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Momentum space integral equations for three charged particles: Nondiagonal kernels
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Standard solution methods are known to be applicable to Faddeev-type momentum space integral equations
for three-body transition amplitudes, not only for purely short-range interactions but also, after suitable modi-
fications, for potentials possessing Coulomb tails provided the total energy is below the three-body threshold.
For energies above that threshold, however, long-range Coulomb forces have been suspected to give rise to
such severe singularities in the kernels, even of the modified equations, that their compactness properties are
lost. Using the rigorously equivalent formulation in terms of an effective-two-body theory we prove that, for all
energies, the nondiagonal kernels occurring in the integral equations which determine the transition amplitudes
for all binary collision processes, possess on and off the energy shell only integrable singularities, provided all
three particles have charges of the same sign, i.e., all Coulomb interactions are purely repulsive. Hence, after
a few iterations these kernels become compact. The case of the diagonal kernels is dealt with in a subsequent
paper.

PACS number~s!: 21.45.1v, 03.65.Nk
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I. INTRODUCTION

Since pioneering work of Faddeev@1#, the three-body
quantum scattering theory has become a powerful tool
the investigation of many different processes in various ar
of physics. However, one major obstacle which has impe
its wider-spread application, in particular to atomic reactio
has remained, viz., the question of how to incorporate lo
range Coulomb forces into the three-body scattering form
ism.

From the principle point of view, Dollard’s@2,3# time-
dependent approach toN-particle scattering with Coulomb
like potentials, which applies in particular also to thr
charged particles, represents a formal solution by providin
mathematically rigorous definition of the relevant MO” LLER
operators. But progress towards the implementation of
result into a practical approach has been slow@4#. For further
reviews of time-dependent approaches see, e.g.,@5,6#.

Also most stationary approaches, based on integral e
tions, for taking into account the Coulomb interactions ha
remained formal so far. For instance, in the approach p
posed by Noble@7# ~see also Bencze@8#!, the three-body
integral equations are rewritten in a such a way that all C
lomb potentials are included in what had before been
‘‘unperturbed’’ Green’s function. Thereby, the latter
changed into the three-body Coulomb Green’s funct
which then enters the kernels of the new integral equati
~as well as those of auxiliary three-body equations for qu
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tities which in the original formulation had been ordina
two-body T-operators!. That is, all unpleasant features r
lated to the Coulomb interactions are hidden in the unkno
three-body Coulomb Green’s function. Clearly, the proble
of calculating the latter is not any simpler than the init
problem of solving for the full three-body Green’s functio
Merkuriev’s approach@9,10# is based on the same idea, e
cept that there the Coulomb potentials are split by mean
suitable cutoff functions into ‘‘inner’’ and ‘‘outer’’ parts,
and only the latter are incorporated into the—forme
free—three-body Green’s function. Not surprisingly, the k
nels of the Faddeev-type integral equations for the Gree
function for the cutoff Coulomb plus short-range potentia
have similar compactness properties as those for short-ra
potentials alone and, thus, can be treated by conventi
methods. But for the determination of the auxiliary Green
function containing the ‘‘outer’’ Coulomb potential parts
again only formal integral equations have been proposed
shown to possess compact kernels provided that all Coulo
interactions are repulsive@10#. Their explicit solution ap-
pears to be very difficult, and in any case has not yet b
attempted.~Note, however, that this proposition in Ref.@10#
regarding the compactness property of the kernels con
dicts a claim made in@9#, namely that compactness has be
proved for repulsive as well as attractive Coulomb pote
tials.! For completeness we mention that, as stated in@10#,
the uniqueness of the solutions of thedifferential Faddeev
equations for Coulomb-like potentials has been proved i
special class of functions, again only under the assump
that all three particles have charges of equal sign~repulsive
Coulomb potentials!. But in this context it should be kept in
mind that the boundary condition to be imposed on the
lutions of the differential equations used in Ref.@10# was not
©2000 The American Physical Society06-1
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complete. Indeed, the missing part was derived only later
the present authors@11#.

An important practical result has been derived by V
selova@12,13#. When considering the Faddeev integral equ
tions with screened Coulomb potentials at energies below
breakup threshold, she succeeded to single out from the
nel that term which in the zero-screening limit yields t
so-called two-particle or center-of-mass Coulomb singu
ity, in such a form that it could be inverted explicitly. In th
way, modified three-body integral equations with comp
kernels were obtained. But this inversion procedure was o
shown to work for energies below the breakup threshold.
energies above that threshold, three-particle singular
have been suspected to appear@12,10# which nobody has
succeeded to handle till now.

Because of the aforementioned difficulties to der
proper equations for the kernels ofthree-body transition op-
erators which are valid for all energies and are well suit
for practical calculations, it appears more promising to s
the problem into several independent parts. An obvious
step consists in developing integral equations foreffective-
two-body transition amplitudeswhich describe all possible
binary processes, i.e., processes in which a projectile
pinges on a two-particle bound state leading again to a t
body final state@~in-!elastic and rearrangement collisions,
quite generally so-called 2→2 reactions#. The search for ap-
propriate equations for breakup amplitudes describing
→3 reactions, or for three-body equations for amplitud
describing 3→3 processes, is deferred to a later stage.

An approach along these lines has been develope
@14,15#. Starting from the Alt-Grassberger-Sandhas~AGS!
integral equations for the three-body transition operat
@16#, they can be reduced exactly by means of the so-ca
quasiparticle approach to a set of coupled, multichan
Lippmann-Schwinger-type equations for effective-two-bo
~i.e., binary! transition amplitudes. By using the screeni
method, this formulation allowed the isolation, and sub
quent extraction, of the leading~in the limit of vanishing
screening radius! Coulomb singularity which then could b
inverted explicitly. After application of an appropriate reno
malization procedure, the various screened binary amplitu
have been shown by Alt and Sandhas@17# to coincide, in the
zero-screening limit, with the corresponding amplitudes
resulting from Dollard’s time-dependent theory, in particu
also for energies above the three-body threshold. In fact,
unique relation between amplitudes as defined in the ti
dependent and in the stationary screening and renorma
tion approach could be established also for the breakup
→3) amplitudes, but only for the case of two charged a
one neutral particles. Thus, for the latter case, as has b
stated in @10#, from the mathematical point of view th
screening and renormalization approach provides a proo
the compactness of the corresponding~three-body! Faddeev
or AGS integral equations, in a special class of functio
~this statement represents another contradiction with@9#
where it is claimed without proof that even for this spec
case singularities occur which reflect the noncompactnes
the corresponding kernels!. We mention that these, and man
other aspects of charged-particle scattering are describe
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detail in a recent pedagogical review@18#.
In spite of the success of the screening and renormal

tion approach, not only as a method for proving the existe
of various quantities of interest but also as a practical co
putational tool, it appears highly desirable to also investig
the effective-two-body AGS equations directly forun-
screenedCoulomb potentials. Quite generally, the questi
of compactness of the kernels occurring therein depends
the analytical properties of their constituents, which are
so-called ‘‘effective potentials’’ and ‘‘effective free propaga
tors.’’ The latter are known to have only a pole singular
‘‘at the on-shell point’’~besides the three-body cut!. For the
effective potentials, however, no thorough investigation
their singularities has been performed up to now. The aim
this series of papers is to overcome that deficiency. T
present paper, in particular, deals with the nondiagonal
fective potentials which are the driving terms for all possib
rearrangements of the three particles in 2→2 processes.
Throughout the investigation it is assumed that all Coulo
potentials are repulsive, i.e., that the charges of all three
ticles are of the same sign. The new result is that the sin
larity in the momentum-transfer plane, which is the leadi
and, therefore, the most dangerous one, is an integr
branch point located off the energy shell. Hence, it can ne
coincide, for values of the momenta in the integration regi
with the pole of the effective free propagator. Consequen
the leading singularities of the nondiagonal kernels are in
grable.

A forthcoming paper deals with the singularity structu
of the diagonal kernels. There it will be shown that, if th
charges of all three particles are of the same sign, noni
grable singularities appear only on the energy shell, and
incide below the breakup threshold with those considered
Veselova@12#. They can, however, be explicitly singled ou
and inverted as has been done by Alt and Sandhas@15#.
Moreover, the off-the-energy-shell singularities of the dia
onal kernels turn out to be integrable. These, together w
the present results imply that after a few iterations the~suit-
ably modified! effective-two-body AGS equations becom
integral equations with compact kernels.

The plan of the paper is as follows. In Sec. II we brie
recapitulate the relevant definitions and equations of
effective-two-body formulation of the three-body scatteri
theory. For the convenience of those readers who are
interested in mathematical details we summarize in Sec
the results obtained. Detailed proofs of the assertions
deferred to Sec. IV. There we investigate the leading sin
larity of the various contributions to the nondiagonal effe
tive potentials. Combining these results with those conce
ing the singularities of the effective free propagator allows
to find the leading singularities of the~off- and on-shell!
nondiagonal kernels. A summary is given in Sec. V. Vario
auxiliary results are collected in the appendices. In particu
Appendix A provides some of the frequently used transf
mation formulas of Jacobi variables belonging to differe
groupings of the particles. In Appendix B we investigate t
singularity structure of the residue function of the effecti
free propagator. An auxiliary theorem describing the singu
behavior of the off-shell Coulomb-modified form factor
6-2
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MOMENTUM SPACE INTEGRAL EQUATIONS FOR THREE . . . PHYSICAL REVIEW C 61 064006
the on-shell limit is proved in Appendix C. Appendix D con
tains a brief recapitulation of the asymptotic behavior of
three-charged-particle scattering wave function, in
asymptotic regions needed. Finally, an important integra
evaluated in Appendix E.

We choose units such that\5c51. Moreover, unit vec-
tors are denoted by a hat, i.e.,v̂5v/v.

II. EFFECTIVE-TWO-BODY ALT-GRASSBERGER-
SANDHAS „AGS… EQUATIONS

For the convenience of the reader we briefly recapitu
in this section some basic notions of the effective-two-bo
formulation of the three-particle theory within the framewo
of the three-particle AGS integral equations approach@16#.

Consider three distinguishable particles with massesmn

and chargesen , n51,2,3. We use the standard notation: on
one-body quantity an indexa characterizes the particlea, on
a two-body quantity the pair of particles (bg), with b,g
Þa, and finally on a three-body quantity the two-fragme
partition a1(bg) describing free particlesa and (bg).
Throughout we work in the total center-of-mass system.
cobi coordinates are introduced as follows:ka(ra) is the
relative momentum~coordinate! between particlesb andg,
and ma5mbmg /(mb1mg) their reduced mass;qa(ra) de-
notes the relative momentum~coordinate! between particlea
and the center of mass of the pair (bg), the corresponding
reduced mass being defined asMa5ma(mb1mg)/(ma
1mb1mg).

The Hamiltonian of the three-body system is

H5H01V5H01 (
n51

3

Vn , ~1!

with

H05Ka
2/2ma1Qa

2/2Ma ~2!

being the free three-body Hamiltonian.Ka and Qa are the
momentum operators with eigenvalueska and qa , respec-
tively. Moreover,

Va5Va
S1Va

C ~3!

is the full interaction between particlesb andg, consisting
of a short-range (Va

S) and a Coulombic part,

Va
C~ra!5

ebeg

r a
. ~4!

In this paper we assume that the charges of all three part
are of equal sign, i.e., all three pairwise Coulomb potent
are repulsive.

As usual, we define the channel interaction for channea
as the sum of the interactions between particlea and each of
the particlesb andg,
06400
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V̄a5 (
n51

3

d̄naVn5V̄a
S1V̄a

C5 (
n51

3

d̄naVn
S1 (

n51

3

d̄naVn
C .

~5!

Here, d̄ba512dba is the anti-Kronecker-Copelli symbol
This allows an alternative decomposition ofH,

H5Ha1V̄a , ~6!

whereHa5H01Va is the channel Hamiltonian.
The transition from the three-body to the effective-tw

body theory can be effected, e.g., by splitting each of
subsystem interactions into the sum of a separable part p
~possibly nonseparable! remainder. In order not to unnece
sarily complicate the resulting equations we assume
each pair of particles can support one and only one~S-wave!
bound state. Such a restriction is most simply accounted
by choosing the short-range pair potentials as purely se
rable potentials of rank one:

Va
S5uxa&La^xau, a51,2,3. ~7!

Here, uxa& is the so-called form factor andLa the strength
parameter. This provides an obvious decomposition of
full interaction~3! into a separable (Va

S) and a nonseparabl
(Va

C) part. Note that the generalization of the formalism
arbitrary ~but sufficiently smooth! short-range interactions
does not cause any problem since the latter can alway
approximated to arbitrary accuracy by a sum of separa
terms. And it is easily seen that inclusion of an arbitrary b
finite number of bound states~recall that attractive Coulomb
potentials are excluded! will not change our final results.

We introduce some additional notation. Letz5E1 i0,
with E being the total energy of the three-body system. F
thermore, denote byq̄a (q̄b8 ) the on-shell relative momentum
of the two fragments in channela (b), and, e.g., by2Ba
,0 the binding energy of the bound pair (bg) ~we preclude
zero-energy bound states in all subsystems!. Then, energy
conservation requires

E5q̄a
2/2Ma2Ba5q̄b8

2/2Mb2Bb . ~8!

Consider a collision initiating in channela. If the incident
kinetic energyq̄a

2/2Ma is large enough, then four differen
transitionsa→n are possible:n5a corresponds to elastic
scattering,n5b or g to rearrangement processes, andn50
to the breakup reaction leading to three particles in c
tinuum. One of the most important and useful aspects of
effective-two-body formulation of the three-body theory
that the resulting equations couple only the transition am
tudes for all binary processes.~The breakup amplitudes ca
be obtained from the two-fragment amplitudes by quad
ture, or alternatively from a separate set of integral equati
@16#.! They have the structure of coupled Lippman
Schwinger-type equations and are given by@16#
6-3
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Tba~qb8 ,qa ;z!5Vba~qb8 ,qa ;z!

1 (
n51

3 E dqn9

~2p!3
Kbn~qb8 ,qn9 ;z!

3Tna~qn9 ,qa ;z!. ~9!

Here,Tba(qb8 ,qa ;z) is the off-shell reaction amplitude cor
responding to the transition from channela to channelb
since,a priori, qb8Þq̄b8 andqaÞq̄a . The kernels are define
as

Kba~qb8 ,qa ;z!ªVba~qb8 ,qa ;z!G0;a~qa ;z!. ~10!

The effective potentials can be written in two equivale
ways,

Vba~qb8 ,qa ;z!ª^qb8 ,xbuGC~z!2dbaGa
C~z!uxa ,qa&

~11a!

5^qb8 ,xbuGb
C~z!Uba

C ~z!Ga
C~z!uxa ,qa&.

~11b!

Note that as a result of assumption~7!, namely that the short
range interactions are described by separable potentia
rank one, they contain only pure Coulombic quantities. R
resentation~11a! uses the resolvent of the three-particle Co
lomb HamiltonianHC5H01VC5H01(n51

3 Vn
C ,

GC~z!5~z2HC!21, ~12!

besides the resolvent of the Coulomb channel Hamiltoni

Ga
C~z!5~z2H02Va

C!21. ~13!

The ‘‘auxiliary three-body transition operators,’’Uba
C in Eq.

~11b!, are defined in terms of Eq.~12! and the Coulomb par
of the channel interaction~5! as

Uba
C 5 d̄baG0

211(
n

d̄bnd̄anVn
C1V̄b

CGCV̄a
C , ~14!

where

G0~z!5~z2H0!21 ~15!

is the resolvent of the three-free particle Hamiltonian. Alt
natively, they can be found as solutions of the equations

Uba
C 5 d̄baG0

211(
n

d̄bnTn
CG0Uba

C ~16a!

5 d̄baG0
211(

n
d̄bnd̄naTn

C

1(
n,m

d̄bnd̄nmd̄maTn
CG0Tm

C1•••. ~16b!

As usual, the subsystem CoulombT-operatorTa
C is related to

the Coulomb channel resolvent via
06400
t
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Ga
C5G01G0Ta

CG0 . ~17!

Here, and throughout the following, any explicitz depen-
dence is omitted unless required for clarity. Finally, the pla
wave uqa& in channela is the eigenfunction of the momen
tum operatorQa to the eigenvalueqa .

