% CC-νe.
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Figure 8 shows the cos θshw distribution of the near-
SSP sample including the sideband and the excluded re-
gion. Compared to the selected-sample sideband, the

near-SSP sideband has lower event statistics, however its
lower purity allows a larger number of cos θshw-vs-Evis
bins to be included. Roughly speaking, the near-SSP
sideband includes bins with ηπ ≥ 0.1 while the selected-
sample sideband restricts to bins that satisfy ηπ ≥ 0.2.
In both Fig. 7 and Fig. 8, the data shown by the solid
circles are in the unblinded regions, while the data dis-
played as blue-shade circles were blinded. For the un-
blinded data, the MC simulation is seen to overestimate
the rate of selected data events by ∼ 35%. It will be
shown that this discrepancy is removed by adjusting the
background models, within uncertainties, to match data
rates observed in the sideband samples.

VII. BACKGROUND ESTIMATION BY
FITTING TO DATA

Central to the analysis is its background fitting proce-
dure which delivers an effective accounting of most of the
systematic uncertainties of the measurement using rela-
tively few parameters. Sections VII through X describe
its design and performance.

A. Fit normalization parameters

For each background category, two separate MC tem-
plates containing either selected or near-SSP events
are constructed as two-dimensional cos θshw-vs-Evis his-
tograms. The bin sizes are set according to experimental
resolutions. Bins of Evis are proportional to its resid-
ual, |Evis − Etrue|, and enlarge with energy to match
the resolution dependence (residual/Etrue ∼20%). For
cos θshw, its residual over the sample is nearly constant
and so a constant bin-width of 0.04 is used. The MC
templates, together with similar histograms of the data,
are the principal inputs to the fit.

Figure 6 shows the MC cos θshw-vs-Evis distributions
of selected-sample events for the signal (Fig. 6a) and for
the background reaction categories: NC (Fig. 6b), CC-νe
(Fig. 6c), and CC-νµ (Fig. 6d). Events enclosed by the
solid-line border lie in the signal region while events ly-
ing outside belong to the sideband. As previously noted,
the NC and CC-νµ categories are further divided by the
analysis into sub-categories that distinguish baryon res-
onance production and DIS interactions.

Associated with each background reaction category
there is a normalization parameter ; it serves to scale the
total number of events assigned to the template distribu-
tion of the background. Studies of fitting using simulated
data experiments showed the normalization parameters
for the templates of CC-νµ resonance production and NC
resonance production to be highly correlated. Strong
correlations were also observed for the CC-νµ DIS and
NC DIS templates. Thus it was decided to combine each
of these pairs of background categories, allowing for each
pair a single template scaled by a normalization parame-
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ter. Three templates with independent normalizations
then suffice to describe the backgrounds: i) NC and
CC-νµ resonance production events; ii) NC and CC-νµ
DIS events; and iii) CC-νe events. Hereafter, the corre-
sponding normalization parameters are designated using
nres, ndis, and nνe .

If a systematic error causes the template normaliza-
tions to change, but not the shapes of the cos θshw-
vs-Evis distributions, then that error can be absorbed
into the normalization parameters. It was demonstrated
using simulated experiments (see Sec. IX D) that most
sources of systematic uncertainty can be accounted for
in this way. This approach simplifies the treatment and
promotes the identification of a minimal set of effective
systematics parameters.

There are two systematic uncertainty sources that
can significantly alter the shapes of the template dis-
tributions, namely the energy scale for EM showers and
the assignment of the Feynman scaling variable (xF ) to
final-state nucleons. These sources must be fit for in-
dependently, and each requires a systematic parameter
(Sec. IX D).

B. Limiting the signal content of sidebands

It is observed with simulated experiments that signal
events in sideband samples bias the determination of the
number of coherent NC(π0) events toward the MC pre-
diction. It is important to minimize this influence by
defining the sidebands such that only bins with low sig-
nal purity are included. On the other hand, limiting the
number of bins in the sidebands reduces the amount of
information available to the fit. As a compromise, the
estimated signal purity of bins in the sidebands was re-
quired to be less than 5%. With the latter requirement,
this bias, inherent to the analysis fitting procedure, is a
small effect of 5.8%. Its contribution to the signal rate is
corrected for, and the uncertainty arising from the cor-
rection is propagated to the error budget.

C. The χ2 fit to the background

Best-fit values for the background normalization pa-
rameters nres, ndis, and nνe plus two systematic param-
eters (Sec. IX D) that allow for shape distortions of the
background templates, are determined by minimization
of the χ2:

χ2 = 2
∑
i

[(
ln
NData
i

NMC
i

− 1

)
NData
i +NMC

i

+

(
ln
NMC
i

Nadj
i

− 1

)
NMC
i +Nadj

i

]
+ penalty .

(5)

The χ2 summation is taken over the bins, i, of the se-
lected and near-SSP sideband regions of the cos θshw-vs-

Evis plane. The first two terms within the brackets of
Eq. (5) represent the likelihood that, according to Pois-
son statistics, the number of data events of bin i agrees
with the number of events predicted by the MC simula-
tion. Here, NData

i is the number of data events observed
in bin i, and NMC

i is the number of events expected in
the same bin for a given set of values for the five param-
eters of the fit.

