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ABSTRACT

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the
peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that
central perturbations induced by both types of companions can be generally distinguished due to the essentially
different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it
is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this
perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory
passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary
case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between
two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of
OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the χ2

difference between the planetary and binary model is ∼3, implying that the degeneracy is very severe. For OGLE-
2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ2 ∼ 105 and the
planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data
from the planetary model are larger than the difference between the planetary and binary models. Considering that
two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations
experiencing this type of degeneracy is common.

Key words: Galaxy: bulge – gravitational lensing: micro
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1. INTRODUCTION

Microlensing constitutes one of the major methods to detect
and characterize extrasolar planets (Mao & Paczyński 1991;
Gould 1992). The method is sensitive to planets that are difficult
to be detected by using other methods such as cool planets
at or beyond the snow line (Bond et al. 2004; Gaudi et al.
2008; Dong et al. 2009; Sumi et al. 2010; Muraki et al. 2011)
and planets at large distances (Janczak et al. 2010). It is also
sensitive to low-mass planets (Beaulieu et al. 2006; Bennett
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et al. 2008), making it possible to detect terrestrial planets from
ground observations. Due to the weak dependence on the host-
star brightness, it also enables us to detect planets around low-
mass stars down to M-type dwarfs (Udalski et al. 2005; Miyake
et al. 2011; Batista et al. 2011) and even to sub-stellar mass
objects. It is the only method that can detect old planetary-mass
objects that are not bound to stars (Sumi et al. 2011). In addition,
microlensing is the only technique that can detect planets located
in external galaxies such as the Magellanic Clouds and the
Andromeda galaxy (Chung et al. 2006; Ingrosso et al. 2009).
Therefore, microlensing is important for the complete census
of the frequency and properties of planets (Gould et al. 2010;
Cassan et al. 2012).

Current microlensing planet searches are being conducted
based on a specially designed strategy where survey and follow-
up observations work in close coordination. There are two main
reasons for this strategy. The first reason is that the probability
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of a lensing event is very low. For a star located in the Galactic
bulge, toward which planetary microlensing searches are being
conducted, the chance to detect a lensed star at a specific time
is of the order of 10−6 (Udalski et al 1994; Alcock et al. 2000;
Afonso et al. 2003; Sumi et al 2003). Considering that a planet
can be detected for a small fraction of lensing events, it is
essential to maximize the detection rate of lensing events to
increase the rate of planet detections. Survey observations are
designed for this purpose by monitoring a large area of the
Galactic bulge field. The second reason for the survey/follow-
up strategy is that the duration of a planetary signal is short.
The planetary signal is a short-term perturbation to the smooth
standard light curve of the primary-induced lensing event. To
densely cover planetary perturbations, follow-up observations
are designed to focus on events detected by survey observations.

Under the current strategy of microlensing searches, high-
magnification events are important targets for follow-up obser-
vations. A typical number of events alerted at a certain time by
survey experiments are of the order of 10. Considering that each
event typically lasts for several dozens of days, it is difficult to
follow all alerted events with a restricted number of telescopes.
To maximize the planet detection efficiency, priority is given to
events for which the planet detection probability is high. Cur-
rently, the highest priority is given to high-magnification events.
For a lens with a planet, two sets of disconnected caustics exist,
where one set is located away from the planet-host star (plan-
etary caustic) while the other set is always located close to the
host star (central caustic). The caustics represent the positions
on the source plane at which the lensing magnification of a
point source becomes infinite. For a high-magnification event,
the sensitivity to a planetary companion is very high because
the source trajectory always passes close to the perturbation re-
gion around the central caustic induced by the planet (Griest
& Safizadeh 1998). The efficiency of the strategy focusing on
high-magnification events is demonstrated by the fact that 7 out
of 13 microlensing planets detected as of the end of 2011 were
detected through this channel.

