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Abstract

A systematic analysis of the multifragmentation (MF) in fully reconstructed

events from 1A GeV Au, La and Kr collisions with C has been performed.

This data is used to provide a definitive test of the variable volume version of

the statistical multifragmentation model (SMM). A single set of SMM param-
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eters directly determined by the data and the semi-empirical mass formula are

used after the adjustable inverse level density parameter, ǫo is determined by

the fragment distributions. The results from SMM for second stage multiplic-

ity, size of the biggest fragment and the intermediate mass fragments are in

excellent agreement with the data. Multifragmentation thresholds have been

obtained for all three systems using SMM prior to secondary decay. The data

indicate that both thermal excitation energy E∗

th and the isotope ratio tem-

perature THe−DT decrease with increase in system size at the critical point.

The breakup temperature obtained from SMM also shows the same trend as

seen in the data. The SMM model is used to study the nature of the MF phase

transition. The caloric curve for Kr exhibits back-bending ( finite latent heat)

while the caloric curves for Au and La are consistent with a continuous phase

transition ( nearly zero latent heat) and the values of the critical exponents τ ,

β and γ, both from data and SMM, are close to those for a ’liquid-gas’ system

for Au and La. We conclude that the larger Coulomb expansion energy in Au

and La reduces the latent heat required for MF and changes the nature of the

phase transition. Thus the Coulomb energy plays a major role in nuclear MF.
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I. INTRODUCTION

During the past decade a large effort has been made to understand the multifragmentation

(MF) process in heavy ion reactions. Recently a number of review articles have appeared

describing the details of this phenomenon [1–7]. The Purdue group was the first to suggest

that nuclear MF might be a critical phenomenon - a second order phase transition occurring

near a critical point [8,9]. In an inclusive experiment performed at Fermilab, the spectra of

mass identified fragments resulting from proton interactions with both Kr and Xe gas targets

were measured [8,9]. The discovery that the yields of fragments with mass Af produced in

p+Kr and p+Xe reactions, with proton beam energy from 80 to 350 GeV, obeyed a power

law Y (Af) ∼ A−τ
f , with τ ∼ 2.5 [9] generated theoretical interest in MF in terms of a

continuous phase transition. A similar power law was also predicted by Fisher [10] for a

mass distribution of droplets at a liquid-gas phase transition critical point. Thus the results

from the Purdue work gave a hint that MF could provide important information about the

equation of state of nuclear matter [11–14]. The analysis of the fragment kinetic energy

spectra suggested that the fragments are emitted from a less than normal density system in

the decay of a common remnant which is lighter than the target [9,15–17]. An analysis of

the fragment yields based on a thermal liquid drop model gave a freeze-out temperature of

∼ 5 MeV [9,17]. Similar results were observed when the above study was extended to lower

energies [18,19]. This view was supported by exclusive emulsion MF data [20], which were

analyzed by Campi to show that the conditional moments of the individual fragment events

exhibited characteristics of a phase transition [21–23]. Bauer and Campi were the first to

apply the methods used in percolation studies to analyze MF data [21–25]. In percolation

theory the moments of the cluster distribution contain the signature of critical behavior

[26,27].

In recent years further progress was made by experiments in which practically all the

fragments emitted in a given event were detected, thereby permitting complete reconstruction

of MF events [28–35]. The ALADIN Collaboration studied the MF of 400A-1000A MeV
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Xe, Au, and U nuclei on various targets. Their results showed that fragment yields were

independent of the entrance channel when the data were scaled for projectile or target mass

[28–30]. The EOS Collaboration studied the MF of 1A GeV gold on carbon and analyzed the

data using methods developed in the study of critical phenomena [36–42]. Several critical

exponents were determined and their values suggested that the MF of Au can be understood

as due to a continuous phase transition [43,44]. The first results of the MF of 1A GeV La

and Kr on carbon have also been reported [45,46]. The MF transition appears to involve the

breakup of a nucleus to form several IMF’s. The production of nucleons and light particles

- the nuclear analog of a gas- occurs largely in the fragment deexcitation step [47]. Along

with the earlier inclusive studies, these experiments suggested that prior to MF the remnant

formed in the prompt stage achieves thermal equilibrium. A two step process was proposed

for the collision. This two step process is an idealization of a time dependent process. In

the first prompt stage nucleons are knocked out of the participants. The emission of these

prompt particle leaves an equilibrated remnant nucleus which undergoes deexcitation in a

second step.

In the EOS experiment prompt stage was separated from the MF stage by making a cut

on the kinetic energy of light charged particles [39]. This separation was made possible by

the ability of the EOS detector to measure nearly all the charged particles and fragments

emitted in each event using reverse kinematics [39]. Complete reconstruction and stage

separation was therefore possible for a majority of the events. These reconstructed events

were characterized by mass, charge, and excitation energy of the remnant. The resultant

remnant then undergoes MF to produce excited fragments which then undergo secondary

decay to produce the observed fragments [47]. The ALADIN experiment is also capable of

measuring all the charged particles except for Z=1 particles [28–30]. The ISiS Collaboration

has also produced one of the most complete MF data sets in the high energy collision of p, p̄,

and π− with gold [32–35]. In the ISiS experiment the charge and mass of the excited source

were obtained on an event by event basis by subtracting the non equilibrium particles from

the target charge and mass. However, the non-equilibrium particles could only be separated
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from the thermal particles by means of a parametrization involving two component moving

source fits.

