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Coherent control of refractive index in far-detuned � systems
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Enhancement and control of the index of refraction in a mixture of two three-level atomic species that form
a pair of far-detuned � schemes under two-photon resonance has been studied. We employ the density-matrix
approach to properly take population relaxation into account and to describe the interaction of each � system
with the electromagnetic fields. Both � systems are driven by a corresponding far-detuned coherent field at one
atomic transition and are probed by the same weak field. In the dressed-state basis, it represents a superposition
of effective two-level subsystems with the positions, widths, and amplitudes of the resonances controlled by
the driving fields and allows for efficient control of the susceptibility of the total system; leading to refractive
index (RI) enhancement with vanishing absorption in the absence of amplification. We analyze the experimental
implementation of such a system in a cell of Rb atoms with a natural abundance of isotopes. An upper limit
estimate of the RI enhancement is obtained.
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I. INTRODUCTION

Tightly focused laser radiation allows for the selective
addressing of small regions of a medium. In microscopy,
it is used to image tiny objects, such as biological cells,
organic molecules, or nitrogen-vacancy centers in diamond.
In lithography, it is used for the production of miniature
semiconductor integral circuits. In information processing, it
is used to provide multiple parallel optical channels. For all of
these applications, a key issue is the spatial resolution that is
defined by the minimum spot size the laser radiation can be
focused to. This focal spot size fundamentally is limited by the
wavelength of light in the medium λ, which depends on the
refractive index (RI) n as follows: λ = λvac/n. Thus, high RI
is very important for achieving high-spatial resolution in all
of these applications. Materials with enhanced RI on demand
also would be important for phase shifters, interferometers,
and magnetic Faraday rotators.

Index of refraction characterizes the response of a medium
to electromagnetic radiation, and hence, it is strongly enhanced
near the atomic resonance. However, if a medium is in thermal
equilibrium, the enhancement of RI near the atomic resonance
is accompanied by an enhancement of absorption. Such that,
when the maximal contribution from the atomic resonance to
the RI is reached, the contribution to the absorption is the
same. As a result, a 2π phase shift and an e-fold absorption
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take place at the same distance in a medium, which prevents
the usage of the obtained RI in transmission experiments. In
an inverted medium, high RI in the vicinity of the atomic
resonance is accompanied by high gain. However, even higher
gain is present at the exact resonance that makes such a system
unstable and, again, nonsuitable for high-index applications.

A mixture of atomic species provides overlapping absorp-
tion and gain if the difference in resonance frequencies is
on the scale of the linewidth and one of the atomic species
is inverted. A proper overlap could result in a high RI with
vanishing absorption for a weak field properly tuned between
two atomic resonances. However, the difficulties associated
with the practical implementation of such a combined system
(finding proper species, providing for an even mixture, and
providing population inversion for one species while avoiding
spatial fluctuations in density and population exchange, etc.)
would hardly be surmountable [1].

Here, we consider the idea to use coherent effects in a
mixture of different species to induce strong and overlapping
electromagnetic responses to provide high RI with vanishing
absorption. The use of a coherent preparation of a medium
for the elimination of absorption and index enhancement was
pioneered by Scully [2], which was generalized further in
Ref. [3] by including the density-dependent near-dipole-dipole
interactions. A number of other three- and four-level schemes
followed. They involved resonant driving at one or two atomic
transitions and probing in a way that resonant enhancement
of RI enhancement is accompanied by vanishing absorption
[1]. It was expected that χ ∼ 1 without absorption would be
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possible in high-density (Nλ3 ≈ 50) alkali metals but with
an undesirable amplification region. Two schemes, however,
a so-called double dark resonance and a degenerate double-�
scheme allowed for the elimination of the gain region, although
under a rather exotic and narrow range of parameters [4].
These developments led to a proof-of-principal experiment in
Rb vapors, with a density of 1012 cm−3, which showed RI
enhancement with vanishing absorption. Although Nλ3 ≈ 1
was achieved, the magnitude of index enhancement in this
experiment was quite low, on the order of �n = 10−4 [5].

Recently, a scheme for coherent control and index en-
hancement was suggested by Yavuz [6]. This scheme is
based on a resonant four-level system involving two Raman
transitions optically pumped into the ground state and driven
by two far off-resonant control fields forming two � systems
with the same probe field. The dispersive and absorption
characteristics in such a system as functions of two-photon
detuning essentially interchange so that the maximum resonant
RI is accompanied by vanishing absorption. Similar to the
previous proposals involving resonant driving, the effect was
attributed to interference and an index on the order of 10 for
alkali-metal vapors with densities (1017 cm−3) was predicted.
Undesirable gain in the vicinity of vanishing absorption also
was present.