Perturbations near the peak of a high-magnification lensing
event (central perturbations) can be produced not only by a
planet but also by a binary companion (Han & Hwang 2009;
Shin et al. 2012). For a binary lens where the projected
separation between the lens components is substantially smaller
than the Einstein radius (close binary), a small single set of
caustics formed around the barycenter of the binary exists. For
a binary where the projected separation is substantially larger
than the Einstein radius (wide binary), on the other hand, two
sets of caustics each of which is located close to each lens
component exist. Then, for a high-magnification event resulting
from the source trajectory passing close to the center of mass
of a close binary or close to one of the lens components of
a wide binary, there can be a short-term perturbation near
the peak of the lensing light curve, similar to the central
perturbation induced by a planet. It is known that the central
perturbation induced by a planet can be generally distinguished
from that induced by a binary because the caustic shapes and the
resulting magnification patterns around the two types of caustics
are different from each other.

In this paper, we present a case of central perturbations for
which it is difficult to distinguish between the planetary and
binary interpretations. In Section 2, we describe details of the
degeneracy. In Section 3, we demonstrate the degeneracy for two
microlensing events OGLE-2011-BLG-0526 and OGLE-2011-
BLG-0950/MOA-2011-BLG-336 that were detected during the

2011 observation season. In Section 4, we summarize the results
and conclude.

2. DEGENERACY

The pattern of central perturbations in a lensing light curve is
basically determined by the shape of the central caustic. For both
planetary and binary cases, the central caustics form a closed
figure that is composed of concave curves that meet at cusps.
The general magnification pattern is that a positive perturbation
occurs when the source is located in the region outside the
caustic extending from cusps while a negative perturbation
occurs when the source is located in the region between
cusps. Here a “positive” (“negative”) perturbation means that
the magnification of the perturbed part of the light curve is
higher (lower) than the magnification of the corresponding
single-lensing event. The origin of the positive and negative
perturbations is the reflection of the sum rule for lensing
magnification in the region around caustic cusps (Blandford &
Narayan 1986; Schneider & Weiss 1992; Zakharov 1995; Petters
et al. 2001; Keeton et al. 2003). The central caustics induced by
a planet and a binary companion have different shapes and thus
the resulting patterns of magnification around the two types of
caustics are different from each other. In Figure 1, we present
the central caustics and the magnification patterns around them
for the representative cases of the planetary and binary lenses,
respectively.

The central caustic induced by a planet has a shape of an
arrowhead with four cusps. One cusp corresponding to the sharp
tip of the arrowhead-shaped caustic is located on the star–planet
axis. This cusp is strong in the sense that light curves resulting
from source trajectories passing close to the cusp exhibit strong
deviations from the single-lens expectation. Two other cusps are
located off the star–planet axis corresponding to the blunt ends of
the arrowhead-shaped caustic. These two cusps are moderately
strong. The fourth cusp, which is located on the star–planet
axis between the two off-axis cusps, is weak in the sense that it
creates relatively weak deviations. Due to the weakness of the
last cusp, an extended region of negative perturbation between
the two off-axis cusps exists.

The central caustic induced by a wide or a close binary
has an astroid shape with four cusps. Two of the cusps are
located on the binary-lens axis and the other two are along a
line perpendicular to the axis. The caustic is exactly symmetric
with respect to the line connecting the on-line axis cusps and
roughly symmetric with respect to the line connecting the off-
axis cusps. Due to the symmetry of the caustic, all cusps are
of roughly similar strength. Regions of positive perturbations
form outside the caustic extending from the cusps and regions
of negative perturbations form between the positive-perturbation
regions.

Despite the basically different caustic shapes and the resulting
magnification patterns, we find a case of central perturbations
for which it is difficult to distinguish between the planetary
and binary interpretations. This degeneracy is illustrated in
Figures 1 and 2. The planetary lensing case for this degener-
acy occurs when the source trajectory passes the negative per-
turbation region behind the back end of the arrowhead-shaped
central caustic with an angle between the source trajectory and
the star–planet axis (source-trajectory angle) of α ∼ 90◦. For a
binary case, a similar perturbation occurs when the source tra-
jectory passes through the negative perturbation region between
two cusps of an astroid-shaped caustic with a source-trajectory
angle of ∼45◦. For both cases, the morphology of the resulting
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Figure 1. Central caustics induced by a planetary (left panel) and a binary companion (right panel). The regions with brownish and bluish colors represent the areas
where the lensing magnification is higher and lower than the corresponding single-lensing magnification, respectively. For each tone, the color changes to darker
shades when the fractional difference between the single and binary magnification is >2%, 4%, 8%, and 16%, respectively.