An important special case arises when only two of t
three particles are charged and one is neutral. Such a s
tion is realized, e.g., in deuteron-induced nuclear reactio
In that case, the effective potential~11a! simplifies consider-
ably. To be specific, let the neutral particle carry the index
Thus, onlyV3

CÞ0, and the full three-body Coulomb reso
vent reduces to the Coulomb resolvent for channel
GC(z)[G3

C(z). Using representation~11a! one finds

Vba~qb8 ,qa ;z!5^qb8 ,xbu~12dbada3!G3
C

2dbad̄a3G0uxa ,qa&, ~18!

which isexactto all orders in the Coulomb potential~within
the presently adopted model for the short-range interacti!.

The effective free propagator describing the propagat
of the noninteracting particles,a and (bg), is defined as

G0;a~qa ;z!5
Sa~z2qa

2/2Ma!

z2qa
2/2Ma1Ba

, ~19!

with

Sa
21~ ẑ!5^xauĜa

C~2Ba!Ĝa
C~ ẑ!uxa&. ~20!

Here,

Ĝa
C~ ẑ!5~ ẑ2Ka

2/2ma2Va
C!21 ~21!

is the two-body Coulomb resolvent read in the two-parti
space. For clarity, here and in the following all energ
dependent operators, when read in the two-particle space
characterized by a hat.

We point out that, with a suitable choice of the norma
ization of the form factor, the bound state wave function
the pair (bg) is given as

uca&5Ĝa
C~2Ba!uxa&. ~22!

If uca& is normalized to unity one has on the energy sh
i.e., for z5E1 i0 and qa5q̄a , or equivalently for E

2q̄a
2/2Ma52Ba ,

Sa~2Ba!51. ~23!

III. LEADING SINGULARITIES OF THE NONDIAGONAL
KERNELS Kba : RESUMMÉ

The compactness of the effective-two-body AGS integ
equations depends on the analytical properties of the ef
tive potentialsVba(qb8 ,qa ;z) and propagatorsG0;a(qa ;z),
which occur in the kernelsKba(qb8 ,qa ;z), Eq. ~10!, and in
the inhomogeneous term of Eq.~9!. In this section we pro-
6-4
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vide a synopsis of the results concerning the leading sin
larities of the nondiagonal parts of these kernels~i.e., for b
Þa), the investigation of the diagonal part (b5a) being
deferred to a subsequent publication. The detailed invest
tion of the singularity structure is presented in the followi
section.

A. General remarks

Consider the nondiagonal effective potent
Vba(qb8 ,qa ;z) which, according to Eq.~11a!, is given as

Vba~qb8 ,qa ;z!5^qb8 ,xbuGC~z!uxa ,qa&, with bÞa.
~24!

Its physical interpretation is that of the~on- or off-the-
energy-shell! transfer amplitude of particleg from the in-
coming (bg) to the outgoing bound state (ag), while allow-
ing for all possible successive Coulomb scatterings of
particlesa, b, andg, in the intermediate state as represen
by the three-body Coulomb resolventGC.

If all intermediate-state Coulomb scatterings are
glected, i.e., ifGC is replaced byG0, expression~24! reduces
to the lowest-order particle-g-transfer amplitude~‘‘pole am-
plitude’’!

V ba
(0)~qb8 ,qa ;z!5^qb8 ,xbuG0~z!uxa ,qa&. ~25!

This is nothing but the familiar effective potential pertainin
to the scattering of uncharged particles which is exact wit
our simple model for the short-range interaction. Its diagra
matic representation is given in Fig. 1.

B. Leading singularity of V ba
„0…

„qb8 ,qa ;z…

It is helpful to recapitulate the singular behavior
V ba

(0)(qb8 ,qa ;z), z5E1 i0, which is the effective potential in
the absence of Coulomb interactions. This also serves to
troduce some notation. The corresponding analytic exp
sion is

V ba
(0)~qb8 ,qa ;z!522mb

xb* ~kb8 !xa~ka!

sb~qb8 ;z!
. ~26!

Here,

ka5eab~qb81lbgqa! and kb85eba~qa1lagqb8 ! ~27!

FIG. 1. Nondiagonal effective potential for neutral particle
Semicircles denote the neutral-particle form factors.
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are the relative momenta between particlesb and g in the
vertex (bg)→b1g, and between particlesa and g in the
vertex (ag)→a1g, respectively, expressed as linear co
binations of the incoming and the outgoing momenta acco
ing to Eq.~A2!. The following notation is used:

lnm5mn /~mn1mm!512lmn , nÞm; ~28!

eab52eba is the antisymmetric symbol witheab511 if
(a,b) is a cyclic ordering of the indices~1,2,3!. Moreover,

sb~qb8 ;z!ªkb8
222mbẑb5~qa1lagqb8 !222mbẑb ,

~29!

with

ẑb[Êb1 i0, ÊbªE2qb8
2/2Mb . ~30!

That is, Êb is the energy parameter for the subsystema
1g). Note that for on-shell values of the momentumqb8

5q̄b8 , cf. Eq. ~8!, one has

Êbuq
b85q̄

b8
52Bb ; ~31!

thus, the deviation ofÊb from 2Bb , is a measure of the
‘‘off-shellity.’’

Similarly, we introduce

sa~qa ;z!:5ka
222maẑa5~qb81lbgqa!222maẑa .

~32!

Here, ẑa is defined in analogy to Eq.~30! but in terms of
a-channel quantities:

ẑa[Êa1 i0, ÊaªE2qa
2/2Ma , ~33!

with Êa being the energy parameter for the subsystemb
1g). One easily derives the relation

sa~qa ;z!/ma5sb~qb8 ;z!/mb , ~34!

which holds true in particular also for on-shell values of t
momenta. The corresponding quantities are denoted by

s̄b :5~ q̄a1lagq̄b8 !212mbBb ,

s̄aª~ q̄b81lbgq̄a!212maBa . ~35!

From Eq.~26! the familiar result follows, namely that th
main singularity ofV ba

(0)(qb8 ,qa ;z) is a pole at

sb~qb8 ;z!505sa~qa ;z!. ~36!

For z5E1 i0,E>0, it is located in the region of integratio
over qa , while for E,0 or for on-shell values of the mo
menta (qb85q̄b8 andqa5q̄a) this pole is situated off the rea

axis in the complexqa plane at Eq.~36! or at s̄b505s̄a ,
respectively. Singularities like the pole ofV ba

(0)(qb8 ,qa ;z) at
Eq. ~36!, the position of which depend on the energy, a
termed ‘‘dynamic’’ singularities.

.

6-5
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We point out that at the singular point~36!, the angle
betweenqb8 andqa is determined by the magnitudesqb8 and
qa , and byz.

Remark.V ba
(0)(qb8 ,qa ;z) has additional singularities com

ing from the vertex functionsxb(kb8 ) andxa(ka) which are,
however, related to the characteristics of the short-range
teractionsVb

S and Va
S . As is well known, the latter are no

dangerous because they are located in the unphysical re
at kb8

2,0 and ka
2,0, respectively. Since their position

independent of energy they are called ‘‘static’’ singularitie
These facts can easily be checked for the case of a sim
Yukawa-typeS-wave form factor which in momentum spac
reads as

xa~ka!51/~ka
21ba

2 !. ~37!

Here, the quantityba
21 represents a measure of the ‘‘range

of the interactionVa
S . Singularities of this type are of no

interest in the present context.

C. Leading singularity of Vba„qb8 ,qa ;z…

Let us state the assertion in the following form.
Theorem.The leading~dynamic! singularity of the nondi-

agonal effective potential~24! with respect to the momentum
transfer is in general a branch point at

sb~qb8 ;z!505sa~qa ;z!. ~38!

~i! Consider off-shell values of the momentaqb8Þq̄b8 and

qaÞq̄a , satisfying

qb8Þq̃bªA2MbE and qaÞq̃aªA2MaE, ~39!

which impliesÊbÞ0 andÊaÞ0. With z5E1 i0, in theqb8
plane the locus of this branch point is determined byqb8

2

1Mb(qa1lagqb8 )2/mb5q̃b
2 , and in theqa plane by qa

2

1Ma(qb81lbgqa)2/ma5q̃a
2 . In its vicinity, Vba(qb8 ,qa ;z)

behaves as

Vba~qb8 ,qa ;z! ;

sb~qb8 ;z!→0
1

sb~qb8 ;z!12 i (ĥa1ĥb)

~qb8Þq̃b ,q̄b8 ; qaÞq̃a ,q̄a!, ~40!

where

ĥa[ĥa~A2maẑa!5ebegma /A2maẑa, ~41a!

ĥb[ĥb~A2mbẑb!5egeamb /A2mbẑb ~41b!

are the Coulomb parameters pertaining to the particlesb and
g, anda andg, respectively.

~ii ! The special pointsqb85q̃b and/orqa5q̃a have to be
treated separately. For this purpose we introduce the n
tions

q̃b8[q̃bq̂b8 and q̃a[q̃aq̂a . ~42!
06400
n-

ion

.
le

ta-

Fixing the outgoing momentum atqb85q̃b we haveÊb50

and hence@cf. Eqs.~29! and~30!# sb(q̃b ;z)5kb8
22 i0, with

kb8 defined as in Eq.~27! but as linear combination ofq̃b8 and

qa . Then, if qaÞq̃a , the leading singular behavior of th
nondiagonal effective potential~24! is of the form

Vba~ q̃b8 ,qa ;z! ;

kb8→0 C~kb8 !

kb8
222i ĥa1 ihg

~qaÞq̃a ,q̄a!, ~43!

with

lim
kb8→0

C~kb8 !50. ~44!

In other words,Vba(q̃b8 ,qa ;z) is actually less singular than
described by the exponent in Eq.~43!. Here, hg
5eaebmg /kg with kg is considered as linear combination
q̃b8 andqa . Let us putz5E1 i0. In theqb8 -plane, this branch

point is located atqb85q̃b . In the qa plane, its locus is

determined bykb8
2[(qa1lagq̃b8 )250 which for E>0, i.e.,

for real q̃b , can be on the positive realqa axis, while for
E,0 it is always located at complex values ofqa . An
analogous result holds forqb8Þq̃b but qa5q̃a when Êa50

and sa(q̃a ;z)5ka
22 i0, with ka defined as in Eq.~27! but

with q̃a instead ofqa . In that case, the singular behavior
the limit sa(q̃a ;z)→0 is of the form

Vba~qb8 ,q̃a ;z! ;

ka→0 C8~ka!

ka
222i ĥb1 ihg

~qb8Þq̃b ,q̄b8 !, ~45!

again with

lim
ka→0

C8~ka!50 ~46!

andhg as defined above but withkg being considered now
as linear combination ofqb8 and q̃a . And, finally, if qa

5q̃a and qb85q̃b , the nondiagonal effective potential~24!

behaves forsb(q̃b ;z)5kb8
25mbka

2/ma→0 as

Vba~ q̃b8 ,q̃a ;z! ;

kb8→0

D~kb8 !kb8
22 for E50, ~47!

with

lim
kb8→0

D~kb8 !50. ~48!

We note that, on account of the linear relations~A1! or ~A2!,
for qa5q̃a and qb85q̃b the limiting valueskb8505ka can
be reached only forq̃b5q̃a50, i.e., forE50.

~iii ! An important special case arises when either the
coming and/or the outgoing momentum equals its on-s
value, that is, whenqa→q̄a ~i.e., Êa→2Ba) and/or qb8

→q̄b8 ~i.e., Êb→2Bb), cf. Eq. ~8!. Denote the Coulomb pa
rameters for the bound pairs (bg) and (ag) by ha

(bs) and
hb

(bs) , respectively. They are given explicitly as
6-6
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ha
(bs)5ebegma /A2maBa, hb

(bs)5eaegma /A2mbBb.
~49!

Then the leading singular behavior of the effective poten
can be obtained from the previous results with the subs
tions ĥa→2 iha

(bs) and/or ĥb→2 ihb
(bs) . For instance, the

behavior of the fully on-shell effective potential in the vicin
ity of the leading singularity at

s̄b505s̄a ~50!

is again a branch point of the form

Vba~ q̄b8 ,q̄a ;E1 i0! ;

sb~ q̄b8 ;z!→0
1

s̄
b

12ha
(bs)

2hb
(bs) . ~51!

Its position is always off the real axis in the complexqa- or
qb-plane. Note that if, e.g.,qa5q̄a then the cases~45! and
~47! cannot occur sinceq̄a.q̃a ~because of our requiremen
Bn.0 for n51,2,3); analogously forqb85q̄b8 .

~iv! The branch point singularities at the positions~38!
and ~50!, respectively, arise solely from the Coulomb mod
fications of the initial- and final-state form factors whi
Coulomb interactions of the three particles in the interme
ate state only alter the strength of the singularity but not
type or position.

Note. The assertions of this theorem are valid if t
charges of all three particles are of the same sign~all Cou-
lomb potentials are repulsive!.

Corollary. If only two of the three particles, say 1 and
are charged, and particle 3 is neutral, the leading singula
of the effective potential is weaker. Explicitly one has

Vba~qb8 ,qa ;z! ;

sb~qb8 ;z!→0
db3

sb~qb8 ;z!12 i ĥb
1

da3

sb~qb8 ;z!12 i ĥa

1
d̄b3d̄a3

sb~qb8 ;z!
, ~52a!

Vba~ q̃b8 ,qa ;z! ;

kb8→0

kb8
0db31

da3

kb8
222i ĥa

1
d̄b3d̄a3

kb8
2

,

~52b!

Vba~qb8 ,q̃a ;z! ;

ka→0 db3

ka
222i ĥb

1ka
0da31

d̄b3d̄a3

ka
2

, ~52c!

Vba~ q̃b8 ,q̃a ;z! ;

kb8→0

kb8
0~db31da3!1

d̄b3d̄a3

kb8
2

. ~52d!

Comment. Comparison with the effective potentia
V ba

(0)(qb8 ,qa ;z) for neutral particles shows that quite gene
ally the sole additional effect of the Coulomb interactio
consists in converting the pole of the latter into a bran
point, without shifting the position of the singularity.
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D. Singular behavior of the kernel Kba„qb8 ,qa ;E¿ i0…

Given the leading singularity of the nondiagonal effecti
potentialVba(qb8 ,qa ;E1 i0), the singularity structure of the
kernelKba(qb8 ,qa ;E1 i0), Eq.~10!, for bÞa can be eluci-
dated. Integration over the right-hand variable, presently
noted byqa , is implied in Eq. ~9!; qb8 is a vector-valued
parameter. The leading singularities of the kernel are
branch point that originates fromVba(qb8 ,qa ;E1 i0) and is
located as described in Sec. III C, and the pole of the eff
tive propagatorG0;a(qa ;E1 i0), Eq. ~19!, at the ‘‘on-shell
point’’ qa5q̄a . Note that, according to Appendix B, for th
repulsive Coulomb potentials considered the numerator fu
tion Sa(E1 i02qa

2/2Ma) of G0;a is not dangerous and
hence, will not give rise to any problem when the integrati
over qa is performed.

~i! Since the singularity ofVba(qb8 ,qa ;E1 i0) can lie on
the integration contour only for off-shell values of the m
menta~i.e., for qb8Þq̄b8 and qaÞq̄a), it can never coincide
with the propagator pole.

~ii ! If qb8 equals its on-shell valueq̄b8 , the leading singu-

larity of Kba(q̄b8 ,qa ;z) is, for all physically accessible val
ues ofqa , the propagator pole. For, the leading singular
of Vba(q̄b8 ,qa ;E1 i0) at (q̄b81lbgqa)212maBa50 is al-
ways located outside the integration contour and, hence
harmless. An analogous situation prevails ifqa equals its
on-shell valueq̄a , or if qb85q̄b8 andqa5q̄a .

Summarizing we have the result that leading singularit
of the nondiagonal kernels are integrable, for momenta b
off and on the energy shell, and can thus be treated by s
dard methods. This concludes the overview of the singula
structure of the nondiagonal kernel.

IV. PROOFS OF THE ASSERTIONS

A. Decomposition ofVba„qb8 ,qa ;z…

As has already been pointed out and will become cl
soon, the Coulomb interactions in the initial and final ver
ces play a special role. It, therefore, proves advantageou
work with the representation~11b! where the corresponding
Coulomb channel resolvents are already factored out. Ind
the resolventGa

C (Gb
C) describes the propagation of th

three-particle system (a,b,g) with allowance for Coulomb
scatterings to all orders between particlesb andg after the
virtual decay (bg)→b1g of the initial bound state (bg)
@of a and g before the virtual recombinationa1g→(ag)
leading to the formation of the final bound state (ag)].