The EOS [39] data can be compared with statistical models. There are several statistical

models which have been used to study MF, [1,3,4,48–56] but the most widely used are

the Statistical Multifragmentation Model (SMM) [3,48–50] and Monte Carlo microcanonical

model (MMMC) [1,4]. The theoretical interest in MF is not confined to only statistical

models but several other approaches to study MF have been carried out e.g. percolation,

lattice gauge and Ising models [22,57–63]. A phenomenological droplet model [64], based on

the Fisher [10] droplet model, has also been used to describe the liquid-gas phase transition

in nuclear reactions. Here we shall compare the experimental data with the predictions of

the SMM model in the manner presented in previous publications [45,47,65,66]. We found

that this model is in good agreement with a variety of results for the MF of 1A GeV Au

[47]. SMM requires mass, charge and excitation energy of the remnant as input. Using the

experimental remnants from Au+C, the parameters of the SMM were fixed based on the

agreement between SMM and data. Some comparisons with the data for La+C and Kr+C

were also made in later work using the same set of parameters as in case of Au+C [45].

This paper deals with the MF of 1A GeV Au, La, and Kr on carbon. Section II gives

a brief summary of the experimental remnant properties. The fragment properties are dis-

cussed in Section III. Section IV describes SMM and gives a comparison with the data.

The search for the critical transition is discussed in Section V. The determination of various

critical exponents is given in Section VI. Energy fluctuations and heat capacity analyses are

discussed in Section VII. Section VIII dwells on the nature of the phase transition in Au, La

and Kr. Conclusions are given in Section IX.

II. PROPERTIES OF THE REMNANT

The reverse kinematic EOS experiment was performed with 1A GeV 197Au, 139La, and

84Kr beams on carbon targets. The details of the experiment are given in our earlier publica-
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tions [39,45]. Only a brief description will be given here. The experiment was done with the

EOS Time Projection Chamber (TPC) [67,68] and a multiple sampling ionization chamber

(MUSIC II) [69]. The TPC provided almost 4 π solid angle coverage in the center-of-mass

system. Three-dimensional tracking and charged particle identification permitted momen-

tum and energy reconstruction of fragments with charges in the range of 1 ≤ Z ≤ 8. Particle

identification was based on specific energy loss along particle tracks. MUSIC II detected and

tracked fragments with charges 8 ≤ Z ≤ Zbeam. The excellent charge resolution of this

detector permitted identification of all detected fragments.

The analysis presented here is based on fully reconstructed MF events for which the total

charge of the system was taken as 79 ≤ Z ≤ 83, 54 ≤ Z ≤ 60, and 33 ≤ Z ≤ 39 for Au,

La, and Kr, respectively [39,45]. Approximately ∼ 32000, 26000, and 42000 events met the

above criteria for Au, La and Kr, respectively.
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FIG. 1. Average remnant mass, charge, and total charged-particle multiplicity as a function of

thermal excitation energy E∗

th from the MF of Au, La and Kr.

The remnant refers to the equilibrated nucleus formed after the emission of prompt

particles. This remnant then undergoes MF. The charge and mass of the remnant were

obtained by removing for each event the total charge of the prompt particles. In order to

obtain the mass, the number of prompt neutrons was estimated by means of the ISABEL

cascade calculation [70,71]. The excitation energy per nucleon of the remnant, E∗, was based

on an energy balance between the excited remnant and the final stage of the fragments [72]

for each event, as discussed in detail elsewhere [39,45].

In our previous work we have shown that some of the excitation energy of the remnant in-

cludes a nonthermal component which may be ascribable to expansion energy, Ex [39,41,45].

The thermal excitation energy E∗

th of the remnants is obtained as the difference between E∗

and Ex. This energy is an important quantity both for input to SMM and for the physics
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analysis of the data. Fig.1 show plots of Aremn, Zremn and total charged particle multiplicity,

m, for Au, La, and Kr, respectively, as a function of E∗

th [39,45].

The plots in Fig.1 show the nature of the remnant originating from the different system

sizes. In case of Au and La one finds that the remnant size at the highest multiplicity is

nearly 50% of the initial remnant size, while for Kr the remnant loses up to ∼ 70 % of the

initial mass. The range of E∗

th is also different in the three cases. For Kr the remnant reaches

E∗

th as high as ∼ 20 MeV/nucleon, while for Au and La the maximum E∗

th are ∼ 9 and ∼

12 MeV/nucleon, respectively. Figure 1 shows the variation of the average m with E∗

th, but

does not give an indication of event-to-event fluctuations. Fig.2 shows a contour plot of m

vs E∗

th. These two quantities are fairly closely correlated for Au and La and confirm the

linear variation shown in Fig.1. The correlation is much poorer for Kr and a broad range of

energies corresponds to a narrow range of m values above 8 MeV/nucleon.

