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We study a coherent superposition tâ+ râ† of field annihilation and creation operator acting on
continuous variable systems and propose its application for quantum state engineering. Specifically,
it is investigated how the superposed operation transforms a classical state to a nonclassical one,
together with emerging nonclassical effects. We also propose an experimental scheme to implement
this elementary coherent operation and discuss its usefulness to produce an arbitrary superposition
of number states involving up to two photons.
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I. INTRODUCTION

Manipulation of light field at the single-photon level
provides a crucial basis for many important applications
in quantum information science. In particular, two ele-
mentary operations on a single-mode field, i.e. photon
subtraction and addition represented by bosonic annihi-
lation and creation operators â and â†, respectively, can
be employed to transform a field state to a desired one [1].
For example, the photon subtraction transforms a Gaus-
sian entangled state (two-mode squeezed state) to a non-
Gaussian entangled state for a nonlocality test [2] and en-
tanglement distillation [3]. The photon addition is known
to create a nonclassical state from any classical state (e.g.
coherent and thermal states) [4], and both of the photon-
subtracted [5–8] and the photon-added squeezed states
[9, 10] were suggested to improve the fidelity of continu-
ous variable (CV) teleportation. The photon subtraction
[11] and the addition [12] are now practically realized in
laboratory.

Recently, there appeared a proposal to implement a
coherent superposition ââ† ± â†â of two product opera-
tions, photon addition followed by subtraction (ââ†) and
photon subtraction followed by addition (â†â) [13]. Kim
et al. particularly suggested an experimental scheme
to prove the bosonic commutation relation, [â, â†] = 1
[13], which was very recently carried out using a thermal
state of light field [14]. A cavity-based scheme has also
been proposed to prove the bosonic commutation rela-
tion, exploiting interaction between three atoms and a
cavity field [15]. Based upon the inteferometer setting
of [13], Fiurás̆ek suggested an optical scheme to imple-
ment an arbitrary polynomial of photon-number opera-
tors, e.g. noiseless amplifier [16] and Kerr nonlinearity,
via a combination of multiple photon subtraction and
addition [17].

In this paper, we consider a coherent superposition of
photonic operations at a more elementary level, that is,
the superposition of photon subtraction and addition,
tâ + râ†, and investigate how it transforms a classical
state to a nonclassical one. In general, a coherent su-
perposition of two distinct operations may be created by

erasing the “which-path” information relevant to the op-
erations in an interferometer setting. Motivated by the
single-photon interferometer in [13], we propose an ex-
perimental scheme to implement the coherent operation
tâ + râ† in an optical experiment and also show that it
can be employed together with displacement operators to
engineer an arbitrary quantum state in principle. As an
example, we study the case of generating an arbitrary su-
perposition of number states involving up to two photons.
The superposition state C0|0〉+C1|1〉+C2|2〉 can be used
for quantum information processing, e.g., the nonlinear
sign-shift(NS) gate (a basic element of the nondetermin-
istic CNOT gate) [18, 19], and the optimal estimation
of the loss parameter of a bosonic channel [20]. There
have been several theoretical proposals to generate the
superposition of |0〉, |1〉, and |2〉, e.g., using repeated pho-
ton subtractions with squeezing operations [21], repeated
photon additions with displacement operations [22], and
quantum scissors [23, 24]. An experimental realization
was recently made conditioned on photodetections using
a parametric down-converter with two auxiliary weak co-
herent states [25]. We study our proposed scheme with
experimental imperfections considered and show that it
can produce the superposition state with high fidelity.

This paper is organized as follows. In Sec. II, we study
how the coherent operation tâ+ râ† transforms a classi-
cal (coherent or thermal) state to a nonclassical one in
phase space with the degree of nonclassicality measured
by negative volume (area) and by nonclassical depth [26].
In Sec. III, we investigate observable nonclassical ef-
fects, squeezing and sub-Poissonian statistics, arising due
to the coherent operation, and propose an experimental
scheme in Sec. IV to implement the operation tâ+râ† in
a single-photon inteferometer setting. In Sec. V, we sug-
gest the coherent operation combined with displacement
operation for quantum state engineering and investigate
the generation of arbitrary superposition state involving
up to two photons with experimental imperfections in-
cluded. The main results of this paper are summarized
in Sec. VI.
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FIG. 1: Wigner distribution of the state (tâ+râ†)|α0〉, where
|r|2 + |t|2 = 1, for α0 = 0.5 with (a) r = 1/2, (b) r = 1/

√
2

and (c) r = 1. (d), (e), and (f) are the contour plots cor-
responding to (a), (b), and (c), respectively, where only the
negative regions are colored in blue. (d), (e), and (f) exhibit
the same size π/4 of the negative area in phase space.

