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Standard solution methods are known to be applicable to Faddeev-type momentum space integral equations
for three-body transition amplitudes, not only for purely short-range interactions but also, after suitable modi-
fications, for potentials possessing Coulomb tails provided the total energy is below the three-body threshold.
For energies above that threshold, however, long-range Coulomb forces have been suspected to give rise to
such severe singularities in the kernels, even of the modified equations, that their compactness properties are
lost. Using the rigorously equivalent formulation in terms of an effective-two-body theory we prove that, for all
energies, the nondiagonal kernels occurring in the integral equations which determine the transition amplitudes
for all binary collision processes, possess on and off the energy shell only integrable singularities, provided all
three particles have charges of the same sign, i.e., all Coulomb interactions are purely repulsive. Hence, after
a few iterations these kernels become compact. The case of the diagonal kernels is dealt with in a subsequent

paper.
PACS numbd(s): 21.45+v, 03.65.Nk

[. INTRODUCTION tities which in the original formulation had been ordinary
two-body T-operators That is, all unpleasant features re-
Since pioneering work of Faddedw], the three-body lated to the Coulomb interactions are hidden in the unknown
guantum scattering theory has become a powerful tool fothree-body Coulomb Green’s function. Clearly, the problem
the investigation of many different processes in various areasf calculating the latter is not any simpler than the initial
of physics. However, one major obstacle which has impedegroblem of solving for the full three-body Green’s function.
its wider-spread application, in particular to atomic reactionsMerkuriev’s approact9,10] is based on the same idea, ex-
has remained, viz., the question of how to incorporate longeept that there the Coulomb potentials are split by means of
range Coulomb forces into the three-body scattering formalsuitable cutoff functions into “inner” and “outer” parts,
ism. and only the latter are incorporated into the—formerly
From the principle point of view, Dollard’$2,3] time-  free—three-body Green’s function. Not surprisingly, the ker-
dependent approach té-particle scattering with Coulomb- nels of the Faddeev-type integral equations for the Green'’s
like potentials, which applies in particular also to threefunction for the cutoff Coulomb plus short-range potentials
charged patrticles, represents a formal solution by providing &ave similar compactness properties as those for short-range
mathematically rigorous definition of the relevant/ MKER potentials alone and, thus, can be treated by conventional
operators. But progress towards the implementation of thisnethods. But for the determination of the auxiliary Green’s
result into a practical approach has been dldFor further  function containing the “outer” Coulomb potential parts,
reviews of time-dependent approaches see, (&g again only formal integral equations have been proposed and
Also most stationary approaches, based on integral equahown to possess compact kernels provided that all Coulomb
tions, for taking into account the Coulomb interactions haventeractions are repulsivglQ]. Their explicit solution ap-
remained formal so far. For instance, in the approach propears to be very difficult, and in any case has not yet been
posed by Nobld7] (see also Benczgg]), the three-body attempted(Note, however, that this proposition in RE10]
integral equations are rewritten in a such a way that all Couregarding the compactness property of the kernels contra-
lomb potentials are included in what had before been thelicts a claim made 9], namely that compactness has been
“unperturbed” Green’'s function. Thereby, the latter is proved for repulsive as well as attractive Coulomb poten-
changed into the three-body Coulomb Green's functiortials) For completeness we mention that, as stateflLdj,
which then enters the kernels of the new integral equationthe uniqueness of the solutions of thi#ferential Faddeev
(as well as those of auxiliary three-body equations for quanequations for Coulomb-like potentials has been proved in a
special class of functions, again only under the assumption
that all three particles have charges of equal srgpulsive

*Electronic address: akram@comp.tamu.edu Coulomb potentials But in this context it should be kept in
"Electronic address: Erwin.Alt@uni-mainz.de mind that the boundary condition to be imposed on the so-
*Deceased. lutions of the differential equations used in Ref0] was not
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complete. Indeed, the missing part was derived only later byletail in a recent pedagogical revi¢asg].
the present authofd 1]. In spite of the success of the screening and renormaliza-
An important practical result has been derived by Ve-tion approach, not only as a method for proving the existence
selova[12,13. When considering the Faddeev integral equa-of various quantities of interest but also as a practical com-
tions with screened Coulomb potentials at energies below thputational tool, it appears highly desirable to also investigate
breakup threshold, she succeeded to single out from the kethe effective-two-body AGS equations directly fam-
nel that term which in the zero-screening limit yields the screenedCoulomb potentials. Quite generally, the question
so-called two-particle or center-of-mass Coulomb singularof compactness of the kernels occurring therein depends on
ity, in such a form that it could be inverted explicitly. In this the analytical properties of their constituents, which are the
way, modified three-body integral equations with compactso-called “effective potentials” and “effective free propaga-
kernels were obtained. But this inversion procedure was onlyors.” The latter are known to have only a pole singularity
shown to work for energies below the breakup threshold. At‘at the on-shell point” (besides the three-body guEor the
energies above that threshold, three-particle singularitiesffective potentials, however, no thorough investigation of
have been suspected to appéa?,10 which nobody has their singularities has been performed up to now. The aim of
succeeded to handle till now. this series of papers is to overcome that deficiency. The
Because of the aforementioned difficulties to derivepresent paper, in particular, deals with the nondiagonal ef-
proper equations for the kernels thiree-body transition op- fective potentials which are the driving terms for all possible
erators which are valid for all energies and are well suited rearrangements of the three particles in+2 processes.
for practical calculations, it appears more promising to splitThroughout the investigation it is assumed that all Coulomb
the problem into several independent parts. An obvious firspotentials are repulsive, i.e., that the charges of all three par-
step consists in developing integral equations dtiective-  ticles are of the same sign. The new result is that the singu-
two-body transition amplitudewhich describe all possible larity in the momentum-transfer plane, which is the leading
binary processes, i.e., processes in which a projectile imand, therefore, the most dangerous one, is an integrable
pinges on a two-particle bound state leading again to a twobranch point located off the energy shell. Hence, it can never
body final statd (in-)elastic and rearrangement collisions, or coincide, for values of the momenta in the integration region,
quite generally so-called-2 2 reactiong The search for ap- with the pole of the effective free propagator. Consequently,
propriate equations for breakup amplitudes describing Zhe leading singularities of the nondiagonal kernels are inte-
—3 reactions, or for three-body equations for amplitudegyrable.
describing 3- 3 processes, is deferred to a later stage. A forthcoming paper deals with the singularity structure
An approach along these lines has been developed iaf the diagonal kernels. There it will be shown that, if the
[14,15. Starting from the Alt-Grassberger-Sandh@ssS) charges of all three particles are of the same sign, noninte-
integral equations for the three-body transition operatorgrable singularities appear only on the energy shell, and co-
[16], they can be reduced exactly by means of the so-callethcide below the breakup threshold with those considered by
quasiparticle approach to a set of coupled, multichannelMeselova[12]. They can, however, be explicitly singled out
Lippmann-Schwinger-type equations for effective-two-bodyand inverted as has been done by Alt and Sandh&s
(i.e., binary transition amplitudes. By using the screening Moreover, the off-the-energy-shell singularities of the diag-
method, this formulation allowed the isolation, and subse-onal kernels turn out to be integrable. These, together with
quent extraction, of the leadin@n the limit of vanishing the present results imply that after a few iterations (gt-
screening radiysCoulomb singularity which then could be ably modified effective-two-body AGS equations become
inverted explicitly. After application of an appropriate renor- integral equations with compact kernels.
malization procedure, the various screened binary amplitudes The plan of the paper is as follows. In Sec. Il we briefly
have been shown by Alt and Sandhag] to coincide, in the recapitulate the relevant definitions and equations of the
zero-screening limit, with the corresponding amplitudes a®ffective-two-body formulation of the three-body scattering
resulting from Dollard’s time-dependent theory, in particulartheory. For the convenience of those readers who are not
also for energies above the three-body threshold. In fact, thimterested in mathematical details we summarize in Sec. I
unique relation between amplitudes as defined in the timethe results obtained. Detailed proofs of the assertions are
dependent and in the stationary screening and renormalizaeferred to Sec. IV. There we investigate the leading singu-
tion approach could be established also for the breakup (farity of the various contributions to the nondiagonal effec-
—3) amplitudes, but only for the case of two charged andive potentials. Combining these results with those concern-
one neutral particles. Thus, for the latter case, as has beémng the singularities of the effective free propagator allows us
stated in[10], from the mathematical point of view the to find the leading singularities of theff- and on-shell
screening and renormalization approach provides a proof afondiagonal kernels. A summary is given in Sec. V. Various
the compactness of the correspondittyree-body Faddeev  auxiliary results are collected in the appendices. In particular,
or AGS integral equations, in a special class of functionsAppendix A provides some of the frequently used transfor-
(this statement represents another contradiction W&h mation formulas of Jacobi variables belonging to different
where it is claimed without proof that even for this specialgroupings of the particles. In Appendix B we investigate the
case singularities occur which reflect the noncompactness singularity structure of the residue function of the effective
the corresponding kerneldNe mention that these, and many free propagator. An auxiliary theorem describing the singular
other aspects of charged-particle scattering are described behavior of the off-shell Coulomb-modified form factor in
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the on-shell limit is proved in Appendix C. Appendix Dcon- 3 o . .
tains a brief recapitulation of the asymptotic behavior of the V= 5MVV=V§+VS= E 5mv§+ E 5mv§
three-charged-particle scattering wave function, in the v=1 v=1 v=1

asymptotic regions needed. Finally, an important integral is )
evaluated in Appendix E. -

We choose units such that=c=1. Moreover, unit vec- Here, Ope=1—0p, is the anti-Kronecker-Copelli symbol.
tors are denoted by a hat, i.e=Vv/v. This allows an alternative decomposition téf

Il. EFFECTIVE-TWO-BODY ALT-GRASSBERGER- H=H,+V,, (6)

SANDHAS (AGS) EQUATIONS

For the convenience of the reader we briefly recapitulatd’h€€H«=Ho+V, is the channel Hamiltonian.
in this section some basic notions of the effective-two-body 1 N€ transition from the three-body to the effective-two-
formulation of the three-particle theory within the framework P°dy theory can be effected, e.g., by splitting each of the

of the three-particle AGS integral equations approgid].
Consider three distinguishable particles with masses

and charges, , v=1,2,3. We use the standard notation: on a

one-body quantity an index characterizes the particte, on
a two-body quantity the pair of particleg{), with B,y

# «, and finally on a three-body quantity the two-fragment

partition a+(Bvy) describing free particlesxr and (By).

subsystem interactions into the sum of a separable part plus a
(possibly nonseparableemainder. In order not to unneces-
sarily complicate the resulting equations we assume that
each pair of particles can support one and only (@wave
bound state. Such a restriction is most simply accounted for
by choosing the short-range pair potentials as purely sepa-
rable potentials of rank one:

Throughout we work in the total center-of-mass system. Ja-

cobi coordinates are introduced as follows;(r,) is the
relative momentunicoordinate between particleg and v,
and u,=mgm,/(mg+m,) their reduced masg,(p,) de-
notes the relative momentufooordinate between particler
and the center of mass of the pajy), the corresponding
reduced mass being defined &8,=m,(mg+m,)/(m,
+mg+m,).
The Hamiltonian of the three-body system is

3
H=Ho+V=Ho+ > V,, (1)
v=1
with
Ho=K2/2p,+Q%12M,, 2)

being the free three-body Hamiltoniak., and Q, are the
momentum operators with eigenvalues and q,, respec-
tively. Moreover,

V,=VS+V< )

is the full interaction between particlg® and y, consisting
of a short-range\(i) and a Coulombic part,

VE(r,)= efey. (4

[e3

Vi=|x)Aolxal, @=123. 7)

Here,|x,) is the so-called form factor andl, the strength
parameter. This provides an obvious decomposition of the
full interaction(3) into a separable\(ﬁ) and a nonseparable
(VS) part. Note that the generalization of the formalism to
arbitrary (but sufficiently smooth short-range interactions
does not cause any problem since the latter can always be
approximated to arbitrary accuracy by a sum of separable
terms. And it is easily seen that inclusion of an arbitrary but
finite number of bound statdsecall that attractive Coulomb
potentials are excludedvill not change our final results.

We introduce some additional notation. Let E+i0,
with E being the total energy of the three-body system. Fur-
thermore, denote by, (ql’g) the on-shell relative momentum
of the two fragments in channel (B8), and, e.g., by—B,
<0 the binding energy of the bound paj8{) (we preclude
zero-energy bound states in all subsysteni$ien, energy
conservation requires

_ 2 _
E=q3/2M,,—B,=0q}?/2Mz—B. (8)

Consider a collision initiating in channel. If the incident

kinetic energyEi/ZMa is large enough, then four different
transitionsae— v are possibler=« corresponds to elastic
scattering,y= B or y to rearrangement processes, and0

to the breakup reaction leading to three particles in con-
tinuum. One of the most important and useful aspects of the
effective-two-body formulation of the three-body theory is

In this paper we assume that the charges of all three particlehat the resulting equations couple only the transition ampli-
are of equal sign, i.e., all three pairwise Coulomb potentialgudes for all binary processed he breakup amplitudes can

are repulsive.

be obtained from the two-fragment amplitudes by quadra-

As usual, we define the channel interaction for charnel ture, or alternatively from a separate set of integral equations

as the sum of the interactions between particlend each of
the particles8 and v,

[16].) They have the structure of coupled Lippmann-
Schwinger-type equations and are given[hg]
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T5a(03:9052)=Vga(03,942) GS=Gy+GoTSG,. 17)
3 dq) C Here, and throughout the following, any explictdepen-
* ;1 2 )3Kﬂv(qﬁ d,32) dence is omitted unless required for clarity. Finally, the plane
& wave|q,) in channele is the eigenfunction of the momen-
X T, 003 2). (9)  tum operatoQ,, to the eigenvalue,, .

An important special case arises when only two of the
Here,?}m(q/’;,qaiz) is the off-shell reaction amplitude cor- three particles are charged and one is neutral. Such a situa-
responding to the transition from channelto channelg@  tion is realized, e.g., in deuteron-induced nuclear reactions.

: P - : In that case, the effective potentidlla simplifies consider-
since,a priori, q;#q, andq,# g, - The kernels are defined o . .
as b 957 9 974 ably. To be specific, let the neutral particle carry the index 3.