III. FRAGMENT PROPERTIES

We first examine the second stage fragment multiplicities, m2 . Fig.3 shows a plot of m2

vs E∗

th for Au, La, and, Kr. The m2 for Au and La increase linearly with E∗

th, while for Kr m2

increases slowly up to E∗

th∼ 8 MeV/nucleon and remains essentially constant at higher E∗

th.

The constancy of m2 above 8 MeV/nucleon suggests that the system may be disintegrating

into individual nucleons and light particles, which suggests that the vaporization process

becomes dominant. This interpretation is confirmed by the variation with E∗

th of the size of

the largest fragment, Amax, in each event as shown in Fig.4. It is observed for Kr that above

∼ 8-9 MeV/nucleon the value of Amax is nearly constant with a value of ≤ 6.
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FIG. 2. m as a function of E∗

th for Au, La, and, Kr. There are ten equidistant contours.

The distribution of IMFs is shown in Fig.5 for all three systems as a function of energy.

In order to exclude fission and/or the largest fragment for all three projctiles we define IMFs

as having nuclear charges ranging from Z=3 to Z=Zproj/4. Fig.5 shows that for all the three

systems the peak in IMFs is ∼ 8 MeV/nucleon although the IMF peak for Au is not well

defined as E∗

th > 8 MeV/nucleon was hardly achieved for this projectile. The drop in IMF

yields for Au has been seen when the data were plotted as a function of m rather than E∗

th

because of the dispersion in m values at a given E∗

th [45]. Note that the number of IMFs from

Kr drops to substantially less than 1 above 10 MeV/nucleon. This is another confirmation

of the results given in the preceding section showing the vaporization of the Kr remnants at

high E∗

th.
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FIG. 3. m2 as a function of E∗

th for Au, La, and, Kr.

IMF production has been studied as a function of projectile bombarding energy by the

ALADIN Collaboration [28–30]. They showed that the excitation energy dependence of the

average IMF number for Xe, Au, and U projectiles when scaled by charge of the emitting

source is similar, suggesting that the IMF production mechanism is independent of the

entrance channel. A universal scaling for IMF production has also been seen from a wide

range of source masses (35 -190 nucleons) produced in reactions with energies from 35 to

600 MeV/nucleon [73].
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FIG. 4. Amax as a function of E∗

th for Au, La, and, Kr.

IV. THE SMM MODEL AND COMPARISON WITH DATA

The variable volume version of SMM has been used in this work for comparison with the

data. This variable volume corresponds approximately to the condition of constant ( close

to zero) pressure [74]. SMM is a statistical description of the simultaneous breakup of an

expanded excited nucleus into nucleons and hot fragments [3,48,49]. Individual fragments at

normal nuclear density are described with a charged liquid drop parameterization. The free

energy of a fragment is used to determine the fragment formation probability. This solution

explicitly assumes the inhomogeneous nature of the hot MF final state.
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FIG. 5. Average n(IMF) as a function of E∗

th for Au, La, and, Kr.

Light fragments with Z < 3 may also be present in the hot MF final state. For the

Z ≥ 3 fragments, a quantum mechanical description is used for the temperature dependent

volume, surface, and translational free energy of the fragments. The temperature indepen-

dent parameters are based on the coefficients of the semiempirical mass formula. The critical

temperature, at which the surface tension of neutral nuclear matter droplets would go to

zero, is in the range suggested by infinite neutral nuclear matter calculations [75].

The two important parameters of the model are the Coulomb reduction parameter, κ, and

the inverse level density parameter ǫ0 [48]. The κ parameter was fixed with the comparison

of the measured free volume from SMM to that of the initial volume obtained in the collision

process for the Au+C data. The details are given in ref. [47]. The only remaining parameter,

ǫ0, was obtained from the detailed comparison of SMM results with the various experimental

fragment properties, e.g. second stage multiplicity, size of the biggest fragment, and IMFs
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using Au+C data [47]. In this work the same value of κ=2 and ǫ0=16 MeV has been used

in SMM to compare results with data for La and Kr. The best agreement with the data was

found by using the standard values of the parameters of the model.
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FIG. 6. Second stage charged-particle multiplicity as a function of E∗

th for Kr, La, and, Au from

data and SMM.

The SMM results were also compared with the data on La and Kr [45], with the same

parameters as in Au, using reduced multiplicity (m/Zproj ). Here we present a few compar-

isons between data and SMM using E∗

th. Fig.6 shows a plot of m2 as a function of E∗

th for

Au, La and Kr. The agreement between data and SMM is very good. The flatness of m2

beyond E∗

th∼ 8 MeV/nucleon observed for Kr is also seen in SMM. The size of the largest

fragment from both data and SMM is shown in Fig.7 for all the three systems. Very good

agreement between the two is obtained over the entire range of E∗

th.
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FIG. 7. Size of the largest fragment as a function of E∗

th for Kr, La, and, Au from data and

SMM.

The average value of the total number of IMFs as a function of E∗

th is shown in Fig.8

for both data and SMM. Both show the same initial increase in IMF production and a

peak at approximately the same energy. SMM follows the trend in the Kr data in the

vaporization regime, where the IMF multiplicity decreases to zero at the highest energy.