We study a similar but simpler system. It represents
itself as a mixture of two three-level atomic species, each
driven by a corresponding far-detuned coherent field at one
atomic transition and probed by the same weak field at an
adjacent transition in the vicinity of two-photon resonance.
This system was used in a proof-of-principal experiment that
showed an enhancement of �n = 2.2 × 10−7 [7]. In this paper,
we analyze the physical mechanisms responsible for index
enhancement in the case of far off-resonant driving and its
limitations. We present a simple physically intuitive picture
in the decaying dressed-state basis [8]. We then extend this
analysis to include inhomogeneous broadening. In order to
understand the limitations of RI enhancement in general and in
this two-� scheme, we give a proper treatment of collisional
broadening to show that any given mixture has a maximum
possible index enhancement. We then give a detailed analysis
of the proposed system in a cell of Rb atoms with natural
abundances (72% 85Rb and 28% 87Rb) and compare it to
the experimental results from Ref. [7]. An upper limit due
to the dipole-dipole broadening at high atomic density of the
RI enhancement in such a system is estimated as �n � 0.2.

II. THREE-LEVEL COHERENTLY DRIVEN SYSTEM:
DENSITY-MATRIX FORMALISM

We consider a mixture of two atomic species with the
density of atoms for each species Ns1 and Ns2 being free
parameters. Each of them is represented as a three-level
system, labeled by si ∈ {s1,s2} with one excited state and two
ground-state sublevels labeled |ai〉, |bi〉, and |ci〉, correspond-
ingly (see Fig. 1). The system, driven by a pair of coherent
fields with frequencies ωsi and Rabi frequencies �si, is probed
by a weak field with frequency ωpr and Rabi frequency αsi. The
driving-field Rabi frequencies �si = dac

si Esi/(2h̄) are defined
by the applied electric field Esi and the dipole moment of
the transition dac

si . The Rabi frequencies of the probe field

FIG. 1. (Color online) Mixture of two three-level � systems. The
initially populated level is indicated by the dots.

αsi = dab
si Epr/(2h̄) in each system may be different because the

dipole moment of the probed transition in the s1 system can be
different from the dipole moment of the probed transition in
the s2 system. All fields are far of-resonance from the atomic
transitions so that one-photon contributions are negligible,
implying �si � �si. The frequencies of the fields are chosen
in such a way that they result in one two-photon transition in
each three-level system involving one photon from the probe
field and one photon from the corresponding driving field. So,
each three-level system forms a � scheme with the same probe
and corresponding driving field (see Fig. 1). Each three-level
system is initially prepared in one of the two ground-state
sublevels via optical pumping as indicated in Fig. 1. So, the
first scheme exhibits two-photon absorption for the probe field
while the second scheme provides two-photon gain.

The index of refraction and absorption coefficient can
be found if the complex susceptibility is known. In our
system, the total complex susceptibility is equal to the sum of
individual contributions from each of the three-level systems.
The complex susceptibility itself can be calculated if the
optical coherence excited by a weak probe field is known
as

χsi = 3

8π2
γ si

r Nsiλ
3
pr

σ si
ab

αsi
, (1)

where γ si
r = 4

3
(dab

si )2

4πε0h̄

(2π)3

λ3
pr

= 8π2(dab
si )2/(3ε0h̄λ3

pr) is the radia-

tive decay rate of the probed transition, λpr is the wavelength
of the probe, and σ si

ab is the coherence of the probed transition.
We use density-matrix formalism and the rotating-wave

approximation to calculate optical coherence induced by a
weak probe field applied to the a ↔ b transition in a three-
level system driven off-resonance by a field applied to an
adjacent transition a ↔ c. This formalism allows for including
dephasing rates γ si

αβ at α ↔ β transitions, where {α,β} =
{a,b,c}. Similar to Ref. [6], we assume that driving fields do
not disturb an initial population distribution, which implies
either sufficiently short interaction time tint�

2
si/�si 	 1 or

sufficiently strong optical pumping through some additional
levels (not indicated in Fig. 1).

The slowly varying amplitude of the optical coherence
induced by a weak probe field αsi 	 �si, γ si

ab is found to be

σ s1
ab =

(
δs1 − iγ s1

cb

)
αs1(

δs1 + �s1 − iγ s1
ab

)(
δs1 − iγ s1

cb

) − |�s1|2
(2)
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for the s1 system presented in Fig. 1 (left), while for the s2
system presented in Fig. 1 (right), it is found to be

σ s2
ab = − |�s2|2

(
�s2 + iγ s2

ac

)−1
αs2(

δs2 + �s2 − iγ s2
ab

)(
δs2 − iγ s2

cb

) − |�s2|2
. (3)

In these equations, we introduced the following parameters for
the si system: �si = ωsi

ab − ωsi
cb − ωsi and δsi = ωsi + ωsi

cb −
ωpr are the one- and the two-photon detunings for the si-drive
field, respectively.