Thus, onlyvgaﬁo, and the full three-body Coulomb resol-
Kﬁa(q[’;,qa;z) ::VBa(q’B,qa;z)go;a(qa;z)_ (10 vent reduces to the Coulomb resolvent for channel 3:
GC(Z)EGg(z). Using representatiofil1la one finds
The effective potentials can be written in two equivalent

ways, Va0, 00:2)= (0. xpl (1 854803) G5
VBa(qé 0y:2) ::<qk ’XB|GC(Z) _ 5ﬁaGg(Z)|Xa ,qaz \ - 5ﬁaga3G0|Xa o) (18
11
which isexactto all orders in the Coulomb potenti@kithin
=<q/},X3|G§(Z)Uga(Z)GS(Z)|Xa o) the presently_ adopted model for the sh_ort-range intera)cti(_)n
(11b The effective free propagator describing the propagation

_ of the noninteracting particles; and (8v), is defined as
Note that as a result of assumptigh, namely that the short-

range interactions are described by separable potentials of Sa(Z—Qi/ZM W)
rank one, they contain only pure Coulombic quantities. Rep- e P R — (19
resentatior{11a uses the resolvent of the three-particle Cou- Z=0o/2M,+B,
i c_ c_ 3 ,C
lomb HamiltonianH>=Hqy+V~=Hy+2;_,V, with
GY2)=(z—H%, (12 —1n ~ ~cn

S. (D) =(xal GG~ B GL(2) xa)- (20

besides the resolvent of the Coulomb channel Hamiltonian,
GS(2)=(z—Ho—V9 L. (13 .
GS(2)=(z—K?12u,— V)t (21)

The “auxiliary three-body transition operatorsU’lcga in Eq.

(11b), are defined in terms of E412) and the Coulomb part is the two-body Coulomb resolvent read in the two-particle
of the channel interactiofb) as space. For clarity, here and in the following all energy-

dependent operators, when read in the two-particle space, are
characterized by a hat.

C _ o -1 o o C , \/Cr~C\/C
Uga=95aGo +§V: Spr0aV, tVEGTVL, (14 We point out that, with a suitable choice of the normal-
ization of the form factor, the bound state wave function for
where the pair (By) is given as
Go(2)=(z—Hp) * (15 ey =G~ Bo)lxXa)- (22)

is the resolvent of the three-free particle Hamiltonian. Alter-If |i,) is normalized to unity one has on the energy shell,
natively, they can be found as solutions of the equations je  for z=E+i0 and q,=q,, or equivalently for E

B B —02/2M ,=—B,,
US,=65.Go 1+ > 85, TSGUS, (168
pa Cpar=0 T Ly Ty Ty E0ES S,(—B,)=1. (23)
ZEBaGEl"' > EBVEMTS IIl. LEADING SINGULARITIES OF THE NONDIAGONAL
v KERNELS Kp,: RESUMME
- = = The compactness of the effective-two-body AGS integral
C C
+% 98100 0uaTyGoT it - (16D equations depends on the analytical properties of the effec-

tive potentialsvﬁa(q;,qa;z) and propagatorgjg.,(d,;2),
As usual, the subsystem CoqurTﬁh)peratorTg is related to  which occur in the kernelﬁﬁa(q;,qa ;2), Eq. (10), and in
the Coulomb channel resolvent via the inhomogeneous term of E(). In this section we pro-
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are the relative momenta between particgsnd y in the
vertex (By)— B+ vy, and between particles and y in the
vertex (ay)— a+ v, respectively, expressed as linear com-
binations of the incoming and the outgoing momenta accord-
ing to Eq.(A2). The following notation is used:

(8,7)

Ny=m/(mAm)=1-X\,,, v#u; (28

= —€g, Is the antisymmetric symbol witle,;=+1 if

FIG. 1. Nondiagonal effective potential for neutral particles. (G:YB,B) is a cyclic ordering of the indice&d,2,3. Moreover

Semicircles denote the neutral-particle form factors.
I ioN e L2 z N2 _ z

vide a synopsis of the results concerning the leading singu- 0 p(Ap:2)=Kg"— 2162p= (Aut Naylip)™— 21523, (29)

larities of the nondiagonal parts of these kerngks., for 8

# ), the investigation of the diagonal parB€ «) being  with

deferred to a subsequent publication. The detailed investiga- L R

tion of the singularity structure is presented in the following 25=Ez+i0, Eﬂ::E—qEZ/ZMﬂ. (30)

section. A

That is, E is the energy parameter for the subsystem (

+7). Note that for on-shell values of the momentugp

=qj, cf. Eq.(8), one has

A. General remarks
Consider the nondiagonal effective  potential
Vsa(dg,da;2) Which, according to Eq(11a), is given as Eﬁ|q’5=aﬁz ~B; (31)

VealUp.0452) = (A5 . XplGX(2) X0, Q) With B#a. . ,
(24) thus, the deviation oE; from —Bg, is a measure of the

“off-shellity.”
lts physical interpretation is that of theon- or off-the- Similarly, we introduce
energy-she)l transfer amplitude of particles from the in- o, - , ) -
coming (87) to the outgoing bound statex§), while allow- 0o(0a:2) =Ke=200Z,= (gt N gy 0a) 21024 -
ing for all possible successive Coulomb scatterings of the (32

articlesa, B, andvy, in the intermediate state as represente ~A , . .
Ey the thO;ee'B-bodyyCoulomb resolve@dt P q—|ere,za is defined in analogy to Eq30) but in terms of
' a-channel quantities:

If all intermediate-state Coulomb scatterings are ne-
glected, i.e., ifG€ is replaced byG,, expressiori24) reduces
to the lowest-order particle-transfer amplitudé*‘pole am-
plitude”)

z,=E,+i0, E_ =E—q3/2M,, (33)

with E,, being the energy parameter for the subsysten (
YN + 7). One easily derives the relation
Vﬁa(qﬁvqa!Z)_<qB'XB|GO(Z)|Xa!qa>' (25)
O-a(qa/;z)/lu’a:oﬁ(q;;;z)/:u'ﬁ! (34)
This is nothing but the familiar effective potential pertaining . )
to the scattering of uncharged particles which is exact withivhich holds true in particular also for on-shell values of the
our simple model for the short-range interaction. Its diagrammomenta. The corresponding quantities are denoted by

matic representation is given in Fig. 1. — — = .5

aB:=(qa+)\a7qﬁ) +2ugBg,

. . . (0) ’ . _ I J—

- B. Leading smgul-arlty of Vﬁa(qé,qa,z) - Ua::(q;3+)\ﬁyqa)2+2MaBa' (35)
It is helpful to recapitulate the singular behavior of

V}?J(q}; ,0,.:2), z=E+i0, which is the effective potential in From Eq.(26) the familiar result follows, namely that the

the absence of Coulomb interactions. This also serves to irfmain singularity ofv$)(qy,q,;2) is a pole at

troduce some notation. The corresponding analytic expres- ,
sion is 045(05:2)=0=0,(04;2). (36)

* (k) ya(K.) Forz=E+iQ,E>0, it is located in the region of integration
Xp\2p) Xl Ra) (26)  overq,, while for E<O or for on-shell values of the mo-
o5(0p;2) menta q’ﬂ=a’3 andq,=q,) this pole is situated off the real
axis in the complexj,, plane at Eq(36) or atoz=0=o0,,
Here, respectively. Singularities like the pole ¥£{)(qy,d,;2) at
Eq. (36), the position of which depend on the energy, are
Ko=€4p(AptNp,0a) and Kp=e€g.(datNaydp) (270 termed “dynamic” singularities.

VO, 002 = —2ug
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We point out that at the singular poi(86), the angle
betweenq, andq, is determined by the magnitudeg and
d., and byz

RemarkV{)(qy,q,;2) has additional singularities com-
ing from the vertex functiongﬁ(ktg) and y,(k,) which are,
however, related to the characteristics of the short-range i
teractionsvlsg and V3. As is well known, the latter are not
dangerous because they are located in the unphysical reg
at k,;?<0 andk?<O0, respectively. Since their position is

PHYSICAL REVIEW C 61 064006

Fixing the outgoing momentum f%jag we haveléﬁzo
and hencgcf. Egs.(29) and(30)] o4(q4:2) =k,*—i0, with
k; defined as in Eq(27) but as linear combination a"ﬂ‘;; and
.. Then, ifq,#0,, the leading singular behavior of the
Jondiagonal effective potentia24) is of the form

k'B—>O

_ C(k))
Vﬁa(qﬂ!qa;z) -~ £

k;;272i Neti 7,

ion (Ga# T 0a)s (43)

independent of energy they are called “static” singularities.
These facts can easily be checked for the case of a simpl@iﬁ'th

Yukawa-typeS-wave form factor which in momentum space

reads as
Xa(Ko)=1I(K2+ B2). (37)

Here, the quantityB;l represents a measure of the “range”
of the interactionVi. Singularities of this type are of no
interest in the present context.

C. Leading singularity of Vg,(dg,0q:2)

Let us state the assertion in the following form.

TheoremThe leading(dynamig singularity of the nondi-
agonal effective potentidR4) with respect to the momentum
transfer is in general a branch point at

05(05:2)=0=04(04;32). (38)

(i) Consider off-shell values of the momerqgsﬁa;; and
d,#d,, satisfying

qp#0p=V2M4E and q,#0,:=V2M E,

which impliesEz#0 andE,#0. With z=E+i0, in theqj
plane the locus of this branch point is determinedqﬁ
+Mg(d,+ N, 0p)% np=0js, and in theq, plane byda’

+ M (G N gy Oa) 1= - IN its Vicinity, Vo(dp,a;2)
behaves as

(39

Tp(0:2)—0

1

O-B(qé;z)lfi(nﬁnﬁ)

Vﬁa(q’ﬁ 1o ,Z)

(95#0p.0)%; Ga?Ua ), (40)

where
;70,5 ;70(( \ Zﬂaia):eﬁe)’lua/ 2/"“&201' (413
%BE ;73( \/ZMBEB)ZE),GQ[LB/\/Z,LL[;%B (41b)

are the Coulomb parameters pertaining to the partjélasd
v, anda and vy, respectively.

(i) The special points|;=q, and/org,=0q, have to be

lim C(k})=0.

k;3—>0

(44)

In other Words,vﬁa(alg,qa ;Z) is actually less singular than
described by the exponent in Eq43). Here, 7,
=e,epu1,/k, with k, is considered as linear combination of

a; andq, . Let us puz=E+i0. In theq-plane, this branch
point is located alq;;:qﬁ. In the q, plane, its locus is
determined byks?= (0, + N4, 05)?=0 which forE=0, i.e.,
for real g, can be on the positive real, axis, while for
E<O0 it is always located at complex values qf,. An
analogous result holds fay,# 0, butq,=0, whenE,=0
and aa(aa;z)zki—iO, with k,, defined as in Eq(27) but
with q,, instead ofq,, . In that case, the singular behavior in
the limit o,(q,;z)—0 is of the form

k,—0

[N ‘ Cl(ka) [ R
ValUp.Uai2) ~ & 2ty (47 dg.dp), (49
again with
lim C’(k,)=0 (46)
ko,—0

and », as defined above but witk, being considered now
as~linear com~bination ot]; and q,. And, finally, if q,
=q, and q’ﬁ=qﬁ, the nondiagonal effective potentié24)
behaves fowrs(dg;2) =kj;?= ugka/ w,—0 as

o k;;ﬂo
Vga(dj.04:2) ~ D(kpky~? for E=0,  (47)
with
lim D(kj)=0. (48)
k/~>0

B

We note that, on account of the linear relatidAg) or (A2),
for 9,=0q, and q;?iaﬁ the limiting valuesk,=0=k, can
be reached only foq;=q,=0, i.e., forE=0.
(i) An important special case arises when either the in-
coming and/or the outgoing momentum equals its on-shell

treated separately. For this purpose we introduce the notaalue, that is, wherg,—q, (.e., E,——B,) and/or g}

tions

akzaﬁaé and aaEaaaa . (42)

—ﬁ(’; (i.e., EB—>—BB), cf. Eq.(8). Denote the Coulomb pa-
rameters for the bound pairg8¢) and (ay) by {*® and
7Y, respectively. They are given explicitly as
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ﬂEbe) = eBeylu’a/ \J Zlu'an

n(ﬁbs) = eaey,u,a/\/Z,ulgBﬁ(. )
49

Then the leading singular behavior of the effective potentiaE
can be obtained from the previous results with the substitu

(bs)

tions 7,— —i7® andfor 7z——i75%?. For instance, the

behavior of the fully on-shell effective potential in the vicin-

ity of the leading singularity at

gz=0=0, (50)
is again a branch point of the form
o 7p(agi2)—0 1
Vallp,da;E+I0)  ~ ;l—_n(mgb—sy- (51
B

Its position is always off the real axis in the complgy or
qp-plane. Note that if, e.gq,=d, then the case#5) and

(47) cannot occur sincg,>q,, (because of our requirement

B,>0 for »=1,2,3); analogously fog=qp.
(iv) The branch point singularities at the positiof&8)

PHYSICAL REVIEW C 61 064006

D. Singular behavior of the kernel Kg,(0y,0q; E+i0)

Given the leading singularity of the nondiagonal effective
otentiaIVBa(q’B ,0.;E+i0), the singularity structure of the
ernellcﬁa(q’ﬁ ,0.;E+i0), Eq.(10), for B+ « can be eluci-
dated. Integration over the right-hand variable, presently de-
noted byq,, is implied in EqQ.(9); ql’g is a vector-valued
parameter. The leading singularities of the kernel are the
branch point that originates fromﬁa(q’ﬁ,qa;EJriO) and is
located as described in Sec. Il C, and the pole of the effec-
tive propagatoG,.,(q,;E+i0), Eq.(19), at the “on-shell
point” q,=4q, . Note that, according to Appendix B, for the
repulsive Coulomb potentials considered the numerator func-
tion Sa(E+i0—qi/2Ma) of Gy., is not dangerous and,
hence, will not give rise to any problem when the integration
overq, is performed.

(i) Since the singularity oV4,(d,q,;E+i0) can lie on
the integration contour only for off-shell values of the mo-
menta(i.e., for q;#q; andq,#4,), it can never coincide
with the propagator pole.