(A color version of this figure is available in the online journal.)

Figure 2. Light curves resulting from the two source trajectories (straight lines
with arrows) marked in Figure 1. The notations t0 and tE in the label represent
the time of the closest lens-source approach and the timescale required for the
source to cross the Einstein radius, respectively.

(A color version of this figure is available in the online journal.)

perturbation is that the peak of the light curve appears to be
blunt and flat.

3. ACTUAL EVENTS

We search for high-magnification events with similar cen-
tral perturbations among those detected during the 2011 ob-
servation season. From this search, we find that two events
of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-
2011-BLG-336 exhibit such central perturbations. In this
section, we investigate the severity of the degeneracy by con-
ducting detailed modeling of the light curves for these events.

The event OGLE-2011-BLG-0526 occurred on a Galactic
bulge star that is positioned at (α, δ)J2000 = (18h02m45.s37,

−28◦01′25.′′8), which correspond to the Galactic coordinates
(l, b) = (2.◦69,−2.◦79). The event was detected and alerted
to the microlensing community by the Optical Gravitational
Lensing Experiment (OGLE) group. High-magnification events
are usually realerted after the first alert. Unfortunately, no high-
magnification alert was issued for this event and thus the peak
was covered by using a fraction of telescopes available for
follow-up observations. As a result, the coverage of the peak
is not very dense. The telescopes used for the observations of
this event are listed in Table 1.

The event OGLE-2011-BLG-0950/MOA-2011-BLG-336
also occurred on a Galactic bulge star located at (α, δ)J2000 =
(17h57m16.s63,−32◦39′57.′′0), corresponding to (l, b) =
(358.◦07,−4.◦05). It was independently discovered from the
survey experiments conducted by the OGLE and the Mi-
crolensing Observation in Astrophysics (MOA) groups. A high-
magnification alert was issued for this event four days before
the peak. Based on this alert, follow-up observations were con-
ducted by using 13 telescopes located in 8 different coun-
tries. As a result, the perturbation was more densely covered
than the perturbation of OGLE-2011-BLG-0526. In Table 1,
we also list the telescopes used for the observations of this
event.

Initial reductions of the data taken from different observato-
ries were processed by using photometry codes developed by the
individual groups. For the purpose of improving the data quality,
we conducted additional photometry for all follow-up data of
OGLE-2011-BLG-0950/MOA-2011-BLG-336 by using codes
based on difference imaging photometry. For the use of model-
ing based on different data sets, it is necessary to rescale error
bars of the individual data sets to prevent over or under represen-
tation of some data sets. We rescaled the error bars of the data
sets so that χ2 per degree of freedom becomes unity for each
data set, where the value of χ2 is calculated based on the best-
fit solution obtained from modeling. We eliminated 3σ outliers
from the best-fit solution in the modeling. For some lensing data
sets, especially with faint baseline brightness, it is occasionally
found that the error estimation near the peak and the baseline
is inconsistent. For both events analyzed in this work, however,
the photometric precision is good and thus the dependence of
the lensing parameters on the normalization procedure is weak.
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Table 1
Telescopes

Event Telescopes

OGLE-2011-BLG-0526 OGLE 1.3 m Warsaw telescope at Las Campanas Observatory in Chile
MiNDSTEp 1.54 m Danish telescope in Chile

PLANET 0.6 m at Perth Observatory in Australia
PLANET 1.0 m at SAAO in South Africa

RoboNet 2.0 m Liverpool telescope (LT) in La Palma, Spain

OGLE-2011-BLG-0950/ OGLE 1.3 m Warsaw telescope at Las Campanas Observatory in Chile
MOA-2011-BLG-336 MOA 1.8 m at Mt. John Observatory in New Zealand