Due to the relatively low rate of coherent NC(π0) in-
teractions and their associated backgrounds, the selected
sample – although extracted from very large MC sam-
ples – has limited statistics. This problem is addressed
by introducing the third and fourth terms constructed
according to the method of Beeston and Barlow [50]. In
brief, the MC content of each bin arising from all the MC
samples is fitted to the corresponding data so that the
sum of terms three and four in (5) is minimized for each
bin. The logarithmic term imposes a cost for the adjust-
ment of the MC simulation from NMC

i to its correspond-

ing fitted value, Nadj
i . The inclusion of the latter terms

effectively replaces NMC
i with Nadj

i plus the penalty.
An additional penalty term in the χ2 constrains the

values of the fit parameters; the constraints are based
upon the studies of systematic uncertainties discussed
in Sec. IX D. The penalty term is constructed using a
covariance matrix which encodes the variations allowed
to the vector of fit parameters, δ̂, as related in Sec. IX E:

penalty = ~δ · (V )−1 · (~δ)T . (6)

Multiple covariance matrices were formulated to allow for
asymmetries in the parameter errors. The appropriate
matrix is chosen based on the sign of the normalization
parameter deviations.

VIII. EXTRACTION OF THE SIGNAL RATE

Minimization of the χ2 yields the best-fit values for the
fit parameters, and these are used to estimate the rate
for each category of background events across the entire
selected sample.

A. Raw signal event rate

The number of selected events (in bin i) contributed
by background template b is NMC

ib . Each NMC
ib is scaled

by a background normalization parameter, fb = nres,
ndis, or nνe , and the systematic scale factor, sib. The
value of sib is the sum of fractional changes (bin-by-bin)
induced by changes in value for systematic parameters
associated with uncertainties of EM energy scale and
of xF assignment to final-state nucleons (see Sec. IX D).
The predicted number of background events in each bin

NBkg
i , is the sum of the scaled values of NMC

ib over the
three background templates:
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NBkg
i =

∑
b

fb sibN
MC
ib . (7)

The measured signal in each bin, NCoh
i , is the difference

between the number of data events and the number of
neutrino background events as estimated using Eq. (7):

NCoh
i = NData

i −NBkg
i . (8)

The background subtraction yields a count of measured
signal events in each bin of the selected sample.

B. Acceptance corrections

The acceptance correction is applied via an efficiency
function,

εi =
NMCs
i

NMCt
i

, (9)

where NMCs
i is the number of coherent NC(π0) MC

events in bin i in the selected sample and NMCt
i is the to-

tal number of coherent NC(π0) events in bin i predicted
by the reference MC.

There are a small number of bins for which very few
signal events are estimated and the efficiency approaches
zero. These bins are omitted from the sum-over-i and
their correction is applied via an overall factor ε−10 , cal-
culated as the ratio of the (predicted) total signal rate
divided by the selected signal rate for all bins with non-
zero efficiency. The choice of an acceptance correction for
each bin, either bin-by-bin (εi) or overall (ε0), was deter-
mined by minimizing the uncertainty propagated to the
measured signal. Also included in ε0 is the correction for
signal loss incurred by the Evis < 8.0 GeV cutoff, and a
small correction for interactions that were not properly
reconstructed.

There are coherent NC(π0) MC events with true visi-
ble energy below 1.0 GeV that reconstruct with Evis >
1.0 GeV, and vice versa. An additional correction is ap-
plied as a weight factor, ξ, to account for the net event
migration across the cut boundary at Evis = 1.0 GeV.
The acceptance-corrected coherent event rate is then

NCoh =
ξ

ε0

εi>0∑
i

1

εi

(
NData
i −

∑
b

fb sibN
MC
ib

)
. (10)

The integrated effect of the bin-by-bin acceptance cor-
rections ε−1i in the summation of Eq. (10) is equivalent

to to an overall correction of about 8.2. The factors ε−10

and ξ in Eq. (10) introduce corrections of 1.42 and 0.90
respectively; their net effect is to shift the calculated sig-
nal rate upward by 28.1%.

IX. SYSTEMATIC UNCERTAINTIES

Sources of systematic uncertainties are described be-
low. The effects of individual sources are summarized in
Sec. IX D. Many of the sources were studied in previous
MINOS analyses [37, 51].

A. Uncertainties in neutrino-interaction modeling

Modeling of νN cross sections: The dominant uncertain-
ties in the cross section model are associated with i) the

axial mass MQE
A used in quasielastic cross sections, ii)

the axial mass MRes
A used in resonance production cross

sections, and iii) the treatment of the transition region
between resonance production and DIS [32, 44]. The
values and ±1σ uncertainties of the model parameters
were taken from previous MINOS investigations [21, 37].

The axial masses MQE
A and MRes

A used with dipole
form factors are effective parameters whose assigned frac-
tional errors makes allowance for uncertainties arising
from nuclear medium effects neglected by the MC such
as 2-particle 2-hole excitations and long-range correla-
tions [52, 53].

Modeling of hadronization: Uncertainties in the NEU-
GEN3 hadronization model reflect a lack of data on the
DIS channels selected by the analysis. Six model parame-
ters were identified as having uncertainties that influence
the predicted event samples and their effects were indi-
vidually investigated: i) The assignment of Feynman-
x to the final-state baryon, xF ; ii) the probability for
π0 production, P(π0); iii) the correlation between pro-
duced neutral-particle multiplicity and charged-particle
multiplicity, n0 and n±, respectively; iv) differences be-
tween generator simulations of hadronic systems, gen-
diff, (GENIE [47] vs NEUGEN3 [32]); v) damping al-
gorithm for transverse momenta, pT damping ; and vi)
neglect of correlations which may arise with two-body
decays, decay param.