First we note that

Ga
C~z!uxa ,qa&5uqa&Ĝa

C~ ẑa!uxa&, ~53!

with Ĝa
C( ẑa) defined in Eq.~21!. Denoting byĜ0( ẑa) the

corresponding free two-body resolvent, the so-called ‘‘o
shell Coulomb-modified form factor’’~i.e., off the two-body
energy shell! is introduced as

fa~ka ; ẑa![^kaufa~ ẑa!&ª^kauĜ0
21~ ẑa!Ĝa

C~ ẑa!uxa&.
~54!
6-7



a-

b-
-
te

ib
e-
r

al

in
rm

m
ic

d

ed
or
r-

ar-

s

n

the
the

A. M. MUKHAMEDZHANOV, E. O. ALT, AND G. V. AVAKOV PHYSICAL REVIEW C 61 064006
Thus, using the explicit definition~14! of Uba
C , Eq.~11b! can

be rewritten as

Vba~qb8 ,qa ;z!5^qb8 ,fbuG01G0Vg
CG0

1G0V̄b
CGCV̄a

CG0ufa ,qa&, gÞa,b,

~55!

5V ba
(a)~qb8 ,qa ;z!1V ba

(b)~qb8 ,qa ;z!

1Ṽba~qb8 ,qa ;z!, ~56!

with

V ba
(a)~qb8 ,qa ;z!ª^qb8 ,fb~ ẑb* !uG0~z!ufa~ ẑa!,qa&,

~57!

V ba
(b)~qb8 ,qa ;z!ª^qb8 ,fb~ ẑb* !uG0~z!

3Vg
CG0~z!ufa~ ẑa!,qa&,

gÞa,b, ~58!

Ṽba~qb8 ,qa ;z!ª^qb8 ,fb~ ẑb* !uG0~z!V̄b
CGC~z!

3V̄a
CG0~z!ufa~ ẑa!,qa&. ~59!

The first termV ba
(a)(qb8 ,qa ;z) describes the transfer mech

nism of particleg from the incoming bound state (bg), to
the outgoing one composed of particles (ag), with Coulomb
scattering to all orders of particlesb and g in the initial
vertex (bg)→b1g, and of a and g in the final vertex
(ag)→a1g, having been absorbed in the Coulom
modified form factorsufa& and ufb&. The second contribu
tion V ba

(b)(qb8 ,qa ;z) contains an additional intermediate-sta
Coulomb interactionVg

C between the particlesa and b
which are unbound before and after the interaction descr
by Vg

C . The last term, finally, comprises all intermediat
state Coulomb scatterings between the three particles as
resented by the three-body Coulomb resolvent.

In the following we will show that, except for the speci
points qa5q̃a and/or qb85q̃b , the full effective potential
Vba(qb8 ,qa ;z) has the same leading dynamic singularity
the momentum transfer plane as the simple, first te
V ba

(a)(qb8 ,qa ;z) in the representation~56!. Hereby, leading
singularity is defined as that singularity which results fro
the coincidence of the singularities of all the operators wh
are sandwiched between the states^qb8 ,fbu and ufa ,qa&,
with the singularities of the off-shell Coulomb-modifie
form factorsufa& and ufb&. In other words, we will prove
the theorem that the replacement of@G01G0Vg

CG0

1G0V̄b
CGCV̄a

CG0# in Eq. ~55! by G0 changes neither the
type ~in the case under consideration, branch point!, nor the
location of the leading singularity. This goal will be achiev
by showing that the second and the third term in the m
detailed representation~56! have the same leading singula
ity in the momentum transfer plane asV ba

(a)(qb8 ,qa ;z). The

pointsqb85q̃b andqa5q̃a are investigated separately.
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B. Leading singularity of V ba
„a…

„qb8 ,qa ;z…

We start by investigating the singular behavior of Eq.~57!
which in the momentum space representation reads as

V ba
(a)~qb8 ,qa ;z!522mb

fb* ~kb8 ; ẑb* !fa~ka ; ẑa!

sb~qb8 ;z!
. ~60!

Evidently, its main singularity is located atsb(qb8 ;z)50
5sa(qa ;z) as the free Green’s function has a pole singul
ity there. In addition,V ba

(a)(qb8 ,qa ;z) has also singularities
coming from the Coulomb-modified vertex function
fb(kb8 ; ẑb) andfa(ka ; ẑa).

As shown in Appendix C, in the limitsa(qa ;z)[(ka
2

22maẑa)→0, with ẑa5Êa1 i0, the off-shell Coulomb-
modified form factorfa(ka ; ẑa) behaves as

fa~ka ; ẑa! ;

ka
2

22maẑa→0H ~ka
222maẑa! i ĥa for ÊaÞ0

ka
2 for Êa50.

~61!

It, therefore, proves to be convenient to put

fa~ka ; ẑa!5:~ka
222maẑa! i ĥaf̃a~ka ; ẑa! for ÊaÞ0,

~62a!

fa~ka ;0!5:ka
2f̃a~ka ;0! for Êa50, ~62b!

with the ‘‘reduced Coulomb-modified form factor’’f̃a(•)
being regular and nonvanishing at

ka
222maẑa50, ẑa5Êa1 i0, ;Êa . ~63!

The Coulomb parameterĥa is defined in Eq.~41a!. Note that
the on-shell caseÊa→2B̂a , and henceĥa→2 i ĥa

(bs) , is

included in Eq.~62a!. Though, alsof̃a(ka ; ẑa) has singu-
larities but they lie farther away from the physical regio
than the singularity offa(ka ; ẑa) at Eq.~63!, their specific
location depending on the decay properties of the tail of
short-range potential. This can be checked explicitly for
case of a form factor of the type~37! ~cf. Appendix C!.

Analogously, forfb* (kb8 ; ẑb* ), with ẑb5Êb1 i0, one de-
fines

fb* ~kb8 ; ẑb* !5:~kb8
222mbẑb! i ĥbf̃b* ~kb8 ; ẑb* ! for ÊbÞ0,

~64a!

fb* ~kb8 ;0!5:kb8
2f̃b* ~kb ;0! for Êb50, ~64b!

the Coulomb parameter having been defined in Eq.~41b!. In

Eq. ~64a! we have made use of the fact thatĥb* (A2mbẑb* )

52ĥb(A2mbẑb) for bothÊb.0 andÊb,0. Thus, its lead-
ing singularity is located atsb(qb8 ;z)[kb8

222mbẑb50.
The singular points in Eqs.~62a!, ~62b!, and ~64a!, ~64b!
coincide, on account of the identity~34!. It is apparent that
6-8
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the leading singularities of both off-shell Coulomb-modifi
form factors fb(kb8 ; ẑb) and fa(ka ; ẑa) are in general
branch points.

The coincidence of the singularities of the free Gree
function and of the initial- and final-state Coulomb-modifi
form factors at Eq.~38! produces the leading singularity o
the contributionV ba

(a)(qb8 ,qa ;z). Its behavior in the vicinity
of this singularity can be read off directly from Eq.~60!.
Apart from some trivial mass factor, it is given by

V ba
(a)~qb8 ,qa ;z! ;

sb~qb8 ;z!→0f̃b* ~kb8 ; ẑb* !f̃a~ka ; ẑa!

sb~qb8 ;z!12 i (ĥa1ĥb)

~qb8Þq̃b ,q̄b8 ; qaÞq̃a ,q̄a!,

~65a!

V ba
(a)~ q̃b8 ,qa ;z! ;

kb8→0

kb8
2i ĥaf̃b* ~0;0!f̃a~ka ; ẑa!

~qaÞq̃a ,q̄a!, ~65b!

V ba
(a)~qb8 ,q̃a ;z! ;

ka→0

ka
2i ĥbf̃b* ~kb8 ; ẑb* !f̃a~0;0!

~qbÞq̃b ,q̄b8 !, ~65c!

V ba
(a)~ q̃b8 ,q̃a ;z! ;

kb8→0

kb8
2f̃b* ~0;0!f̃a~0;0!. ~65d!

@Concerning the case~65d! recall the remark following Eq.
~48!.# It is obvious that the leading singular behavior
V ba

(a)(qb8 ,qa ;z), if qb8 or qa or both equal their on-shell valu

q̄b8 andq̄a , respectively, in the limits̄b→0 can be obtained

from Eqs. ~65a!–~65c! by the substitutionsi ĥb→hb
(bs)

and/ori ĥa→ha
(bs) . We point out that on account of our a

sumption that all binding energies have nonzero values,
always hasq̄nÞq̃n ,n51,2,3.
06400
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Summarizing we have found that the leading dynamic s
gularity of V ba

(a)(qb8 ,qa ;z) is in general a branch point at Eq
~38!. The singularities of the reduced Coulomb-modifi
form factors, which yield further~the so-called static! singu-
larities of V ba

(a)(qb8 ,qa ;z), are located outside the physic
regions 0<kb8 ,ka,`.

C. Leading singularity of V ba
„b…

„qb8 ,qa ;z…

Theorem 1.The nondiagonal particle transfer amplitud
V ba

(b)(qb8 ,qa ;z) has the same leading singularity with respe
to the momentum transfer asV ba

(a)(qb8 ,qa ;z).
Proof of Theorem 1.Instead of considering the secon

term ~58! in the decomposition~55!, which is displayed in
diagrammatic form in Fig. 2 and describes single rescatte
in the intermediate state, we investigate the more gen
expression

Ṽba
(b)~qb8 ,qa ;z!5^qb8 ,fb~ ẑb* !uG0~z!

3Tg
C~z!G0~z!ufa~ ẑa!,qa&,

gÞa,b, ~66!

which contains the CoulombT-matrix Tg
C instead of the Cou-

lomb potentialVg
C . The leading singularity of this expressio

is generated by the coincidence of the singularities of t
free Green’s functions with those of the two Coulom
modified form factorsfa and fb , and with the forward-
scattering singularity of the CoulombT-matrix. Explicitly we
have

FIG. 2. Nondiagonal effective potential with single Coulomb
rescattering in the intermediate state. Dashed semicircles denot
Coulomb-modified form factors.
gral
Ṽba
(b)~qb8 ,qa ;z!5E dk

~2p!3

fb* ~kb9 ; ẑb* !T̂g
C~kg9 ,kg8 ; ẑg!fa~ka8 ; ẑa!

@z2kb9
2/2mb2qb8

2/2Mb#@z2ka8
2/2ma2qa

2/2Ma#
. ~67!

Here, the additional notationskb95eab(k1lgaqb8 ), ka85eba(k1lgbqa), kg95eba(qb81lbak), kg85eab(qa1labk), and

ẑg5z2k2/2Mg , have been introduced. For the CoulombT-matrix, restricted to the two-body space, we use the inte
representation which follows from Eq. (38) of Schwinger@19# by partial integration:

T̂g
C~kg9 ,kg8 ; ẑg!5

2peaebmg

ẑg
S ẑg2

kg9
2

2mg
D S ẑg2

kg8
2

2mg
D E

0

1

dt
~ t221!t i ĥg

F ~kg92kg8 !2t2
mg

2ẑg
S ẑg2

kg9
2

2mg
D S ẑg2

kg8
2

2mg
D ~12t !2G 2 , ~68!

where

ĥg5eaebmg /A2mgẑg ~69!
6-9
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is the Coulomb parameter, andẑg5Êg1 i0 with Êg being the relative kinetic energy, of particlesa andb. In Eq. ~68! it is
assumed thatÊgÞ0. We mention that a representation that is valid in the vicinity of the zero energy region has
developed, e.g., in Ref.@20#. We first consider the case~39!. Introducing the representation~68! in Eq. ~67!, and bearing in
mind Eqs.~62a!, ~64a!, and the identitiesẑg2kg9

2/2mg5 ẑb2kb9
2/2mb and ẑg2kg8

2/2mg5 ẑa2ka8
2/2ma , one obtains

Ṽba
(b)~qb8 ,qa ;z!52pmgeaebE dk

~2p!3

1

ẑg

f̃b* ~kb9 ; ẑb* !f̃a~ka8 ; ẑa!

@kb9
222mbẑb#2 i ĥb@ka8

222maẑa#2 i ĥa

3E
0

1

dt
~ t221!t i ĥg

F ~kg92kg8 !2t2
mg

2ẑg
S ẑb2

kb9
2

2mb
D S ẑa2

ka8
2

2ma
D ~12t !2G 2 . ~70!
t i
e

t b
r

he
ue
of

1.
n.

as

es
and
o-
art

nge
-

the
Change of the integration variable fromk to k85kg92kg8
5eba(qb81qa1k) allows us to write

kb9
222mbẑb5k8222k8•kb81sb~qb8 ;z!, ~71!

ka8
222maẑa5k8212k8•ka1sa~qa ;z!. ~72!

Thus, making the scaling transformation

k85sb~qb8 ;z!v ~73!

and taking into account the identity~34! one finds that

Ṽba
(b)~qb8 ,qa ;z! 5

sb~qb8 ;z!→0 f b~qb8 ,qa ;z!

sb~qb8 ;z!12 i (ĥa1ĥb)

~qb8Þq̃b ,q̄b8 ; qaÞq̃a ,q̄a!,

~74!

where f b(qb8 ,qa ;z) is a regular function atsb(qb8 ;z)50.

The behavior at the exceptional pointsqb85q̃b and/orqa

5q̃a can be studied by similar means. Quite generally i
obvious that by inserting the form factor behavior display
in Eqs. ~62b! and/or ~64b! in Ṽba(qb8 ,qa;z), Eq. ~67!, the
number of singular denominators under the integral sign
reduced. Consequently, the behavior of the integral mus
expected to become less singular. Indeed, an analogous
soning shows that forqb85q̃b but qaÞq̃a ,q̄a

Ṽba
(b)~ q̃b8 ,qa ;z! ;

kb8→0

kb8
2i ĥa f b8~ q̃b8 ,qa ;z!, ~75!

for qa5q̃a but qb8Þq̃b ,q̄b8

Ṽba
(b)~qb8 ,q̃a ;z! ;

ka→0

ka
2i ĥb f b9~qb8 ,q̃a ;z!, ~76!

and finally forqb85q̃b andqa5q̃a

Ṽba
(b)~ q̃b8 ,q̃a ;z! ;

kb8→0

kb8
0f b-~0,0;z! ~77!
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with f b8 , f b9 , f b- being nonsingular atsb(q̃b ;z)50 and/or

sa(q̃a ;z)50.
A look at the above derivation makes clear that, if t

final and/or the initial momentum equals its on-shell val
q̄b8 and/orq̄a , respectively, the leading singular behavior

the effective potential in the limits̄b→0 follows from the
appropriate expression by the substitutionsi ĥb→hb

(bs)

and/ori ĥa→ha
(bs) . This concludes the proof of Theorem

From this result the following conclusions can be draw
~i! V ba

(b)(qb8 ,qa ;z), which is the Born part of

Ṽba
(b)(qb8 ,qa ;z), has likewise the structure~74!–~76!, and

therefore shows the same branch point singularity
V ba

(a)(qb8 ,qa ;z); cf. Eqs.~65a!–~65c!.

~ii ! By addingV ba
(a)(qb8 ,qa ;z) to Ṽba

(b)(qb8 ,qa ;z) it follows
that also the Coulomb channel resolventGg

C , with gÞa,b,
when sandwiched between statesufa(z),qa& and
ufb(z),qb&, behaves in the vicinity of Eq.~38! effectively
like G0.

Corollary. For the case that only two of the three particl
are charged and one is neutral, the results of Secs. IV B
IV C already provide the complete proof of the main The
rem, namely that the leading singularity of the exchange p
(bÞa) of the full effective potential~18! at the point~38! is
of the same type as that of the elementary particle excha
contributionV ba

(a)(qb8 ,qa ;z). This is most easily seen by re
writing Eq. ~18! for bÞa more explicitly as

Vba~qb8 ,qa ;z!5da3^qb8 ,xbuG0~z!ufa~ ẑa!,qa&

1db3^qb8 ,fb~ ẑb* !uG0~z!uxa ,qa&

1 d̄a3d̄b3^qb8 ,xbuG3
Cuxa ,qa&. ~78!

For the first two terms the result~65a!–~65c! can be taken
over directly, keeping in mind thatĥb50 in the first, and
ĥa50 in the second term. Finally, as a special case of
above comment~ii !, the third term in Eq.~78! is easily seen
to behave, in the limit sb(qb8 ;z)→0, like
^qb8 ,xbuG0uxa ,qa&, cf. Eq. ~26!.
6-10



in

le

o
rb
ow

u
in
n

t-
tiv
dy
or

t

en
l

re-

hird

he

ral,

e

MOMENTUM SPACE INTEGRAL EQUATIONS FOR THREE . . . PHYSICAL REVIEW C 61 064006
D. Leading singularity of Ṽba„qb8 ,qa ;z…

1. Statement of Theorem 2

Consider now the singular behavior ofṼba(qb8 ,qa ;z)

5^qb8 ,fbuOufa ,qa&, with OªG0V̄b
CGCV̄a

CG0 @cf. Eq.~59!#
which contains all possible Coulomb interactions: it beg
with the incoming-channel interactionV̄a

C , ends up with the

outgoing-channel interactionV̄b
C , while GC takes into ac-

count all possible Coulomb interactions between partic
a, b, andg, in the intermediate state.