μFUN 1.3 m SMARTS telescope at CTIO in Chile
μFUN 0.4 m at Auckland Observatory in New Zealand

μFUN 0.4 m at Farm Cove Observatory (FCO) in New Zealand
μFUN 0.4 m at Kumeu Observatory in New Zealand

μFUN 0.6 m at Observatorio do Pico Dos Dias (OPD) in Brazil
μFUN 1.0 m at Wise Observatory in Israel

MiNDSTEp 1.54 m Danish telescope in Chile
PLANET 1.0 m at SAAO in South Africa

RoboNet 2.0 m Faulkes Telescope North (FTN) in Hawaii
RoboNet 2.0 m Faulkes Telescope South (FTS) in Australia
RoboNet 2.0 m Liverpool telescope (LT) in La Palma, Spain

Figure 3. Light curve of OGLE-2011-BLG-0526. Also drawn is the best-fit
single-lensing light curve that is obtained with data except those around the
perturbation. Colors of data points are chosen to match those of the labels of
observatories where the data were taken. The inset shows the enlarged view of
the peak region.

(A color version of this figure is available in the online journal.)

In Figures 3 and 4, we present the light curves of the two
events. The best-fit single-lensing light curves are also drawn.
For both events, the light curves are well represented by those
of standard single-lensing events except for the short-lasting
perturbations near the peak. The common morphology of the
perturbations is that the peak appears to be flat and blunt.

To investigate the nature of the perturbations, we conducted
binary-lens modeling of the light curves. In the modeling of
each light curve, we searched for the solution of the binary-
lensing parameters that best describe the observed light curve
by minimizing χ2 in the parameter space. For OGLE-2011-
BLG-0526, the timescale of the event is not long (tE ∼ 12 days)
and thus we modeled the light curve using seven basic binary-
lens parameters. The first three of these parameters characterize
the geometry of the lens-source approach and they include

Figure 4. Light curve of OGLE-2011-BLG-0950/MOA-2011-BLG-336. Nota-
tions are the same as those in Figure 3.

(A color version of this figure is available in the online journal.)

the Einstein timescale, tE, the time of the closest lens-source
approach, t0, and the lens-source separation at that moment,
u0, in units of the Einstein radius. Another three parameters
characterize the binary lens. These parameters include the mass
ratio between the lens components, q, the projected separation
in units of the Einstein radius, s, and the angle between the
source trajectory and the binary axis, α. The last parameter of
the normalized source radius ρ� describes the deviation of the
light curve affected by the finite-source effect and it represents
the angular source radius θ� in units of the angular Einstein
radius θE, i.e., ρ� = θ�/θE. For OGLE-2011-BLG-0950/MOA-
2011-BLG-336, the duration of the event (tE ∼ 65 days) is
relatively long. For such a case, the motion of the source with
respect to the lens may deviate from a rectilinear one due to the
change of the observer’s position caused by the orbital motion
of the Earth around the Sun and this deviation can cause a long-
term deviation in the light curve (Gould 1992). Consideration
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Figure 5. Map of Δχ2 in the parameter space of the projected binary separation
(s) and the mass ratio (q) for OGLE-2011-BLG-0526. The regions marked in
red, yellow, green, sky blue, and blue correspond to those with Δχ2 < 62, 122,
182, 242, and 302, respectively. The cross marks represent the locations of the
local minima. The lower panels show the source trajectories (straight lines with
arrows) with respect to the caustics for the individual local solutions. The orange
circle on each source trajectory represents the relative scale of the source star.

(A color version of this figure is available in the online journal.)

of this “parallax effect” requires us to include two additional
parameters πE,N and πE,E , which represent the two components
of the lens parallax πE projected on the sky in the north and
east equatorial coordinates, respectively. The direction of the
parallax vector corresponds to the relative lens-source motion
in the frame of the Earth at a specific time of the event. Its
size corresponds to the ratio of Earth’s orbit to the physical
Einstein radius, rE = DLθE, projected on the observer plane,
i.e., πE = (AU/rE)[(DS − DL)/DS].