SMM overestimates the number of IMF at the peak in all three cases. This difference is due

to the fact that in SMM there is overproduction of Li and Be fragments at higher excitation

energies.
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FIG. 8. Average multiplicity of IMFs as a function of E∗

th for Kr, La, and, Au from data and

SMM.

The above comparison between data and SMM was done with SMM calculations including

the deexcitation of secondary fragments. SMM can also be stopped prior to secondary decay

to obtain information about the SMM primary fragments. We refer to these results as

SMMhot while those following secondary decay are designated SMMcold. As will be seen in

the following sections SMMhot can be used to evaluate the nature of the phase transition.

A full description of SMMhot for the remnant system with A=160 and Z=64 has been given

in ref. [47].
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FIG. 9. Average multiplicity from SMMhot and SMMcold as a function of E∗

th for Kr, La, and,

Au.

The m2 distributions as a function of E∗

th for both SMMcold and SMMhot are shown in

Fig.9. There is an increase in multiplicity for SMMcold in all three cases. For SMMhot m2

remains nearly unchanged up to a certain energy and then suddenly increases. The energy

at which m2 starts increasing corresponds to the MF threshold. The values of E∗

th at which

MF first occurs are ∼ 4, ∼ 5, and ∼ 8 MeV/nucleon for Au, La and Kr, respectively. The

threshold energy is lowest for the heaviest system because of the large Coulomb energy in

the heavier remnant, which facilitates the breakup of the nucleus at a lower energy. There

is a very narrow window for Kr between the multifragmentation threshold and the energy

at which vaporization starts. This reduces the probability of IMF formation, as is evident

from Fig.5.
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V. CRITICAL POINT DETERMINATION

In our earlier publications we discussed the 1A GeV Au on carbon data in terms of the

theory of critical phenomena and several critical exponents were determined [36,38,40,43,44].

We used the percolation technique applied to small lattices to study critical phenomena

[76,77,35]. The method of moments analysis was used by several groups [29,57,78–82] to

search for evidence of the liquid-gas phase transition in MF. Recently, we used this method in

the analysis of La and Kr data [46] using charged particle multiplicity as the order parameter.

In this work E∗

th is used as the order parameter. E∗

th is a more fundamental parameter than

multiplicity for comparing the three systems. Here, we first use the combination of moments

to find the signature of criticality in Au, La and Kr data. For example, the reduced variance

γ2 = M2M0/M
2
1 , where M1 andM2 are the first and second moments of the mass distribution

in an event and M0 is the total multiplicity including neutrons, is a useful quantity. The

reduced variance γ2 has a peak value of 2 for a pure exponential distribution, nA ∼ e−αA,

regardless of the value of α, but γ2 > 2 for a power law distribution, nA ∼ A−τ , when τ > 2

and the system is large enough. Critical behavior requires that the peak value of γ2 be larger

than 2 [21,22].
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The event by event analysis for γ2 is shown in Fig.10 for all the three systems. The

position of the maximum γ2 value defines the critical point, i .e. the critical energy E∗

c ,

where the fluctuations in fragment sizes are the largest. The peak in γ2 is well defined for

La and Au. The value for E∗

c is in good agreement with our earlier values, where mc was

used as the order parameter and E∗

c was obtained from E∗

th vs m plot [46]. In case of Kr

Fig.10 shows that there is no well defined peak in γ2 and the distribution is very broad. A

well defined peak is obtained in mc, but the value of γ2 is always less than 2 [46].

Fig.10 also shows the γ2 calculation using SMMcold. The fission contribution to γ2 has

been removed both from the data analysis and SMM. The E∗

c values obtained for data and
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SMMcold are close to each other. There is a difference in the height of the peak in γ2 for Au

between data and SMMcold. It is also important to note that at the peak γ2 > 2 both from

SMMcold and data for Au and La and γ2 < 2 for Kr. This suggests that the exponent τ < 2

for Kr as there is no enhancement of γ2 in the critical region . One expects an enhancement

of the moments in the critical region with τ > 2 as in most critical phenomena [26,27].

In case of Au the γ2 value remains above two for most of the excitation energy range.

The E∗

th width over which γ2 > 2 is smaller for La and disappears for Kr. The decrease in

γ2 with decrease in system size, as observed in Fig.10, is also seen in 3D percolation studies

and the differences have been attributed to finite size effects [83,84]. The results for E ∗

c are

given in Table I along with the values of mc [46].
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FIG. 11. γ2 as a function of E∗

th from SMMhot and SMMcold

It is of interest to see how the critical point determination from SMMhot compares with

that of SMMcold. Since SMMcold can reproduce the various features of the EOS data, one

can use SMMhot to understand the MF mechanism. Fig. 11 shows a plot of γ2 as function

of E∗

th from SMMcold and SMMhot. It is evident from the plots for Au and La that the

peak in γ2 occurs at the same E∗

th for both SMMcold and SMMhot. The distinct difference

is in the height of the peak. For SMMhot the height of the γ2 peak is smaller as compared

to SMMcold, but still above 2. This difference is mainly due to the increase in SMMcold
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multiplicity as compared to SMMhot. In the case of Kr the γ2 value is always less than 2 for

both SMMcold and SMMhot and the height of the γ2 peak does not decrease from SMMcold

to SMMhot as for Au and La. A detailed calculation of critical exponents from SMMhot has

been given in our earlier publication [47]. These results clearly demonstrate that SMMhot

and SMMcold behave in a similar way. The most important conclusion is that the values of

the exponents do not change in going from SMMhot to SMMcold. Thus, SMMhot results

are consistent with a critical phase transition for Au and La and not for Kr.