It is to be suspected that straightforward generalization
Theorem 1 to terms describing multiple rescattering of a
trary order in the intermediate state as they would foll
from a Neumann series expansion ofGC, is not possible.
For, the latter leads to products with aninfinite number of
operators Tn

C
„this is most easily seen by usingGC

5dbaGa
C1Gb

CUba
C Ga

C @cf. Eqs.~11a! and ~11b!# and intro-
ducing there the expansion~16b!…. This fact could cause
problems with the convergence of the series near the sing
point. However, it will be shown that near the leading s
gularity of the nondiagonal effective potential contributio
Ṽba(qb8 ,qa ;z), even the operatorO which contains the
three-body Coulomb resolventGC may effectively be re-
placed byG0.

Theorem 2.Even an infinite number of Coulomb resca
terings in the intermediate state of the nondiagonal effec
potential Vba(qb8 ,qa ;z), as represented by the three-bo
Coulomb resolventGC, does change neither position n
character~providedqb8Þq̃b andqaÞq̃a) of the leading sin-
gularity in the momentum transfer variable as compared
its lowest-order contributionV ba

(a)(qb8 ,qa ;z), but alters its

strength. However, at the special pointsqb85q̃b and/or qa

5q̃a , the character of the singularity is different.

2. Preliminaries

The proof of the theorem will be based on the repres
tation ~55! of the nondiagonal effective potentia
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Vba(qb8 ,qa ;z). Since it has already been shown in the p
ceding sections that bothV ba

(a)(qb8 ,qa ;z) andV ba
(b)(qb8 ,qa ;z)

have the same leading singularity~for qaÞq̃a ,qb8Þq̃b), it
remains to prove that the same holds true also for the t
term Ṽba(qb8 ,qa ;z).

According to its definition~59!, Ṽba(qb8 ,qa ;z) can be
written as a sum of four terms

Ṽba~qb8 ,qa ;z!5 (
nÞb,sÞa

^qb8 ,fbuG0Vn
CGC

3Vs
CG0ufa ,qa&, bÞa. ~79!

Consider, for example, the term withs5b andn5a,

Ṽba
(ab)~qb8 ,qa ;z!ª^qb8 ,fbuG0Va

CGCVb
CG0ufa ,qa&,

~80!

which is represented in diagrammatical form in Fig. 3. T
leading singularity ofṼba

(ab)(qb8 ,qa ;z) is generated by the
coincidence of the poles of twoG0’s, of the Coulomb poten-
tials Vb

C and Vb
C , of the three-body Coulomb resolventGC,

and of the branch point singularities which are, in gene
present in the Coulomb-modified form factorsfa andfb .

We first treat the case~39!, i.e., qb8Þq̃b andqaÞq̃a . In
the momentum representation we have explicitly

FIG. 3. Contribution~80! to the exact nondiagonal effectiv
potential.
ree-body
Ṽba
(ab)~qb8 ,qa ;z!5E dka9

~2p!3E dqa9

~2p!3E dkb9

~2p!3E dqb9

~2p!3

f̃b* @eba~qa91lagqb8 !; ẑb* #

@~qa91lagqb8 !222mbẑb#12 i ĥb
Va

C@ka92eab

3~qb81lbgqa9 !#GC~ka9 ,qa9 ;kb9 ,qb9 ;z!Vb
C@kb92eba~qa1lagqb9 !#

f̃a@eab~qb91lbgqa!; ẑa#

@~qb91lbgqa!222maẑa#12 i ĥa
.

~81!

In what follows we drop the argumentẑn in the reduced Coulomb-modified form factorsf̃n unless required for clarity. Since
we assume that the charges of all three particles are of equal sign, i.e., that all Coulomb potentials are repulsive, the th
Coulomb resolvent has the following spectral representation in coordinate space:

^ra8 ,ra8 uGC~z!ura ,ra&5E dka
0

~2p!3E dqa
0

~2p!3

Ck
a
0 ,q

a
0

C(1)
~ra8 ,ra8 !Ck

a
0 ,q

a
0

C(1)*
~ra ,ra!

Fz2
ka

02

2ma
2

qa
02

2Ma
G , ~82!
6-11
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and in momentum space

^ka8 ,qa8 uGC~z!uka ,qa&5E dka
0

~2p!3E dqa
0

~2p!3

Ck
a
0 ,q

a
0

C(1)
~ka8 ,qa8 !Ck

a
0 ,q

a
0

C(1)*
~ka ,qa!

Fz2
ka

02

2ma
2

qa
02

2Ma
G . ~83!

Here,Ck
a
0 ,q

a
0

C(1)
(ra ,ra) @Ck

a
0 ,q

a
0

C(1)
(ka ,qa)# is the coordinate-@momentum-#space representation of the three-body Coulomb s

tering wave function for three particles in continuum, with on-shell momentaka
0 and qa

0 , and total energyka
02

/2ma

1qa
02

/2Ma where the first part represents the relative kinetic energy of particlesb and g, and the second one the relativ
kinetic energy of particlea and the center of mass of the pair (bg).

3. Leading singularity ofṼba
„2…„ab…

„qb8 ,qa ;z…

Before investigatingṼba
(ab)(qb8 ,qa ;z), it proves helpful to first consider the simpler expression which results by substit

in Eq. ~81! the free Green’s function for the three-body Coulomb Green’s function. In this way one obtains just one
second-order terms of the effective potential, to be denoted byṼba

(2)(ab)(qb8 ,qa ;z). The momentum space representation of
spectral resolution of the free Green’s function is

^ka9 ,qa9 uG0~z!ukb9 ,qb9 &5E dka
0

~2p!3E dqa
0

~2p!3

d~ka92ka
0 !d~qa92qa

0 !

Fz2
ka

02

2ma
2

qa
02

2Ma
G d@kb92~ebamaqa

0/Mb2lagka
0 !#d@qb91~ebaka

01lbgqa
0 !#

5E dqb
0

~2p!3E dqa
0

~2p!3

d@ka92eab~qb
01lbgqa

0 !#d~qa92qa
0 !

Fz2
~qb

01lbgqa
0 !2

2ma
2

qa
02

2Ma
G d@kb92eba~qa

01lagqb
0 !#d~qb92qb

0 !, ~84!

where to arrive at the second equality use has been made of the relationka
05eab(qb

01lbgqa
0) @cf. Eq. ~A2!# to induce a

change of the integration variables. Inserting this expression into Eq.~81! with GC replaced byG0 yields

Ṽba
(2)(ab)~qb8 ,qa ;z!5E dqb

0

~2p!3E dqa
0

~2p!3

f̃b* @eba~qa
01lagqb8 !#

@~qa
01lagqb8 !222mbẑb#12 i ĥb

4pebeg

~qb
02qb8 !2

1

Fz2
~qb

01lbgqa
0 !2

2ma
2

qa
02

2Ma
G

3
4peaeg

~qa
02qa!2

f̃a@eab~qb
01lbgqa!#

@~qb
01lbgqa!222maẑa#12 i ĥa

. ~85!

Here, the explicit expressions for the Fourier transforms of the Coulomb potentialsVb
C andVa

C have been introduced.

The leading singularity ofṼba
(2)(ab)(qb8 ,qa ;z) is generated by the coincidence of the singularities of the integrand at

~qb
01lbgqa!222maẑa50, ~86!

~qa
01lagqb8 !222mbẑb50, ~87!

z2~qb
01lbgqa

0 !2/2ma2qa
02/2Ma50, ~88!

Da
0
ªqa

02qa50, ~89!

Db
0
ªqb

02qb850. ~90!

It is evident that the coincidence of these zeros of the denominators in Eq.~85! can produce a dangerous singularity of t
integral. Changing the integration variables toDa

0 andDb
0 , expression~85! takes the form
064006-12
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Ṽba
(2)(ab)~qb8 ,qa ;z!522maE dDb

0

~2p!3E dDa
0

~2p!3

f̃b* ~ebaDa
01kb8 !

@~Da
0 !212ebaDa

0
•kb81sb~qb8 ;z!#12 i ĥb

4pebeg

~Db
0 !2

3
1

Fsa~qa ;z!1
2ma

Ma
Da

0
•qa1

ma

Ma
~Da

0 !212eab~Db
01lbgDa

0 !•ka1~Db
01lbgDa

0 !2G
4peaeg

~Da
0 !2

3
f̃a~eabDb

01ka!

@~Db
0 !212eabDb

0
•ka1sa~qa ;z!#12 i ĥa

. ~91!

Here,ka andkb8 are defined in Eq.~27!. Recall that the reduced form factorsf̃a andf̃b are nonsingular at Eqs.~86! and~87!,
respectively. Finally, making the substitutions

Da
05sb~qb8 ;z!va , Db

05sa~qa ;z!vb , ~92!

wherevn ,n5a,b, has the dimension of an inverse momentum, and recalling the identity~34!, the desired result follows:

Ṽba
(2)(ab)~qb8 ,qa ;z!5

J@sb~qb8 ;z!;qb8 ,qa ;z#

@sb~qb8 ;z!#12 i (ĥa1ĥb)
. ~93!

The integral in Eq.~91! which results after extraction ofsb(qb8 ;z) has been denoted byJ@sb(qb8 ;z);qb8 ,qa ;z#. Since it
remains finite at the pointsb(qb8 ;z)50 we immediately obtain in the limitsb(qb8 ;z) going to zero:

Ṽba
(2)(ab)~qb8 ,qa ;z! 5

sb~qb8 ;z!→0 J~0;qb8 ,qa ;z!

@sb~qb8 ;z!#12 i (ĥa1ĥb)
1oS 1

sb~qb8 ;z!
D , ~94!

where

J~0;qb8 ,qa ;z!522mbS ma

mb
D i ĥa

lim
sb(qb8 ;z)→0

E dvb

~2p!3E dva

~2p!3

f̃b* @ebasb~qb8 ;z!va1kb8 #

@112ebava•kb81sb~qb8 ;z!va
2 #12 i ĥb

3
4pebeg

vb
2

1

D0~qb8 ,qa!

4peaeg

va
2

f̃a@eabsa~qa ;z!vb1ka#

@112eabvb•ka1sa~qa ;z!vb
2 #12 i ĥa

. ~95!

Here, the abbreviation

D0~qb8 ,qa!ª11
2mb

Ma
va•qa1

ma

Ma
sb~qb8 ;z!va

212eab~vb1lagva!•ka1sa~qa ;z!~vb1lagva!2 ~96!

has been introduced.@We point out that the order relation has the usual meaning:f (x)5o„g(x)… for x→x0, if
lim

x→x0
f (x)/g(x)50 „g(x0)Þ0….#

The same reasoning shows that forqb85q̃b but qaÞq̃a , in the limit sb(q̃b ;z)5kb8
25mbsa(qa ;z)/ma→0, the leading

singular behavior is given by

Ṽba
(2)(ab)~ q̃b8 ,qa ;z! 5

kb8→0
1

kb8
122i ĥa

J8~0;q̃b8 ,qa ;z!, ~97!

where

J8~0;q̃b8 ,qa ;z!52mb lim
kb8→0

E dvb

~2p!3E dva

~2p!3

4pebeg

vb
2

4peaeg

va
2

f̃b* ~ebakb8va1kb8 !f̃a~eabkb8
2vb1ka!

D1~ q̃b8 ,qa!@ma /mb12eabvb•ka1kb8
2vb

2 #12 i ĥa
, ~98!

with
064006-13
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D1~ q̃b8 ,qa!ª11
2mb

Mb
vb•q̃b81

mb

Mb
kb8

2vb
212eba~va1lagkb8vb!• k̂b81~va1lagkb8vb!2. ~99!

We mention that the derivation of this result requires the substitutions

Db
05sb~ q̃b ;z!vb5kb8

2vb and Da
05kb8va . ~100!

Analogously, forqa5q̃a but qb8Þq̃b , in the limit sa(q̃a ;z)5ka
2→0, one finds

Ṽba
(2)(ab)~qb8 ,q̃a ;z! 5

ka→0 1

ka
122i ĥb

J9~0;qb8 ,q̃a ;z!, ~101!

whereJ9(0;qb8 ,q̃a ;z) is given by an expression similar to Eq.~98!. Finally, for qb85q̃b andqa5q̃a , using the substitutions

Db
05kb8vb andDa

05kb8va one obtains in the limitsb(q̃b ;z)5kb8
25mbsa(q̃a ;z)/ma5mbka

2/ma→0

Ṽba
(2)(ab)~ q̃b8 ,q̃a ;z! 5

kb8→0

kb8
0J-~0;0,0;0! for E50. ~102!

Here,

J-~0;0,0;0!522mb lim
kb8→0

E dvb

~2p!3E dva

~2p!3

4pebeg

vb
2

4peaeg

va
2

f̃b* ~ebakb8va1kb8 !f̃a~eabkb8vb1ka!

D2~0,0!
, ~103!

with

D2~0,0!5mbvb
2/Mb1~va1lagvb1ebak̂b8 !2. ~104!

Note that inJ8, Eq. ~98!, ka andkb8 are considered expressed as linear combinations of (q̃b8 ,qa), in J9 as linear combinations
of (qb8 ,q̃a).

It is apparent that the leading singularity, if the final and/or the initial momentum equals its on-shell valueq̄b8 and/orq̄a ,
respectively, in the limits̄b→0 can be obtained from the above off-shell results substitutinghb

(bs) for i ĥb and/orha
(bs) for

i ĥa .
This verifies the assertion thatṼba

(2)(ab)(qb8 ,qa ;z) has the same leading singularity asV ba
(a)(qb8 ,qa ;z) @cf. Eq.~65!#, with the

exception of the special pointsqa5q̃a and/orqb85q̃b .

4. Leading singularity ofṼba
„ab…

„qb8 ,qa ;z…

Proof of Theorem 2.We are now ready to prove Theorem 2 by showing that the typical contributionṼba
(ab)(qb8 ,qa ;z) to the

full effective potential, in spite of containing an infinite number of Coulombic rescatterings between all three particles
intermediate state as represented by the three-body Coulomb resolvent, possesses the same leading singularity a
position as the second-order contributionṼba

(2)(ab)(q̃b8 ,qa ;z), or equivalently asV ba
(a)(qb8 ,qa ;z), cf. Eq. ~65!, except for the

special pointsqb85q̃b and/orqa5q̃a where the character of the singularity differs. We start again by considering the

qaÞq̃a and qb8Þq̃b . To this end we introduce in Eq.~81! the spectral representation~83! of the full three-body Coulomb
Green’s function:
064006-14
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Ṽba
(ab)~qb8 ,qa ;z!5E dka9

~2p!3E dqa9

~2p!3E dkb9

~2p!3E dqb9

~2p!3E dka
0

~2p!3E dqa
0

~2p!3

f̃b* @eba~qa91lagqb8 !#

@~qa91lagqb8 !222mbẑb#12 i ĥb

3
4pebeg

@ka92eab~qb81lbgqa9 !#2

Ck
a
0 ,q

a
0

C(1)
~ka9 ,qa9 !Ck

a
0 ,q

a
0

C(1)*
~kb9 ,qb9 !

Fz2
qa

02

2Ma
2

ka
02

2ma
G

3
4peaeg

@kb92eba~qa1lagqb9 !#2

f̃a@eab~qb91lbgqa!#

@~qb91lbgqa!222maẑa#12 i ĥa
. ~105!

As before, the leading singularity ofṼba
(ab)(qb8 ,qa ;z) emerges as the result of the coincidence of the zeros of all

denominators of the integrand in Eq.~105! and of the forward-scattering singularities of the three-body Coulomb scatte
wave functions. To proceed any further requires knowledge of the explicit expression of the latter which, howe
unknown. But it turns out that in the region of integration which is relevant for generating the leading singularity, on
leading term of the asymptotic expansion of the three-body coordinate-space Coulomb scattering wave function ente
is known in analytic form.~As a side remark we mention that this situation is reminiscent of the nonperturbative derivat
the long-range behavior of the optical potential within the context of the three-charged particle theory in@21#. As is well
known, the optical potential is likewise given as a certain matrix element of the three-body resolvent. However, when u
spectral representation for the latter, for the investigation of the large-distance behavior again only the asymptotic pa
three-body wave function was needed.!