(i) If q’ﬁ equals its on-shell valuq’ﬁ, the leading singu-
larity of ’C,ea(% ,0,;2) is, for all physically accessible val-

and(50), respectively, arise solely from the Coulomb modi- yes ofq,,, the propagator pole. For, the leading singularity

fications of the initial- and final-state form factors while
Coulomb interactions of the three particles in the intermedi
ate state only alter the strength of the singularity but not itﬁﬂI

type or position.

Note. The assertions of this theorem are valid if the

charges of all three particles are of the same sahCou-
lomb potentials are repulsive

of Vg, (0j.0,;E+i0) at @p+\g,0.)°+2u,B,=0 is al-
ways located outside the integration contour and, hence, is
armless. An analogous situation prevailsgjf equals its
on-shell valueg,,, or if qz=q; andq,=q,.

Summarizing we have the result that leading singularities
of the nondiagonal kernels are integrable, for momenta both

Corollary. If only two of the three particles, say 1 and 2, Off and on the energy shell, and can thus be treated by stan-
are charged, and particle 3 is neutral, the leading singularit?ard methods. This concludes the overview of the singularity

of the effective potential is weaker. Explicitly one has

o5(0:2)—0

’ ) 3 5&3
vﬁa(qﬁ!qa;z) ~ d

— + -
op(ApD)t 8 op(apiz)t e

85304
+ (529
op(0p:2)
k/,—0 < <
~, p ’ 5(13 ) 35013
V,Ba(QﬁaQavz) -~ kﬁ05ﬁ3+ 12—2j B,Z 1
kB Na k,B
(52b
k,—0 = o
, o~ ¢ Op3 0p30a3
Vol O 0ai2) ~ kzjmﬁ+k‘;5a3+ﬁ—2, (520
kp—0 = =
o 853043
Vol @3.8012) ~ K 2(Opat 8u0)+ = 3= (520
B

Comment. Comparison with the effective potential

structure of the nondiagonal kernel.

IV. PROOFS OF THE ASSERTIONS
A. Decomposition 0fVg,(dg,dq ;2)

As has already been pointed out and will become clear
soon, the Coulomb interactions in the initial and final verti-
ces play a special role. It, therefore, proves advantageous to
work with the representatiofillb) where the corresponding
Coulomb channel resolvents are already factored out. Indeed,
the resolventG; (Gj) describes the propagation of the
three-particle systema(,3,y) with allowance for Coulomb
scatterings to all orders between particesnd y after the
virtual decay (3 y)— B+ y of the initial bound state £v)

[of @ and y before the virtual recombinatioa+ y—(ay)
leading to the formation of the final bound statey)].

First we note that

GUD) | X Ua) =10a)GS(Z0) X )

with GS(z,,) defined in Eq.(21). Denoting byGy(z,) the
corresponding free two-body resolvent, the so-called “off-
shell Coulomb-modified form factor(i.e., off the two-body

(53

VEAd.0,:2) for neutral particles shows that quite gener- energy shejlis introduced as

[e3

ally the sole additional effect of the Coulomb interactions

consists in converting the pole of the latter into a branch ¢, (k,:;z,)=(Ku|ba(Za)) :=(ko| Gy (Z2) GE(Zo) | X a)-

point, without shifting the position of the singularity.

(59
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(a

Thus, using the explicit definitiof14) of U, , Eq.(11b) can B. Leading singularity of V5,(0g, 0y ;2)

be rewritien as We start by investigating the singular behavior of Exy)
' / which in the momentum space representation reads as
VealUp.00:2)=(0. 45 Go+GoVSGo p p

VEGOVE 5(Kp:Z5) dalKaiZ,
+GoV5GVLGol b Ua)s  ¥# ., V(ap.00:2)=—2up Pk Zf)fb_ () ; ).
(55) 7652

(60)

Evidently, its main singularity is located atﬁ(q,’g;z)zo
=0,(q,;2) as the free Green'’s function has a pole singular-
+T}Ba(ql’3,qa;z), (56) ity there. In addition,VfgaCZ(q’B,qa;z) has also singularities
. coming from the Coulomb-modified vertex functions
with bp(kpizp) and do(Kyiz,)- )
- A As shown in Appendix C, in the limit,(q,;z)=(k
@)/~ 2V:=(q’ * - " " a\Ma a
Vﬂa(Qﬁaqu) <qﬁ1¢ﬁ(zﬁ)|GO(Z)|¢a(za)rqa>y (57) —ZMQZQ)—>0, with Za:Ea‘l‘iO, the off-shell Coulomb-
modified form factorg (K, ;Ea) behaves as

=VE(5.0.:2)+ VEN0p.0.:2)

VOAp.00:2):=(0y, b p(Z5)|Go(2) i
Ba\Hp Has BB\ 0 A it ~
) ) K 2mataO( (K22 5 iTa for E,+0
XV>Go(2)|ba(Z,),04), o(Ka1Zp) ~ .
y O( )|¢ ( ) q > ¢ ki for Ea:O.

y#a,p, (59 (61)

~ , , - — It, therefore, proves to be convenient to put
Voal Uy 0ai2):=(0). $4(Z5)| Go( VG (2) P b
- N PN 5 o

XVSGO(Z)|¢Q(Za)aQa>- (59) d)a(k“’za) '(ka zlu“uzza) d)a(ka!za) for Eai(%za
The first termV$)(qj,9,,;2) describes the transfer mecha- . A

nism of particley from the incoming bound state3f), to Pa(Ky;0) =1k bo(K,;0) for E,=0, (62b
the outgoing one composed of particlesy), with Coulomb ~
scattering to all orders of particle8 and y in the initial  with the “reduced Coulomb-modified form factor,(-)
vertex (By)— B+, and of a« and vy in the final vertex being regular and nonvanishing at

(ay)—a+vy, having been absorbed in the Coulomb-

modified form factorg¢,) and|¢z). The second contribu- k?—2u,2,=0, z,=E,+i0, VE,. (63)
tion V$)(aj,0,:2) contains an additional intermediate-state

Coulomb interactionVy between the particlest and 8 The Coulomb parametey, is defined in Eq(41a. Note that
\évh|{:/r(1: ar_?huntl)ound befofr'e a”nd after the mte:ru;uon despnbegﬁe on-shell cas&,——B,,, and hencey,——i7"9, is

y V. The last term, finally, comprises all intermediate- included in Eqg.(62a. Though, also:ba(ka;ia) has singu-

state Coulomb scatterings between the three particles as rep--.. ; ; .
resented by the three-body Coulomb resolvent, RBrities but they lie farther away from the physical region

In the following we will show that, except for the special than the singularity o .(k,;2,) at Eq.(63), their specific
. ~ , o~ . . location depending on the decay properties of the tail of the
points q,=4q, and/orqz=dg, the full effective potential

, - has th leading d ic sinaularity i short-range potential. This can be checked explicitly for the
Vsa(Gp.0a:2) has the same leading dynamic singularity in o,qe of 5 form factor of the typ@7) (cf. Appendix O.
the momentum transfer plane as the simple, first term Analogously, forg® (K, : %), with 2, E 4+i0. one de-
V{2(aj.0,.:2) in the representation56). Hereby, leading . gously, forgp(kg;zg), with 2g=E4+10,
. at . . ) : fines
singularity is defined as that singularity which results from
the coincidence of the singularities of all the operators which

are sandwiched between the stateg, s, and|a,.q,), b (K Z5) = (K= 2pp2p) oy (Kpp1zg) for Eg#0,
with the singularities of the off-shell Coulomb-modified (643
form factors|¢,) and|¢ﬁ>. In other words, we will prove . o~ x .

the theorem that the replacement ¢Go+GoV5Go ¢p(kg;0)=:kg"dp(kg;0) for Ep=0,  (64b

+GoV5GCVSG,] in Eq. (55 by G, changes neither the . N
type (in the case under consideration, branch poinor the the Coulomb parameter having been defined in(@4D. In

location of the leading singularity. This goal will be achieved EQ. (643 we have made use of the fact thed (V2125
by showing that the second and the third term in the more= — 7,(\2uzz4) for bothEz>0 andEz<0. Thus, its lead-
detailed representatioi®6) have the same leading singular- jng singularity is located ahﬁ(q;g;z)zk;_z#ﬁgﬁzol
ity in the momentum tlansfer plane aéiac)((qk’qa?z)- The  The singular points in Eq962a, (62b), and (64a, (64b)
pointsq’ﬁ=q,3 andq,=q, are investigated separately. coincide, on account of the identitg4). It is apparent that
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the leading singularities of both off-shell Coulomb-modified
form factors ¢4(kj;zg) and ¢,(k,;z,) are in general
branch points.

The coincidence of the singularities of the free Green’s
function and of the initial- and final-state Coulomb-modified
form factors at Eq(38) produces the leading singularity of

the Qomr_ibUtion_V(ﬁag(q/ﬁ \0q;2). Its behavior in the vicinity FIG. 2. Nondiagonal effective potential with single Coulombic
of this singularity can be read off directly from E(0).  rescattering in the intermediate state. Dashed semicircles denote the
Apart from some trivial mass factor, it is given by Coulomb-modified form factors.

aﬁ(q;’;;z)eoaz(ké ;E’ﬁc)&a(ka 7)) Summarizing we have found that the leading dynamic sin-

V@, 0a:2) i gularity of V&)(qy,q,;2) is in general a branch point at Eq.
op(Qp:2)t (et 7p) (38). The singularities of the reduced Coulomb-modified

o o form factors, which yield furthetthe so-called statjcsingu-
(q;ﬁ&qﬁ,q’ﬁ; o7 Jasda), larities of Vfgac),(qg,qa;z), are located outside the physical

(653 regions Gskj,k,<o.

C. Leading singularity of V(0,0 ;2)

kg=0

VE(Ap.0052) ~ K27 d%(0,0) oK, :24) Theorem 1.The nondiagonal particle transfer amplitude

V)(44.0,;2) has the same leading singularity with respect
(90?0 00) (65  to the momentum transfer a8(d;,d,:2).
Proof of Theorem 1llnstead of considering the second
5 kom0 . o term (58) in the decompositiorf55), which is displayed in
V‘B"B(qg,qa 'Z) ~ ki‘ "B (KpiZy) ba(0;0) diagrammatic form in Fig. 2 and describes single rescattering
in the ir_ltermediate state, we investigate the more general
(97 05.0p). (659 ~ Expression
-0 VN A).00:2)=(dj, 5(25)|Go(2)
VEN0p.00:2) ~ kp2d5(0,0),(0;0). (650 XT(2)Go(2)| Ba(Za),0a),
[Concerning the cas@é5d recall the remark following Eq. y#a,pB, (66)

(48).] It is obvious that the leading singular behavior of
V%"")(qg 0o 2), if q;; or g, or both equal their on-shell value Which contains the CoulomT}matrixT‘; instead of the Cou-

q_’ﬁ andgq,,, respectively, in the Iimigﬁﬂo can be obtained !omb potential\/(;. The Igad_ing singularity qf this e_x.pression
from Egs. (658—(650 by the substitutionsizz—s 7 is generatefj by th(_a comc!dence of the singularities of two
. b9 X BB free Green’s functions with those of the two Coulomb-
and/ori 7,— 7, . \We point out that on account of our as- modified form factorsé,, and ¢, and with the forward-
sumption that all binding energies have nonzero values, ongcattering singularity of the Coulonimatrix. Explicitly we

always hagy,#q,,r=1,2,3. have
|

dk b5 (K Z5) TS(K) K12, da(KL124)
(2m)3 [2= K212 = 2 2M g][ 2= K 210, — G5/ 2M ]

T/(bi(q;;,qa;Z):f 67

I:|ere, the additional notationk,=e€,5(k+X\,,05), K,=€ga(K+N,504), K} =€ga(AptNgaK), K\ =€,5(da+ N k), and
z,=2— k2/2M7, have been introduced. For the Coulofbmatrix, restricted to the two-body space, we use the integral
representation which follows from Eg. {(Bof Schwinger[19] by partial integration:

. . 2me,e L~ kI2V L K2\ 22— 1)t 7
TC(k//’k/ -7 ): ™ < By 7 — Y Z __r dt ( ) , (68)
yr Uy Ry Y Y 2 Y 2 "2 12 2
Z'y My Iu”y 0 (k/,_k,)zt_ﬂ(i _ k')/ )(2 _ k7 )(1_t)2
VO 2z, T 2p )\ 2,
where
;;yzeaeﬁ,uy/ 2,uy2y (69
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is the Coulomb parameter, aad=E.+i0 with E,, being the relative kinetic energy, of particlesand 8. In Eg. (69) it is

assumed thany#O. We mention that a representation that is valid in the vicinity of the zero energy region has been
developed, e.g., in Ref20]. We first consider the cag89). Introducing the representatid68) in Eq. (67), and bearing in

mind Egs.(62a, (64a, and the identities., — K’ /2., = 25— K211 5 andz,,— k' 22pu.,= 2, K, *2s,,, one obtains
dk 1 B (Kp:25) balKyi2a)
(2m)° 2, [Ky?— 2p25) " " Ko2 =~ 20002Ze] '

Vol .0032) = 271,885 f
1 (2= 1)t 7

« [l ,
0 o ~ kgz ~ kélz
R P P
{( A L T

(70

Change of the integration variable froknto k'=k7—k)  with f/ f} f/ being nonsingular abﬁ(aﬂ;z)zo and/or

= €ga(dptd,+k) allows us to write o,(4,:2)=0.
o - o o . A look at the above derivation makes clear that, if the
K" —2mpzp=K "= 2K" -kt a5(qg;2), (71) final and/or the initial momentum equals its on-shell value
- g, and/orq,, respectively, the leading singular behavior of
12 __ — 12 ’. . B —
Ka' = 21aZa =K 2K - Kot 00(0a;2), (72 the effective potential in the limit;— 0 follows from the
Thus, making the scaling transformation appropriate expression by the substitutiongg— 7
, . and/ori 7,— 7{"9 . This concludes the proof of Theorem 1.
k'=0p(qz:2)V (73 From this result the following conclusions can be drawn.