Finally, we can write down the expression for complex
susceptibility of the system,

χ (ωpr) = 3λ3
pr

8π2

(
Ns1γ

s1
r

(
δs1 − iγ s1

cb

)
(
δs1 + �s1 − iγ s1

ab

)(
δs1 − iγ s1

cb

) − |�s1|2

− Ns2γ
s2
r |�s2|2

(
�s2 + iγ s2

ac )−1(
δs2 + �s2 − iγ s2

ab

)(
δs2 − iγ s2

cb

) − |�s2|2
)

. (4)

In the following sections, individual contributions are dis-
cussed, and physical insights are given.

III. DRESSED-STATE ANALYSIS: EFFECTIVE
TWO-LEVEL SYSTEMS

The slowly varying amplitude of the optical coherence
induced by a weak probe field in a � configuration is inversely
proportional to a quadratic polynomial in terms of the two-
photon detuning δsi. Zeros of this polynomial correspond to
the two main contributions to the optical coherence. Expanding
the coherence into Lorentzians defined by each zero gives the
decaying dressed states as previously discussed in Ref. [8].

For the case of a far-detuned driving field, �si �
�si,γ

si
ab,γ

si
cb, these resonance contributions are far detuned as

well and are associated with one- and two-photon resonances.
This clearly is seen for s1 after expanding Eq. (2) in terms of
the small parameter ξsi = |�si|2/�2

si,

σ s1
ab = αs1(1 − ξs1)

δs1 − �s1(1 − ξs1) − i
[
γ s1

ab (1 − ξs1) + γ s1
cb ξs1

]
+ αs1ξs1

δs1 − �s1ξs1 − i
[
γ s1

cb (1 − ξs1) + γ s1
abξs1

] . (5)

If �s2 � γ s2
ac as well, a similar expression can be found for

s2 with the exception that the two-photon amplitude is now
negative and, therefore, provides gain due to the population in
level |c2〉; while the one-photon amplitude is different since
the feature would no longer be present in the absence of a
control field,

σ s2
ab = αs2ξs2

δs2 − �s2(1 − ξs2) − i
[
γ s2

ab (1 − ξs2) + γ s2
cb ξs1

]
+ −αs2ξs2

δs2 − �s2ξs2 − i
[
γ s2

cb (1 − ξs2) + γ s2
abξs2

] . (6)

Furthermore, our probe field ωpr is tuned to the vicinity of
two-photon resonance (δsi 	 �si), therefore, the contribution
from the one-photon resonance of the second system can
always be neglected, while the one-photon contribution of the
first system can be neglected when γ s1

ab/�s1 	 ξs1.
When the low-frequency coherence decays slower than the

optical one γ si
ab � γ si

cb, the contribution from the two-photon

FIG. 2. (Color online) An equivalent representation of a mixture
of two three-level subsystems driven by coherent off-resonant fields.

resonance nearly can be as large as the contribution from
the one-photon resonance. This would simply require ξsi �
γ si

cb/γ
si
ab. Hence, both of our three-level schemes behave as

effective two-level schemes with susceptibilities on the same
order as the ones for the original transition. The presence
of the drive fields allow for the control of the strength,
width, and position of the resonances. This, in turn, leads
to the manipulation of the atomic responses of the individual
systems (see Fig. 2). We will use this flexibility combined
with appropriate mixing of the species to obtain enhanced RI
without absorption.

At first, we take an approach similar to Ref. [6]. It is based
on the absorption and amplification resonances having the
same magnitude and width while being separated by the full
width at half maximum (FWHM). This arrangement results
in the absorption being compensated by nearby gain. Further-
more, at the point of no absorption, the maximum (minimum)
of the real part of the complex susceptibility associated with the
absorption resonance adds up with the maximum (minimum)
of the real part of the complex susceptibility associated with the
gain resonance. We demonstrate this (see Fig. 3) by calculating
the atomic response from a mixture of two three-level
subsystems for the case of ξsi ≈ γ si

cb/γ
si
ab. Numerical values

0.2 0.1 0.1 0.2
Δ �Γab�

0.4

0.2

0.2

0.4

Χ

FIG. 3. (Color online) Combined real (solid) and imaginary
(dashed) parts of the susceptibility from two three-level systems
where the x axis is normalized to γ s1