Knowing that central perturbations can be produced either by
a planet or by a binary companion, we conduct a thorough search
for solutions in the s–q parameter space encompassing both
planet and binary regimes to investigate the possible existence of
local minima. In Figures 5 and 6, we present the resulting maps
of Δχ2 in the s–q parameter space for the individual events.
From the maps, it is found that four distinct local minima for
both events exist. Among them, two minima are located in the
region with s > 1 and the other two are located in the region
with s < 1. For each close/wide binary pair, one local minimum
is located in the regime of a binary mass ratio (q ∼ 1) and the
other minimum is located in the regime of a planet mass ratio
(q � 1). We designate the individual minima by “A” (s < 1
with binary q), “B” (s < 1 with planetary q), “C” (s > 1 with
planetary q), and “D” (s > 1 with binary q).

Figure 6. Map of Δχ2 in the s–q parameter space for OGLE-2011-BLG-0950/

MOA-2011-BLG-336. The regions marked in red, yellow, green, sky blue, and
blue correspond to those with Δχ2 <132, 262, 392, 522, and 652, respectively.
Notations are the same as in Figure 5.

(A color version of this figure is available in the online journal.)

In Table 2, we present the lensing parameters of the individual
local minima that are obtained by further refining the local
solutions in the corresponding parameter space. The exact
locations of the local minima are marked by “X” on the Δχ2

maps in Figures 5 and 6. For each local solution, we also present
the caustic and the source trajectory. We note that the size of the
caustic for the binary with s < 1 is scaled by the Einstein radius
corresponding to the total mass of the lens, while the caustic
size for the binary with s > 1 is scaled by the Einstein radius
corresponding to the mass of the lens component that the source
approaches.

The findings from the comparison of the local solutions and
the corresponding lens-system geometries are summarized as
below.

1. For both events, χ2 differences from the best-fit single-
lensing models are very big. We find that Δχ2 = 1085
for OGLE-2011-BLG-0526 and Δχ2 = 5644 for OGLE-
2011-BLG-0950/MOA-2011-BLG-336, implying that the
perturbations of both events are clearly detected.

2. Despite the clear signature of the perturbation, we find that
the degeneracy of the four local solutions is severe. To bet-
ter show the subtle differences between the local solutions,
we present the residuals of the data from the individual
local solutions in Figures 7 and 8 for OGLE-2011-BLG-
0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336,
respectively. We also present the enlargement of the

6
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Table 2
Best-fit Parameters

Parameter OGLE-2011-BLG-0526 OGLE-2011-BLG-0950/MOA-2011/BLG-336

A B C D A B C D

χ2/dof 423.6/413 420.0/413 422.2/413 422.9/413 3073.5/3096 2968.6/3096 2969.0/3096 3076.9/3096
t0 5754.24 ± 0.01 5754.35 ± 0.01 5754.35 ± 0.01 5754.24 ± 0.01 5786.40 ± 0.01 5786.40 ± 0.01 5786.40 ± 0.01 5786.40 ± 0.01
u0 0.141 ± 0.001 0.117 ± 0.002 0.117 ± 0.002 0.140 ± 0.020 (9.3 ± 0.1)10−3 (8.6 ± 0.1)10−3 (8.7 ± 0.1)10−3 (9.0 ± 0.3)10−3

tE (days) 11.63 ± 0.08 12.15 ± 0.09 12.37 ± 0.10 11.60 ± 1.91 61.39 ± 0.67 65.21 ± 0.85 65.27 ± 0.76 62.41 ± 1.90
s 0.311 ± 0.003 0.48 ± 0.01 1.94 ± 0.02 6.43 ± 0.05 0.075 ± 0.001 0.70 ± 0.01 1.43 ± 0.01 22.7 ± 0.3
q 0.91 ± 0.04 (3.5 ± 0.2)10−2 (3.9 ± 0.2)10−2 28.5 ± 10.6 0.83 ± 0.09 (5.8 ± 0.2)10−4 (6.0 ± 0.2)10−4 2.36 ± 0.21
α −0.795 ± 0.010 4.718 ± 0.004 4.718 ± 0.004 0.765 ± 0.007 0.739 ± 0.005 4.664 ± 0.002 4.664 ± 0.002 0.722 ± 0.002
ρ� (10−3) 80 ± 2 . . . . . . 79 ± 7 3.2 ± 0.3 4.6 ± 0.1 4.6 ± 0.1 3.4 ± 0.3
πE,N . . . . . . . . . . . . 0.22 ± 0.15 −0.10 ± 0.17 −0.29 ± 0.14 0.12 ± 0.09
πE,E . . . . . . . . . . . . −0.04 ± 0.03 0.02 ± 0.03 0.03 ± 0.02 −0.03 ± 0.02