Intranuclear rescattering:
Neutrino-induced pions and nucleons can undergo

final-state interactions (FSI) prior to emerging from the
parent nucleus. The analysis accounts for FSI processes
in all incoherent neutrino scattering interactions using a
cascade model to simulate the propagation of produced
hadrons within the target nuclei [54]. For coherent signal
reaction (1) however, the rate and final-state momenta
of produced π0s in simulation are taken directly from
the Berger-Sehgal model. The model accommodates the
attentuation of coherently produced π0s by the parent
nucleus by using pion-nucleus elastic-scattering cross sec-
tions as input [9].

The performance of the FSI cascade model is gov-
erned by two types of adjustable parameters. The first
type establishes relative rates for the possible intranu-
clear processes with ±1σ as evaluated for the MINOS
analysis of νµ disappearance [37]. The seven parameters
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of the first type are i) pion charge exchange, ii) pion
elastic scattering, iii) pion inelastic scattering, iv) pion
absorption, v) π-nucleon scattering yielding two pions,
vi) nucleon knockout from the target nucleus, and vii)
nucleon-nucleon scattering with pion production. Pa-
rameters of the second type govern the overall rate of
intranuclear rescattering, e.g. the pion-nucleon cross sec-
tion and the formation time, Tformation , for directly pro-
duced hadrons.

B. Implications for background reactions

NC reactions: Generation of NC events is affected by all
of the above-listed modeling uncertainties [38, 39, 55].

CC-νµ reactions: The cross sections for CC-νµ reactions
are better-known and hence better-constrained than for
NC channels. Moreover the selected CC-νµ rate is only
10% of the selected NC event rate. Consequently the
effects of uncertainties with modeling of CC-νµ interac-
tions are sufficiently weak to be subsumed by the error
range assigned by the fit to the nres and ndis normaliza-
tion parameters (see Sec. IX D).

CC-νe reactions: The electron-induced showers of se-
lected CC-νe events have no visible hadronic activity, and
so uncertainties arising from hadronization and intranu-
clear rescattering are negligible. The dominant uncer-
tainty in the CC-νe event rate arises from limited knowl-
edge of the (νe + ν̄e) flux in the NuMI LE beam [40, 51].
The additional 20% flux uncertainty is propagated to the
uncertainty assigned to the νe normalization parameter.

C. Uncertainties of energy scale and signal model

Uncertainties in the electromagnetic energy scale,
EEM
scale , and detector calibration contribute significantly

to the error budget. An overall uncertainty of ±5.6% is
assigned to the EM energy scale, reflecting uncertainty
with hadronic contributions to MINOS shower topologies
(±5.1%), together with uncertainties in the detector re-
sponse to EM showers (±2.0%). The latter response was
evaluated using measurements obtained with the MINOS
Calibration Detector [39].

Inaccuracies in modeling the coherent-scattering sig-
nal can influence the signal amounts inferred from the
background levels established by fitting. Signal model
inaccuracies also enter into the acceptance corrections.
The effect was evaluated using simulated experiments
employing alternate models of the coherent interaction
cross section [49]. The definitions of the signal region and
sidebands, by design, minimize the influence of the signal
model. The net effect to the signal rate is accounted for
by the uncertainty on the 5.8% sideband biasing correc-
tion of Sec. VII B plus the ±3.2% uncertainty attributed
to the acceptance corrections of Sec. VIII B.

D. Evaluation of sources

The effect of each source of systematic uncertainty was
evaluated individually. Monte Carlo samples were cre-
ated in which a single input parameter, corresponding to
one of the sources (Sec. IX A,C), was changed by its ±1σ
uncertainty. The cos θshw-vs-Evis distribution of each
altered sample was then compared to the background
model. Fitting the sidebands of the background tem-
plates to the sidebands of the altered MC sample yields
a re-expression of the ±1σ uncertainties on the underly-
ing model parameters as uncertainties on template nor-
malizations. However, for systematic uncertainties that
induce changes in the background templates that cannot
be adequately described by normalization changes, use of
their underlying model parameters is retained and their
effects on the normalization parameter uncertainties are
not included.

For each of the above-described exercises the altered
MC distribution was treated like “data”, thus the al-
tered MC samples are referred to as Single-Systematic
Mock Data (SSMD). The overall campaign was to gen-
erate SSMD samples for each systematic, subject each
sample to the template fit procedure that constrains the
background model in the sidebands, and evaluate the
outcomes. Evaluations external to the fitting are used
for systematic uncertainties associated with calibration
(see Sec. XI).

More specifically, the steps were as follows: i) For
each source of uncertainty, fluctuations of ±1σ in the
corresponding parameter induce changes to the SSMD
event distribution in cos θshw-vs-Evis; ii) the changes in
the event distribution are evaluated by fitting the back-
ground model to the fluctuated distribution, allowing the
three background normalization parameters nres, ndis,
and nνe , to float without restriction; iii) the SSMD fit
result is used to identify whether or not a source intro-
duces a shape change into the cos θshw-vs-Evis spectrum.
iv) In the cases where the systematic uncertainty does
not induce a significant shape change (most do not), the
best-fit values of the SSMD fit are used to calculate the
allowed variances on (and covariance between) the nor-
malization parameters in the final analysis fit to sideband
data.