VI. CRITICAL EXPONENTS ANALYSIS

A. τ Exponent

In the previous section it was shown, based on the γ2 analysis, that Au and La should

show a power law with exponent τ ≥ 2 for a continuous phase transition to be present. τ

can be obtained using the moments of the fragment mass distributions.

Scaling theory [26] relates the values of the critical exponents τ and σ to the moments

Mk of the mass distribution through

Mk ∝ |p− pc|
−(1+k−τ)/σ (1)

where p is the bond breaking probability and at the critical point p=pc in percolation. The

values of τ and σ in the above equation are characteristic for the specific class of phase

transition. For a transition of the 3D percolation type τ = 2.2 and σ = 0.45, while for a

liquid-gas phase transition a value of τ = 7/3 and σ = 2/3. The 3D Ising values for τ and

σ are 2.2 and 0.64 respectively. The τ value is essentially the same for different universality

classes. The above equation can be solved to get the value of τ if the second (M2) and

third moments (M3) of the fragment mass distributions are known. A plot of ln(M3) versus

ln(M2) should give a straight line with a slope given by

S =
∆ln(M3)

∆ln(M2)
=

τ − 4

τ − 3
(2)
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Fig.12 shows a scatter plot of ln(M3) vs ln(M2) for all the three systems from data above

E∗

c [76]. Also shown in Fig.12 are the results from SMMcold. A linear fit to ln(M3) vs

ln(M2) gives the value of τ . The τ values are shown in Table I both from data and SMM. A

linear fit to the Kr data gives a value of τ = 1.88± 0.08. This value is below the minimum

value τ ≥ 2 expected for a continuous phase transition. This result for Kr is consistent with

Fig.10, which shows that γ2 < 2 and hence τ < 2 [21,22]. Similar results are also obtained

for SMMcold.
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TABLES

TABLE I. Critical parameters from data and SMMcold

Parameter Audata Ladata Krdata Ausmm Lasmm Krsmm Pera LGb

mc 28±3 24±3 18±2 26±3 23±3 17±2

E∗

c 4.5±0.5 5.5±0.6 6.5±1.0 4.3±0.5 5.3±0.6 6.2±1.0

τ 2.16±0.08 2.10±0.06 1.88±0.08 2.11±0.05 2.05±0.05 1.81±0.06 2.20 2.21

β 0.32±0.02 0.34±0.02 0.53±0.05 0.35±0.03 0.37±0.03 0.57±0.06 0.44 0.328

β/γ 0.22±0.03 0.25±0.01 0.50±0.01 0.28±0.03 0.29±0.05 0.52±0.01

γ 1.4±0.3c - - 1.02±0.23c - - 1.76 1.24

γ 1.32±0.15d 1.20±0.08d

a. Percolation, b. Liquid-Gas, c. ref.[47], d. from β and β/γ ratio
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A one-parameter power law search also provides an alternative method for the determi-

nation of τ [43]. At the critical point the cluster distributions were described by nAf ∼ q0A
−τ

with τ ∼ 2.2 and q0 ∼ 0.2, as seen in many universality classes [43]. Fig.13 shows a plot of

the fragment mass distribution at the critical energy for Au, La and Kr. The line corresponds

to nAf = q0A
−τ with τ=2.2 and q0=0.2 [43]. It is clear from the plot that Kr data do not

follow the above power law with the critical values of q0 and τ .

B. β exponent

Using the methods developed in percolation studies the value of the exponent β can be

obtained for the MF of 1A GeV Au+C [36]. It is related to the size of the largest cluster by

the relation

Amax ∼ |ǫ|β (3)

where ǫ = p− pc and ǫ > 0. In the MF case p and pc have been replaced by E∗

th and E∗

c . In

the infinite lattice, the infinite cluster exists only on the liquid side of pc. In a finite lattice

a largest cluster is present on both sides of the critical point, but the above equation holds

only on the liquid side. When ǫ < 0 , no infinite cluster exists and the size of the finite

cluster is given by

A ∼ |ǫ|−(β+γ) (4)

where γ is another critical exponent and related to the second moment, M2

M2 ∼ |ǫ|−γ (5)

Fig.14 shows a plot of ln(Amax) vs E∗

th − E∗

c from Au, La and Kr. The values of β

obtained from the fit are given in Table I. The values of β for Au and La are 0.32±0.02

and 0.34±0.02, respectively, and close to the value of 0.33 predicted for a liquid-gas phase

transition. The value of β for Au is in agreement with our earlier reported value [36]. In
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case of La β is close to the value obtained for Au, while the value of β= 0.53±0.05 for Kr is

much higher than that of Au and La.