ab = γ s2
ab = γab and the y axis is

normalized to η = 3Ns1λ
3
prγ

s1
r /(8π 2) = 3Ns2λ

3
prγ

s2
r /(8π 2) = 1 with

�s1 = �s2 = 2γab, �s1 = �s2 = 20γab, and γ s1
cb = γ s2

cb = 0.016γab.
Resonances have equal strength and width but are shifted by FWHM.
The obtained maximum at zero absorption is 0.5η.
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FIG. 4. (Color online) Combined real (solid) and imaginary
(dashed) parts of the susceptibility from two three-level systems. With
�s1 = 4γab and �s2 = 1.5γab and all other parameters, the same as
in Fig. 3. Amplification is weaker and is narrower than absorption.
The relative shift is adjusted to get zero absorption and no gain. The
obtained maximum at zero absorption is 0.33η.

of the parameters used are listed in the caption to the figure.
Although this arrangement provides a high value of RI with no
absorption, the disadvantage of such an approach can easily
be seen in Fig. 3. Namely, noncompensated gain is present in
close proximity to the point of enhanced RI. In order to avoid
undesirable gain in the system, we suggest an alternative to
the previously outlined approach. This is performed at the
expense of a reduced enhancement in the RI. In this approach,
a narrower amplification resonance is superimposed on top
of a broader absorption resonance as previously suggested
in Ref. [9]. The amplification resonance is positioned at
the maximum of the real part of the complex susceptibility
associated with the absorption resonance. The magnitude of
the amplification resonance is chosen to compensate present
absorption in the narrow region without providing gain. For
such an arrangement, the amplification resonance provides
no contribution to the RI enhancement at the point of no
absorption. In order to demonstrate the approach, we present
the atomic response of the mixture of two three-level systems
in Fig. 4 for the parameters listed in the caption of the figure.

As an alternative to the species providing absorption,
instead of a three-level system, we can just use a two-level
atom that provides absorption. This is natural since we want
the absorption feature to be both stronger and wider than the
gain feature, and the effective two-level transition always is
weaker and narrower than the original two-level transition.
The only reason this is not always ideal is that it eliminates
one of the knobs we can turn to match the transitions. Since
the same probe field addresses both the two-level absorption
transition and the far-detuned � scheme, it is necessary for the
one-photon detuning of our gain system to match the difference
in transition frequencies between the two transitions, i.e.,
�s2 ≈ ωs2

ab − ωs1
ab. Since we also need the one-photon detuning

to be much larger than the linewidth of the optical transition,
then for this implementation to be appropriate, we need
ωs2

ab − ωs1
ab � γ si

ab, but since the control-field Rabi frequency is
proportional to �s2, we need the difference to be small enough
such that a reasonably sized control-field Rabi frequency can
still satisfy ξs2 > γ s2

cb /γ s2
ab . If either of these conditions is not

satisfied, we are forced to use a far-detuned � scheme for both
absorption and gain.

So far, we have been discussing the atomic response of a
pair of three-level systems. This discussion has demonstrated
that RI with no absorption is possible to obtain in the presented
system. The maximum value for the RI is limited by the value
for the original two-level system with the main difference
that it is achieved with no absorption or amplification in the
vicinity of maximum value. Therefore, in order to get the
maximum value of RI enhancement, the original two-level
resonant susceptibility has to be maximized by choosing an
appropriately high concentration.

IV. EFFECT OF INHOMOGENEOUS BROADENING

In the previous section, it has been shown that the two-
photon resonant feature is equivalent to an effective two-level
atomic system with the amplitude, frequency, and width of
the transition controlled by the driving field. Furthermore, the
electromagnetic response of this effective system can be as
strong as the resonant response of an actual two-level system.
This is shown under the assumption of homogeneous broad-
ening, when values of the Rabi frequency �si and one-photon
detuning �si are well defined by the intensity and frequency
of the driving field. In the case of inhomogeneous broadening
of the probed transition, the frequency of the driving field
defines only the mean value of one-photon detuning �0 while
variance is defined by inhomogeneous broadening. Namely,
�si = �0 + �inh with 〈�2

inh〉 − 〈�inh〉2 = (γ inh
ab )2 where 〈· · ·〉

is averaging over the inhomogeneous profile. For the case
of inhomogeneous broadening of the c ↔ b transition, we
only have a mean value of the two-photon detuning δ0

while the varying detuning is given by δsi = δ0 + δinh with
〈δ2

inh〉 − 〈δinh〉2 = (γ inh
cb )2. Therefore, the two-photon transition

probability, frequency, and width also are not well-defined.
The inhomogeneous profile in both solids and gases will

be Gaussian, but in order to easily deal with the analytic
expressions, we will approximate with a Lorentzian profile.
If we start with the coherence given by Eqs. (2) or (3), we
can integrate over the Lorentzian distributions of the one- and
two-photon detunings,