For each source of systematic uncertainty, the shifts
−1σ, +1σ were considered separately. The fitting to
SSMD samples provided the χ2/ndf for the best fit, the
fit values for the normalization parameters, and the ex-
tracted signal, which was compared to the value for the
reference MC. Since each SSMD sample is created by in-
ducing a 1σ change in a single systematic parameter, and
does not include any statistical fluctuations, the χ2/ndf
is rated against 0.0 rather than the usual 1.0.

For fifteen of the twenty-two systematic error sources,
the SSMD trials yielded χ2/ndf < 0.05, well-understood
deviations of background normalizations from their nom-
inal values, and extracted signal event counts which were
within ±19% of the simulation “truth” values. Thus, in
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fitting the background model to data, shifts of these fif-
teen sources can be absorbed by the normalization pa-
rameters. Typical of these fifteen “well-behaved” sources
is the axial-vector mass, M Res

A , which is here singled out
as an example. The results from an SSMD trial wherein
M Res

A was subjected to a +1σ shift are summarized in
the bottom row of Table II.

Systematic Shift
Best-Fit Norm. Fit Outcome

NC+CCνµ CCνe χ2/ndf
Signal

Source nres ndis nνe Ratio

EEM
scale -5.6% 1.13 0.75 0.85 1.32 1.45

EEM
scale +5.6% 1.00 1.20 1.33 0.79 0.91

xF +1 σ 1.45 0.83 0.97 0.78 0.30

n0 (n±) ±1 σ 1.15 0.83 0.78 0.18 0.92

decay param. +1 σ 1.15 0.85 0.90 0.15 0.78

gen − diff ±1 σ 1.03 0.95 0.80 0.13 0.87

pT damping ±1 σ 1.00 0.98 0.78 0.12 0.88

Tformation -50% 1.00 0.88 0.85 0.10 0.94

Tformation +50% 1.08 1.05 1.10 0.07 1.32

M Res
A +15% 1.83 1.00 1.10 0.02 1.01

TABLE II. Summary of SSMD studies of uncertainty sources
having potential to alter the shape of cos θshw-vs-Evis distri-
butions. Shown are the effects of -1σ and +1σ changes in the
sources on the three normalization parameters, together with
the χ2 and the ratio of the extracted signal to the true signal.
Deviations of the fit parameters and signal ratio are relative
to the nominal value of 1.0 for the reference MC. The EM
energy scale and xF of the hadronization model exhibit the
most significant effect on the expected number of events as a
function of cos θshw-vs-Evis.

E. Systematic parameters; fit penalty term

For the remaining systematic sources shown in Ta-
ble II, somewhat larger χ2/ndf or excursions of the mea-
sured event rates from the reference MC values were ob-
served. Table II lists the SSMD fit results for each of
the latter sources of uncertainty; the sources are ranked
according to the reduced χ2. In particular, three of 1σ
shifts in two sources have χ2/ndf which are distinctly
worse than the rest. The sources are the EM energy
scale (large χ2/ndf for both -1σ and +1σ shifts), and
the parameter associated with assignment of xF to nu-
cleons of final-state hadronic systems (large χ2/ndf for
+1σ shift). Their SSMD fit results are displayed in the
first three rows of Table II.

The χ2/ndf values of Table II provide guidelines for
the introduction of additional systematic parameters
that may entail distortions to template shapes. Stud-
ies utilizing ensembles of “realistic” mock data exper-
iments (see the Appendix) examined the performance
of fit-parameter configurations wherein various combi-
nations of parameters listed in Table II were introduced.
The width of the (Nfit−Ninput) spectrum obtained from
each mock data ensemble was used as the figure-of-merit

for distinguishing among parameter sets. It was observed
that the width was reduced with addition of a system-
atic parameter to account for variation in the EM energy
scale, and was further reduced when a systematic param-
eter to account for variation in the assignment of xF to
final-state nucleons was included. Neither the addition
of more parameters nor the utilization of other shape pa-
rameter combinations yielded a further decrease in the
spectral width.

The aggregate of ±1σ uncertainty from the ensemble
of sources of systematic uncertainty evaluated by the
SSMD trials determines the correlated ranges of varia-
tion to be allowed to the background normalization pa-
rameters. This greatly reduces the number of systematic
parameters that, if otherwise included, would exert de-
generate effects on the predicted background cos θshw-vs-
Evis distributions. The resulting fit to data sidebands is
less susceptible to multiple minima and less dependent
on the details of the background cross section models.
The above-mentioned ranges are enforced in the fit χ2 of
Eq. (5) by the penalty term of Eq. (6).

X. FITTING TO DATA SIDEBANDS

A simultaneous fit over the data of the selected-sample
and near-SSP sidebands is now carried out via minimiza-
tion of the χ2 function of Eq. (5). The χ2 uses the three
background normalization parameters and the two sys-
tematic parameters in conjunction with the fit penalty
term as described in Sec. VII. The fit result establishes
the background prediction in the signal region of the se-
lected sample. The outcome of the fit is illustrated in
Fig. 9. Here, data of the selected sample is compared to
the neutrino background model for the cos θshw projec-
tion of the sideband region of the cos θshw-vs-Evis plane.
The shapes of the distributions in Fig. 9 reflect the ir-
regular contour of the sideband region (as indicated by
Fig. 6). Figure 9a shows the cos θshw projection prior
to fitting. The neutrino NC category is the dominant
background; its distribution (dashed line) approximates
the shape of the sideband data (solid circles), however its
normalization is too high by ∼ 35% as noted in Sec. VI.