II. WIGNER DISTRIBUTION

We first examine how the coherent operation tâ+ râ†

transforms a classical state to a nonclassical one in view
of the phase-space distribution. For a single-mode state
ρ, its Wigner distribution W (α) is generally given by the
Fourier transform of the characteristic function C(λ) ≡
Tr{ρD̂(λ)}, where D̂(λ) ≡ eλâ

†−λ∗â is the displacement
operator. That is, W (α) = 1

π2

∫

d2λC(λ)eαλ
∗−α∗λ.

(i) Coherent states: Given a coherent state |α0〉 as an
initial state, the output state after the superposition op-
eration, |Ψ〉 ∼ (tâ + râ†)|α0〉, possesses the Wigner dis-
tribution

W (α) =
|tα0 + r(2α∗ − α∗

0)|2 − |r|2
|r|2 + |tα0 + rα∗

0|2
W0(α), (1)

where W0(α) ≡ 2
π
e−2|α−α0|2 is the Wigner function of

the initial coherent state |α0〉. In Fig. 1 we show the
Wigner distribution W (α ≡ x + iy) of the output state
(tâ+ râ†)|α0〉, where r, t and α0 are taken as real (|r|2 +
|t|2 = 1). In general, the negative dip of the Wigner
distribution increases with the ratio r of the addition
operation â+ in the superposition tâ + râ†. In order to
measure the degree of nonclassicality for the output state,
we investigate both the negative area and the negative
volume in phase space.
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FIG. 2: Negative volume as a function of r on applying the
coherent operation tâ+râ† (a) for a coherent-state input with
α0 = 0.01, 0.1, and 0.5 (from upper to lower curves), and (b)
for a thermal-state input with n = 0.01, 0.1, and 0.5 (from
upper to lower curves) (|r|2 + |t|2 = 1).

Negativity—The negative region withW (α = x+iy) <
0 appears under the condition

(x− C1)
2 + y2 <

1

4
, (2)

where C1 = 1
2 (1 − t

r
)α0. It thus becomes a circle of

radius 1/2 regardless of r [Fig. 1 (d), (e), and (f)], ex-
cept the case of r = 0 which does not change a coherent
state (â|α0〉 = α0|α0〉). Therefore, the negative area is
independent of the ratio r. However, the depth of the
negativity depends on r [Fig. 1 (a), (b), and (c)], which
may be further quantified via the negative volume de-
fined by VN = 1

2 (
∫

d2α|W (α, α∗)| − 1) [27]. We find that
VN generally increases with r, as shown in Fig. 2 (a).
For a fixed r, the negative volume VN decreases with the
initial amplitude α0 and the extremal VN thus appears
at α0 = 0 (vacuum state), for which (tâ+ râ†)|0〉 = r|1〉
(one-photon state) giving VN = 2√

e
− 1 ≈ 0.2131 regard-

less of r.
Alternatively, one may quantify the degree of nonclas-

sicality by the nonclasical depth defined by C. T. Lee
[26]. The Glauber-P function, P (α), becomes positive
when smoothed by a Gaussian of sufficient width,

R(z, τ) =
1

πτ

∫

d2αP (α) exp

(

− 1

τ
|z − α|2

)

. (3)

The minimum τ ∈ [0, 1] required for a positive R-function
is taken as a nonclassicality measure. Instead of calcu-
lating the integration in Eq. (3), the nonclassical depth τ
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FIG. 3: Contour plot of the Wigner distribution after the
coherent operation tâ+ râ† on the coherent-state input α0 =
0.5 with r = 1/

√
2, for (a) ρ+− ≡ â†ρ0â, (b) ρ−+ ≡ âρ0â

†,
(c) ρ++ + ρ−− ≡ â†ρ0â

† + âρ0â, and (d) entire distribution.

for the output state |Ψ〉 ∼ (tâ+ râ†)|α0〉 turns out to be
unity regardless of r and α0 by another method: if ρ is or-
thogonal to a certain coherent state—i.e., 〈β|ρ|β〉 = 0 for
some β—the state is maximally nonclassical, i.e. τ = 1
[28]. In our case, there always exists a certain β∗ = − t

r
α0

such that |〈β|Ψ〉|2 ∼ |tα0+rβ
∗|2|〈β|α0〉|2 = 0. Therefore,

the degree of nonclassicality is maximal if measured by
the nonclassical depth τ for any r 6= 0 of the superposed
operation tâ+ râ†, whereas the nonclassicality increases
with r if measured by the negativity volume VN .