To see this, let us rewrite expression~105! in the coordinate-space representation, yielding

Ṽba
(ab)~qb8 ,qa ;z!5E dra8 E dra8 E drbE drbE dka

0

~2p!3E dqa
0

~2p!3
e2 iqb8 •rb8cb* ~rb8 ; ẑb* !Va

C~ra8 !

Ck
a
0 ,q

a
0

C(1)
~ra8 ,ra8 !Ck

a
0 ,q

a
0

C(1)*
~rb ,rb!

Fz2
ka

02

2ma
2

qa
02

2Ma
G

3Vb
C~rb!ca~ra ; ẑa!eiqa•ra. ~106!
a

o

r

q
m

-

in

s

In this equation the Jacobian vector pair$rb8 ,rb8 % is consid-
ered expressed as linear combinations of the integration v
ables$ra8 ,ra8 %, and similarly$ra ,ra% as linear combinations
of $rb ,rb%, according to Eq.~A3!. Furthermore, the notation

ca~ra ; ẑa!ª^rauĜ0~ ẑa!ufa~ ẑa!&

5E dra9 Ĝ0~ra ,ra9 ; ẑa!fa~ra9 ; ẑa!, ~107!

has been introduced, with an analogous definition
cb(rb8 ; ẑb). The quantityĜ0(ra ,ra9 ; ẑa) is the two-particle
free Green’s function in the coordinate representation.

As has been mentioned before, the singular behavio
Ṽba

(ab)(qb8 ,qa ;z) at the point~38! results from the coinci-
dence of the various singularities of the integrand in E
~105!. Among these are the poles of the Fourier transfor
Va

C@ka92eab(qb81lbgqa9 )# and Vb
C@kb92eba(qa1lagqb9 )#

of the Coulomb potentialsVa
C(ra8 ) andVb

C(rb), respectively.
The singularity atka92eab(qb81lbgqa9 )50 in Eq. ~105! of
the Fourier transform ofVa

C(ra8 ) is generated by the diver
gence of the integral overra8 in Eq. ~106!, for r a8→`. Simi-
larly, the singularity of the Fourier transform ofVa

C(rb) at
kb92eba(qa1lagqb9 )50 is generated by the divergence
06400
ri-

f
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s

Eq. ~106! of the integral overrb for r b→`. Thus, in order to
extract the singular behavior ofṼba

(ab)(qb8 ,qa ;z) we must
investigate the behavior of the integrand in Eq.~106! in the
asymptotic region

vab5va8ùvb ; va8 :r a8→`; vb :r b→`. ~108!

When r b→`, either one more coordinater a or r g , or
both r a and r g , have to approach infinity together withr b .
That is, we must distinguish the following three cases.

~1! r b ,r a→`, i.e., rg→`, and r g /rg→0. ~2! r b ,r g
→`, i.e., ra→`, and r a /ra→0. ~3! r b→`,r a→`,r g
→`.

Let us define the following four asymptotic regions:

Vn : rn→`, r n /rn→0, for n51,2,3, ~109!

V0 : r 1→`,r 2→`,r 3→`. ~110!

With their help,vb can be expressed as

vb5VgøVaøV0 , ~111!

andva8 analogously in terms of the primed coordinates a

va85Vg8øVb8øV08 . ~112!
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Thus, to extract the behavior ofṼba
(ab)(qb8 ,qa ;z) near the

singularity at Eq.~38! it suffices to know the three-bod
Coulomb wave functionCk

a
0 ,q

a
0

C(1)
(rb ,rb) in the asymptotic

domainvb , and Ck
a
0 ,q

a
0

C(1)
(ra8 ,ra8 ) in the asymptotic domain

va8 . Since, according to Eq.~111!, vb is the union of three
different asymptotic domains we have to consider
asymptotic behavior ofCk

a
0 ,q

a
0

C(1)
(rb ,rb) in each of them.

The asymptotic form of the three-charged particle wa
function in V0 has been found in Refs.@22,23#, and that
valid in Vn ,n51,2,3, in Ref.@11#. The corresponding ex
pressions are collected in Appendix D. There it is argu
that, when looking for the main singular part o
Ṽba

(ab)(qb8 ,qa ;z), the exact three-charged particle wave fun
tion may be approximated uniformly in all asymptotic r
gionsVn ,n50, . . . ,3,i.e., in the whole domainvb , by @cf.
Eq. ~D17!#

Ck
a
0 ,q

a
0

C(1)
~rb ,rb!'

vb

CP0
C,as(1)8~X!

5eiP0
•X)

n51

3

e2 ikn
0
•rnck

n
0

C(1)
~r n!. ~113!

Here,P05$kn
0 ,qn

0% andX5$r n ,rn% are six-dimensional vec
tors with
06400
e

e

d

-

P0
•X5kn

0
•r n1qn

0
•rn , n51,2,3. ~114!

Moreover,ck
a
0

C(1)
(ra) is the two-particle Coulomb scatterin

wave function for particlesb andg, belonging to the energy
ka

02/2ma . Analogously, in the domainva8 the wave function
Ck

a
0 ,q

a
0

C(1)
(ra8 ,ra8 ) can be approximated by@cf. Eq. ~D18!#

Ck
a
0 ,q

a
0

(1)
~ra8 ,ra8 !'

va8

CP0
C,as(1)8~X8!

5eiP0
•X8)

n51

3

e2 ikn
0
•rn8ck

n
0

C(1)
~r n8!.

~115!

Thus, the leading singular part ofṼba
(ab)(qb8 ,qa ;z) in the

limit sb(qb8 ;z)→0, to be denoted byṼba
(ab)(s)(qb8 ,qa ;z), can

be extracted from expression~106!, with Ck
a
0 ,q

a
0

C(1)
(ra8 ,ra8 ) re-

placed by Ck
a
0 ,q

a
0

C,as(1)8(ra8 ,ra8 ), and Ck
a
0 ,q

a
0

C(1)*
(rb ,rb) by

Ck
a
0 ,q

a
0

C,as(1)8*
(rb ,rb). Alternatively, rewriting the integrals in

momentum space we have
erent
ve
Ṽba
(ab)(s)~qb8 ,qa ;z!5E dka9

~2p!3E dqa9

~2p!3E dkb9

~2p!3E dqb9

~2p!3E dka
0

~2p!3E dqa
0

~2p!3

f̃b* @eba~qa91lagqb8 !#

@~qa91lagqb8 !222mbẑb#12 i ĥb

3
4pebeg

@ka92eab~qb81lbgqa9 !#2

Ck
a
0 ,q

a
0

C,as(1)8~ka9 ,qa9 !Ck
a
0 ,q

a
0

C,as(1)8*
~kb9 ,qb9 !

Fz2
qa

02

2Ma
2

ka
02

2ma
G

3
4peaeg

@kb92eba~qa1lagqb9 !#2

f̃a@eab~qb91lbgqa!#

@~qb91lbgqa!222maẑa#12 i ĥa
. ~116!

Given the explicit expressions for the three-body Coulomb wave functions in the asymptotic regionsvb andva8 , we can now

show thatṼba
(ab)(s)(qb8 ,qa ;z), and hence alsoṼba

(ab)(qb8 ,qa ;z), has a branch point singularity of the type~40! at Eq.~38!.

To begin with let us write down the Fourier transform ofCk
a
0 ,q

a
0

as(1)8(ra ,ra):

Ck
a
0 ,q

a
0

as(1)8~ka ,qa!5E dk

~2p!3
ck

b
0

C(1)
~k!ck

g
0

C(1)
@k1kg

02kb
01eab~qa2qa

0 !#ck
a
0

C(1)
@k1ka

02kb
01eba~qg2qg

0!#. ~117!

This result follows from Eq.~113! in a straightforward manner by taking into account the linear dependence of the diff
Jacobian variables~cf. Appendix A! and (n51

3 qn50. The Fourier transform of the two-body Coulomb scattering wa
function is defined as

ck
a
0

C(1)
~ka!5E dre2 i ra•kack

a
0

C(1)
~ra!. ~118!

When inserting Eq.~117! into Eq. ~116!, one encounters an expression of the following type:
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JaªE dkb9

~2p!3E dqb9

~2p!3
Ck

a
0 ,q

a
0

C,as(1)8*
~kb9 ,qb9 !

4peaeg

@kb92eba~qa1lagqb9 !#2

f̃a@eab~qb91lbgqa!#

@~qb91lbgqa!222maẑa#12 i ĥa

5E dqa9

~2p!3E dqb9

~2p!3E dk

~2p!3
ck

b
0

C(1)*
~k!ck

g
0

C(1)*
@k1kg

02kb
01eab~qa92qa

0 !#ck
a
0

C(1)*
@k1ka

02kb
02eba~qa91qb91qg

0!#

3
4peaeg

~qa92qa!2

f̃a@eab~qb91lbgqa!#

@~qb91lbgqa!222maẑa#12 i ĥa
, ~119!

where to arrive at the second equality a change of the integration variable has been performed. We are looking for the
of Ja when the singularities of the integrand at

qa92qa50 and ~qb91lbgqa!222maẑa50 ~120!

collide with the forward-scattering singularities of the wave functionCk
a
0 ,q

a
0

C,as(1)8*
(kb9 ,qb9 ). The latter occur at

qn92qn
050, n51,2,3, ~121!

which can easily be verified by taking into account the fact that each factorck
n
0

C(1)
(kn) has a singularity forkn2kn

050. The

coincidence of these three forward-scattering singularities in Eq.~117! gives rise to the singularity conditions~121!.
Since we presently assumeqaÞq̃a andqb8Þq̃b , Ja can, according to Eq.~E32!, be written near the leading singularity i

the form

Ja54peaege2p(ha
0

1hb
0

1hg
0)/2

G@12 i ~ ĥa1ha
0 !#G@12 i ~hb

01hg
0!#

G~12 i ĥa!
@22~ka

0
•ka1ka

0ka!#2 iha
0
@2eabDa

0
•kb

0 #2 ihb
0

3@22eabDa
0
•kg

0#2 ihg
0 1

@2eabDb
0
•ka1sa~qa ;z!#12 i (ĥa1ha

0)

Ĵa

@~Da
0 !2#12 i (hb

0
1hg

0)
, ~122!

whereĴa remains finite atDa
050, Db

050, andsa(qa ;z)50. The vectorsDa
0 andDb

0 have been introduced in Eqs.~89! and
~90!, andka in Eq. ~27!. Moreover,

ha
0[ha~ka

0 !ªebegma /ka
0 , ~123!

with analogous definitions forhb
0 andhg

0 @cf. Eq. ~41!#. G(z) is the gamma function.
Similarly, the leading singular part of

Jb*ªE dka9

~2p!3E dqa9

~2p!3
Ck

a
0 ,q

a
0

C,as(1)8~ka9 ,qa9 !
f̃b* @eba~qa91lagqb8 !#

@~qa91lagqb8 !222mbẑb#12 i ĥb

4pebeg

@ka92eab~qb81lbgqa9 !#2

5E dqb9

~2p!3E dqa9

~2p!3E dk

~2p!3
ck

a
0

C(1)
~k!ck

b
0

C(1)
@k2ka

01kb
02eab~qa91qb91qg

0!#ck
g
0

C(1)
@k2ka

01kg
01eba~qb92qb

0 !#

3
f̃b* @eba~qa91lagqb8 !#

@~qa91lagqb8 !222mbẑb#12 i ĥb

4pebeg

~qb92qb8 !2
, ~124!

when the zeros of the denominators at

qb92qb850 and ~qa91lagqb8 !222mbẑb50 ~125!

collide with the forward-scattering singularities of the wave functionCk
a
0 ,q

a
0

C,as(1)8(ka9 ,qa9 ) which again occur at Eq.~121!, is

given by
064006-17
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Jb* 54pebege2p(ha
0

1hb
0

1hg
0)/2

G@12 i ~ ĥb2hb
0 !#G@11 i ~ha

01hg
0!#

G~12 i ĥb!
@22~kb

0
•kb81kb

0kb8 !# ihb
0
@2ebaDb

0
•ka

0 # iha
0

3@22ebaDb
0
•kg

0# ihg
0 1

@2ebaDa
0
•kb81sb~qb8 ;z!#12 i (ĥb2hb

0)

Ĵb*

@~Db
0 !2#11 i (ha

0
1hg

0)
, ~126!

whereĴb remains finite atDa
0505Db

0 andsb(qb8 ;z)505sa(qa ;z).
Taking into account Eqs.~122! and ~126!, and repeating the steps that led from Eq.~85! to Eq. ~91!, we derive from Eq.

~116! for the leading singular part ofṼba
(ab)(qb8 ,qa ;z):

Ṽba
(ab)(s)~qb8 ,qa ;z!5E dka

0

~2p!3E dqa
0

~2p!3

Jb* Ja

Fz2
ka

02

2ma
2

qa
02

2Ma
G '2

16p2eaebeg
2

G~12 i ĥb!G~12 i ĥa!
E dDb

0

~2p!3E dDa
0

~2p!3
e2p(ha

0
1hb

0
1hg

0)

3G@12 i ~ ĥb2hb
0 !#G@11 i ~ha

01hg
0!#G@12 i ~ ĥa1ha

0 !#G@12 i ~hb
01hg

0!#

3@22~kb
0
•kb81kb

0kb8 !# ihb
0
@2ebaDb

0
•ka

0 # iha
0
@22ebaDb

0
•kg

0# ihg
0

3
1

@2ebaDa
0
•kb81sb~qb8 ;z!#12 i (ĥb2hb

0)

1

@~Db
0 !2#11 i (ha

0
1hg

0)

3
Ĵb* Ĵa

F 1

2ma
sa~qa ;z!1

1

Ma
Da

0
•qa1

eab

ma
~Db

01lbgDa
0 !•kaG

1

@~Da
0 !2#12 i (hb

0
1hg

0)

3
1

@2eabDb
0
•ka1sa~qa ;z!#12 i (ĥa1ha

0)
@22~ka

0
•ka1ka

0ka!#2 iha
0
@2eabDa

0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0
.

~127!

Terms proportional to (Da
0)2 and to (Db

0)2 have already been omitted. In order to extract the singular behavio

Ṽba
(ab)(qb8 ,qa ;z) in the limit sb(qb8 ;z)→0 we use the substitution~92!, which motivates the neglect of the terms;(Da

0)2

5O„sb
2(qb8 ;z)… and;(Db

0)25O„sa
2(qa ;z)…, and find

Ṽba
(ab)~qb8 ,qa ;z! 5

sb~qb8 ;z!→0 A~0;qb8 ,qa ;z!

@sb~qb8 ;z!#12 i (ĥa1ĥb)
1oS 1

sb~qb8 ;z!
D . ~128!

The functionA(0;qb8 ,qa ;z) is nonsingular atsb(qb8 ;z)50. It is apparent thatṼba
(ab)(qb8 ,qa ;z) has the asserted singula

branch point atsb(qb8 ;z)50.
Let us comment on this result. First, it is easily seen that this singularity is integrable for anyqb8 and qa subject to the

restrictions~39!. For realĥb and ĥa , i.e., for Êb and Êa being positive, the singularity is integrable because

1

u@sb~qb8 ;z!#12 i (ĥa1ĥb)u
5

1

usb~qb8 ;z!u
. ~129!

For ẑa5Êa,0, as follows from Eq.~41a!, i ĥa is positive real~recall that we are considering only particles with charges
the same sign!, thus even weakening the singularity. In addition, taking into account Eqs.~32!–~34! one has

sb~qb8 ;z!5
mb

ma
sa~qa ;z!5

mb

ma
@ka

212mauÊau#.0. ~130!

Hence, the singularity lies outside the region accessible for physical values of the momenta. An analogous situation
for ẑb85Êb,0 wheni ĥb is positive real@cf. Eq. ~41b!# and again
064006-18
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sb~qb8 ;z!5kb8
212mbuÊbu.0. ~131!

As the next step we look for the leading singular part ofṼba
(ab)(qb8 ,qa ;z) if qb85q̃b in which caseÊb50 andsb(q̃b ;E)

5kb8
2, but letqaÞq̃a . As before, near the leading singularityJa is given by Eq.~122!, while Jb* for qb85q̃b behaves as the

b-channel version of Eq.~E33!,

Jb8* 54pebege2p(ha
0

1hb
0

1hg
0)/2G~11 ihb

0 !G„11 i ~ha
01hg

0!…@2ebaDb
0
•ka

0 # iha
0
@22ebaDb

0
•kg

0# ihg
0 Ĵb8*

@~Db
0 !2#11 i (ha

0
1hg

0)
,

~132!

with Ĵb8* remaining regular.