(i) VENaj.0.;2), which is the Bom part of

o

and taking into account the identit@4) one finds that ~b ) )
V‘Cz(q;,qa;z), has likewise the structuré74)—(76), and

B op(dg;2)—0 fo(Ql 0 :2) therefore shows the same branch point singularity as
VENap.00:2) = e Va0, da;2); cf. Egs.(658—(650.
0p(Qg;2)" e (ii) By addingV$)(qj,0,;2) to V§)(aj,d,;2) it follows

that also the Coulomb channel resolv@ﬁ, with y# a, 8,
when sandwiched between state$s,(2),q,) and
(74 |pp(2),qp), behaves in the vicinity of Eq38) effectively
, _ _ , like Go.
wherefy,(ds,04,2) is & regular function abr(q,:2)=0. Corollary. For the case that only two of the three particles
The behavior at the exceptional poi|u§= q and/orq, are charged and one is neutral, the results of Secs. IV B and
=4, can be studied by similar means. Quite generally it is!V C already provide the complete proof of the main Theo-
obvious that by inserting the form factor behavior displayedrem, namely that the leading singularity of the exchange part
in Eqgs. (62b) and/or (64b) in T/ﬁa(%,qa;z), Eq. (67), the (B+# a) of the full effective potentia(18) at the po_lnt(38) is
number of singular denominators under the integral sign i©f the same t¥£e as that of the elementary particle exchange
reduced. Consequently, the behavior of the integral must bgontributionV3;:(q,q,,;2). This is most easily seen by re-
expected to become less singular. Indeed, an analogous re4iting Eq. (18) for B+ a more explicitly as

soning shows that fog,=q, butd,#0, .0,

(qlﬁiaﬁiarﬁi qaiaavaa)!

Va0 .0032) = 8aa(Up X5l Co(2) | ha(Z4) 0

5 5 k;;HO . 5
Vi(G5,0a:2) ~ kg 7fy(@.0052), (79 + 85x(0p 35 25) | Gol2) a6
for qa:aa but QZﬁEagla;; +Ea3gﬁ3<q231Xﬁ|Gg|Xa!qa>' (78)
k,—0 .
VEA05.00:2) ~ k? Btp(A O s 2), (76)  For the first two terms the resul65a—(65c) can be taken
B B over directly, keeping in mind that;=0 in the first, and
and finally forq};=qﬁ andq,=d, 7,=0 in the second term. Finally, as a special case of the
) above commentii), the third term in Eq(78) is easily seen
s kp—0 o to behave, in the limit og(qz;2)—0, like
]}(a(qﬁ’qa;z) - k.B fb(0,0,Z) (77) <q[,31Xﬁ|GO|Xa!QCz>! cf. EQ(ZG)
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D. Leading singularity of T/ﬂa(q},,qa;z)
1. Statement of Theorem 2

Consider now the singular behavior (ﬁ‘ﬁa(q;,,,qa;z)
= (0, ¢4l Ol b, 0a), With O:=GoVEGOVS G, [cf. Eq.(59)]
which contains all possible Coulomb interactions: it begins
with the incoming-channel interactioiC , ends up with the

outgoing-channel interactioﬁg, while G€ takes into ac-
count all possible Coulomb interactions between particles
@, B, andy, in the intermediate state. Vga(03.94:2). Since it has already been shown in the pre-
It is to be suspected that straightforward generalization ofeding sections that bot$)(qy;,q,:2) andV§)(qj,0,;2)
Theorem 1 to terms describing multiple rescattering of arbi-have the same leading singulariffor qa;eaa,q;q&aﬁ), it
trary order in the intermediate state as they would followremains to prove that the same holds true also for the third
from a Neumann series expansion @F, is not possible. term V(0 ,0.:2).
For, the latter leads to products with arfinite number of fat B He
operators TS (this is most easily seen by using®
= 85,G5+GRUG,GY [cf. Egs.(11a and (11b)] and intro-
ducing there the expansiofi6hb)). This fact could cause
problems with the convergence of the series near the singular

FIG. 3. Contribution(80) to the exact nondiagonal effective
potential.

According to its definition(59), T/Ba(q;,qa;z) can be
written as a sum of four terms

Y ’ L) — ’ CnrC
point. However, it will be shown that near the leading sin- Vﬁa(qﬁ'qa’z)_#grm (ds. #4lGoV, G
gularity of the nondiagonal effective potential contribution .
Vsa(Up.0q;2), even the operato® which contains the XV;Gol¢a,la)y BFa. (79
three-body Coulomb resolver@® may effectively be re-
placed byG. Consider, for example, the term with= 8 and v=a,

Theorem 2Even an infinite number of Coulomb rescat-
terings in the intermediate state of the nondiagonal effective
potential Vy,(j;.0,:2), as represented by the three-body V2 (a}.0,:2):=(0), 65| GoVeGVGol b, 0a).
Coulomb resolventG®, does change neither position nor (80
character(providedq# g andq,#0,) of the leading sin-
gularity in the momentum transfer variable as compared tQuhich is represented in diagrammatical form in Fig. 3. The
its lowest-order contribution/%ag(qg,qa;z),~but alters its  |eading singularity ofA2P(q},0,:2) is generated by the
strength. However, at the special poinfs=q; and/orq,  coincidence of the poles of tw@,'’s, of the Coulomb poten-

=q,, the character of the singularity is different. tials V§ and VS, of the three-body Coulomb resolve6€,
and of the branch point singularities which are, in general,
2. Preliminaries present in the Coulomb-modified form factatg and ¢ .

The proof of the theorem will be based on the represen- We first treat the cas€9), i.e., q;ﬁéaﬁ andq,#0,. In
tation (55 of the nondiagonal effective potential the momentum representation we have explicitly

B (gl q.12)= f dk?, f daf f dkls f Ao dplepaldatNaydp)iZ5]
@ Tpe (2m®) (2m)®) @2m)3) @mA(L+ N, a52—2u 2,0 e

Cr"
Va[ka_ 601,3

aa[ Eaﬁ(q,[;—’_ )\,B'yqa) ; za]
[(A5+ N gy8a)? = 2102 ] 7
(81

X (At N gy ) 1GE(KY, ol K 0 2V K— €ga(Uat N oy p) ]

In what follows we drop the argumeny, in the reduced Coulomb-modified form factaps unless required for clarity. Since
we assume that the charges of all three particles are of equal sign, i.e., that all Coulomb potentials are repulsive, the three-body
Coulomb resolvent has the following spectral representation in coordinate space:

(r 0G| > f dk‘;f do® qrféfqé(r;,@)@fé?iua,pa) -
M Py 2|l g Po)= ’
" P ) 2mp) @mp? K ol

2 2w, 2M,
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and in momentum space

) g Vi (Ko @)W o (K, )

k!.,q'|G*(2)|k,,d, f f 83

(k.,,0,|G™(2)] Qo) = (27 )3 (277) kgz qu (83
2w, 2M,

Here,\Pféﬂo(ra Pa) [‘I’CH) (k,,09,)] is the coordinatefmomentumjspace representation of the three-body Coulomb scat-

tering wave function for three particles in continuum, with on-shell momé«ilaand qa, and total energyka 2w,

+q22/2Ma where the first part represents the relative kinetic energy of pariglasd v, and the second one the relative
kinetic energy of particlex and the center of mass of the paBy).

3. Leading singularity of 2)“# (a0, :2)
Before investigatin@/(ﬁ‘if)(q;g .0, ;2), it proves helpful to first consider the simpler expression which results by substituting
in Eq. (81) the free Green’s function for the three-body Coulomb Green’s function. In this way one obtains just one of the

second-order terms of the effective potential, to be denoteﬁ(ﬂﬁvﬁ)(qg ,0.;2).- The momentum space representation of the
spectral resolution of the free Green'’s function is

dk‘;’,f dad Sk, —k%)a(q) q)
(2m3) (2m)3 K
_2ua_2Ma

<k,c,wq,c,y|GO(z)|k7;aq,[,3>:f 5[k” Eﬁalu“aq?x/MB )\ay a)]é[q +(6ﬁako+)\ﬁyq )]

_ f daj3 f dap, SLKL— €ap(dT N g,00)18(d0— )
(2m?) (2m)® Z_(q%+xmnb2__qf
2u,  2M,

K= €ga(otNo,dp]o(as—0a3), (84

where to arrive at the second equality use has been made of the ret§tios, cB(q‘}fr \p,00) [cf. Eq. (A2)] to induce a
change of the integration variables. Inserting this expression intg&gwith G~ replaced byG,, yields

) dag [ dal  Phlepaldatia,Op)]  4mege, 1
Vi Py, 0a;52) = 3 31,0 2 S 1 (02 0 0,2 02
(277) (277) [(qa+)\a'yqﬂ) _Z/Lﬁzﬂ] B(qﬁ_qﬁ) s (qﬁ+)\ﬁyqa) . qa
2 2M,,
47Te e ¢a[€aﬁ(q/3+)\ﬁ‘yqa)]

. (85
(qa U)? [(A9+ N gy 0a) 2= 21,2, ]t ' 7

Here, the explicit expressions for the Fourier transforms of the Coulomb pote*mﬁeésldvg have been introduced.
The leading singularity ot2)“#)(q,q,,:2) is generated by the coincidence of the singularities of the integrand at

(93N py00) %2~ 21,2,=0, (86)
(00 N oy 02— 24525=0, (87)

2= (Ot N 00 /24— 0o%/2M , =0, (88)
A2=0q0—0,=0, (89)
A%:=0q%—q,=0. (90)

It is evident that the coincidence of these zeros of the denominators itBEgcan produce a dangerous singularity of the
integral. Changing the integration variables&& and A%, expression(85) takes the form
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~ dAp  dA D (€padotKkp) 4mege
V%th(aﬁ)(%’qa;z)z_zﬂaj Baj 37/A042 : 0 - , - oﬁzy
(2m)°) (2m)° [(A,) "+ 2€p,A, Kgtap(dg;2)]" '8 (Ap)
1 4me.e,
x 2 AO)Z
Mo Mo
O-a(qa;z)_l— MaASz'qa+M_a(A2)2+2€aB(A([)3+)\BYA?l)'ka+(A%+)\B7Ag)2 ( “

:Z)a( EdﬁA%—’_ koz)
X —
[(AD)?+ 26,585 Kot 04(q,;2)] 7

91
Here k, andk}, are defined in E¢27). Recall that the reduced form factags, andé, are nonsingular at Eq$86) and(87),
respectively. Finally, making the substitutions

Ag:O'B(q;;;Z)Va, A%:Ua(qa;z)vﬁa (92)
wherev, ,v=«, 8, has the dimension of an inverse momentum, and recalling the idéB4itythe desired result follows:

Jop(A5:2);05,0a:2]
[op(ag:) ] a7

V2B (q),,q,;2)= (93

The integral in Eq.(91) which results after extraction af4(qs;2z) has been denoted bYf o4(q;;2);d5,9,:2]. Since it
remains finite at the point(q,;z)=0 we immediately obtain in the limit5(q;2) going to zero:

- 789070 3(0;05,0,:2) 1
VB (qy,0,:2) = (, quqj( n )+0( , ) (94)
[op(Qg;2)]" 7" 78 o45(05;2)
where
, AL dv dv, ?&*[eﬁaaﬁ(q’ 12V, + k3]
J(anﬁ!qaiz):_zl"bﬁ<_) IB3J 3 . k! . ’ . ,[2; 1-inp
2 o4(a)y )0 (2m)°) (2m)° [1+2€p,Vo Kpt+0p5(d5:2)v5] B
><47Teﬁe7 1 4me,e, Dol €450 (U :2)VgTK,] @5
v Do(0p.0.) 05 [1+2€,5Vp Kot 0uo(dy;2)v5] 7
Here, the abbreviation
, 2/-",8 Mo ’. 2 . 2
DO(qB!qa)::1+M_Va'qa+M_a-B(qIBlz)va+26aﬁ(vﬁ+)\ayva)'ka+aa(qauz)(vﬁ+)\ayva) (96)

has been introducedWe point out that the order relation has the usual meanii{gr) =0(g(x)) for x—xgq, if
lim,_, F(9/g(x)=0 (g(x0) #0).]

The same reasoning shows that €f=q, but q,#0d,, in the limit o4(04:2) =K;?= 1o (0, ;2)/ 1,—0, the leading
singular behavior is given by

ky—0 1
VEP(p.0,:2) = k,l—_ZiZJ'(Oi%,qa;Z), 97)
B

where

dv, J dv, 4mege, dmese,  Bh(€pakpVat Ky b€, ske?vatk,)

= ——————, (99
(2m3) (2m)® vh i Da(Up.da)l sl mpt 2eapVp Kot Ky g e

J'(0;05,04:2)=2u lim J
kéﬂo

with
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2 12 ’ Cr 4 2
(qB BE —1+ M, VB qB+_Bk vB+ZeBa(va+)\aykﬁvﬁ)~kﬁ+(va+)\a7kﬁvﬁ) . (99
We mention that the derivation of this result requires the substitutions
Ad=05(0g:2)Ve=k?vg and Ad=kpv,,. (100

Analogously, forg,=q, butgs#0g, in the limit o,(q,;2) =k%—0, one finds

k,—0

a

VRA(q),,0,:2) =

1 ~
a7, (0:45.0a:2), (109)

whereJ"(0;q, ,0,.:2) is given by an expression similar to E@8). Finally, foqu=aﬁ andq,=7q,, using the substitutions
A%=kjv, and Ad=kpv,, one obtains in the limitrp(0;2) =Kj?= 1o o (a1 2) o= kel pe—0

V2P (qy,9, ;z)ki Ok’BOJ”’(O;O,O;O) for E=0. (102
Here,
77(0:0,0:0) = —2M5 I|m f dvﬁgf dva3 4vre2Bey 477e2aey :ﬁ}(eﬁakbvaﬂL k,’;)aa(eaﬁkkvfr ka), (103
(2m)*) (2m)°  vp ve D»(0,0)
with
D2(0,0)= g0 5/ Mg+ (Vo N oy Vgt €5,K )2 (104)

Note that inJ’, Eq.(99), k,, andk;; are considered expressed as linear combination'é;gfc(x), in J” as linear combinations
of (0,G)- L

It is apparent that the Ieading singularity, if the final and/or the initial momentum equals its on- shelqgaﬂnellorqa,
respectively, in the limitr;—0 can be obtained from the above off-shell results substituiid for i 7, and/or 7 for
7, -

This verifies the assertion thﬂg)(“ﬁ)(q 0.;2) has the same leading singularity)a§)(qy,9,;2) [cf. Eq.(65)], with the
exception of the special pointg,=q, and/orq,= qﬁ