It is interesting to note that the SMM calculation also gives the same results as obtained

in data. Fig.14 shows results from SMM as open circles for all the three systems. These

comparisons with SMM are important, as this will help us to probe the order of phase

transition using SMM in the three experimentally studied systems.
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c | for Au, La and Kr below the critical energy for exponent β

determination.

Campi [21,22] also suggested that the correlation between the size of biggest fragment,

Amax, and the moments in each event can measure the critical behavior in nuclei. Fig.15

shows a plot of the logarithm of Amax in each event versus the logarithm of the second

moment M2 for all the three systems. This plot is generally called a Campi scatter plot and

has been successfully used in many studies [85,86]. The two branches corresponding to the

under-critical ( upper branch ) and over-critical (lower branch) events are clearly seen for
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Au and La. The Amax - M2 correlation is quite broad for Kr and fills most of the available

phase space. The lower and upper branches seems to overlap and are not well separated.

Studies on percolation lattices show similar behavior [85]. However, it is not possible from

such a plot to locate the critical region in a precise and unambiguous manner. But, if we

know the critical point from some other method, then the Amax- M2 correlation can be used

to calculate the ratio of critical exponents β/γ from the slope of the upper branch. A similar

behavior is obtained from SMM as shown in Fig. 15 for all the three systems.
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FIG. 15. Scatter plot of the ln(Amax) vs ln(M2) from data and SMMcold.

Table I shows the β/γ values for Au and La from the linear fit to the upper branch of

Fig.15. For the fitting purpose an average value of ln(Amax) was obtain for each value of

ln(M2).

We have mentioned only a few exponents in this analysis and compared them with SMM.

The aim is to show that Kr is different than Au and La. The two exponents τ and β serve

this purpose very well. Knowing β and β/γ, γ can be obtained. Results are listed in Table

I and the value for Au agrees with the published value. Table I also gives the values of

the critical exponents for the percolation and liquid-gas phase transition in 3D systems. No
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attempt has been made in this paper to independently determine other exponents like γ and

σ. All the exponents for Au and their comparison with SMM have been reported in various

publications [36,38,40,47].

VII. ENERGY FLUCTUATIONS AND HEAT CAPACITY ANALYSIS

In a recent study experimental evidence of a liquid-gas phase transition in MF was offered

by analyzing the fluctuations in the total fragment energy [92,93]. It has been shown that

for a given total energy the average partial energy stored in a part of the microcanonical

system is a good thermometer while the fluctuations associated with the partial energy can

be used to determine the heat capacity, which is negative for a first order transition and

positive for a second order transition.
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FIG. 16. With no selection on the remnant mass: a). Partial energy E1 as a function of E∗ b).

Fluctuation in E1 c). The variance (σ/E1)
2 and d). Heat capacity per nucleon for Au .

A negative heat capacity was obtained in the reaction Au+Au at 35A MeV, providing the

direct evidence of a first order liquid-gas phase transition [93]. We have analyzed our data

for Au and Kr using energy fluctuations. From the total excitation energy E∗ the Coulomb

and expansion energy components were removed to obtain energy E1 [39,45].
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FIG. 17. With a tight cut on remnant mass: a). Partial energy E1 as a function of E∗ b).

Fluctuation in E1 c). The variance (σ/E1)
2 and d). Heat capacity per nucleon for Au.

The fluctuations in E1 were studied as a function of E∗. Figs. 16(a) and (b) show the

spread in E1 and its standard deviation σ respectively, as a function of E∗. The reduced

variance (σ/E1)
2 is shown in Fig. 16(c). The heat capacity Ct is given by

Ct = C2
1/[C1 − (σ/T )2] (6)

where C1 is the canonical specific heat. It was argued that a negative Ct in the critical region

is a signature of a first order phase transition [92,93]. In Fig. 16(d) Ct is shown as a function

of E∗. There is a negative heat capacity at E∗ ∼ 2-3 MeV/nucleon.

However, a different result is obtained if there is a selection on the remnant mass.

Figs. 16(a) and (b) have no remnant mass cut and the average mass is 170 ± 19. This

causes large fluctuations in E1. Figs. 17(a)-(d) show similar plots as in Figs. 16(a)-(d) with

the remnant restricted to 161 ± 3. Two important results come out of these plots. First,

σ is much smaller when the remnant mass cut is applied. Second, Ct is always positive.

Our analysis for Au data shows no negative heat capacity. Based on our statistical and

thermodynamic analysis, we see indications for a continuous phase transition in Au data

[36,38,40,47]. The results for La are similar to those shown above for Au.
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A similar analysis was performed on Kr data and results are shown in Figs. 18(a)-(d)

and Figs. 19(a)-(d) for remnant masses 58 ± 14 and 56± 3 respectively. We do not see the

signature of a first order transition even in Kr if the remnant mass is selected in a narrow

bin. On the other hand a negative value of Ct is obtained if there is no selection on the

remnant mass.