Figure 9b shows the best fit (solid line histogram) to-
gether with the background composition. The fit re-
duced the normalizations nres and ndis by -1.04σ and
-1.08σ respectively (corresponding to 35% and 25% re-
ductions), while increasing nνe by +0.40σ (a 17.5% in-
crease). Additionally the EM energy scale is shifted up-
wards by +0.15σ, corresponding to a 0.84% increase in
the conversion from energy deposition in the detector
to the measured energy in GeV. The best-fit value for
baryonic xF corresponds to a +0.35σ shift from nomi-
nal. This change increases the probability that the final-
state nucleon will emerge in the forward hemisphere of
the target rest frame.

The fit to the data gives a reduced χ2 lower than the
values obtained in 52.7% of the realistic mock data ex-
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periments described in the Appendix, indicating that the
MC simulation is representative of the data to within
the MC uncertainties. Comparisons of the best-fit back-
ground to the Evis projection of the selected data in the
sideband, and to the cos θshw and Evis projections of the
near-SSP data sample, also show a satisfactory descrip-
tion of the data [49, 56].
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FIG. 9. Distribution in cos θshw for selected data (solid cir-
cles) in the sideband region of the cos θshw-vs-Evis plane. (a)
Data versus MC background templates prior to fitting. (b)
Data compared to background of the best-fit MC. The fit ad-
justment reduced the NC background (dashed) and increased
the νe background (dot-dashed) to achieve a good description
(thick-line histogram).

XI. SIGNAL RATE AND UNCERTAINTY
RANGE

With the best fit over the data sidebands in hand, the
background is set for the entire cos θshw-vs-Evis plane.
At this point the background prediction is fully deter-
mined and the data of the signal region is unblinded.

Figure 10 shows the distributions in cos θshw (Fig. 10a)
and in ηπ (Fig. 10b) for all selected data. The pre-
dicted background (clear histogram) shows good agree-
ment with the data points (solid circles) over the lower
range (< 0.9) of cos θshw and over the upper range
(> 0.25) of ηπ. The signal for Reaction (1) emerges with

either variable as the incident neutrino direction is ap-
proached, appearing as a data-minus-background excess
(shaded histograms). The errors on the extracted signal
are the quadrature sum of errors from the background
fit plus statistical uncertainties of the data and MC.
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FIG. 10. Distributions of candidate NC(π0) coherent scat-
tering events (solid circles, statistical error bars) in cos θshw
(a) and ηπ (b). The data are compared to the estimate for
the neutrino backgrounds (thin blue-line histograms). The
coherent scattering signal (data minus background) is shown
by the shaded histogram, together with the signal rate in-
ferred using the Berger-Sehgal model (dotted histogram).

Signal events are accepted into the selected sample
with an efficiency of 10.7%. (The total acceptance, ac-
counting for loss due to the Evis < 1.0 GeV threshold
cut, is estimated to be 4.6%). The correction to the
measured event rate is implemented as prescribed by
Eq. (10). Figure 11 shows the acceptance-corrected sig-
nal as a function of ηπ (shaded histogram) for all events
having Evis > 1.0 GeV. Error bars on the binned sig-
nal are the quadrature sum of background uncertainties,
statistical errors, and uncertainty with acceptance cor-
rection factors. In Fig. 11 the coherent-scattering signal
is almost entirely confined to the range 0.0 < ηπ < 0.2
in agreement with the general trend predicted by the
Berger-Sehgal model (dotted-line histogram). However
the data exceed the model’s prediction by nearly 2σ for
0.0 < ηπ < 0.1, while falling below the prediction for
0.1 < ηπ < 0.2. These features suggest that the coherent
interaction may be more sharply peaked towards ηπ = 0
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than is predicted by Berger-Sehgal.
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FIG. 11. Distribution in ηπ for the acceptance-corrected data
excess above the total neutrino background rate, for events
having Evis > 1.0 GeV (shaded histogram). The dotted-line
histogram shows the Berger-Sehgal prediction.

The largest uncertainty of NCoh arises from the esti-
mation and subtraction of background events. The con-
straints on the normalization and systematic parameters
obtained from the fit to the sidebands are the 1σ confi-
dence intervals extracted from the profiled 1-D ∆χ2 dis-
tributions. The uncertainty due to the background sub-
traction is calculated from the minimum and maximum
background rates allowed by the fit-parameter ranges.
Propagation of the 1σ CL interval limits on the back-
ground to the final measurement results in an error band
of (+11.6%, -14.4%).

The signal model enters into the calculation of NCoh

in the acceptance corrections, and in the calculation of
the signal in the sidebands. The bin-by-bin acceptance
correction factors for events with Evis > 1.0 GeV incur
statistical uncertainties from the reference signal MC and
shape uncertainties due to finite bin widths. This con-
tributes an additional ±3.2% uncertainty and increases
the total error band to (+12.0%, -14.8%). A larger
signal-model dependence enters via the correction factor
used to estimate the number of events having Evis < 1.0
GeV. An uncertainty estimate is presented in Sec. XII.