4. Leading singularity ofT/(‘ff)(q;; Oa:2)

Proof of Theorem 2We are now ready to prove Theorem 2 by showing that the typical contribﬁﬁgﬁ’\(qg ,0.,;2) to the
full effective potential, in spite of containing an infinite number of Coulombic rescatterings between all three particles in the
intermediate state as represented by the three-body Coulomb resolvent, possesses the same leading singularity at the sam

position as the second-order contributiof)“”(qj.q,;2), or equivalently a8’ (qy,d,:2), cf. Eq. (65), except for the
special pointsqlgzaﬁ and/orq,=0q, where the character of the singularity differs. We start again by considering the case

d.,7#9, and q;ﬂtaﬁ. To this end we introduce in E¢81) the spectral representati@d@3) of the full three-body Coulomb
Green'’s function:
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dk’, J’ da, [ dkj J‘ daj  dk? J‘ day  dhlepaldl+HNa,ap)]
(2m)3) (2m)3) (2m)3) (2m)3) (2m)3) (2m)3 [(AL+ N4y 0p)2— 2 p25)" ' 7

C(Jr) (k ,q”)\I’C(+) (kﬁ CIp,)

T/“Zﬁ)(q};,qa;ZFJ

4mege,
n " 2 2
I eapl Ot Nyl 2 o Ge K
2M,  2u,
Ame,e, ¢a[€a,3 At Ngyda)]

(105

X .
[kl,ﬁ’%_eﬁa(qa—i_)\ayq )]2 [(q +)\Byqa) Zluaza]l e

As before, the leading singularity Sf(‘ff)(q;;,qa;z) emerges as the result of the coincidence of the zeros of all the
denominators of the integrand in Eq.05 and of the forward-scattering singularities of the three-body Coulomb scattering
wave functions. To proceed any further requires knowledge of the explicit expression of the latter which, however, is
unknown. But it turns out that in the region of integration which is relevant for generating the leading singularity, only the
leading term of the asymptotic expansion of the three-body coordinate-space Coulomb scattering wave function enters which
is known in analytic form(As a side remark we mention that this situation is reminiscent of the nonperturbative derivation of
the long-range behavior of the optical potential within the context of the three-charged particle th¢diy. iAs is well
known, the optical potential is likewise given as a certain matrix element of the three-body resolvent. However, when using the
spectral representation for the latter, for the investigation of the large-distance behavior again only the asymptotic part of the
three-body wave function was needed.

To see this, let us rewrite expressitt05) in the coordinate-space representation, yielding

i W 01 PS5 (1.pp)
V(“’g)(q,; 0.2 fdr fdpaf drﬁf dpﬁf I(ZW e*lqﬁ-pmr/,’é(r[’;;zz)vg(r )—= [ o q02

(2m)® «

2u, 2M,

XVG( ) Pal(T 32, €% P, (106

In this equation the Jacobian vector p{iig,p’} is consid- Eqg. (106) of the integral over g for r ;—c. Thus, in order to
ered expressed as linear combinations of the integration vargyiract the singular behavior dp(aﬁ)(q ,0..;Z) we must
ables{r,,,p;}, and similarly{r,,p,} as linear combinations jnyestigate the behavior of the mtegrand in E06) in the
of {r s,pg}, according to Eq(A3). Furthermore, the notation asymptotic region

Vol a120) =(1 o] Go(2e) | Bl Z) Wap=@aNwp] @, —%)  wpilg—e. (108

A ., - , - Whenr ;— o, either one more coordinate, or r,, or

:f droGo(ra:laiZa) $allaiZa), (10D pothr, andr,,, have to approach infinity together witt .
That is, we must distinguish the following three cases.

(1) rg,ry—, ie, p,—w, andr,/p,—0. (2) rg,r,

has been introduced, with an analogous definition of ,
@, i.e., p,—°, and r,/p,—0. (3) rg—o°,r,—o,r,

zp,;(r 2,3) The quantltyGo(ra, 'Aa) is the two-particle

free Green s function in the coordlnate representation. o ' . . S
As has been mentioned before, the singular behavior of Let us define the following four asymptotic regions:
Vf)(ay,0,:2) at the point(38) results from the coinci- Q,: p,—x=, r,lp,—0, for v=1,2,3, (109

dence of the various singularities of the integrand in Eg.
(105. Among these are the poles of the Fourier transforms Qg: r{—®,ry,—o r3—m, (110

Vc[k,,_falg(qﬂ—’_)\ﬁ)’q )] and Vﬁ[k eﬂa(qcﬁ—)\ayq )]

of the Coulomb potential¥S(r/) andvﬁ(rﬁ) respectively.  With their help,»; can be expressed as

The singularity ak”,— aﬁ(qﬁJr)\ﬁ,/qa) 0 in Eqg. (105 of w=Q,U0,U0,, (111)
the Fourier transform o¥/ o(r.) is generated by the diver-
gence of the integral over, in Eq. (106), for r,—. Simi-  andw/, analogously in terms of the primed coordinates as

larly, the singularity of the Fourier transform Mﬁ(rﬂ) at

K~ €ga(datXN,,05) =0 is generated by the divergence in w0, =Q UQzUQ,. (112
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Thus, to extract the behavior 8#)(q};,q,;2) near the PO.X=k%r,+q%p,, »=123. (114
singularity at Eq.(38) it suffices to know the three-body

Coulomb wave functior? S s (r , in the asymptotic
kqug( 5:Pp) ymp Moreover,z/rféﬂ(ra) is the two-particle Coulomb scattering

. C(+) ’ '\ - . .
domamwﬁ, andwkgﬂi(r“’p“) in the asymptotic domain wave function for particle@ andy, belonging to the energy

. Since, according to Eq111), wg is the union of three  k°2/24,. Analogously, in the domaim/, the wave function

d|fferent asymptotic domams we have to consider the\pc(+ (r’ ,p.) can be approximated Hgf. Eq. (D18)]
asymptotic behavior Oﬂfko o(rﬁ,pﬁ) in each of them.

The asymptotic form of the three- -charged particle wave
function in Q, has been found in Ref$22,23, and that
valid in Q,,v=1,2,3, in Ref.[11]. The corresponding ex- (kg) o(ra,pa) \I’c el (X"
pressions are collected in Appendix D. There it is argued
that, when looking for the main singular part of

T)(Cf)(qg ,0.;2), the exact three-charged particle wave func-
tion may be approximated uniformly in all asymptotic re-

r

3
ipO.x’ —ik%y’ C(+
:eIP X Hle ik, er//k(g )(r;)
v= v

gionsQ,,»=0,...,3,i.e., in the whole domaiw, by [cf. (115
Eq. (D17)]
g Thus, the leading singular part ®2#)(q},q,;2) in the
o( 5, Pp)~ ~ WSS (x) SR,
k° o(1 5,05 limit o 5(q;:2)—0, to be denoted by (q? .d,:2), can

be extracted from expressi@h06), with ‘I’ko o(l’a ,p,) re-

_ C(+)
e’ XH e ik o (r). (113 placed by \Pcas(ﬂ (r’.p.), and \Ifko o(rﬁ,pﬁ) by

C,as(+)'*
Here,P0= {ky,qo} andX={r, ,p,} are six-dimensional vec- \Ifko (I’B,pﬁ) Alternat|vely, rewriting the integrals in
tors with momentum space we have

dke f da; [ dkp f daj [ dkq f dad  Bilepa(dltNayap)]
(277)3 (277)3 (211-)3 (277)3 (277)3 (277)3[(q:;+)\ayq18) —2/1,'32,3]14773

q,C as(+) (k",q”)\lfc aS(*) (k}; q )

Tf‘ﬁ%ﬁ)(s)(q’ﬁ,qa;Z):f

y 4mege, St
" ’ " 2 2
[ka_eaﬂ(qﬁ—‘r)\ﬂyqa)]z _ qg _ kco)(
2M, 2p,
4’7Te e ;5 [6 ,B(q‘,[;—f—)\ﬁyqa)]

(116

[kﬁ eﬁa(qa+)\ayqﬁ)] [(q +)\B7qa)2 2”“ Z ]1 s

Given the explicit expressions for the three-body Coulomb wave functions in the asymptotic regianslw,, we can now
show thats#(qy,q,:2), and hence alsv”(q;,q,;2), has a branch point singularity of the typ#0) at Eq.(38).

To begin with let us write down the Fourier transform\hﬁos(;(),’(ra Po):

vty 0 (K o) = f w‘:‘*%k)wk(”[mkf’ K+ €ap(da— q)]wk(”[k+k° K9+ epald,—a0)].  (117)

)3
This result follows from Eq(113) in a straightforward manner by taking into account the linear dependence of the different

Jacobian variablescf. Appendix A and 23=1qy=0. The Fourier transform of the two-body Coulomb scattering wave
function is defined as

¢k<”(k )= f dre e key I (r ). (1189
When inserting Eq(117) into Eqg.(116), one encounters an expression of the following type:
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W Ty — Dol Uit
‘ (277)3 (277)3 ka'qa prop [k” Ba(qa—’—)\ayq;;)]z [(Qg_i_)\ByQa)z_zlu’aza]l_lna
_ [ 99 [ da A P TR+ KO—KG+ € — a2 Ted Tk +Ko—KG— epa(ql+qs+a)]
) emd) @md) @2n )31’/1kO i oo A VG a ol Gat A
d7e e ol €a +A5, 04
% me,.Le, ¢ [ ,G(q 5y9a)] (119

(90— 0a)? [(UsF Mgy 0a) 2= 2102, 1" 7

where to arrive at the second equality a change of the integration variable has been performed. We are looking for the behavior
of J, when the singularities of the integrand at

9h—0,=0 and (g}+Xg,0,)°—242,=0 (120

as(+)"*

collide with the forward-scattering singularities of the wave funct'iofh (k’l; q %). The latter occur at

q,-9%=0, »=1.23, (121)

which can easily be verified by taking into account the fact that each faQCéJR(kV) has a singularity fokV—k8=O. The

coincidence of these three forward-scattering singularities in(ELy) gives rise to the singularity conditior{&21).

Since we presently assumg#4q,, andq;ﬁaﬂ, J, can, according to EE32), be written near the leading singularity in
the form

+”)QIT1 (7T 7D IT[1=i(7p+79)]

J,=4me,e.e” (7 7
F(l_l 7]01)

[—2(k® -k, +Kk,)]™ 'va[zeaﬁAO k31~ i

) 1 J
<[ — 0 01175 _ a
[~ 2€apllarls] (26089 Kyt 0,0 2) 1110t 70) [(AQ)2)1 it 7)) (22

whereJ,, remains finite an2=0, A}=0, ando,(q,;2)=0. The vectorsA) and A%, have been introduced in Eq@9) and
(90), andk,, in Eq. (27). Moreover,

= na(k3) =ege u, /K, (123

with analogous definitions for;% and 773 [cf. Eq.(4D)]. I'(2) is the gamma function.
Similarly, the leading singular part of

J* = J dkq j ddy q,coas(+) K" ,q") ¢B[€Ba(q”+)‘w/q;¥)] Amege,
g (2m)®J) (2m)? “a “ a[(QZ[Hayqﬁ) _2,“,623]17”75 [k,c'y_fa,e(qlﬁ"')\ﬁng)]z

dq do, ( dk
:j (ZWB)C’: (277) (2 )3¢'k(+)(k (+)[k k0+k% eaﬁ(qa+ qﬂ+q )]l//k(+)[k k0+k0+5ﬂa(q q%)]

d)ﬁ[eﬁa(qﬂ_l—)\a'yq,ﬁ)] 47Teﬁe-y (124)
[(ahtNoyp)2—2mp25]" 78 (qf—ap)?
when the zeros of the denominators at
qp—0p=0 and (q,+\,,0p)°—2us25=0 (125

as(+)’ (K"

collide with the forward-scattering singularities of the wave funcnb[b " ,d.) which again occur at Eq12)), is

given by
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e P11 (= mINTL+I G+ 7))
F(l—lnﬁ)
0 1 J*
X[ —2€,5,A%-k2]' 7 - £ , (126)
P 26,80 Kt 0p(ayi2) 108 [(AG)2]H a7

J=dmegee Tt gt [— 20k K+ KOk} 178 2€ 5, AG - K27 7

whereJ ; remains finite at\=0=A? and o'4(q;;2) =0=0',(0,;2).
Taking into account Eqg122) and(126), and repeating the steps that led from ERp) to Eq.(91), we derive from Eq.
(116) for the leading singular part a#?(qy,q,;2):

0 0 2 2 0 0
T}(Baﬁ)(s)(q/ﬁ,qa;z):f dka f dqa \];BCJQ o~ 16”7\7 eaeﬁey _ f dAB J‘ dA —a(n +"7?;+"7)
el @e[ W& | Ta-imgld-ing) @m®) @m®
21 2M,

XT[1=i(ng= ppIC[1+i(n0+ p)IC[L=i(7,+ ) IT[1—i(nh+ 7]
><[—2(k%-kl’;+kgkk)]”’ﬁ[25ﬁaA%-kg]”’a[—ZGBaA%'kg]i’”
1 1
X 0 1, ’. 1-i(7 —7]0) 0,2 1+i(710+770)
[2€paAa-Kpt ap(ag;2) 17 78778 [(Ag)T]7 Ry

353, 1
(A2)H (gt )

1 €
. 0 aB .0 0 [
ao'a(qa aZ)“‘—M aAa~qa+—a (AB+ )\B)/Aa)'ka

1
X
[2€0pA3 Kot 040(da; )] 7t

5[ —2(k® -k, +k%k, )1~ '”a[ZeaBAO k%1~ g — 2€,580- K] iy,

(127

Terms proportional to 40)2 and to (A%)2 have already been omitted. In order to extract the singular behavior of

V“ﬁ)(qﬁ d,;2) in the limit o4(qp Z)—>0 we use the substitutiof®2), which motivates the neglect of the termg A%)?
=0(05(q4:2)) and ~(A3)?*=0(v(0,:2)), and find

op(dy32)—0 . )
VP(ap,0432) e AOGpi2) [ 1| (129
[op(a5;2] 't 78\ op(ay;2)

The functionA(O; qﬁ d.;2) is nonsingular atrﬁ(qﬁ,z) 0. It is apparent thav(“ﬁ)(q,g,qa;z) has the asserted singular
branch point atrﬁ(qﬂ,z) 0.
Let us comment on this result. First, it is easily seen that this singularity is integrable fcqbaayd g, subject to the

restrictions(39). For real7, and 7, i.e., for E; andE,, being positive, the singularity is integrable because