Consequently, forqb85q̃b and z5E1 i0 the leading singular part ofṼba
(ab)(qb8 ,qa ;z) in the limit sb(q̃b ;E)5kb8

2→0
takes, instead of Eq.~127!, the form

Ṽba
(ab)(s)~ q̃b8 ,qa ;E1 i0!'2

16p2eaebeg
2

G~12 i ĥa!
E dDb

0

~2p!3E dDa
0

~2p!3
e2p(ha

0
1hb

0
1hg

0)G~11 ihb
0 !G„11 i ~ha

01hg
0!…G„12 i ~ ĥa

1ha
0 !…G„12 i ~hb

01hg
0!…@2ebaDb

0
•ka

0 # iha
0
@22ebaDb

0
•kg

0# ihg
0 1

@Db
02#11 i (ha

0
1hg

0)

3
Ĵ8b* Ĵa

F 1

2mb
kb8

21
1

Mb
Db

0
•q̃b81

1

2Mb
~Db

0 !21
eba

mb
~Da

01lagDb
0 !•kb81

1

2mb
~Da

01lagDb
0 !2G

3
1

@~Da
0 !2#12 i (hb

0
1hg

0)

1

@~Db
0 !212eabDb

0
•ka1makb8

2/mb#12 i (ĥa1ha
0)

@22~ka
0
•ka1ka

0ka!#2 iha
0

3@2eabDa
0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0
. ~133!

To proceed further we make the substitutions

Da
05kb8u and Db

05kb8
2v. ~134!

Expressingkb
0
ªeba(qa

01lagqb
0) in terms ofDa

0 , Db
0 , andkb8 , using Eqs.~89!, ~90!, and~27!, we find

kb
05uDa

01lagDb
01ebakb8 u 5

kb8→0

abkb81o~kb8 !, abÞ0, ~135!

and similarly

ka
0 ;

kb8→0

ka1O~kb8 !, kg
0 ;

kb8→0

kg1O~kb8 !. ~136!

For the factor

N5e2p(ha
0

1hb
0

1hg
0)G~11 ihb

0 !G„11 i ~ha
01hg

0!…G„12 i ~ ĥa1ha
0 !…G„12 i ~hb

01hg
0!…, ~137!

which occurs in the integrand of Eq.~133!, this implies~recall eaeb.0)

N ;

kb8→0
1

kb8
expH 2

2peaegmb

abkb8
J ~qb85q̃b!. ~138!

Thus we derive

Ṽba
(ab)~ q̃b8 ,qa ;E1 i0! 5

kb8→0
1

kb8
222i ĥa1 ihg

C~kb8 ;q̃b8 ,qa ;E1 i0!, ~139!
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whereC(kb8 ;q̃b8 ,qa ;E) vanishes in the limitkb8→0 because of the exponentially decreasing factor inN. Thus, forqb85q̃b , the

leading singularity ofṼba
(ab)(qb8 ,qa ;E1 i0) is actually weaker than described in Eq.~139!, and hence represents an integrab

branch point atsb(q̃b ;E)5kb8
250. In the same way the result~45! for qb8Þq̃b andqa5q̃a follows.

Finally, if qb85q̃b andqa5q̃a , which in the limitkb8
2;ka

2→0 necessitatesE50 and, hence, alsoq̃b505q̃a , use of Eq.

~132! for Jb* , and of Eq.~E33! for Ja , leads to the result that forz5E1 i0, the leading singular part ofṼba
(ab)(qb8 ,qa ;z) takes

in the limit sb(q̃b ;E)5kb8
25mbsa(q̃a ;E)/ma5mbka

2/ma→0 the form

Ṽba
(ab)~ q̃b8 ,q̃a ;E1 i0! 5

kb8→0
1

kb8
2

D~kb8 ;0,0;0! for E50, ~140!

with D(kb8 ; . . . ) vanishing in the limitkb8→0 for similar reasons. To arrive at this result the substitutionsDa
05kb8u and

Db
05kb8v had to be made.
The above steps can be repeated in an analogous manner if the final and/or the initial momentum equals its on-s

q̄b8 and/orq̄a , respectively. The result is that the leading singularity in the limits̄b→0 is of the same form as shown in Eq

~128! and ~139!, with i ĥb appropriately substituted byhb
(bs) and/or i ĥa by ha

(bs) . Recall that the assumption of nonze

two-body binding energiesBn.0 entailsq̄nÞq̃n , n51,2,3.
As an example consider the contributionṼba

(ab)(q̄b8 ,q̄a ;E1 i0) to the fully on-shell effective potential. Using the appropria
forms ~62a! and ~64a! for the on-shell Coulomb-modified form factor, one obtains for the leading singular part

Ṽba
(ab)(s)~ q̄b8 ,q̄a ;z!5E dka9

~2p!3E dqa9

~2p!3E dkb9

~2p!3E dqb9

~2p!3E dka
0

~2p!3E dqa
0

~2p!3

f̃b* @eba~qa91lagq̄b8 !#)

@~qa91lagq̄b8 !212mbBb#12hb
(bs)

3
4pebeg

@ka92eab~ q̄b81lbgqa9 !#2

Ck
a
0 ,q

a
0

C,as(1)8~ka9 ,qa9 !Ck
a
0 ,q

a
0

C,as(1)8*
~kb9 ,qb9 !

Fz2
qa

02

2Ma
2

ka
02

2ma
G

3
4peaeg

@kb92eba~ q̄a1lagqb9 !#2

f̃a@eab~qb91lbgq̄a!#

@~qb91lbgq̄a!212maBa#12ha
(bs) . ~141!

Repeating the argumentation which led from Eq.~116! to Eq. ~127! but now for expression~141!, we arrive at

Ṽba
(ab)(s)~ q̄b8 ,q̄a ;E1 i0!'2

16p2eaebeg
2

G~12hb
(bs)!G~12ha

(bs)!
E dDb

0

~2p!3E dDa
0

~2p!3
e2p(ha

0
1hb

0
1hg

0)G~12hb
(bs)1 ihb

0 !G„11 i ~ha
0

1hg
0!…G„12~ha

(bs)2 iha
0 !…G„12 i ~hb

01hg
0!…@22~kb

0
• k̄b81kb

0 k̄b8 !# ihb
0
@2ebaDb

0
•ka

0 # iha
0

@22ebaDb
0
•kg

0# ihg
0 1

@2ebaDa
0
• k̄b81s̄b#12hb

(bs)
1 ihb

0

1

@~Db
0 !2#11 i (ha

0
1hg

0)

3
Ĵb* Ĵa

F 1

2ma
s̄a1

1

Ma
Da

0
•q̄a1

eab

ma
~Db

01lbgDa
0 !• k̄aG

1

@~Da
0 !2#12 i (hb

0
1hg

0)

3
1

@2eabDb
0
• k̄a1s̄a#12ha

(bs)
2 iha

0 @22~ka
0
• k̄a1ka

0 k̄a!#2 iha
0
@2eabDa

0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0

5

s̄b→0 Ñ~E!

s̄b
12ha

(bs)
2hb

(bs) 1oS 1

s̄b
D , ~142!
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whereÑ(E) is a function which is finite at the singular poin
s̄b5 k̄b

212mbBb50. The momentak̄a andk̄b8 are defined as
in Eq. ~27! but in terms of the on-shell momentaq̄a andq̄b8 .

Thus, the termṼba
(ab)(q̄b8 ,q̄a ;E1 i0) has the same singularit

asV ba
(a)(q̄b8 ,q̄a ;E1 i0). This shows that on the energy she

the complete nondiagonal effective potential p
V ba

(ab)(q̄b8 ,q̄a ;E1 i0) has a branch point singularity ats̄b

50. That singularity is, however, located outside of the
tegration contour and, hence, is harmless.

Thus, we have proved that the replacement of the th
body free Green’s function in Eq.~85! by the three-body
Coulomb Green’s function, leading to expression~81!, influ-
ences neither position nor character~except for the specia
pointsqb85q̃b andqa5q̃a) of the leading singularity of the

nondiagonal effective potential partṼba
(ab)(qb8 ,qa ;z) in the

momentum transfer variable. That is, the occurrence of
leading singularity of the type~128! to ~142! is solely due to
the Coulomb modifications of the form factors.

Though the proof has been concerned as yet only with
contributionṼba

(ab)(qb8 ,qa ;z), it is obvious that it can be re
peated in absolutely the same way for either term of the s
~79!. Consequently, the total nondiagonal effective poten
Vba(qb8 ,qa ;z),aÞb, possesses the branch point singula
ties as asserted in the Theorem.

Let us add the following comments.
~i! The actual proof of the Theorem had relied on t

simplicity of the explicit form~24! of the effective potential
which on its part had resulted from the assumption that
two-body short-range interactions are given as separable
tentials of rank one, cf. Eq.~7!. It is now easy to see that thi
assumption was only technically convenient but does
limit the generality of the results obtained. Namely, if w
allow for an arbitrary form of the two-body short-range i
teractionsVn

S , n51,2,3, instead of the resolvent~12! of the
three-body Coulomb HamiltonianHC, the resolventG8(z)
5(z2H8)21 of the HamiltonianH85HC1(n51

3 Vn8 , with
Vn8[Vn

S2uxn&Ln^xnu, would occur in the definition of the
effective potential@16#. Clearly, withVn

S alsoVn8 is of short
range. But for the extraction of the leading singularity
Vba(qb8 ,qa ;z)5^qb8 ,xbuG8(z)uxa ,qa& (bÞa), which rep-
resents the appropriate generalization of expression~24!,
only knowledge of the asymptotic parts of the eigenfunctio
of H8 are needed in the spectral resolution ofG8(z). The
latter are, of course, not influenced by any short-range m
fications of the potentials, and thus could again be appr
mated by Eqs.~113! and ~115!.

~ii ! Also the assumption that each subsystem supp
only one bound state, is easily seen to have been of tech
nature only. For, if in subsystemn an arbitrary but finite
numberNn bound states exist, this could be accounted for
splitting off the potentialVn

S a separable potential of rankNn

~see Refs.@16,24#!. As a result only the dimension of th
effective potential matrixV would be blown up from 333 to
(Na1Nb1Ng)3(Na1Nb1Ng), without altering anything
else as compared to case~i!.
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E. Singular behavior of the kernel Kba„qb8 ,qa ;z…

Given the leading singularity of the nondiagonal effecti
potential Vba(qb8 ,qa ;z), with z5E1 i0, the singularity
structure of the kernelKba(qb8 ,qa ;z), Eq. ~10!, follows im-
mediately. The corresponding AGS equations are given
Eq. ~9! where the integration is over the right-hand variab
which is presently denoted byqa . qb8 is a free vector-valued

parameter. Consider first the caseqb8Þq̃b . The leading sin-
gularities of the kernel are~i! the one that originates from
Vba(qb8 ,qa ;z) and is located at (qa1lagqb8 )2/2mb

1qb8
2/2Mb2z505(qb81lbgqa)2/2ma1qa

2/2Ma2z (g

ÞaÞb) for qaÞq̃a @cf. Eq. ~38!# and at (qb81lbgq̃a)2

50 for qa5q̃a , and ~ii ! the pole located atz2qa
2/2Ma

1Ba50 which is due to the effective propagatorGa(qa ;z),
Eq. ~19!. It is obvious that these two singularities can nev
coincide for physical values of the momenta, i.e., for m
menta lying on the integration contour~here the assumption
Bn.0 for n51,2,3, enters!. Furthermore, according to Ap
pendix B no dangerous singularity arises fromSa(z
2qa

2/2Ma).

V. SUMMARY

Let us summarize the results obtained.
~i! We have shown that in the presence of addition

purely repulsive Coulomb interactions between two or
three particles, the leading singular behavior of the non
agonal kernels of the effective-two-body AGS equations,
though being changed into a branch point as compared to
simple pole for~separable! short-range interactions, remain
integrable. Hence, all solution methods developed for
nondiagonal kernels for short-range potentials are applica
also to the nondiagonal kernels for short-range plus~un-
screened! repulsive Coulomb interactions.

~ii ! Even in the presence of only repulsive Coulomb
teractions there exists a—from the practical point of vie
possibly unpleasant—complication. For, in order to solve
effective-two-body AGS equations one needs to know
expressions for the effective potentials which contain
three-body Coulomb Green’s function, cf. Eq.~11!. ~In this
respect the problem resembles somewhat that encounter
the Noble-Bencze approach@7,8#.! At least in principle, for
the calculation of the latter perturbative methods can be
ployed ~‘‘quasi-Born expansion’’ of the effective potential
obtained by using Eq.~16b! in Eq. ~11b! @16#!. But, accord-
ing to Theorems 1 and 2, each term in this quasi-Born se
has the same branch point singularity~except for the specia
points qb85q̃b and/or qa5q̃a). This could imply that, in
principle, all terms should be taken into account unless
course, their contribution to the singularity strength is fou
to decrease with increase of the number of intermediate-s
Coulomb rescatterings, i.e., with the order of iteratio
Clearly, the question of practical convergence of such
expansion requires further investigations. Note that this
mark does not apply when only two of the three particles
charged because in that case the quasi-Born series rigoro
6-21
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collapses to the first two terms@16,15# shown in Eq.~18!.
~iii ! As already mentioned, the singularity caused by E

~38! is the leading dynamical one, i.e., it is the~energy-
dependent! singularity which is strongest and closest to t
integration region. In addition, each term of the quasi-Bo
series has its own singularities which are, however, m
distant than this singularity and are, therefore, less dan
ous.

At the end we mention that a following paper deals w
the singularity structure of the diagonal kernels. There, it w
be shown that, if the charges of all three particles are of
same sign, nonintegrable singularities appear only on the
ergy shell, and coincide with those investigated by Vesel
@12# below the breakup threshold. These singularities c
however, be explicitly singled out and inverted as it has b
done by Alt and Sandhas@15#. The off-the-energy-shell sin
gularities of the diagonal kernel turn out to be integrab
Taken together these results imply that, after a few iteratio
the appropriately modified effective-two-body AGS equ
tions become integral equations with compact kernels.

APPENDIX A: JACOBI VARIABLES

For the convenience of the reader we collect here a
formulas relating different sets of Jacobi variables sin
these relations are frequently used in the present paper.

We always work in the total center-of-mass system. I
advantageous to introduce the antisymmetric symboleab
52eba , with eab511 if (a,b) is a cyclic ordering of
~1,2,3!. Moreover, letaÞbÞgÞa. Then
he

f

06400
.

n
e
r-

l
e
n-
a
n,
n

.
s,
-

w
e

s

S qa

ka
D 5S 2

mb

mg
eba

eab

mb

Ma
2

ma

mg

D S qb

kb
D , ~A1!

S ka

kb
D 5S eab

ma

mg
eab

eba eba

mb

mg

D S qa

qb
D . ~A2!

Of the various relations between the different sets of
ordinates we only need

S ra

ra
D 5S 2

ma

mg
eba

mb

Ma

eab 2
mb

mg

D S rb

rb
D . ~A3!

APPENDIX B: SINGULARITIES OF Sa„Êa¿ i0…

In this appendix we investigate the singular behavior
the numerator functionSa(Êa1 i0) of the effective free
propagator, Eq.~19!, whereÊa is the relative kinetic energy
of the particles of the pair (b1g). Using the spectral decom
position of the two-particle Coulomb resolvent
Ĝa
C~Êa1 i0!5E dka

0

~2p!3

uck
a
0

C(1)
&^ck

a
0

C(1)u

@Êa1 i02ka
02

/2ma#
, ~B1!

and the orthogonality of two-particle Coulomb scattering wave functions,^ck
a
0

C(1)uc
k

a
08

C(1)
&5d(ka

02ka
08), we find forSa

21(Êa)

@cf. Eq. ~20!#

Sa
21~Êa1 i0!52E dka

0

~2p!3

u^xauck
a
0

C(1)
&u2

@Ba1ka
02

/2ma#@Êa1 i02ka
02

/2ma#
. ~B2!

Choosing for simplicity a form factor of the form~37! we can take over the result~C10! for the overlap̂ xauck
a
0

C(1)
& and obtain

Sa
21~Êa1 i0!52E dka

0

~2p!3

2pha
0

@e2pha
0
21#

e4ha
0arctan(pa /ba)

~ka
02

1ba
2 !2@Ba1ka

02
/2ma#@Êa1 i02ka

02
/2ma#

, ~B3!
f

the
where ha
0 is defined in Eq.~123!. Since Ba.0, the only

singularity of the integrand in the integration region is t
pole at

ka
02

/2ma5Êa . ~B4!