Biasing of the extracted signal towards the signal-
model prediction (5.8%) is corrected by scaling the mea-
sured signal amount away from the MC prediction by
5.8%. The uncertainty introduced by this correction
is listed in the second row of Table III. Then the to-
tal extracted signal is NCoh = 9,550 events. The per-
centage error range calculated for NCoh at this stage is
(+12.6%/-15.5%), in good agreement with an estimate
based upon mock data experiments of ±15.8% (see Ap-
pendix). The coherent NC(π0) signal is 12.8% higher
than, but within 1σ of, the Berger-Sehgal prediction.

There is uncertainty in the subtraction of the
estimated background from purely-leptonic neutrino-
electron scattering (±0.8%). Additionally the signal

sample may incur a small contribution from diffractive
scattering of neutrinos on hydrogen [57]. Based upon
a calculation by B. Z. Kopeliovich et. al. [58], the uncer-
tainty introduced by this possible contaminant is esti-
mated to be < 3.7% of the NC(π0) signal predicted by
Berger-Sehgal. These errors are added in quadrature to
the error on NCoh arising from the fit-based neutrino
background subtraction (see rows 4, 5 of Table III).

Directly applicable to this analysis are evaluations,
carried out for the MINOS νe appearance search, of un-
certainty introduced to EM shower selection by uncer-
tainties associated with calibrations [39]. Sources of un-
certainties include calibrations of photomultiplier gains,
scintillator attenuation, strip-to-strip variation, detector
non-linearity, and mis-modeling of low pulse height hits.
The total EM calibration uncertainty is estimated to be
±4.7%; it is added in quadrature to the NCoh determi-
nation, bringing the cumulative uncertainty on NCoh to
(+13.5%,−16.6%).

NCoh ±1σ Range

Source of Uncertainty 9550 Evts, Evis > 1.0 GeV

(+) Shift (-) Shift

background subtraction 11.6% 14.4%

biasing to signal model 3.8% 4.6%

acceptance corrections 3.2% 3.2%

ν purely leptonic bkgrd 0.8% 0.8%

diffractive scattering (νH) 0.0% 3.7%

detector EM calibration 4.7% 4.7%

Total Syst. Error +13.5% -16.6%

TABLE III. Composition of the error (±1σ) on the number
of NC(π0) coherent scattering events (Evis > 1.0 GeV) deter-
mined by the analysis.

The sensitivity to the Q2 dependence of the signal
model was examined using mock data experiments. The
NC(π0) coherent scattering content in the sideband sam-
ples of mock data experiments was varied by amounts
representative of plausible changes to the Q2 dependence
of the signal model. The variations were found to intro-
duce negligible changes to the mean value and uncer-
tainty range for the ensemble of NCoh outcomes of the
simulated experiments (see Fig. 14 of the Appendix).

XII. CROSS SECTIONS

A data sample enriched in coherent NC(π0) scattering
events is now isolated, and an event excess of 5.4σ above
the estimated background for this process is observed.
The signal count, NCoh, is now converted into a cross
section for coherent π0 production with Evis > 1.0 GeV
final states, using Eq. (4). The quantities required for
the calculation are given in Table IV.

The cross section 〈σ〉 obtained is an average over the
neutrino flux of the NuMI LE beam for which the average
neutrino energy is 4.9 GeV. Table IV shows that the error
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for 〈σ〉 is dominated by the total uncertainty ascribed to
the signal extraction (Table III), with the uncertainty for
the neutrino flux contributing an additional 7.8%. Inclu-
sion of all sources yields a total uncertainty of (+15.6%,
-18.4%). The detector medium consists of iron and car-
bon nuclei with abundances very nearly 80%:20%. Using
Eq. (4), the flux-averaged, A-averaged coherent scatter-
ing cross section for events above the analysis threshold
of Evis > 1.0 GeV, is

〈σ〉 = 32.6± 2.1 (stat)+4.7
−5.6 (syst)× 10−40 cm2/nucleus.

(11)

In row 1 of Table V, this result is compared to the flux-
averaged cross section predicted by the Berger-Sehgal
model: 31 × 10−40 cm2 per nucleus. (The flux-averaged
cross sections for an iron:carbon 80%:20% mixture in Ta-
ble V (rows 1 and 4) are to be distinguished from Berger-
Sehgal predictions for a titanium A = 48 target. The
latter are approximations of the former; they are used to
provide the dashed curve that serves as a visual aid in
Fig. 12.)

Input
Description Value

Fractional

Parameter Error

NT
Number of nuclei in

3.57×1029 0.4%
the fiducial volume

Np
Neutrino exposure

2.8×1020 1.0%
[POT]

Φ
Flux

2.93×10−8 7.8%
[Neutrinos/POT/cm2]

NCoh Coherent events (corrected)
9,550 +13.5%

−16.6%(Evis > 1.0 GeV)

ffl
Fe

Est. fraction (B-S model)
0.93 1.4%

of coherent events on Fe
ffl
C

Est. fraction (B-S model)
0.07 18.6%

of coherent events on C

ε−1thr
Correction factor for

2.38 13.0%
Evis ≥ 1.0 GeV threshold

TABLE IV. Values and fractional errors for quantities used
in cross section determinations based upon Eq. (4).