σ inh
ab =

∫ ∞

−∞
d�inh

γ inh
ab /π

�2
inh + (

γ inh
ab

)2

×
∫ ∞

−∞
dδinh

γ inh
cb /π

δ2
inh + (

γ inh
cb

)2 σab(�inh,δinh). (7)

In the limit examined in Sec. III, �0 > γ si
ab,γ

si
cb,�si, these

integrals can be solved analytically, which shows that the
inhomogeneous profile can be taken into consideration in
all the equations, which we derive simply by replacing the
homogeneous linewidths with the total linewidth that includes
the inhomogeneous broadening, i.e., γ si

ab → γ si
ab + γ inh

ab + γ inh
cb

and γ si
cb → γ si

cb + γ inh
cb , except for system 2 where we also have

to replace γ si
ac → γ si

ac − γ inh
ab . It is important to keep in mind that

this is not a change in the linewidth of the a ↔ c transition, just
in how the decoherence of this transition comes into Eq. (3),
and Eq. (6) is still valid when �s2 � γ inh

ab .
Therefore, one can see that the quantity that matters is

the total linewidth. Thus, all previous discussions could be
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repeated here with γ si
ab being replaced by the total linewidth.

This makes our final statement sound as follows: electro-
magnetic response of an effective two-level system, which
is fully controlled by a weak off-resonant driving field, is
as strong as the resonant electromagnetic response of the
actual two-level a ↔ b transition without a driving field being
present regardless of the broadening if the total linewidth is
considered. Broadening of the transition beyond the natural
linewidth weakens the response of the system as well as the
intensity required to reach the maximal obtainable value.

V. COLLISIONAL BROADENING

Electromagnetic response of an atomic system can be
increased by improving the γ si

r /γ si
ab ratio and by having more

atoms per cubic wavelength Nsiλ
3
pr. The second approach

seems to be the easiest, but it leads to a decrease in the
aforementioned ratio due to atomic interaction in dense media.
The large estimates for achievable RIs in previous papers
were due to not considering the effect of increasing density
on the ratio γ si

r /γ si
ab. According to Lewis [10], the collisional

contribution to the linewidth is proportional to concentration
N , namely, the half width at half maximum (HWHM), which
is as follows:

�si
coll � fsicreλprN

√
gsi

g /gsi
e , (8)

with gsi
g and gsi

e as the degeneracies of the ground and
excited states, respectively, re is the classical radius of the
electron, and fsi is the oscillator strength of the transition. This
broadening comes from the resonant dipole-dipole interaction
between induced optical dipoles, where, in Eq. (8), we have
used the total population N = Ns1 + Ns2 since atoms with
similar transition frequencies are identical with regard to
collisions. For example, take the 85Rb D1 line; Eq. (8) gives
�coll = 0.365 × 10−13N MHz cm3 and Ref. [11] measures the
self-broadening as �coll = 0.375(±0.12) × 10−13N MHz cm3,
therefore, this equation gives an accurate estimate.

For a Doppler broadened gas, the inhomogeneous broad-
ening additively contributes to the total broadening in our
scheme. The Doppler contribution is given by the HWHM
of the Maxwell distribution for each species,

�si
D =

√
2kT ln 2

msic2
ω0, (9)

where k is the Boltzmann constant, T is the absolute temper-
ature of the gas, msi is the mass of the atomic species, c is the
speed of light, and ω0 = 2πc/λpr is the transition frequency.

In a hot-gas cell, the density is determined by the tem-
perature of the cell, so both the inhomogeneous Doppler
broadening and the homogeneous collisional broadening are
dependent on the density. Since we want a large resonant RI,
we are interested in high gas densities. The susceptibility of the
effective two-level system always is constrained by the original
two-level susceptibility of the a ↔ b transition, which is given
by

χ si
max = 3

8π2

Nsiλ
3
prγ

si
r

0.5γ si
r + �si

D + �si
coll

. (10)

400 500 600 700
T �K�

0.2

0.4

0.6

0.8

1.0
Χ'

FIG. 5. (Color online) The peak real part of the susceptibility for
the D2 line of 85Rb as a function of absolute temperature.

Since the linewidth and total atomic response grow lin-
early with concentration, eventually with increased density,
the susceptibility will saturate. This happens when �si

coll �
0.5γ si

r + �si
D .