Here, we emphasize again that the event-by-event complete reconstruction of remnant

mass and excitation energy is very important for the above analysis. This is possible only in

high energy reverse kinematic asymmetric collisions [39]. In case of the EOS data, though

there is a positive specific heat, there are no large scale fluctuations in it to define the critical

energy. Only Au has a peak in Ct, which is around 2-3 MeV/A. There is no peak in Ct for

La and Kr. Thus the analysis of EOS data for all three systems based on heat capacity is

questionable.
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VIII. NATURE OF PHASE TRANSITION

In the previous sections we have shown that the MF of Kr is different than that of Au

and La. Based on the experimental results it is not possible to decide the order of phase

transition in Kr. The statistical analysis suggests a continuous phase transition for Au and

La.
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FIG. 19. With a tight cut on remnant mass: a). Partial energy E1 as a function of E∗ b).

Fluctuation in E1 c).The variance (σ/E1)
2 and d). Heat capacity per nucleon for Kr

In our earlier publication [47] and in this paper as well we have shown that SMM can

reproduce the various features of EOS data, including the critical exponents. A single set of

parameters of the model was used to describe the data for all the three systems, Au, La, and

Kr. The nature of the phase transition in SMM was analyzed using SMMhot, i.e. fragments

formed before secondary decay [47]. The microcanonical temperature was obtained for the

MF system and a caloric curve was constructed [1,47,94] for A=160, 130, 100, and A=70. A

backbending in the caloric curve is an indication of a first order phase transition and leads

to a negative specific heat. For A=160 there is a positive peak in the specific heat vs energy

plot, consistent with our energy fluctuation analysis on our data, using a mass cut.
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The back-bending in the caloric curve is sensitive to the remnant mass. We have used

the remnant distributions from Au+C and Kr+C data to study the remnant mass effect

on the caloric curve. Figs.20(a)-(d) show a plot of the reciprocal of the SMMhot breakup

temperature β = 1/Tbreak, for Au. A distinct pattern is evident. A small back bending starts

appearing at the very low mass cut. For heavier masses there is no back-bending. Since the

remnant mass distribution from Au+C interaction is dominated by heavier remnants, the

effect of lighter remnants on back-bending is almost negligible. Fig.20 suggests that, accord-

ing to SMM, the MF transition in Au changes from first order to second order depending

on the remnant mass. For Kr, the back-bending is very sensitive to the particular mass

cut. If there is no selection on mass cut the caloric curve is different than those with mass

cuts as shown in Figs. 21(a)-(d). However, back-bending is always present. Thus, based on

the above reasoning we can say that in case of Kr there is no continuous phase transition.

Rather, analysis of the caloric curve argues for a first order phase transition in Kr.
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to SMM. The graphs are shown for different mass selection on the remnants from MF of Kr.

So far we have shown that the Kr data are different than the Au and La data. The

temperature of the MF system provides further insight. One can obtain the freeze out

temperature of the cold fragments in data using the ratio of light fragment isotopic yields

[39,45,96]. In Fig.22(a) the isotope ratio temperature (THe−DT ), as obtained from 2H/3H to

3He/4He yield ratio at the critical point E∗

c , is shown for Au, La and Kr systems as function

of the linear size of the system (L= A1/3
remn).
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THe−DT decreases with an increase in system size. Recently, in an another study it has

also been shown that critical temperatures and excitation energies decrease with increasing

system size [95]. This result can be attributed to the higher Coulomb energy in Au as

compared to Kr, which in turn shifts the MF transition to lower temperature. The behavior

of THe−DT with system size is different than those observed either in percolation or Ising

model studies. Fig. 22(b) shows a plot of the critical temperature from a 3D Ising-type model

with fixed density [62] for different lattice sizes. In the Ising calculation the trend is different

than the one observed in Fig. 22(a). Thus, for neutral matter the critical temperature

increases with an increase in system size. We can also compare the results from data and the

Ising model calculation with percolation studies. In percolation the critical probability pc in

bond building percolation decreases with increase in the system size [77,97]. Fig. 22(c) shows
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1/ pc vs percolation lattice size, where pc is inversely proportional to Tc [97]. Thus, MF of

Au, La and Kr is different than 3D Ising and percolation models. As mentioned earlier, the

finite size affects only non-thermodynamical quantities e.g. γ2, Amax, etc. and not energy or

temperature.

The critical energy is shown in Fig.23(a) as a function of system size. The decrease in

E∗

c with increase in system size is evident from the figure. SMM also predicts the critical

energy of the MF transition and this energy is shown in Fig.23(a) along with the data. This

energy is obtained at the hot fragment stage from the peak in γ2 as shown in Fig.11. Both

data and SMM E∗

c are in good agreement. The breakup temperature TSMM , as obtained

from SMMhot, along with the THe−DT from data is shown in Fig.23(b). There is a decrease

in both temperatures with increase in system size. It is apparent that THe−DT is about 1

MeV lower than the SMM temperature. This difference is due to the fact that THe−DT is

measured after secondary decay has taken place, while TSMM corresponds to the breakup

configuration. Note that THe−DT tracks TSMM with system size at the critical point. SMM

indicates that the decrease in both TSMM and E∗

c with increasing system size is due to the

increase of Coulomb energy. This result suggests that Coulomb energy plays an important

role in the MF of nuclei. It is interesting to note that the critical energy obtained both from

SMM and data corresponds to the MF threshold as shown in Fig.9. The significance of this

result remains to be determined.