The fiducial volume contains 2.89 × 1029 iron nuclei
and 6.57 × 1028 carbon nuclei [20]. Using these num-
bers, the coherent scattering cross sections on pure iron
(A = 56) versus pure carbon (A = 12) targets can be
estimated using the Berger-Sehgal model. A 20% un-
certainty is estimated for the iron:carbon cross-section
ratio based on comparison of Berger-Sehgal with the co-
herent scattering calculation of Ref. [59] and is propa-
gated to the numbers of events assigned to iron and to
carbon scattering (Table V, rows 2, 3 and 5, 6). The es-
timated cross sections for iron and for carbon scale with
the Berger-Sehgal model predictions by construction; the
uncertainty propagated from the cross-section ratio cov-
ers the model-dependence of these extrapolations.

With the measured partial cross section of Eq. (11) in
hand, the flux-averaged total cross section for Reaction
(1) can now be determined. Its calculation requires a
correction factor, ε−1thr, to scale the observed event rate

to account for loss of signal events whose Evis lies be-
low the 1.0 GeV threshold. An estimation of this sizable
correction is provided by the Berger-Sehgal based extrap-
olation indicated by Fig. 3b: ε−1thr = 2.38. However, the

uncertainty on ε−1thr needs to be ascertained.

Target Minimum Number of MINOS Berger-Sehgal

Nucleus Energy Coherent NC(π0) Cross Section Cross Section

〈A〉 Eminvis Interactions per nucleus per nucleus

[u] [GeV] [10−40 cm2] [10−40 cm2]

48

1.0

9,550
+1,290
−1,590 32.6

+5.1
−6.0

31

56 8,880
+1,210
−1,480 37.5

+5.9
−6.9

36

12 670
+ 150
− 170 12.4

+3.0
−3.2

11

48

0.0

22,700
+4,260
−4,790 77.6

+15.8
−17.5

73

56 21,100
+3,970
−4,470 89.2

+18.2
−20.1

84

12 1,590
+420
−470 29.5

+8.1
−8.6

29

TABLE V. The flux-averaged cross sections 〈σ〉 for coher-
ent scattering in the MINOS medium (A-averaged). Values
for scattering on the component iron and carbon nuclei are
inferred from the 〈A〉 = 48 measurement. The event rate di-
rectly observed determines the partial cross sections (upper
rows). Correction for rate loss due to the threshold cut at
Evis = 1.0 GeV yields total cross sections (lower rows).

The shape of the Evis distribution predicted by Berger-
Sehgal (Fig. 3b) is very similar to the distribution shapes
for Eπ+ > 1.0 GeV of νµ CC(π+) coherent scattering,
and for Eπ− > 1.0 GeV of ν̄µ CC(π−) coherent scatter-
ing as reported by MINERvA [30]. A data-driven assign-
ment of uncertainty for extrapolation of the Evis distri-
bution below 1.0 GeV is made possible by the fact that
the MINERvA measurements used the low-energy NuMI
fluxes similar to the one of this work; moreover coherent
νµ CC(π+) and ν̄µ CC(π−) are predicted to have iden-
tical cross sections, and coherent NC(π0) scattering is
predicted to have the same final-state kinematics as co-
herent CC(π±) [7].

With extrapolations of the Evis distribution below the
1.0 GeV threshold, it is found (utilizing the supplemen-
tal materials of [30]), that the MINERvA νµ CC(π+)
and ν̄µ CC(π−) coherent scattering distributions bracket
the Berger-Sehgal distribution from above and below,
respectively. The range of plausible alternative shapes
for the Berger-Sehgal distribution for Evis < 1.0 GeV
that are compatible with the MINERνA data, implies
an uncertainty range for ε−1thr. A complication is that the
MINERνA data is coherent scattering on carbon, while
the scaling factor illustrated by Fig. 3b is calculated for
coherent scattering on iron and carbon, so there is uncer-
tainty arising from possible A-dependence of the Evis dis-
tribution. The uncertainty in going from carbon to iron
was estimated by comparing to the Rein-Sehgal model
(GENIE implementation), and additionally by running
the Berger-Sehgal model with variations to input values
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from pion-nucleus scattering data. The A-dependence
uncertainty is found to be the main contributor to the
uncertainty for ε−1thr. An uncertainty of ±13.0% is as-
signed, as listed in the bottom row of Table IV.

The total coherent cross section, A-averaged over the
MINOS medium and flux-averaged with 〈Eν〉 of 4.9 GeV,
is

〈σ〉 = 77.6± 5.0 (stat)+15.0
−16.8 (syst)× 10−40 cm2/nucleus.

(12)

The corresponding Berger-Sehgal cross-section predic-
tion is 73× 10−40 cm2 per nucleus.
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FIG. 12. Comparison of the MINOS NC(π0) coherent scat-
tering total cross section (flux-averaged) to measurements ob-
tained with 〈Eν〉 at lower and higher values. Previous mea-
surements are shown scaled to the MINOS target medium,
〈A〉 = 48, for the purpose of comparison. Table I compares
the previous measurements as reported, to the direct Berger-
Sehgal prediction.