1 _ 1

Loy 2] 70| |op(q);2)]

(129

Forz,=E_<O0, as follows from Eq(41a), i 5, is positive realrecall that we are considering only particles with charges of
the same sign thus even weakening the singularity. In addition, taking into account 885-(34) one has

“p
Uﬁ(QﬁvZ)_M a(qa1z)__[k2+21u’a|Ea|]>0 (130

Hence, the singularity lies outside the region accessible for physical values of the momenta. An analogous situation prevails
for z;=E <0 wheni 7, is positive realcf. Eq. (41b] and again
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op(0p:2) =K+ 2 Eg>0. (131

As the next step we look for the leading singular partiff?(qj;,q,,:2) if q;=0, in which caseEz=0 ando(qg;E)
= kr’,f, but letq,#0q, . As before, near the leading singularity is given by Eq.(122), while J’g for q’ﬁ=<~qB behaves as the
B-channel version of EqE33),

o3
(A0t )
(132

J* =4mege e Tt T HRE (14T Q)T (L+i (704 7)) 2€5,AS- KO o] — 2€5,45-K%]17

with J;* remaining regular.
Consequently, foq’ﬁzaﬁ and z=E+i0 the leading singular part ﬁﬂﬂﬁ)(qg,qa;z) in the limit aﬁ(aB;E)=k';2—>0
takes, instead of Eq127), the form

16m%e,e4€> f dAj f dA?

n*ﬂ'(7]2+7]0+770) -0 . 0 0 o
F(1-in,) J (2m) @2m* BP T (L g T (L +i (9% + pIIT (=i (7,

VePO(qy,0,E+i0)~ -

0 _ .0, 0 0. 107i7° _ 0 1,07i7°
T A=i(np+ 7)) 2€pa85- K] e[ —2€5.85- KT [A%2]1+i(ng+n9)

353,
1 1 1 c 1
124 A0 Ty 02+ﬂ 0 0y k! + 04 042
2/*”,6 kﬁ MBAB qﬁ ZMB(AB) /J’B (Aa )\a'yAﬁ) kﬁ 2/~L,B(Aa )\a'yAﬁ)
1 1

- 0
X , — [—2(K2 Kot KoKo)] 17a
[(AZ105* ) [(AD)Z+ 2€,6AG K+ k2 pg] (e

X[2€,5A0-KS] 176 — 2€,5A0-KO] 717, (133
To proceed further we make the substitutions
Ad=kju and AJ=kj?v. (134

Expressingk =€, (A5 +\,,03) in terms of A%, A%, andkj, using Eqs(89), (90), and(27), we find

k,—0
k=A% + N o, A%+ €.kl B= agkz+o(kp), ag#0, (135
and similarly
k'ﬁ—>0 k’ﬁ—>0
k) ~ ko +O(kp), k3 ~ k,+O(kp). (136
For the factor
N=e 7t 75t B0 (L4 )T (L+i (72 + 75DI A= (7 72T A= (73+ 7)), (137

which occurs in the integrand of EGL33), this implies(recalle,ez>0)

k., —0

81 2me e u

N ~ _exp{_a—jﬂ
agkp

!

] (a5=0p)- (138

Thus we derive
k;3~>0
ViP(0).0,,E+i0) = C(Kj;0p, 0 E+i0), (139

klé272i7]u+i 7,
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whereC(kl’g ;a';. ,0.;E) vanishes in the Iimik"geo because of the exponentially decreasing factd.ifthus, forq},=aﬁ, the
leading singularity oﬂ%‘gﬂ)(qg,qa;E+iO) is actually weaker than described in E§j39), and hence represents an integrable
branch point atr(q;E) =kj?=0. In the same way the resu#5) for q,+ g, andq, =g, follows.

Finally, if q;=q, andq, =0, , which in the limitk;>~k2—0 necessitateE=0 and, hence, alsg=0=7,, use of Eq.
(132 for J% , and of Eq.(E33) for J,,, leads to the result that fa=E+i0, the leading singular part 51(?)(% .0, ;2) takes
in the limit o 5(05;E) = Kj?= 130 (0 s E) o= 1 gkl e —0 the form

kl,—0

~ ~ o~ |
VP(Q5,94,E+i0) = FD(k' ;0,0;,0) for E=0, (140
B
with D(k’B; ...) vanishing in the Iimitk;;—>0 for similar reasons. To arrive at this result the substitutiAﬂ; k;;u and

A%=k}v had to be made.
The above steps can be repeated in an analogous manner if the final and/or the initial momentum equals its on-shell value

q_;; and/orq_a, respectively. The result is that the leading singularity in the IEBHO is of the same form as shown in Egs.
(128 and (139, with i 7, appropriately substituted by$® and/oriz, by 7. Recall that the assumption of nonzero
two-body binding energieB,>0 entailsq,#q,, »=1,2,3.

As an example consider the contributﬁzﬁf)(a’ﬁ q_a ;E+10) to the fully on-shell effective potential. Using the appropriate
forms (629 and (649 for the on-shell Coulomb-modified form factor, one obtains for the leading singular part

s)

TeBO)(q! E'Z)=f dkﬂf dq,;f dk,/sf dq,[;J dkgj dq? Tﬁz[eg_a(Q';Jr)\Mq};)]) .
pa A1 Ha (2m3) 2m)3) 2m)3) (2m)3) 2n)3 (277)3[(q;;+>\ayq;3)2+2MBBB]1*ﬂﬂ

C,as(+)’ C.as(+)'*
g L (ko)

" Amege, kG T
[klzly_ Gaﬁ(q_;i’_l—)\ﬁyq/c’y)]z qu kgzz
S 2M, 2p,
47Teae7 aa[ eaﬂ(q;%—f—)\ﬁyay)]

. = 12 — 9 - (141
[kﬁ_eﬁa(qa+)\a’yqﬁ)] [(QE—’—)\B’yqa)z—’—zlu’aBa]lina

Repeating the argumentation which led from EL6) to Eq.(127) but now for expressiofl41), we arrive at

16m%e,e4€ f dAj f dA?

DO (G G E+i0)~—
pa (a0 T R T ) 2np) 2

0, 0,0
e ™t gt 1 (1— n%bs)—l—i n%)r(1+i(772

. . — 7 i 0 i 0
+ )T (L= (709 =i )T (L =i 95+ p)[ = 2(KG- K+ KoK ) 178 2€ 5, A% KO e
1 1

0
[—26 aAO'kO]Iﬂr p— p— ®s),, 0 0 0
Ba=p™ Ry [ngaAg'kZ;"'O'ﬁ]linﬁ +|7]B [(A%)Z]lJrl(r]aJrr]y)

33, 1

X 0., 0
[(AD)2) - (ng+my)

1 — 1 — € _
= _T AO, ZaB A0 0y,
Zﬂaoa-l—MaAa Qo+ . (A%+ N g,A0) K,

1 01 L0y \—in® 0 07—in% 0 1,07—i7,°
e A0 Ta gl Ak Kat ke T 2eaply kgl TR~ 2€0ple by Y
ap=p Ra a @ @

50 N(E) ( 1 )
= 5+ , (142
g

—_— S)

ot e

Op
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whereN(E) is a function which is finite at the singular point E. Singular behavior of the kernel K'z4(d ,du':2)
03=F%+ 2u5Bg=0. The momentk,, andk are defined as Given the leading singularity of the nondiagonal effective
in Eq. (27) but in terms of the on-shell momentg andqy.  potential V,(dg,0,:2), with z=E+i0, the singularity

Thus, the term/s#)(q;,q,.;E+i0) has the same singularity strudgtur? of tL‘e kernd{:ﬁa(%/@iqa ;ZG),SEQ- (10, follows im-
asV®(qh.q. :E+i0). This shows that on the energy shell Mediately. The corresponding AGS equations are given in
the B[::((?rﬁp?ete no)ndiagonal effective potentigly partEq' (9) where the integration is over the right-hand variable

(@B) T = = . . L= which is presently denoted ly, . ql’; is a free vector-valued
Vi (dg.de;E+i0) has a branch point singularity atg

=0. That singularity is, however, located outside of the in_param_eter. Consider first the Capg7 dpg - The_Ie_ading sin-
tegration contour and, hence, is harmless gularities of the kernel aré) the one that originates from
b L . ’ . . ’ 2
Thus, we have proved that the replacement of the three]-jﬁa,(gﬁ'qa'z) and s Iocatezd at qg“‘avqﬂ) I2ug
body free Green's function in Eq85) by the three-body +0s72Mp=2=0=(0s+Ap,0a) 1200t Al2Mo—2 (v
Coulomb Green’s function, leading to expressi8t), influ-  #a#B) for q,#4q, [cf. Eg. (38)] and at ql’3+)\ﬁyqa)2
ences neither position nor charactexcept for the special =0 for q,=0,, and (i) the pole located az—qg?/2M,

pointsq,=0qz andq,=d,) of the leading singularity of the +B,=0 which is due to the effective propaga®y(d, ;z),

nondiagonal effective potential paﬂ(gcf)(q[’;,qa;z) in the EQ.(19). It is obvious that these two singularities can never

momentum transfer variable. That is, the occurrence of th€oincide for physical values of the momenta, i.e., for mo-

leading singularity of the typél28) to (142) is solely due to menta lying on the integration conto(lrere the assumption

the Coulomb modifications of the form factors. B,>0 for »=1,2,3, enters Furthermore, according to Ap-
Though the proof has been concerned as yet only with th@enflx B no dangerous singularity arises frof),(z

contribution ¥ (q};,q,:2), it is obvious that it can be re- —0,/2M,).

peated in absolutely the same way for either term of the sum

(79). Consequently, the total nondiagonal effective potential V. SUMMARY

Vﬁa(qb,qa;z),aiﬁ, possesses the branch point singulari-

ties as asserted in the Theorem. (i) We have shown that in the presence of additional,

Let us add the following comments. _ purely repulsive Coulomb interactions between two or all

_ (i) The actual proof of the Theorem had relied on they, e particles, the leading singular behavior of the nondi-

3|mpI|C|ty _of the explicit form(24) of the effective potentlal agonal kernels of the effective-two-body AGS equations, al-
which on its part had _resulte(_j from the_ assumption that th?hough being changed into a branch point as compared to the
two-body short-range interactions are given as separableé pQjmple pole for(separableshort-range interactions, remains
tentials of rank one, cf. Ed7). Itis now easy to see that this jyieqrable. Hence, all solution methods developed for the
assumption was only technically convenient but does nofqngiagonal kemnels for short-range potentials are applicable
limit the generality of the results obtained. Namely, if we 5,54 to the nondiagonal kernels for short-range pius-
allow .for ar; arbitrary folrm of the two-body short-range in- screenefirepulsive Coulomb interactions.
teractionsV;, v=1,2,3, instead of the resolve(tt2) of the (i) Even in the presence of only repulsive Coulomb in-
three-body Coulomb HamiltoniaHl®, the resolveniG'(z)  teractions there exists a—from the practical point of view
=(z—H')"* of the HamiltonianH’=H®+=%_,V,, with  possibly unpleasant—complication. For, in order to solve the
V/=V5—|x,)A{x,|, would occur in the definition of the effective-two-body AGS equations one needs to know the
effective potentia[16]. Clearly, Witth alsoV, is of short  expressions for the effective potentials which contain the
range. But for the extraction of the leading singularity of three-body Coulomb Green’s function, cf. E4d). (In this
VsalU5,90:2)=(A5.x5/G’(2)| o 9.) (B# ), which rep-  respect the problem resembles somewhat that encountered in
resents the appropriate generalization of expres$i, the Noble-Bencze approadf,8].) At least in principle, for
only knowledge of the asymptotic parts of the eigenfunctionghe calculation of the latter perturbative methods can be em-
of H' are needed in the spectral resolution®f(z). The  ployed (“quasi-Born expansion” of the effective potentials
latter are, of course, not influenced by any short-range modiobtained by using Eq16D) in Eq. (11b) [16]). But, accord-
fications of the potentials, and thus could again be approxiing to Theorems 1 and 2, each term in this quasi-Born series
mated by Eqs(113 and(115). has the same branch point singularigxcept for the special

(if) Also the assumption that each subsystem supportgoints q;3="d,; and/or q,=1q,). This could imply that, in
only one bound state, is easily seen to have been of technicglinciple, all terms should be taken into account unless, of
nature only. For, if in subsystem an arbitrary but finite course, their contribution to the singularity strength is found
numberN, bound states exist, this could be accounted for byto decrease with increase of the number of intermediate-state
splitting off the potentia}\/f a separable potential of rafk, = Coulomb rescatterings, i.e., with the order of iteration.
(see Refs[16,24)). As a result only the dimension of the Clearly, the question of practical convergence of such an
effective potential matri®’ would be blown up from X3 to  expansion requires further investigations. Note that this re-
(Ng+Ng+N,)X(N,+Ng+N,), without altering anything mark does not apply when only two of the three particles are
else as compared to ca6e charged because in that case the quasi-Born series rigorously

Let us summarize the results obtained.
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collapses to the first two ternj46,15 shown in Eq.(18). “p
(i) As already mentioned, the singularity caused by Eq. q T €Ba q
(38) is the leading dynamical one, i.e., it is tlfenergy- ( “): 4 ( B), (A1)
dependentsingularity which is strongest and closest to the Ke Hp  Ma Kp
integration region. In addition, each term of the quasi-Born '5"‘BM_Ck m_7
series has its own singularities which are, however, more
distant than this singularity and are, therefore, less danger-
ous. faﬁ& €4
At the end we mention that a following paper deals with Kq B m, P A9
the singularity structure of the diagonal kernels. There, it will kg N rg | \ag) (A2)
be shown that, if the charges of all three particles are of the €ga €Bap_
same sign, nonintegrable singularities appear only on the en- Y

ergy shell, and coincide with those investigated by Veselova i i _

[12] below the breakup threshold. These singularities can, (_)f the various relations between the different sets of co-
however, be explicitly singled out and inverted as it has beeirdinates we only need

done by Alt and Sandhd45]. The off-the-energy-shell sin-

gularities of the diagonal kernel turn out to be integrable. Mo “p
Taken together these results imply that, after a few iterations, P Tm. EBaM_a Ps
the appropriately modified effective-two-body AGS equa- ( ): ( ) (A3)
tions become integral equations with compact kernels. la €up _ s s
m