The effects of finite size and Coulomb force on the MF have been studied by several

workers and it is found that the decrease in critical temperature with increase in system size

is primarily due to the Coulomb energy [98–100]. The result from one such calculation is

shown Fig.23(b) as Tlimit [100].
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function of the system size.

The microcanonical Metropolis Monte Carlo (MMMC) [1,4] calculations have emphasized

that MF is controlled by the competition between long range Coulomb forces and finite size

effects ( especially surface energy). Finite size effects in models with only short range forces

predict an increase in the critical temperature as the system size increases, as is evident from

percolation [97] and Ising model studies [62] (see Fig.22). Since the experimental temperature

exhibits the opposite dependence on system size, it is apparent that Coulomb effects are more

important than finite size effects. For finite neutral matter the critical temperature (Tc) is

expected to be ∼ 15-20 MeV [98,101]. The observed Tc for A=160 is ∼ 6 MeV. Compared

to finite uncharged nuclei, the presence of Coulomb energy plays a role in lowering the

excitation energy needed to reach the regime where critical signatures are observed. In the

smaller Kr system there is less Coulomb energy in the initial remnant state. Achieving

35



multifragmentation in this system requires greater excitation energy/nucleon compared to

Au and La (as shown in Fig. 23(a)) and as a result, the dynamics of the ensuing disassembly

may not take this system near its critical regime.
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It has also been suggested on the basis of a caloric curve that MF of Au is a first order

phase transition [102]. This observation was based on the the fact that the temperature

remains constant as energy is increased between 3 and 10 MeV/nucleon. The temperature

again starts increasing beyond 10 MeV/nucleon as a gas phase consisting of a mixture of

nucleons and few light particles is created. According to SMM there are few nucleons in

the hot system. Fig.24 shows a plot of first moments of the fragment yield distribution as a

function of E∗

th for Au, La and Kr. The figure shows that even for E∗

th ≥ 10 MeV/nucleon

very few particles with A ≤ 4 are produced. Most of the remnant mass is in fragments with

A > 4. This argues against the coexistence of the constant density liquid and gas phases
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in SMM. The cooling of the hot fragments produces a large number of final state nucleons

and light particles as shown in Fig.25. The IMFs survive the cooling process at least for Au

and La and identify the MF transition. In case of Kr the excitation energies of IMF from

SMMhot are very high and very few are seen in the cold stage. Thus the MF signal could

be washed out.
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IX. SUMMARY AND CONCLUSIONS

In the present work we presented and analyzed the data from the MF of 1A GeV Au, La

and Kr on carbon. The mass, charge and excitation energy of the remnant were determined

in each event. The thermal excitation energy was obtained after the expansion energy was

determined on the basis of energy balance. The multiplicity distribution from MF of Kr

shows a saturation beyond E∗

th of 8 MeV/nucleon, indicating that the vaporization process
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has started.

A comparison of the data with the variable volume version of SMM, using the same

values of parameters of the model for Au, La and Kr show a very good agreement with

various distributions e. g. charged particle multiplicity, size of biggest fragment, number of

IMFs, etc. The power law behavior seen in data for Au and La with τ > 2 is also observed

in SMM when cold fragments are analyzed. The hot fragment analysis from SMMhot for γ2

gives a value of E∗

c which is in agreement with the value of E∗

c obtained from SMMcold.

The Au and La data give indications of a continuous phase transition. A first order

phase transition has been predicted for Kr using SMM. However, the data cannot be used

to distinguish between the two because of finite size effects.

The SMM calculation offers the best way to determine the the nature of phase transition.

A back bending in temperature vs energy plot is a sign of negative specific heat and hence

a first order phase transition. Such a result is found for Kr but not for Au, except for the

lightest remnants, the MF contribution of which is negligible.

The temperature obtained from the isotope ratio analysis decreases with an increase in

system size at the critical point. The break-up temperature obtained from SMM also follows

the same trend, but higher by ∼ 1 MeV/nucleon. The decrease in temperature with increase

in system size is an important result as it is in the opposite direction from what is observed in

either in 3D percolation or Ising model studies for finite size neutral matter. This shows that

if finite size were the only effect in MF then the correlation between temperature and system

size would have been the same in data as in percolation and Ising model studies. Thus, the

long range Coulomb force is shown to be the dominant factor in MF. This conclusion is also

supported by Hartree-Fock calculations.

In conclusion, this is the first work in which the nature of the phase transition in MF has

been explored using three systems of different size. The experimental results in conjunction

with SMM provide the order of the phase transition in Au, La and Kr. The values of critical

exponents τ , β and γ, which are close to the values for liquid-gas system, along with nearly

zero latent heat suggest a continuous phase transition in Au and La. The back bending in
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the caloric curve for Kr suggests the presence of latent heat, which is consistent with a first

order phase transition. We emphasize again here the important role played by the Coulomb

energy. The Coulomb expansion energy reduces or eliminates the latent heat and changes

the nature of the phase transition.

This work was supported by the U. S. Department of Energy.
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