The coincidence of this singularity with the lower limit o
integration,ka
050, will in general generate a singularity o

Sa(Êa1 i0) at the subsystem threshold energy

Êa50. ~B5!

However, for the case considered presently, namely that
charges have the same sign (ebeg.0, i.e.,ha

0.0), the pole
6-22
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at threshold is compensated by the Coulomb penetration
tor which vanishes exponentially there,

2pha
0 exp$22pha

0% →
ka

0→0

0. ~B6!

Hence,Sa
21(Êa1 i0) remains nonsingular and in fact pos

tive definite at the subsystem threshold energy~B5!. Conse-
quently,Sa(Êa1 i0) is regular also atÊa50. For oppositely
charged particles, however, i.e., forebeg,0, the integral
~B3! goes to infinity if Êa→0, due to the divergence of th
integrand at the lower limit of integration. In fact, it is ea
to see that

Sa~Êa1 i0! ;

Êa→0 1

lnuÊau
~ebeg,0!, ~B7!

for form factorsxa(ka) which remain regular at the origin

APPENDIX C: LEADING SINGULARITY
OF THE COULOMB-MODIFIED FORM FACTOR

Consider the ‘‘off-shell Coulomb-modified form factor
@cf. Eq. ~54!#

fa~ka ; ẑa!:5^kauĜ0
21~ ẑa!Ĝa

C~ ẑa!uxa&, ~C1!

with ẑa[Êa1 i0, Êa being the energy parameter in su
systema, for ÊaÞka

2/2ma . As the notation indicates, a
operators act in the two-body space. We prove the followi

Auxiliary Theorem.~i! For Êa.0, fa(ka ; ẑa) behaves in
the (a-subsystem! on-shell limit ka

222maẑa→0 as

fa~ka ; ẑa! '

ka
2

22maẑa→0

@ka
222maẑa# i ĥaf̃a~ka ; ẑa!,

~C2!

with f̃a(ka ; ẑa) remaining finite atka
252maÊa . Here,ĥa is

defined in Eq.~41a!.
~ii ! For ẑa5Êa,0, the same result~C2! holds but with

ĥa52 iebegma /A2mauÊau. The important special case th
uÊau equals the binding energy, i.e.,Êa52Ba , deserves
extra mention. The ‘‘off-shell Coulomb-modified bound sta
form factor’’ behaves in the limitka

212maBa→0 as

fa~ka ;2Ba! '

ka
2

12maBa→0

@ka
212maBa#ha

(bs)
f̃a~ka ;2Ba!,

~C3!

with f̃a(ka ;2Ba) being regular atka
212maBa50. The

bound state Coulomb parameterha
(bs) is defined in Eq.~49!.

~iii ! The ‘‘off-shell Coulomb-modified zero-energy form
factor’’ fa(ka ;0) is nonsingular in the on-shell limitka
→0,

fa~ka ;0! '

ka→0

ka
2f̃a~0!, ~C4!
06400
c-

.

with f̃a(0) being finite.
Comment.This theorem is valid for both repulsive an

attractive Coulomb interaction.
Proofs. ~i!. We start from the definition~C1!, with ka

ÞpaªA2maÊa.0. With the help of the so-called station
ary off-shell Coulomb scattering statesucpa ,ka

C(6) &

ªĜa
C(pa

2/2ma6 i0)Ĝ0
21(pa

2/2ma6 i0)uka&, this can be re-
written as

fa~ka ; ẑa!5^cpa ,ka

C(2) uxa&. ~C5!

The limit relation between off-shell and on-shell (ka

5pa ,pa[pak̂a) Coulomb scattering states is@25#

lim
ka→pa

^cpa ,ka

C(2) uV~ka ,pa!5^cpa

C(2)u, ~C6!

where

V~ka ,pa!5†e2pĥa/2G~12 i ĥa!~4ẑa!2 i ĥa

3@ka
222maẑa# i ĥa

‡

21. ~C7!

This gives for the limit relation between the off- and th
on-shell Coulomb-modified form factor

fa~ka ; ẑa! 5

ka
2

22maẑa→0

@V~ka ,pa!#21^cpa

C(2)uxa&.
~C8!

The on-shell Coulomb-modified form factor^cpa

C(2)uxa& is

well-behaved, for reasonable functionsxa(ka). For instance,
for a form factor of the type~37!, it can be calculated ana
lytically using the formula@26#

E dkn

~2p!3

cpn

C(1)~kn!

@~kn2a!21b2#
5e2phn/2G~11 ihn!

3
@a22~pn1 ib !2# ihn

@~pn2a!21b2#11 ihn
,

~C9!

with hn defined as in Eq.~123! but with kn
0 replaced bypn ,

yielding

^cpa

C(2)uxa&5e2pĥa/2G~12 i ĥa!
e2ĥaarctanpa /b

pa
21b2

.

~C10!

This function has only a pole atpa
252b2,0. Hence, using

Eqs.~C7! and ~C8!, the desired result~C2! follows.
~ii ! This case has already been described in Ref.@27# ~see

also @28#!. It is apparent that its singularity is in gener
branch point atka

212maBa50, although for the case tha
the charges of particlesb andg are of opposite signs it may
be a pole~viz., if ha

(bs)52n, nPN being a positive integer
as it happens for hydrogenic bound state form factors!.
6-23
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~iii ! This assertion will be verified for the Yukawa-typ
S-wave form factorx(p2) introduced in Eq.~37!. The ex-
plicit expression for the corresponding off-shell Coulom
modified form factor is known forÊa[pa

2/2ma.0 ~see,
e.g., Ref.@25#!,

fa~ka ;Êa1 i0!5x~ka
2 !2x~pa

2 !
pa

ka
@Fi ĥa

~Ba!

2Fi ĥa
~B/a!#, ~C11!

with

B5
b1 ipa

b2 ipa
, a5

ka2pa

ka1pa
. ~C12!

Here, Fi ĥa
(z) is a short notation for the hypergeometr

function 2F1(1,i ĥa ;11 i ĥa ;z). We first need the zero
energy limit of fa(ka ;Êa1 i0), and hence the limitpa
→0 of the hypergeometric functions, forkaÞ0. This limit is
nontrivial since not onlyBa511O(pa) and the same be
havior for B/a @recall thatFi ĥa

(z) has a branch point atz

51] but also two of the parameters go to infinity at the sa
time sinceĥa;1/pa . This problem can be solved in th
following way. First we note that, because the variable
either hypergeometric function approaches the value 1 in
limit, it is advantageous to representFi ĥa

(z) as a function of

the variable 12z. Such a representation is well known@29#:

1

i ĥa

Fi ĥa
~z!5 (

n50

`
~ i ĥa!n~12z!n

n!
@c~n11!2c~n1 i ĥa!

2 ln~12z!#. ~C13!

Here, c(z) is the psi function and (a)n the Pochhamme
symbol. By expanding all functions on the right-hand side
Eq. ~C13! in powers of 1/i ĥa and keeping in mind that (1
2Ba)ĥa5O(1), a calculation similar to that reported i
@30# yields

Fi ĥa
~Ba!5 i ĥaG„0,i ĥa~12Ba!…ei ĥa(12Ba)@11O~pa!#,

~C14!

with an analogous expression forFi ĥa
(B/a). Here,G(0,z) is

the incomplete gamma function. With this result the limit
zero energy can be performed in Eq.~C11!. Introducingsa

ªpaĥa5ebegma one finds

fa~ka ;0!ª lim
pa→0

fa~ka ;Êa1 i0!5x~ka
2 !

1x~0!
2sa

ka
Im@G„0,2sa~b21

1 ika
21!…e2sa(b211 ika

21)#. ~C15!
06400
-

e

is

f

The on-shell limit ka→0 of the off-shell Coulomb-
modified zero-energy form factor~C15! is now easily found.
Use of @29#

G~0,z!z→
5̀

e2z

z
F12 1

z
1OS 1

z2D G , uargzu,3p/2,

~C16!

leads to

fa~ka ;0! 5

ka→0

x~0!H 11ka
2

d ln x~ka
2 !

dka
2

1•••

1
2sa

ka
ImF bka

2sa~ka1 ib!
2

~bka!2

4sa
2~ka1 ib!2

1•••G J 5:ka
2f̃a~0!1o~ka

2 !, ~C17!

with f̃a(0)5x(0)/bsa being nonsingular.
Note that, although the proof has relied on the expli

form ~37! of x(p2), the result is nevertheless valid for arb
trary, at the origin nonsingular~S-wave! form factors since
any such form factor can be represented as linear comb
tion of functions of the type~37!.

This completes the proof of the Auxiliary Theorem.

APPENDIX D: ASYMPTOTIC FORM OF THE
THREE-CHARGED PARTICLE WAVE FUNCTION

The asymptotic behavior of the three-charged parti
wave function in the regionV0, which is valid outside of the
so-called singular directions characterized bykn

0r n2kn
0
•r n

50 for n51,2,3, has been given in Refs.@22,23#:

Ck
a
0 ,q

a
0

C(1)
~ra ,ra![CP0

C(1)
~X!→

V0

CP0
C,as(1)

~X!

5eiP0
•X)

n51

3

eihn
0 ln(kn

0r n2kn
0
•rn)

1OS 1

r 1
,

1

r 2
,
1

r 3
D . ~D1!

Here, P05$kn
0 ,qn

0% and X5$r n ,rn% are vectors in six-
dimensional space, and

P0
•X5k1

0
•r11q1

0
•r1[k2

0
•r21q2

0
•r2[k3

0
•r31q3

0
•r3 .

~D2!

Clearly, either set of Jacobi coordinates$r n ,rn% and conju-
gate momenta$kn

0 ,qn
0%, n51,2, or 3, can be used as the va

ables in CP0
C(1)(X) and CP0

C,as(1)(X). Moreover, hn
0

5hn(kn
0) are the appropriate Coulomb parameters@cf. the

definition ~123!#. The leading asymptotic term on the righ
hand side of Eq.~D1! is conventionally called three-particl
Coulomb-distorted plane wave. Note that it is equivalent,
the sense of being asymptotic solution of the Schro¨dinger
equation inV0, to @31,32#
6-24
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CP0
C,as(1)8~X!ªeiP0

•X)
n51

3

e2 ikn
0
•rnck

n
0

C(1)
~r n!, ~D3!

with

ck
a
0

C(1)
~ra![eika

0
•raNa

0F„2 iha
0 ,1;i ~ka

0r a2ka
0
•ra!…

~D4!

being the continuum solution of the two-particle Schro¨dinger
equation~Coulomb scattering wave function! for the par-
ticlesb andg, interacting via the Coulomb potentialVa

C(ra)
and moving asymptotically with the relative momentumka

0 .

Here, Na
05e2pha

0 /2G(11 iha
0), F(a,b;x) is the confluent

hypergeometric function, andG(x) the Gamma function.
That the leading asymptotic term of the wave functi

CP0
C,as(1)8(X) in V0 is nothing butCP0

C,as(1)(X) becomes
evident by recalling that the asymptotic behavior
ck

a
0

C(1)
(ra) in the nonsingular direction~i.e., for ka

0r a

2ka
0
•raÞ0) is given by

ck
a
0

C(1)
~ra! 5

r a→`

eika
0
•raeiha

0 ln(ka
0 r a2ka

0
•ra)1OS 1

ka
0r a2ka

0
•ra

D .

~D5!

The asymptotic solution of the Schro¨dinger equation in
Va has been found in@11,33#. Here, however, we only nee
its leading term which has the form

Ck
a
0 ,q

a
0

C,as(1)
~ra ,ra!5ck

a
0(ra)

C(1)
~ra!eiqa

0
•ra )

nÞa
eihn

0 ln(kn
0r n2kn

0
•rn).

~D6!

The wave functionck
a
0(ra)

C(1)
(ra) is the continuum solution o

the two-body-like Schro¨dinger equation with the Coulom
potentialVa

C(ra),

H ka
02~ra!

2ma
1

D ra

2ma
2Va

C~ra!J ck
a
0(ra)

C(1)
~ra!50, ~D7!

to the local energyka
02(ra)/2ma , where thelocal momen-

tum ka
0(ra) is defined as

ka
0~ra!5ka

01
aa~ r̂a!

ra
, ~D8!

aa~ r̂a!52 (
n5b,g

d̄nahn
0lng

eanr̂a2 k̂n
0

12eanr̂a• k̂n
0

. ~D9!

The solution of Eq.~D7! is precisely of the form~D4! but
with momentumka

0(ra) instead ofka
0 . We remark that the

asymptotic form~D6! is valid only outside the singular di
rections characterized bykn

0r n2kn
0
•r n50 and 12eanr̂a• k̂n

0

50, for n5b,g.
Taking into account~D5! it is apparent that inVa the

representation~D6! is equivalent to~cf. Ref. @11#!
06400
f

Ck
a
0 ,q

a
0

C,as(1)8~ra ,ra!5eiP0
•Xe2 ika

0
•rack

a
0(ra)

C(1)
~ra!

3 )
nÞa

e2 ikn
0
•rnck

n
0

C(1)
~r n!. ~D10!

Again, equivalence means thatCk
a
0 ,q

a
0

C,as(1)
(ra ,ra) is the lead-

ing asymptotic term ofCk
a
0 ,q

a
0

C,as(1)8(ra ,ra) for ra→` and

r a /ra→0.
Since the local momentumka

0(ra) coincides with the
asymptotic momentumka

0 up to terms of the orderO(1/ra)
@recall its definition~D8!#, ck

a
0(ra)

C(1)
(ra) can be written inVa

as

ck
a
0(ra)

C(1)
~ra!5ck

a
0

C(1)
~ra!1OS 1

ra
D . ~D11!

Consequently, inVa we can write forCk
a
0 ,q

a
0

C,as(1)
(ra ,ra):

Ck
a
0 ,q

a
0

C,as(1)
~ra ,ra!5ck

a
0

C(1)
~ra!eiqa

0
•ra

3 )
nÞa

eihn
0 ln(kn

0r n2kn
0
•rn)1OS 1

ra
D ,

~D12!

and forCk
a
0 ,q

a
0

C,as(1)8(ra ,ra):

Ck
a
0 ,q

a
0

C,as(1)8~ra ,ra!5CP0
C,as(1)8~X!1OS 1

ra
D . ~D13!

Note that the term O(1/ra) is decisive for
Ck

a
0 ,q

a
0

C,as(1)
(ra ,ra) to satisfy the Schro¨dinger equation in the

asymptotic domainVa up to termsO(1/ra
2) @11#. However,

when looking for the leading singular part o
Ṽba

(ab)(qb8 ,qa ;z) it plays no role and can therefore be n
glected. To see this, substitute in the integrand of Eq.~106!
for the exact three-body wave functionCk

a
0 ,q

a
0

C(1)*
(rb ,rb)

[Ck
a
0 ,q

a
0

C(1)*
(ra ,ra), where on the right-hand side the variabl

$ra ,ra% are considered expressed by the set$rb ,rb%, its
asymptotic expressionCk

a
0 ,q

a
0

C,as(1)*
(ra ,ra). In this context it is

helpful to keep in mind that any Jacobian vector p
$kn ,qn%,n51, 2, or 3, can be chosen as the variables in
three-body wave function. The same remark applies als
the integration variables$kn

0 ,qn
0% in the spectral decomposi

tion ~82!. Since the singularity we are looking for, is gene
ated by the divergence of the integral overrb for r b→`, we
investigate the behavior of the integrand for larger b . Con-
sider first the asymptotic regionVa where r b→` implies
ra'r b . Use of Eq.~D12! shows that
6-25
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Ck
a
0 ,q

a
0

C(1)*
~ra ,ra!Vb

C~rb! 5

r b→`

OS 1

r b
D1OS 1

r b
2 D 1oS 1

r b
2 D ,

~D14!

where the terms;O(1/ra) in the asymptotic wave function
when multiplied withVb

C(rb), contribute to theO(1/r b
2). It is

evident that in the integration overrb , because of its faste
asymptotic decrease the latter contribution gives rise t
term which is less singular than that arising fromO(1/r b);
hence it can be discarded when looking for the leading
gular part ofṼba

(ab)(qb8 ,qa ;z). SinceCk
a
0 ,q

a
0

C,as(1)*
(ra ,ra) and

Ck
a
0 ,q

a
0

C,as(1)* 8(ra ,ra) are equivalent inVa , also in Eq.~D13!

the term;O(1/ra) can be omitted. Thus, when acting o
the Coulomb potential Vb

C(rb) the wave function
Ck

a
0 ,q

a
0

C(1)
(rb ,rb) may be approximated inVa by

Ck
a
0 ,q

a
0

C(1)
~rb ,rb!'