APPENDIX A: JACOBI VARIABLES

For the convenience of the reader we collect here a few APPENDIX B: SINGULARITIES OF S,(E+i0)
formulas relating different sets of Jacobi variables since . . . . : .
these relations are frequently used in the present paper. In this appendix we investigate the singular behavior of

We always work in the total center-of-mass system. It isthe numerator functiors,(E,+i0) of the effective free
advantageous to introduce the antisymmetric symbg]  propagator, Eq(19), whereE, is the relative kinetic energy
=—€ga, With €,5=+1 if («,B) is a cyclic ordering of of the particles of the pairg+ y). Using the spectral decom-
(1,2,3. Moreover, leta# B+ y# «. Then position of the two-particle Coulomb resolvent

c c
dk® |'ﬂké+)><¢ké+)|

(2m)3 [E,+i0-K"/2u,]’

ég(éa+i0)=f (B1)

C(+)

and the orthogonality of two-particle Coulomb scattering wave functiong, | Yo y=0(Ko— k%), we find forS, *(E,)

[cf. Eq. (20)]

c
dk® |<Xa|¢lk2(+)>|2

(2m)3 [B,+K212u, [E,+i0—K"12u,]

S, YE,+i0)= —f (B2)

Choosing for simplicity a form factor of the fort87) we can take over the resy{t10) for the overlap | wfé”) and obtain

d kg 20 7]3 et »larctanp,, /8,)

s;l(éa+i0):—f (B3)

(2m)° [ 1] (KO + B2)2[B,+ K% 12 ) E 10— K% 12u,]

where 772 is defined in Eq.(123. SinceB,>0, the only integration,kgzo, will in general generate a singularity of

singularity of the integrand in the integration region is thes (E_+i0) at the subsystem threshold energy
pole at R
E,=0. (B5)

K2u,=E,. (B4) _
However, for the case considered presently, namely that the

The coincidence of this singularity with the lower limit of charges have the same sigg;¢,>0, i.e., 172> 0), the pole
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at threshold is compensated by the Coulomb penetration fagyith % _(0) being finite.

tor which vanishes exponentially there,

k-0

2770 exp{—2mw 7’} — O. (B6)

Hence,S;l(Ea+iO) remains nonsingular and in fact posi-

tive definite at the subsystem threshold eng(f§y). Conse-

quently,S,(E,+i0) is regular also & ,=0. For oppositely
charged particles, however, i.e., fege, <0, the integral
(B3) goes to infinity ifEa—>0, due to the divergence of the

integrand at the lower limit of integration. In fact, it is easy

to see that

E,—0

. a 1
Sy (E,ti0) ~ ——
( ) In|E

|Edl

(ege,<0), (B7)

for form factorsy,(k,) which remain regular at the origin.

APPENDIX C: LEADING SINGULARITY
OF THE COULOMB-MODIFIED FORM FACTOR

Consider the “off-shell Coulomb-modified form factor”
[cf. Eq. (54)]

=(ko|Go Mz Gz |xa),  (CD)

bo(KaiZa):

with z,=E_+i0, E, being the energy parameter in sub-

systeme, for E ¢k2/2,ua As the notation indicates, all

Comment.This theorem is valid for both repulsive and
attractive Coulomb interaction.
Proofs. (i). We start from the definitio(C1), with k,

#Poi=V2u,.E,>0. With the help of the so-called station-
ary off-shell Coulomb scattering states|ys 7 )

=GC(p?/2u,+i0)G, Y (p2/2u,*+i0)|k,), this can be re-
written as
balKa:2a) =W L | Xa)- (C5)

The limit relation between off-shell and on-shelk(

=P, .P.=Pp.K,) Coulomb scattering states|[ig5]
im (P2 10 (kg P = (5, (C8)
where
Oy ,po) =[e7 ™20 (1=i7,)(42,) 17
XIKE = 2p002,] 7] . (C7)

This gives for the limit relation between the off- and the
on-shell Coulomb-modified form factor

K2—24,2,—0
balkaiZa) = [QKeP)] Nep X0

(C8)

operators act in the two- body space. We prove the followingThe on-shell Coulomb-modified form faCt@?’ﬂC( ) xa) is

Auxiliary Theorem(i) ForE,>0, ¢,(k,;z,) behaves in
the (a-subsystemon-shell limit ka—z,uaza—>0 as

2 N
K, —21q2,—0

balKaiZa) =~ 2100201 " oK i20),

(C2

[K3—

with ¢ ,(k, ;z,) remaining finite ak’>=2u E, . Here, 7, is
defined in Eq (41a.
(i) For z =E <0, the same resuliC2) holds but with

77a

|E,| equals the binding energy, i.eE,=—B,, deserves

extra mention. The “off-shell Coulomb-modified bound state

form factor” behaves in the limik?+2u,B,—0 as

ki+2MaBa~>0 .
$ukai=By) = [K2+2u,B]7 bo(kyi—B,),
(C3)
with ¢,(k,;—B,) being regular alki+2,uaBa=0. The

bound state Coulomb parametg!’® is defined in Eq(49).

(i) The “off-shell Coulomb-modified zero-energy form
factor” ¢,(k,;0) is nonsingular in the on-shell limik,
—0,

k,—0

bo(ka;0) =~ k2,0, (C4

—iege, a2, E . The important special case that

well-behaved, for reasonable functiops(k,). For instance,
for a form factor of the typd37), it can be calculated ana-
lytically using the formulgd26]

(k)

dk” P — a2 H
f<2w>3[<ky—a>2+b2]:e S

12 2= (p,+ib)?]'""
“Tp,—ar b
(C9

with 7, defined as in Eq(123 but with k® replaced byp,,
yielding

27 qarctamp,, /
C(—) 71'77 /21" 1— e’ Palb
(W5 xay =€ " (1=,
pa+ B

(C10

This function has only a pole qni= — B2<0. Hence, using
Egs.(C7) and(C8), the desired resuliC2) follows.

(ii) This case has already been described in R (see
also [28]). It is apparent that its singularity is in general
branch point ak?+2u,B,=0, although for the case that
the charges of particle8 andy are of opposite signs it may
be a pole(viz., if 7{°=—n, ne A being a positive integer,
as it happens for hydrogenic bound state form fagtors
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(iii) This assertion will be verified for the Yukawa-type  The on-shell limit k,—0 of the off-shell Coulomb-
Swave form factory(p?) introduced in Eq(37). The ex- modified zero-energy form fact¢€15) is now easily found.
plicit expression for the corresponding off-shell Coulomb-Use of[29]

modified form factor is known forﬁazpilz,ua>0 (see,

e.g., Ref[25)), F(O,Z)Z—)f%i[l—%+0(l2) . |arg|<3m/2,
z (C16
. Pa
BalkaiEati0)=x(kD) = x(PL)} “[Fi7,(B) leads to
—F;; (Bla)], (C11) ka=0 dinx(k?)
(B3] ba(K,:0) = x(0) 1+ki%+
with “
N ZSaI Bk, (BKa)?
B+ip, Ko Pa K, 25 (Ko tiB)  a2(k +iB)2
— — @ a\ R 4s ka+|

B=ip, T ketp. (c12 alkat1B)

Here, F; (2) is a short notation for the hypergeometric e Jz:ki&a(O)nLo(ki), (C17)

function ,F,(1i7,;1+in,;z). We first need the zero-

energy limit of ¢a(ka;|§a+i0), and hence the limip, with ¢,(0)= x(0)/Bs, being nonsingular.

—0 of the hypergeometric functions, flay,# 0. This limit is Note that, although the proof has relied on the explicit
nontrivial since not onlyBa=1+0O(p,) and the same be- form (37) of x(p?), the result is nevertheless valid for arbi-
havior for B/a [recall that':i;/a(z) has a branch point @  trary, at the origin nonsingulaiS-wave form factors since

=1] but also two of the parameters go to infinity at the same2Y such form factor can be represented as linear combina-

. . A . . tion of functions of the typd37).

time since 7,, 1(p“' This problem can he solved n the_ This completes the proof of the Auxiliary Theorem.
following way. First we note that, because the variable in

either hypergeometric function approaches the value 1 in this
limit, it is advantageous to represdﬁga(z) as a function of

the variable -z. Such a representation is well kno29]:

APPENDIX D: ASYMPTOTIC FORM OF THE
THREE-CHARGED PARTICLE WAVE FUNCTION

The asymptotic behavior of the three-charged particle

1 “ (in)(1—2)" wave function in the regiofy, which is valid outside of the
(17,)n(1-2) -~ _ Y . 0

—Fi;. (0= L+ —yg(ntin,) so-called singular directions characterized kfy,—k®-r,

1774 n=0 ' =0 for v=1,2,3, has been given in Ref@2,23;
—In(1-2)]. (C13

Qo
WS (0P =W EE () - WS ()
Here, #(z) is the psi function and &), the Pochhammer o
symbol. By expanding all functions on the right-hand side of
Eq. (C13) in powers of 1/, and keeping in mind that (1
—~Ba)7,=0(1), a calculation similar to that reported in
[30] yields

3
. - 0 0 0
- eIPO-XH el 7, In(k,r, =k, -r,)
v=1

111

+0|—,—,
g rars

. (DD

Fi;,(Ba)=i7,I'(0j7,(1-Ba))e 71 BI[1+0(p,)],

(c14 Here, P°={k%,g% and X={r,,p,} are vectors in six-

dimensional space, and

with an analogous expression fer; (B/a). Here,I'(0,2) is _ _ _
g P f2,(B/2) (02) PO-X=K{-r1+02- py=K3- T2+ 03 p,=K3- T3+ 03 ps.

the incomplete gamma function. With this result the limit to (D2)
zero energy can be performed in EG11). Introducings,
=P Ta= €€, i, ONe finds Clearly, either set of Jacobi coordinatgs,,p,} and conju-
7 gate moment#k®,q%, v=1,2, or 3, can be used as the vari-
bo(K,:0)e= lim (Ko ;B ti0)=x(K2) ables in wSiT(X) and WEX(X). Moreover, 7°
Pa—0 = m(kg) are the appropriate Coulomb parametpst the
definition (123)]. The leading asymptotic term on the right-
+x(0)ﬁlm[l“(0,23a(,8*1 hand side of Eq(D1) is conventionally called three-particle
Kq Coulomb-distorted plane wave. Note that it is equivalent, in
o 11 the sense of being asymptotic solution of the Sdhrger
+ik,))esalf ke, (C19  equation inQy, to [31,37)
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3
’ ) _ 0.
VEC 00 =P X eyl ir,), (09)
with
s ()= TeNOF (i 70 L3 (K0 = K0 1)
(D4)

being the continuum solution of the two-particle Sainger
equation(Coulomb scattering wave functiprior the par-
ticles 8 andy, interacting via the Coulomb potentief(r )
and moving asymptotically with the relative momentifh.
Here, Ngze*””g’zl“(lﬂng), F(a,b;x) is the confluent
hypergeometric function, and(x) the Gamma function.
That the leading asymptotic term of the wave function
PSR (X) in Qg is nothing butw S *)(X) becomes
ewdent by recalling that the asymptotic behavior of
t//féﬂ(ra) in the nonsingular direction(i.e., for kgra

—k%.r,#0) is given by

a—®

‘//k(ﬂ(ra) elka Taelﬂa|n(k3ra_k2'ra)+0(

kgra_ kg Mo
(DY)

The asymptotic solution of the Scliinger equation in
Q, has been found if11,33. Here, however, we only need
its leading term which has the form

C(+)

C as(+)
o '(r K9(p,)

(ra)eiqg-paH elnyln(kr ks-r,,)_

v¥#a
(D6)

a 1pa) IJI

C(+)

The wave functlon// )(ra) is the continuum solution of

the two-body-like Schmhmger equation with the Coulomb
potential VS(r,),

A
2M

k22(p, ),
2

C(+)

S0 [ U (1) =0, (D7)
to the local energyk®?(p,)/2u,, where thelocal momen-

tum k%(p,) is defined as

au(Pa)

k(ojz(pa) = kg+ ! (DS)

3

anQ’

e o (D9)

aa(;)a) 2 5va7’1/ vy

Lo
KO
The solution of Eq(D7) is precisely of the form(D4) but
with momentumk?(p,) instead ofk®. We remark that the
asymptotic form(D6) is valid only outside the singular di-
rections characterized tfr,—k°-r,=0 and 1-e,,p, - k°
=0, for v=2,7.

Taking into accountD5) it is apparent that i}, the
representatioriD6) is equivalent to(cf. Ref.[11])

PHYSICAL REVIEW C 61 064006

c, as(+)
kO

C(+)

v K(p,)

(ra!pa) eIP Xe—lk ra'//

(Te)

x [ e ko C“’(r) (D10)

v#Fa

as(+ )(r

Again, equivalence means thmko « Po) 1S the lead-

ing asymptotic term oﬁP S( ) (ra,pa) for p,—~ and

r./p,—0.
Since the local momenturkg(pa) coincides with the
asymptotic momentumg up to terms of the orde®(1/p,)

[recall its definition(D8)], zpfo(;))(ra) can be written in(),
as

-

Pal

Consequently, i), we can write for\P S(+)(rw,pa):

C(+)

c(+)
Y0, (B1D

(o) =¢o (o) +0

VT (e =y )eitePa

% H e'%'“(k r, ?/rV)-FO(i),
v¥Ea Pa
(D12
and for\IfC as(” (F 0 Pa):
C,as(+)’ C,as(+)’ 1

‘I’ko'qo (rg,p) =Y 5o (X)+0 p_ . (D13

Note that the term O(1l/p,) is decisive for
\PC as(+)(ra,pa) to satisfy the Schdinger equation in the

asymptouc domairf),, up to termsO(1/p2) [11]. However,
when looking for the leading singular part of

T/‘”f)(q,’;,qa;z) it plays no role and can therefore be ne-
glected. To see this, substitute in the integrand of (EQ6)

for the exact three-body wave fUﬂCtiOﬂ’Céﬂc:(l’ Pp)

—\Ifcm (r,,p,), Where on the right-hand S|de the variables

{ra,pa} are conS|dered expressed by the §ef,pg}, it
asymptotic expressmw q (I’a,pa) In this context it is

a

helpful to keep in m|nd that any Jacobian vector pair
{k,,q,},v=1,2, or 3, can be chosen as the variables in the
three-body wave function. The same remark applies also to
the integration variablegk®,q° in the spectral decomposi-
tion (82). Since the singularity we are looking for, is gener-
ated by the divergence of the integral ovgrfor r ;— o0, we
investigate the behavior of the integrand for large Con-
sider first the asymptotic regiofd, wherer ;—o implies
p.~" . Use of Eq.(D12) shows that
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1
+0| =

iy

w

B
ko o(rﬁ,pﬁ) ~ WS (). (D17)

I'Baoo 1
+o| —

s
(

V80 (Fapa)Vi(rg) = O =

;
B
D14) An analogous consideration shows that in the asymptotic

where the terms-O(1/p,) in the asymptotic wave function, domain @, the wave f“nCt'O”\I’kO O(ra’Pa) may be ap-

when multiplied withV§(r z), contribute to thed(1/r%). Itis  proximated by
evident that in the integration ovep, because of its faster W
asymptotic decrease the latter contribution gives rise to a

C(+) C,as(+)’
term which is less singular than that arising fr@1/r 5); q’ko ( arPa)™ \P (X). (D18)
hence it can be discarded when Iooking for the leading sin-

Cas(sy” OF THE INTEGRAL J,
,as(+)* . .