Notes. The mass ratio with q > 1.0 represents that the source trajectory approaches close to the lower-mass component of the binary lens.
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Figure 7. Light curve of OGLE-2011-BLG-0526 near the peak region and the
residuals from four local solutions. The model light curve drawn over the data is
based on one of the local solutions (local “B”). Colors of data points are chosen
to match those of the labels of observatories where the data were taken.

(A color version of this figure is available in the online journal.)

Figure 8. Light curve of OGLE-2011-BLG-0950/MOA-2011-BLG-336 near
the peak region and the residuals from four local solutions. The model light
curve drawn over the data is based on one of the local solutions (local “C”).
Notations are the same as those in Figure 7.

(A color version of this figure is available in the online journal.)

perturbed parts of the light curve in the upper panel of
each figure. For the case of OGLE-2011-BLG-0526, the χ2

difference between the planetary and binary models is ∼3,
implying that the degeneracy is very severe. For the case of
OGLE-2011-BLG-0950/MOA-2011-BLG-336, the plane-
tary solution is favored over the binary solution with Δχ2 ∼
105 and thus the stellar binary model is formally excluded.
However, from the visual inspection of the residuals, it is
found that systematic residuals of the data from the plane-
tary model are larger than the difference between the plan-
etary and binary models. In addition, the CTIO, Danish,
and OGLE data of overlapping coverage appear to be dif-
ferent from each other by an amount at least as large as the
difference between the planetary and stellar binary models.
Therefore, it is difficult to claim a planet discovery based
on < 1% variations in the light curve.

3. For a pair of solutions with similar mass ratios, the solutions
with s > 1 and s < 1 result in a similar caustic shape.
The degeneracy between these solutions, often referred to
as s ↔ s−1 degeneracy, is known to be caused by the
symmetry of the lens-mapping equation between close and
wide binaries (Dominik 1999; Albrow et al. 1999; Afonso
et al. 2000; An 2005; Chung et al. 2005).

The degeneracy between the pairs of solutions with planetary
and binary mass ratios corresponds to the degeneracy mentioned
in Section 2. Note that despite the large difference in caustic
shape, the resulting perturbations appear to be very alike.
The planet/binary degeneracy introduced in this work was not
known before. This is mostly because the caustics induced by a
planet and a binary companion have very different shapes and
thus it is widely believed that perturbations induced by the two
types of companions can be easily distinguished. Considering
that two events of a single season suffer from this degeneracy,
it is expected that central perturbations suffering from this is
common.

4. CONCLUSION

We introduced a new type of degeneracy in the planet/binary
interpretation of central perturbations in microlensing light
curves. The planetary lensing case for this degeneracy occurs
when the source trajectory passes the negative perturbation
region behind the back end of the arrowhead-shaped central
caustic with a source-trajectory angle of ∼90◦. For a binary
case, a similar perturbation occurs when the source trajectory
passes through the negative perturbation region between two
cusps of an astroid-shaped caustic with a source-trajectory an-
gle of ∼45◦. For both cases, the morphology of the resulting
perturbation is that the peak of the light curve appears to be
blunt and flat. From an investigation of events detected dur-
ing the 2011 microlensing observation season, we found two
events, OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/
MOA-2011-BLG-336, which exhibit such perturbations. From
detailed modeling of the light curves, we demonstrated the sever-
ity of the degeneracy. Considering that two events during a sin-
gle season suffer from the degeneracy, we conclude that central
perturbations experiencing the degeneracy should be common.
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