Consider the D2 line of 85Rb with �coll = 0.515 ×
10−13N cm3 MHz. When the collisional broadening becomes
much larger than the other broadening terms, the two-level
susceptibility saturates at 750 K or a density of N ≈ 6 ×
1017 cm−3 (see Fig. 5). This leads to a maximum real part of
the resonant susceptibility of 0.885 or a RI of 1.37. Therefore,
there is no way to enhance the RI of rubidium past �n = 0.4.

VI. RATIO OF HYPERFINE COHERENCE TO OPTICAL
COHERENCE

The main limitation for our effective two-level transition
to have as high a susceptibility as the original transition is
the need for a strong control-field Rabi frequency |�si|2 >

�2
siγ

si
cb/γ

si
ab. Therefore, to minimize the needed intensity, we

need as small a hyperfine decoherence as possible, γ si
cb 	 γ si

ab.
At low densities, the main contribution to the hyperfine

decoherence is due to time of flight in our control beams since,
as atoms leave the interaction region, the coherence decreases.
This decoherence rate can be described as [12]

�si
TF =

√
2 ln 2

2πd

√
2kT

m
, (11)

where d is the 1/e diameter of the beam. While at high
densities, the main contribution to the hyperfine broadening
is the decay of hyperfine population due to spin-exchange
collisions between two atoms. This self-broadening, such as
collisional broadening, is linearly proportional to the density.
For example, for 85Rb, we can estimate the decoherence as
�si

SB = 2π × 2.83 × 10−16N MHz [13].
The time-of-flight decoherence can be decreased by in-

cluding a neutral buffer gas. Then, as our atomic species is
leaving the beam area, it repeatedly collides with the buffer-gas
atoms leading to a longer path length in the beam. With the
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FIG. 6. (Color online) The ratio of hyperfine-to-optical decoher-
ence rates for the D2 line of 85Rb plotted as a function of temperature
for the case where there is no buffer gas (solid), with a neon buffer
gas at 10 Torr (dashed line), and at 300 Torr (dot-dashed line).

background gas, the time-of-flight decoherence rate given by
Eq. (11) will be replaced by [10]

�si
TF =

(
4.81

d

)2

D0
P0

PBG
, (12)

where D0 is the diffusion coefficient measured at a reference
pressure of P0 and PBG is the buffer-gas pressure. The buffer
gas also will broaden both transitions due to collisional
broadening, while even at high buffer pressures, collisions
with the buffer gas only will have a negligible effect on γ si

cb but
will have a noticeable addition to the optical coherence that
will scale linearly with buffer-gas pressure. At high buffer-gas
pressures, this effect significantly can reduce the maximum
susceptibility possible.

For example, consider the Rb D2 line; we can express
the buffer-gas contribution to the collisional decoherence as
�si

BG = 2π × (4.735 MHz/Torr) × PBG with PBG measured in
Torr [14]. D0 = 0.21 cm2/s for P0 = 760 Torr [15], giving
for d = 1 mm, �si

TF = 2π × 0.369 MHz Torr/PBG. For this
case, the effect of the buffer gas on the decoherence ratio is
shown in Fig. 6. Since the collisional broadening increases
as the buffer-gas pressure is increased, for maximum RI
enhancement, it is better to use a low-pressure buffer gas as
can be seen in Fig. 7.

VII. IMPLEMENTATION IN GAS

Alkali metals, such as lithium, rubidium, and potassium
have been good test systems for demonstrating many coherent
effects. To demonstrate RI enhancement, one needs to find
two transitions with frequency differences in the megahertz
to gigahertz range. This is possible if a mixture of isotopes
is considered. Of the three alkali-metal atoms with stable
isotopes, however, only rubidium has a comparable ratio of
naturally occurring isotopes (28% of 87Rb and 72% of 85Rb)
and large enough hyperfine splitting. Thus, as a physical
example, let us consider a mixture of Rb vapors at natural
abundances.

Rb atoms have two suitable transitions called D1 at
794.8 nm and D2 at 780.2 nm. The D1 and D2 transitions
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FIG. 7. (Color online) The maximum real part of the two-level
susceptibility for the Rb D2 line plotted as a function of the buffer-gas
pressure. Plotted at a temperature of 550 K.

have common ground levels and differ in the excited states.
The excited-level structure for the D1 and D2 transitions has a
separation less than 0.8 GHz, thus, for one-photon detunings
much larger than this separation, the value of an effective
far-detuned dipole moment can be used. Numerical values
for π -polarized light are 1.727ea0 and 2.44ea0 for D1 and
D2 transitions correspondingly. A stronger dipole moment
guarantees a stronger atomic response and, therefore, larger
susceptibilities. A stronger dipole moment also implies a lower
intensity requirement for the control fields to reach the needed
Rabi frequency. Therefore, the D2 transition seems to be the
optimal choice from all accounts. The natural linewidth of
the Rb D2 absorption line is 2π × 6.067 MHz, although the
radiative decay rate is 2π × 5.12 MHz.