Wkqui) (a1p) are equivalent Irﬂ“' also in £q.(D13) In this appendix we derive the leading singular pard of

the term~O(1/p,) can be omitted. Thus, when acting on Eq. (119), near the singularity caused by the coincidence of
the Coulomb potential VB(rB) the wave function the singularities of its integrand given in Ed.20) with the

o o(r ps) may be approximated if,, by forward- scattering singularites of the wave function
Yo olle P c, as(+)
W0 (kﬁ qﬁ) which occur at Eq(121).

Q Q, .
“qf a3(+) _ C as(+) To begm with we introduce the following notation. We
k° O(rﬁ Pp) = (TasPa) = (X). are only interested in the leading singularity of a given quan-
(D15)  tity F. Hence, throughout this section we denote the leading

o _ . _ _ singular part off by F©® so that
Similarly, in the asymptotic domaif , we find ) )
F=F©+less singular nonsingular terms. (E1)

Q

ko o(rﬁ,p,;) 71[/ ) (ry,py) \yC as(+)’ (X), (a) We start by investigating the leading singular part of

&3 (D16) J,, for q,#0, when the singular behavior of the Coulomb-

modified form factor is as shown in E¢29. First of all we

where in the first approximate equa”ty thechanne| coor- reca" that the “reduced Coulomb-modified form factor”
dinates{r,,p,} are conS|dered expressed fy;,pg}, and a[eaﬁ(q +)\ﬁyqa)] is regular near the forward-scattering

the momente{ky,qo} by {k,do}. . _ singularities of ¥ § aSH) (k%.qp) and the singularities
Thus we have derived the very important result: in all

three asymptotic domaid,, ,, and(},, and hence also
in all of wg [cf. Eq. (111)], when looking for the main sin- as(+)
gular part of the amplltudey(“ﬁ)(qﬁ q,:2) the wave func- the forward-scattering singularity ofV’ s (K, qp)-

tion \If o(r ,Pp) May be approximated by Next consider the following integral ovq‘ﬁ.

(120. Hence it can be taken out from under the integral
signs in Eq.(119 at the pointq}’;—q% which corresponds to

dqy % TKHKG—Kp— €pa(dly + o+
1.:f g . - — (E2)
(277) [(qﬁ+)\ﬁyqa) Zlu‘aza] “

The Coulomb parametes,, is defined in Eq.41a. In the following we need the basic integrdbr O<argu<2,arqu
#+ T)

fw dy 1t 1 Timrd-igtaw) 0<Re(i\)<Re(1-ipu), (E3)

0 ylfi)t (u_i_y)l*ip,_ ul*i()ﬁr,u) F(1_|,LL) !

which represents a slight generalization of Eq. 3.194. of R}, in several variations. We first use it as integral represen-
tation for 1] (03+ X g,04)?— 24,2, ]* "7« to rewrite the right-hand side of E¢E2) as (recall thatz, = E,,+i e with €>0 for
E,>0, and that we consider only particles with charges of the same sign

U8 Tk K=K~ epaldt ds+02)]

B 1 fx dy dqj E4)
T(i )T (1=ing) oyt el (24r)3 t(qgﬂmqa) — 2 0Za+Y]

The integral ovelq’l; can now be done explicitly with the help of EGC9), yielding
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_e_”"glzr(l—ini)fw dy (k=K () +k)?— (ky— iy —2p,20)%) (E5)
[(in )T (1=in,) oyt 7a [(k—K(Q)2+y— 24,2511 7 ’

with the abbreviation

K(0)) :=K3+ €a (0t 00— N g,0,);

(E6)
72 is defined in Eq(123. Introducing the new variable via
y=[(k=K(a;)*~2pa2;]v (ED
and retaining the leading singular parts only we derive, using again the in{&pal
Lo & L (L= (3t 7)) [(k=K(gl) +K2? = (K0 —iV=2u,25)%) s (E®)
' I'(1-i7,) [(k—K(q0))2—2maz5 1t (70t 7g) '
This result when inserted into expressidri9 for J, yields
0 ~
e Tl (L=i( 7t 7))~ .
3= SB[ €ap( A\ qaﬂf f ZRACI
T(1-i7,) A P RPELE
o o Ame.e, [(k—K(q’;Hkﬂ)Z—(kﬂ—iJ—Z/Laiz)z]-‘ﬂﬂ
X(k+k7_kl3+€aﬁ(q2_q ) 2 \\2 Sk 1—i(gyt 70 : (E9)
(de—0a) [(k—K(dp)?=2p,z5 ]t (Pa® 7

When looking for the leading singular part of E@9), only those functions of the integrand which contain the leading
singularities have to be retained under the integral sign. This implies that the fékmK(q?)+k%)2—(K°

—iV—2u,z¥)?] "= can be taken out from under the integral sign at the forward-scattering singulaﬂtiqu and k
= k% of the Coulomb wave functions. To proceed further it proves convenient to introduce a new variable

p=k+k—k+ €. 50— 00). (E10
Then Eq.(E9) takes the form

(=i (7a+ 7))~
F(l_l 7701)

C(+)* C(+)* Kk
2k 2 g ® 2 I

(27)° [(p— KO- €,pAS—K,)2 = 2,25 |11 7 ) (2m) 3 p—k— k°+k,3+eaﬁA2]2'

0
I=4me,e07 ™l

Dol €apAl+KI[(KS— €A% —K,)2— (K

(E12)
Here we have used the notatiof@®) and(90). Integration ovek with the help of Eq(C9) yields
T(1—ip)TA=i( 7.+ 7))~
IO =4me,e0 Tt TP (A7l A1t 7)) Dulenshlik)
I'ii-in,)
X[ (KO = €0pAS— K2 (Ko =i = 201,2%)%] '
: C(+)*
i f dp  [(p—koH+KS+ e, A0 2~ (KG—is)?] 75 %o (P) e
X lim _
srod (@M [Pkt e pAD PRI [(p K egpAG k)2 2,2 1 )

Again only those terms of the integrand need to be left under the integral sign which contain the leading singularities
consequently, the square-braketed numerator function can be takenp@ak%t Then in the main order one obtains ftif
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FA—i7)r@—i(n,+7°)~ - .
(1-imp T A7 ”“))¢a(eaﬁA2+kQ)[(kg—eaﬁAg—kQ)Z—(kg—i\/—2#az§)2]*'”3

0 0
IO =4me,e e "t PR

L(1=i7,)
X[(KG+ €07~ KEZ 7173l (E13
with
[ sy (@) L (E14
| = - ~ i . El
(2m)% [(p~ K+ €apA) 1175 [(P— k)~ €upAy— k)2 201,25 107" 70

To evaluate this latter integral we use H&3) twice as integral transform of the denominator functions, once with
=w1(p):=(p—kJ+ €,5A2)%, and once withu=w,(p): = (p—k3— €,5A%—K,)2— 24,2} . This gives

v (p)
Y

1 A » N ) dp
| ,=— —sin +7%)]sin 9 f dxx*“'(”a“?a)f d ﬂ*'”ﬁf . (E1
o= = ST (mat me) Jsinfmg) | o Y (2m)? @+ ap )  EO
The integral ovep is first rewritten by means of the Feynman integral
1 1 dt i d J‘l dt (E16
— —_— = m-— .
ab  Jo[ta+(1-t)b]> . ,_odeiJo[ta+(1-t)b+e,]
Thus
1 A Ona s o [P avicn w0 (7 01
lo=——sin{ 7(7,+ na)]sml"(ﬂ-nﬂ)J dxx 1*'(%*%)] dyy 1*"7BJ dtL (1), (E17
o 0 0 0
with
d dp ‘ﬂféﬂ*(p)
Lo(t):=— lim —J . E18
) e1—+0d81) (27)2 [Hw1(p) +Y) + (1= t)(wa(p) +X) + 4] €18
Since the denominator in the integrand of FI§18 can be represented in the fofip— c(t)]%+ x2(t) + &4, with
(1) =K — €,pA% + (1) €,5A0+K,] (E19
and
XU =t (L) (A + AY+ €,5K,) 2ty + (1 —t)(X—21,Z5), (E20
we can easily integrate overusing Eq.(C9) and obtain
La(t)=,—e 2 (1-i70) lim — [0~ (G G 7o)
=,—e 7 —in,) lim — —5.
? Y er 40981 [H((A2)2 4 )+ (1- 1) (A%)2+ 26, A% Ko+ o0 32) +3) T 2112 T
(E2))
Here we took into account that
(AY+ €45K0)2 = 20Z0= (AD)2+2€,5A% K+ 0,(04;2). (E22

Differentiation of the denominator with respect4g gives the leading singular patt® of L, in the limit o,(q,;z)—0 as

e T (2—i n)[ () — (K2~ ix(1))2] "7
[t((AD)Z+Y)+(1-1)(AD)?+2€,5A% K, +0,(0, ;Z)er)]zfi,,g-

LO(t)= (E23

Let us now insert this result fdr, in Eqg. (E17), and consider the integrals ovgandx. The leading singular pahﬁf) of
I, is generated by the singularities of the denominator at the lower liyit® andx=0 of the integrals ovey and x,
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respectively. Consequently, the numerator can be taken out under from the integralsaoderat x=y=0. The integration
overy andx is now straightforward. Introducing the variahleas

v, (E29

1-t
y=| (A0 +——[(A5)*+2€,pA5 Ko+ 74(0a:2) +x]

we derive with the help of EqE3) for I(as) in the leading order

1= —%sinr[w( 7t 7Q)IsinbmnY)e” T (i 7T =7+ 72) j:dn-iv%[cz(t) — (0~ ixg(1)?] 17

- X~ L i(Tat 1Y)
X

dx : : (E25
0 [t(ADZH (1-1)(ADP+ 26,589 Kot 040y 52) + )12 (75 7)
Here, we have used the short-hand notaﬂé(t): =Iimx yHon(t)- Similarly, defining a variable via
t
_ 042 042 0 .
X—(l_t(Aa) +(Ap) + 26,505 Kot 0,(0,;2) U, (E26)
an analogous integration ovrlyields
r\2—i| 7.+ 0 . » _
{9 g2 ( '\ 7 Ev " ) fldt (L) et T e2(1) — (KO i xg(1))?] 17
a :e i . . N S .
PA=im DAt 7o) IO A, 24 (1= (A 26,680 Kt (0 :2) P 2 70
(E27)

Recall Eq.(92) which shows thaA2~A%~aa. Thus, the leading singularity d)ff) in the limit o ,(q,;z)—0 is due to the
zero of the denominator in EqE27) at the upper limit of integration. For, d&=1 the denominator is proportional to
(A2)2~02 while att=0 the leading term of the denominator is proportionadfo. Consequently, the square-bracketed term
in the numerator in Eq(E27), being a less singular function &t 1 than the denominator can be taken out of the integral at
t=1. Using Egs(E19 and(E20) one finds in the leading order

lim[c?(t) = (k=i Vxo(1) 2]~ — 26,5k AY. (E29

t—1

The remaining integral overcan be evaluated explicitlysee[34], Eq. (3.197.3],

r(z—i Tat 2, 773))

0 AO07—in°
|(S):e_7”7(;/2 A [_Zéaﬂky-Aa] 17, i 2F1(2 i "77 +2 770>,1—i7]0;2
“ F@=i(7at 70+ 75) [(A?+26€,pA% Kyt 0,(q12)] 10" 2 70 S '
—i (Dt 7o+ n%);l—U), (E29
with
(A2)?
U:= . (E30)

(AD)?+2€,5A% Ko+ 040, 52)

Here, ,Fi(a,b;c;z) is the hypergeometric function. By using, e.g., the transformation fornil$a3.6 of [29] for
,F1(a,b;c;1—u) one easily extracts the leading term for-0 [recall Eq.(92)]

T(1=i(7p+73)
I'(1-in})

1 1
[26€05A8% Kot 0o Qg ;2) 1170t 1) [(AO)2]2-1(7g+ )

|Els)=efmf/2 [_zeaﬂkg.Ag]*iﬂ? (E31)

Correspondingly the leading singular partXf takes the form
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o DA (et 7T A7+ 75)

0 0
I=4me e ™t g —
[(1=i7,)

Bal €apAltko)[ —2(K2- ko +kk,)] 17

1 1
(2,589 Kyt 000, ;2) 1t 70) [(AQ)2)1 (gt 1)

X[2€,5A0-KS] 176 — 2€,,5A0-K2] 717 (E32)

(b) We also need the leading singular partlgffor q,=4q,,, in the limit o,(q, ;z)—0. The appropriate singular behavior
of the off-shell Coulomb wave function is given in E§2b). Repeating the above steps one finds with a similar albeit simpler
calculation

() _ — (S 221 i, 0 _ .0, .0 0 1,07—in0r _ 0 1,07—i7° Ly
Jo =4mee e T TeT I (1=in,) U (A—i(ng+ 7,))[2€,4, - Kg] ™' 7s[ — 26,50, K] n'[(Ag)Z]l—i(n%wg)'
(E33
Here,L, is the nonsingular quantity
0
~ eﬂ-nalz dq% C(+)* ~
L= f o [k+ ko= Kp— €pal A+ a5+ A3 1bal€ap(dp+ N gyda))- (E34)
F(l_”lg) (2,”_)3 K, B B B Y B\HB By
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