XIII. DISCUSSION AND CONCLUSION

A. Cross section versus Eν and A

As shown by Table I, the MINOS measurement exam-
ines NC(π0) coherent scattering in an Eν - A region that
lies outside of the range probed by previous experiments.
For the purpose of eliciting the Eν dependence, the pre-
viously reported cross sections (see Table I) are scaled to
an A = 48 nucleus using the Berger-Sehgal model. (The
15-ft Bubble Chamber and SciBooNE cross section mea-
surements are reported as fractions of the Rein-Sehgal
cross sections for neon [28] and for carbon [5, 6] respec-
tively.) The scaled cross-section values are plotted in

Fig. 12 together with the A-averaged MINOS measure-
ment (solid star). For purposes of display, the Eν interval
of the measurement is taken to be the interval on either
side of 4.9 GeV which includes 34% of the neutrino flux.
Also shown in Fig. 12 is the prediction for A = 48 of the
Berger-Sehgal model (dashed curve). Figures 12 and 13
show that the ensemble of cross-section measurements
for Reaction (1), when subjected to “normalization” to
common 〈A〉 or 〈Eν〉, exhibit power-law growth with in-
creasing neutrino energy for fixed A, or with increasing
target nucleon number for fixed 〈Eν〉.
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FIG. 13. MINOS total cross section (star symbol) for neu-
trino NC(π0) coherent scattering at 〈Eν〉 = 4.9 GeV for nuclei
with 〈A〉 = 48. The previous measurements, listed in Table I,
are shown scaled to the same average neutrino energy.

The A-dependence of the coherent cross section is ex-
amined by comparing the MINOS result to previous mea-
surements, where the latter are scaled to 〈Eν〉 = 4.9 GeV
according to the cross-section ratio predicted by Berger-
Sehgal. Figure 13 compares the measurements obtained
for the different target A, when their values are scaled
in this way. (The extrapolations via Berger-Sehgal to
pure iron and carbon targets listed in Table V are not
plotted.) The high-〈A〉 MINOS result is consistent with
the trend predicted by PCAC models [59]. In rough
terms, the A-dependence in the Berger-Sehgal model for
Evis > 1.0 GeV arises from a convolution of three ef-
fects. The coherent nature of the interaction gives an A2

dependence, but that is diminished by the nuclear form
factor and by pion absorption. The former falls off as
exp(−A2/3), and the latter as exp(−A1/3). These effects
combine to yield a total cross section with an approxi-
mate A2/3 dependence.
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B. Conclusion

The MINOS Near Detector is used to study coher-
ent NC production of single π0 mesons initiated by neu-
trino scattering on a target medium consisting mostly of
iron nuclei, with 〈A〉 = 48. Using a low-energy NuMI
beam exposure of 2.8×1020 POT with mean (mode)
Eν of 4.9 GeV (3.0 GeV), a signal sample comprised

of 9,550+1,200
−1,590 events having final-state Evis > 1.0 GeV

has been isolated. The corresponding flux-averaged, A-
averaged partial cross section for events above the anal-
ysis Evis threshold of 1.0 GeV is presented in Eq. (11).
Extrapolation of the Evis distribution from the analy-
sis 1.0 GeV threshold to zero yields the total coherent
scattering cross section. The flux-averaged, A-averaged
total cross section is given in Eq. (12). Its value is
〈σ〉 = (77.6+15.8

−17.5) × 10−40 cm2 per nucleus. The various

neutrino-nucleus NC(π0) coherent scattering cross sec-
tions that are measured or inferred from this work are
listed in Table V. The measurements of coherent scat-
tering Reaction (1) reported here are the first to utilize
a target medium of average nucleon number 〈A〉 > 30,
and the cross section results of Eqs. (11) and (12) are
for coherent scattering at the highest average nucleon
number obtained by any experiment to date. Figures 12
and 13 show that these cross sections, as with previous
measurements on lighter nuclear media and at lower and
higher 〈Eν〉 values, exhibit the general trends predicted
by the Berger-Sehgal coherent scattering model which is
founded upon PCAC phenomenology.
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APPENDIX: FIT VALIDATION

Realistic mock data experiments were used to vali-
date the analysis fitting procedure [49]. The genera-
tion of mock data for the latter simulated experiments
is more elaborate than for the SSMD experiments. As
with SSMD experiments, each mock data sample pro-

vides a population of events extending over the cos θshw-
vs-Evis plane, binned in the same way as for the ob-
served data. However with the full mock data samples,
the background templates are adjusted to reflect random
fluctuations in each systematic parameter, and the coher-
ent signal content was varied by adjusting the normaliza-
tion of the signal model over the range ±50%. Statistical
fluctuations are applied to the event totals in each bin af-
ter the templates are combined. The entire background
fitting and signal extraction procedure is executed on an
ensemble of these mock data samples. Each mock data
“experiment” yields a set of best-fit values for the fit
parameters, a best-fit χ2, and an acceptance-corrected
event rate Nfit, to be compared to the “true” signal as-
sumed for the simulated experiment, Ninput.
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FIG. 14. Deviation of best-fit outcomes Nfit from coherent
signal inputs Ninput, for mock data experiments.

Figure 14 shows the distribution of Nfit − Ninput for
an ensemble of mock data experiments. The 1σ width,
defined as the region about the peak that includes 68%
of the area, was shown to be independent of the input
signal normalization. This metric serves as an estimate
of the ±1σ confidence interval for the final fit procedure,
and is measured to be ±15.8%. This estimate serves as
a cross-check of the uncertainties on the measured signal
event rate derived from fitting the data.
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