In order to implement RI enhancement with vanishing
absorption while maintaining no nearby regions of gain in
a Rb gas, it is necessary to implement system 1 in 85Rb and
system 2 in 87Rb. Since at natural abundances, the density of
85Rb is nearly three times larger than 87Rb, and we need the
effective-absorption transition to be stronger than the effective-
gain transition. This choice also determines the one-photon
detuning for system 1 since, if we want the same probe field
to address both transitions, then the difference in transition
frequencies ωab(87Rb) − ωab(85Rb) = 2π × 0.39 GHz deter-
mines the difference in one-photon detunings. The ground state
of Rb has two hyperfine levels separated by 2π × 3.036 and
2π × 6.835 GHz for the 85Rb and 87Rb isotopes, respectively.
We assume that the probe field is applied to the lower of the
two hyperfine levels and the control fields are applied to the
upper levels. First, it tells us that we need �si > 2π × 8 GHz
in order to avoid one-photon resonance, therefore, we take
�s2 = 2π × 10 GHz, implying �s1 = 2π × 10.385 GHz.

Except for the transition frequencies, all other properties
of interest for 85Rb and 87Rb, including the dipole moments
and the decoherence rates, are essentially the same when
the slight mass difference is neglected. The decoherence
rate of the optical transition has four contributions: γ si

ab =
0.5γ si

r + �si
coll + �si

D + �si
BG. The radiative decay rate fairly is

unaffected by density and is given by γ si
r = 2π × 5.12 MHz.

As discussed in Sec. V, we can take the ideal density for
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Rb to be N = 6 × 1017 cm−3; unfortunately, at this density.
γ si

ab = γ si
ac = 197 GHz, which violates our condition to avoid

the one-photon absorption of �si � γ si
ab,γ

si
ac since having such

a large one-photon detuning would lead to an unachievable
Rabi frequency.

Say, for our control fields, we are limited to focusing a
100-mW beam into a diameter of 1 mm, this would give us
Rabi frequencies of 2π × 150 MHz, so we take �1 = 2π ×
150 and �2 = 2π × 135 MHz, implying that the maximum
control-field ratio ξsi we can achieve is 2.25 × 10−4. The
decoherence ratio is equal to this ξsi at a temperature of
T = 450 K or a density of N = 3.3 × 1014 cm−3, so, at natural
abundances, we have Ns1 = 0.72 and Ns2 = 0.28 N. For a
fixed ξsi, a lower buffer-gas pressure is better, so we take PBG =
10 Torr. This buffer gas adds 2π × 47 MHz to the optical
decoherence, and the time-of-flight broadening is �si

hyp,BG =
2π × 37 kHz. At this density, the hyperfine self-broadening
is �si

hf,self = 2π × 93 kHz, so γ si
cb = 2π × 130 kHz. The col-

lisional broadening is �si
coll = 2π × 17 MHz, and the Doppler

broadening is �si
D = 2π × 315 MHz, therefore, γ si

ab = 2π ×
382 MHz, giving a ratio of γ si

cb/γ
si
ab = 3.4 × 10−4.

With these values for the detunings and Rabi frequencies,
the susceptibility is plotted in Fig. 8. There is a particular fre-
quency where we have vanishing absorption and a significant
resonant susceptibility Re χ = 0.0095. At the same time, we
have no regions of nearby gain so that the probe field remains
stable at that frequency. Therefore, in a hot Rb gas, we have a
maximum RI enhancement on the order of �n ≈ 4.7 × 10−3.

When it is possible to use strong control fields, we
can achieve the maximum possible susceptibility increase.
Consider focusing a 10-W beam into a 1-mm diameter, then the
Rabi frequencies are �s1 = �s2 = 2π × 1.5 GHz. This allows
us to use larger one-photon detunings to �s1 = 2π × 20 and
�s2 = 2π × 20.27 GHz, which gives ξs1 = 0.0055, allowing
for a higher ratio of γ si

ab/γ
si
cb. Taking T = 600 K, gives us

N = 4 × 1016 cm−3, which leads to γ si
ab = 2π × 4.667 GHz

and γ si
cb = 2π × 71 MHz. Then, the change in index is

�n = 0.18, as shown in Fig. 9.
Since the isotope shift for rubidium ωab(87Rb) −

ωab(85Rb) = 2π × 0.39 GHz is smaller than our linewidths, it
would not be possible to use the two-level transition rather than
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FIG. 8. (Color online) The real (solid) and imaginary (dashed)
parts of the susceptibility as a function of the detuning plotted for the
scheme without gain and with �1 = 2π × 150 MHz described in the
text.

the effective two-level transition for absorption as discussed
at the end of Sec. III. To implement such a system, we would
need isotope shifts on the order of 10 GHz, which only are
possible when the masses of the two isotopes are significantly
different compared to the isotope mass. For example, such a
system could be implemented in lithium.