Va

Ck
a
0 ,q

a
0

C,as(1)8~ra ,ra!'

Va

CP0
C,as(1)8~X!.

~D15!

Similarly, in the asymptotic domainVg we find

Ck
a
0 ,q

a
0

C(1)
~rb ,rb!'

Vg

Ck
g
0 ,q

g
0

C,as(1)8~rg ,rg!'

Vg

CP0
C,as(1)8~X!,

~D16!

where in the first approximate equality theg-channel coor-
dinates$rg ,rg% are considered expressed by$rb ,rb%, and
the momenta$kg

0 ,qg
0% by $ka

0 ,qa
0%.

Thus we have derived the very important result: in
three asymptotic domainsV0 , Va , andVg , and hence also
in all of vb @cf. Eq. ~111!#, when looking for the main sin-
gular part of the amplitudeṼba

(ab)(qb8 ,qa ;z) the wave func-
tion Ck0 ,q0

C(1)
(rb ,rb) may be approximated by
a a
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Ck
a
0 ,q

a
0

C(1)
~rb ,rb!'

vb

CP0
C,as(1)8~X!. ~D17!

An analogous consideration shows that in the asympt
domain va8 the wave functionCk

a
0 ,q

a
0

C(1)
(ra8 ,ra8 ) may be ap-

proximated by

Ck
a
0 ,q

a
0

C(1)
~ra8 ,ra8 !'

va8

CP0
C,as(1)8~X8!. ~D18!

APPENDIX E: LEADING SINGULAR PART
OF THE INTEGRAL Ja

In this appendix we derive the leading singular part ofJa ,
Eq. ~119!, near the singularity caused by the coincidence
the singularities of its integrand given in Eq.~120! with the
forward-scattering singularities of the wave functio

Ck
a
0 ,q

a
0

C,as(1)8*
(kb9 ,qb9 ) which occur at Eq.~121!.

To begin with we introduce the following notation. W
are only interested in the leading singularity of a given qu
tity F. Hence, throughout this section we denote the lead
singular part ofF by F (s) so that

F5F (s)1 less singular1 nonsingular terms. ~E1!

~a! We start by investigating the leading singular part
Ja for qaÞq̃a when the singular behavior of the Coulom
modified form factor is as shown in Eq.~62a!. First of all we
recall that the ‘‘reduced Coulomb-modified form factor
f̃a@eab(qb91lbgqa)# is regular near the forward-scatterin

singularities of Ck
a
0 ,q

a
0

C,as(1)8*
(kb9 ,qb9 ) and the singularities

~120!. Hence it can be taken out from under the integ
signs in Eq.~119! at the pointqb95qb

0 which corresponds to

the forward-scattering singularity ofCk
a
0 ,q

a
0

C,as(1)8*
(kb9 ,qb9 ).

Next consider the following integral overqb9 :
en-
L1ªE dqb9

~2p!3

ck
a
0

C(1)*
@k1ka

02kb
02eba~qa91qb91qg

0!#

@~qb91lbgqa!222maẑa#12 i ĥa
. ~E2!

The Coulomb parameterĥa is defined in Eq.~41a!. In the following we need the basic integral~for 0<argu,2p,argu
Þp)

E
0

` dy

y12 il

1

~u1y!12 im
5

1

u12 i (l1m)

G~ il!G„12 i ~l1m!…

G~12 im!
, 0,Re~ il!,Re~12 im!, ~E3!

which represents a slight generalization of Eq. 3.194. of Ref.@34#, in several variations. We first use it as integral repres
tation for 1/@(qb91lbgqa)222maẑa#12 i ĥa to rewrite the right-hand side of Eq.~E2! as~recall thatẑa5Êa1 i e with e.0 for

Êa.0, and that we consider only particles with charges of the same sign!

L15
1

G~ i ĥa!G~12 i ĥa!
E

0

` dy

y12 i ĥa
E dqb9

~2p!3

ck
a
0

C(1)*
@k1ka

02kb
02eba~qa91qb91qg

0!#

@~qb91lbgqa!222maẑa1y#
. ~E4!

The integral overqb9 can now be done explicitly with the help of Eq.~C9!, yielding
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L15
e2pha

0 /2G~12 iha
0 !

G~ i ĥa!G~12 i ĥa!
E

0

` dy

y12 i ĥa

@„k2K ~qa9 !1ka
0
…

22~ka
02 iAy22maẑa* !2#2 iha

0

@„k2K ~qa9 !…21y22maẑa* #12 iha
0 , ~E5!

with the abbreviation

K ~qa9 !ªkb
01eba~qa91qg

02lbgqa!; ~E6!

ha
0 is defined in Eq.~123!. Introducing the new variablev via

y5@„k2K ~qa9 !…222maẑa* #v ~E7!

and retaining the leading singular parts only we derive, using again the integral~E3!,

L1
(s)5

e2pha
0 /2G„12 i ~ ĥa1ha

0 !…

G~12 i ĥa!

@„k2K ~qa9 !1ka
0
…

22„ka
02 iA22maẑa* …

2#2 iha
0

@„k2K ~qa9 !…222maẑa* #12 i (ĥa1ha
0)

. ~E8!

This result when inserted into expression~119! for Ja yields

Ja
(s)5

e2pha
0 /2G„12 i ~ ĥa1ha

0 !…

G~12 i ĥa!
f̃a@eab~qb

01lbgqa!#E dqa9

~2p!3E dk

~2p!3
ck

b
0

C(1)*
~k!ck

g
0

C(1)*

3„k1kg
02kb

01eab~qa92qa
0 !…

4peaeg

~qa92qa!2

@„k2K ~qa9 !1ka
0
…

22~ka
02 iA22maẑa* !2#2 iha

0

@„k2K ~qa9 !…222maẑa* #12 i (ĥa1ha
0)

. ~E9!

When looking for the leading singular part of Eq.~E9!, only those functions of the integrand which contain the lead
singularities have to be retained under the integral sign. This implies that the term@„k2K (qa9 )1ka

0
…

22(ka
0

2 iA22maẑa* )2#2 iha
0

can be taken out from under the integral sign at the forward-scattering singularitiesqa95qa
0 and k

5kb
0 of the Coulomb wave functions. To proceed further it proves convenient to introduce a new variable

p5k1kg
02kb

01eab~qa92qa
0 !. ~E10!

Then Eq.~E9! takes the form

Ja
(s)54peaege2pha

0 /2
G„12 i ~ ĥa1ha

0 !…

G~12 i ĥa!
f̃a~eabDb

01ka!@~ka
02eabDb

02ka!22~ka
0

2 iA22maẑa* !2#2 iha
0E dp

~2p!3

ck
g
0

C(1)*
~p!

@~p2kg
02eabDb

02ka!222maẑa* #12 i (ĥa1ha
0)
E dk

~2p!3

ck
b
0

C(1)*
~k!

@p2k2kg
01kb

01eabDa
0 #2

.

~E11!

Here we have used the notations~89! and ~90!. Integration overk with the help of Eq.~C9! yields

Ja
(s)54peaege2p(ha

0
1hb

0)/2
G~12 ihb

0 !G„12 i ~ ĥa1ha
0 !…

G~12 i ĥa!
f̃a~eabDb

01ka!

3@~ka
02eabDb

02ka!22~ka
02 iA22maẑa* !2#2 iha

0

3 lim
«→10

E dp

~2p!3

@~p2kg
01kb

01eabDa
0 !22~kb

02 i«!2#2 ihb
0

@~p2kg
01eabDa

0 !21«2#12 ihb
0

ck
g
0

C(1)*
~p!

@~p2kg
02eabDb

02ka!222maẑa* #12 i (ĥa1ha
0)

. ~E12!

Again only those terms of the integrand need to be left under the integral sign which contain the leading singu
consequently, the square-braketed numerator function can be taken out atp5kg

0 . Then in the main order one obtains forJa
(s)
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Ja
(s)54peaege2p(ha

0
1hb

0)/2
G~12 ihb

0 !G„12 i ~ ĥa1ha
0 !…

G~12 i ĥa!
f̃a~eabDb

01ka!@~ka
02eabDb

02ka!22~ka
02 iA22maẑa* !2#2 iha

0

3@~kb
01eabDa

0 !22kb
02#2 ihb

0
I a , ~E13!

with

I aªE dp

~2p!3

ck
g
0

C(1)*
~p!

@~p2kg
01eabDa

0 !2#12 ihb
0

1

@~p2kg
02eabDb

02ka!222maẑa* #12 i (ĥa1ha
0)

. ~E14!

To evaluate this latter integral we use Eq.~E3! twice as integral transform of the denominator functions, once withu

[v1(p)ª(p2kg
01eabDa

0)2, and once withu[v2(p):5(p2kg
02eabDb

02ka)222maẑa* . This gives

I a52
1

p2
sinh@p~ĥa1ha

0 !#sinh~phb
0 !E

0

`

dxx211 i (ĥa1ha
0)E

0

`

dyy211 ihb
0E dp

~2p!3

ck
g
0

C(1)*
~p!

„v1~p!1y…„v2~p!1x…
. ~E15!

The integral overp is first rewritten by means of the Feynman integral

1

ab
5E

0

1 dt

@ ta1~12t !b#2
52 lim

«1→0

d

d«1
E

0

1 dt

@ ta1~12t !b1«1#
. ~E16!

Thus

I a52
1

p2
sinh@p~ĥa1ha

0 !#sinh~phb
0 !E

0

`

dxx211 i (ĥa1ha
0)E

0

`

dyy211 ihb
0E

0

1

dtL2~ t !, ~E17!

with

L2~ t !ª2 lim
«1→10

d

d«1
E dp

~2p!3

ck
g
0

C(1)*
~p!

@ t„v1~p!1y…1~12t !„v2~p!1x…1«1#
. ~E18!

Since the denominator in the integrand of Eq.~E18! can be represented in the form@p2c(t)#21x2(t)1«1, with

c~ t !5kg
02eabDa

0 t1~12t !@eabDb
01ka# ~E19!

and

x2~ t !5t~12t !~Da
01Db

01eabka!21ty1~12t !~x22maẑa* !, ~E20!

we can easily integrate overp using Eq.~C9! and obtain

L2~ t !5,2e2phg
0/2G~12 ihg

0! lim
«1→10

d

d«1

@c2~ t !2„kg
02 iAx2~ t !1«1…

2#2 ihg
0

@ t„~Da
0 !21y…1~12t !„~Db

0 !212eabDb
0
•ka1sa~qa ;z!1x…1«1#12 ihg

0 .

~E21!

Here we took into account that

~Db
01eabka!222maẑa5~Db

0 !212eabDb
0
•ka1sa~qa ;z!. ~E22!

Differentiation of the denominator with respect to«1 gives the leading singular partL2
(s) of L2 in the limit sa(qa ;z)→0 as

L2
(s)~ t !5

e2phg
0/2G~22 ihg

0!@c2~ t !2~kg
02 ix~ t !!2#2 ihg

0

@ t„~Da
0 !21y…1~12t !„~Db

0 !212eabDb
0
•ka1sa~qa ;z!1x…#22 ihg

0 . ~E23!

Let us now insert this result forL2 in Eq. ~E17!, and consider the integrals overy andx. The leading singular partI a
(s) of

I a is generated by the singularities of the denominator at the lower limitsy50 and x50 of the integrals overy and x,
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respectively. Consequently, the numerator can be taken out under from the integrals overy andx at x5y50. The integration
over y andx is now straightforward. Introducing the variablev as

y5S ~Da
0 !21

12t

t
@~Db

0 !212eabDb
0
•ka1sa~qa ;z!1x# D v, ~E24!

we derive with the help of Eq.~E3! for I a
(s) in the leading order

I a
(s)52

1

p2
sinh@p~ĥa1ha

0 !#sinh~phb
0 !e2phg

0/2G~ ihb
0 !G„22 i ~hb

01hg
0!…E

0

1

dtt2 ihb
0
@c2~ t !2„kg

02 ix0~ t !…2#2 ihg
0

3E
0

`

dx
x211 i (ĥa1ha

0)

@ t~Da
0 !21~12t !„~Db

0 !212eabDb
0
•ka1sa~qa ;z!1x…#22 i (hb

0
1hg

0)
. ~E25!

Here, we have used the short-hand notationx0
2(t):5 lim

x,y→0
x2(t). Similarly, defining a variableu via

x5S t

12t
~Da

0 !21~Db
0 !212eabDb

0
•ka1sa~qa ;z! Du, ~E26!

an analogous integration overx yields

I a
(s)5e2phg

0/2

GX22 i S ĥa1(
n

hn
0D C

G~12 ihb
0 !G„12 i ~ ĥa1ha

0 !…
E

0

1

dt
t2 ihb

0
~12t !2 i (ĥa1ha

0)@c2~ t !2„kg
02 ix0~ t !…2#2 ihg

0

@ tDa
21~12t !„~Db

0 !212eabDb
0
•ka1sa~qa ;z!…#22 i (ĥa1(

n
hn

0)
.

~E27!

Recall Eq.~92! which shows thatDa
0;Db

0;sa . Thus, the leading singularity ofI a
(s) in the limit sa(qa ;z)→0 is due to the

zero of the denominator in Eq.~E27! at the upper limit of integration. For, att51 the denominator is proportional t
(Da

0)2;sb
2 while at t50 the leading term of the denominator is proportional tosa . Consequently, the square-bracketed te

in the numerator in Eq.~E27!, being a less singular function att51 than the denominator can be taken out of the integra
t51. Using Eqs.~E19! and ~E20! one finds in the leading order

lim
t→1

@c2~ t !2„kg
02 iAx0~ t !…2#'22eabkg

0
•Da

0 . ~E28!

The remaining integral overt can be evaluated explicitly@see@34#, Eq. ~3.197.3!#,

I a
(s)5e2phg

0/2

GX22 i S ĥa1(
n

hn
0D C

G„22 i ~ ĥa1ha
01hb

0 !…

@22eabkg
0
•Da

0 #2 ihg
0

@~Db
0 !212eabDb

0
•ka1sa~qa ;z!#22 i (ĥa1(

n
hn

0)
2F1X22 i S ĥa1(

n
hn

0D ,12 ihb
0 ;2

2 i ~ ĥa1ha
01hb

0 !;12uC, ~E29!

with

uª
~Da

0 !2

~Db
0 !212eabDb

0
•ka1sa~qa ;z!

. ~E30!

Here, 2F1(a,b;c;z) is the hypergeometric function. By using, e.g., the transformation formula~15.3.6! of @29# for
2F1(a,b;c;12u) one easily extracts the leading term foru→0 @recall Eq.~92!#

I a
(s)5e2phg

0/2
G„12 i ~hb

01hg
0!…

G~12 ihb
0 !

@22eabkg
0
•Da

0 #2 ihg
0 1

@2eabDb
0
•ka1sa~qa ;z!#12 i (ĥa1ha

0)

1

@~Da
0 !2#12 i (hb

0
1hg

0)
. ~E31!

Correspondingly the leading singular part ofJa takes the form
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Ja
(s)54peaege2p(ha

0
1hb

0
1hg

0)/2
G„12 i ~ ĥa1ha

0 !…G„12 i ~hb
01hg

0!…

G~12 i ĥa!
f̃a~eabDb

01ka!@22~ka
0
•ka1ka

0ka!#2 iha
0

3@2eabDa
0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0 1

@2eabDb
0
•ka1sa~qa ;z!#12 i (ĥa1ha

0)

1

@~Da
0 !2#12 i (hb

0
1hg

0)
. ~E32!

~b! We also need the leading singular part ofJa for qa5q̃a , in the limit sa(q̃a ;z)→0. The appropriate singular behavio
of the off-shell Coulomb wave function is given in Eq.~62b!. Repeating the above steps one finds with a similar albeit sim
calculation

Ja
(s)54peaege2p(ha

0
1hb

0
1hg

0)/2G~12 iha
0 !G„12 i ~hb

01hg
0!…@2eabDa

0
•kb

0 #2 ihb
0
@22eabDa

0
•kg

0#2 ihg
0 L̃1

@~Da
0 !2#12 i (hb

0
1hg

0)
.

~E33!

Here,L̃1 is the nonsingular quantity

L̃1ª
epha

0 /2

G~12 iha
0 !
E dqb9

~2p!3
ck

a
0

C(1)*
@k1ka

02kb
02eba~qa91qb91qg

0!#f̃a„eab~qb91lbgqa!…. ~E34!
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