VIII. EXPERIMENTAL REALIZATION

A proof-of-principal experiment to demonstrate resonant
enhancement of RI in hot Rb gas was performed by Yavuz [7].
The same two � systems in 85Rb and 87Rb at natural
abundance using the D2 line and a 10-Torr neon buffer gas
was implemented. The Rb cell was kept at 363 K, so the
Rb density was N = 2.4 × 1012 cm−3, the optical broadening
should be γ si

ab = 2π × 334 MHz, and the hyperfine broadening
should be γ si

cb = 2π × 16 kHz. The laser power is given as
100 mW focused in a 2.4-mm diameter spot size, implying
that �si < 2π × 63 MHz. Based on the experimental results
of both the gain and the absorption being roughly equal in
height and width with a two-photon HWHM of 125 kHz,
we can assume that �s1 = 2π × 34 and �s2 = 2π × 8 MHz.
The control fields in the experiment are taken such that
�s1 = 2π × 15.6 and �s2 = 2π × 16 GHz. With an applied
pump-field intensity of 1.77 W/cm2, numerical simulations
show that, for a pump field with a bandwidth of about 500
MHz, the population difference for both systems would be
close to 1 as needed, with the largest deviation in system 2
with σ s2

cc − σ s2
aa = 0.93.

The theoretical curve for the resonant RI with these
parameters is plotted in Fig. 10. The theory predicts a change
in index of �n = 1.7 × 10−5. The theory also shows that
there is a background index due to the one-photon feature
of n = 1 + 4 × 10−6 since ξs1 < γ s1

cb /γ s1
ab .

The reported RI change in �n = 2 × 10−7 is 2 orders of
magnitude less than what was possible in the experiment
[7] due to issues with the cross pumping of the 87Rb and
85Rb populations. As explained in Ref. [7], this could be
due to the frequency width of the pump fields being larger
than the separation between the hyperfine levels of 87Rb and
85Rb, which would reduce the population difference between
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FIG. 9. (Color online) The real (solid) and imaginary (dashed)
parts of the susceptibility as a function of the detuning plotted for the
scheme with �1 = �2 = 2π × 1.5 GHz as described in the text.
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FIG. 10. (Color online) The expected RI enhancement for the
experiment described in Ref. [7] plotted as a function of two-photon
detuning, using the experimental numbers as reported in the text.

levels |ci〉 and |bi〉 and, thus, significantly reduce the RI
enhancement.

IX. CONCLUSION

We have given a simple model for how to implement RI
enhancement without absorption in Rb gas while avoiding any
nearby regions of gain. This is performed by implementing a
far-detuned � system in two different atomic species evenly
mixed in a hot gas. In the decaying dressed-state basis,
the whole system can be presented as a superposition of
two effective two-level schemes with positions, widths, and
amplitudes of the resonances determined by the driving fields.
It allows for a simple, analytic, and intuitive understanding
of the susceptibility for the total system. Thus, a variety of

absorption, amplification, and dispersion profiles may easily
be engineered. In particular, maximum RI with vanishing ab-
sorption results from the simple summation of susceptibilities
of the effective absorbing and amplifying two-level schemes
whose resonances are positively and negatively tuned with
respect to the probe-field frequency. Engineering a larger
width for the absorptive resonance allows one to eliminate
any amplification region in the vicinity of the enhanced index
and vanishing absorption. Proper tuning also allows for the
strong increase or decrease in RI under vanishing absorption.

We have shown that, with reasonable beam intensities,
this scheme can be implemented in 85Rb and 87Rb at a
natural abundance for RI enhancement on the order of
�n � 5 × 10−3. This can be performed while maintaining
vanishing absorption and with no nearby regions of gain.
Potentially higher-resonant RIs with vanishing absorption
could be obtained with much stronger beam intensities or in
solids (in particular, in rare-earth- and/or transition-metal-ion-
doped dielectric crystals or stoichiometric crystals including
such ions) [9,16]. The further analysis of the limitations of
RI enhancement requires careful studies of optical line self-
broadening with an increase in the density and the inclusion of
local field effects [17]. Along with the achievement of high RI,
it also would be very beneficial for a number of applications to
provide for its temporal or spatial modulation. For example, it
would allow for the production of controllable photonic struc-
tures in a homogeneous medium simply by applying optical
fields [18].
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