To gain further insight into how the coherent operation
produces nonclassicality, we decompose the output state
ρout into four parts, ρout ∼ |r|2ρ+−+ |t|2ρ−++ r∗tρ−−+
rt∗ρ++, where ρ+− ≡ â†ρ0â (photon addition), ρ−+ ≡
âρ0â

† (photon subtraction), ρ++ ≡ â†ρ0â†, and ρ−− ≡
âρ0â, with ρ0 an initial state. In Fig. 3, we plot the
Wigner function of each part for the input α0 = 0.5 and
r = 1√

2
, where the negative region is colored in blue. It

is well known that the photon subtraction ρ−+ ≡ âρ0â
†

does not create nonclassicality at all [Fig. 3 (b)], whereas
the photon addition ρ+− ≡ â†ρ0â does [Fig. 3 (a)]. We
see that the “off-diagonal” components of the operation,
ρ++ + ρ−− [Fig. 3 (c)], as well as the photon addition
[Fig. 3 (a)] affects the negativity of the whole Wigner
distribution [Fig. 3 (d)].

(ii) Thermal states: A thermal state ρth = (1 −
e−β)e−βa

†a with the average photon number n̄ = 1
eβ−1

being as an initial state, we obtain the Wigner distribu-
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FIG. 4: Wigner distribution W (α = x+ iy) after the coherent
operation tâ+ râ† on a thermal-state input with the average
photon number n = 0.1 for (a) r = 1/2, (b) r = 1/

√
2, and (c)

r = 1. (d), (e), and (f) are the contour plots corresponding to
(a), (b), and (c), respectively, where only the negative regions
are colored in blue.

tion after the coherent operation tâ+ râ† as

W (α) =
1 + 2n

(1 + n)(|r|2 + n)

[

n

1 + 2n
|t|2

− (1 + 2n)|r|2 + n2

(1 + 2n)2

(

1− 4(1 + n)

1 + 2n
|α|2

)

+4
n(1 + n)2

(1 + 2n)3
(trα2 + t∗r∗α∗2) ]Wth(α), (4)

where Wth(α) ≡ 2
π(1+2n)e

− 2|α|2

1+2n is the Wigner distribu-

tion of the input thermal state. In Fig. 4, we plot the
Wigner distribution as a function of r for n = 0.1. On one
hand, like the case of coherent-state input, we see that
the negative dip of the Wigner distribution increases with
the ratio r of â† in the coherent operation. On the other
hand, the negative region appears under the condition

C2x
2 + C3y

2 < C4, (5)

where

C2 = (n+ r2 + 2ntr),

C3 = (n+ r2 − 2ntr),

C4 =
1 + 2n

4(1 + n)
[(1 + 2n)r2 − n].
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Eq. (5) thus describes an ellipse, as shown in Fig. 4
(d), (e), and (f), with the size of the negative area given
by AN = πC4√

C2C3
. Note that the negativity emerges only

with r above a threshold, r >
√

n/(1 + 2n), and the neg-
ative area increases with r, unlike the case of coherent-
state input. We also find that the negative volume in-
creases with r, as shown in Fig. 2 (b). In comparison,
the degree of nonclassicality measured by the nonclassical

depth turns out to be τ = (1+n)r2

n+r2 using Eq. (3), which
give a nonzero value for any r 6= 0 and also increases with
r.

III. OBSERVABLE NONCLASSICAL EFFECTS

In this section, we investigate two observable nonclas-
sical effects, quadrature squeezing and sub-Poissonian
statistics, arising from the coherent operation tâ+ râ†.
First, the squeezing of a quadrature amplitude X̂θ =

âe−iθ + â†eiθ is characterized by 〈: ∆2X̂θ :〉 < 0, where ::
denotes the normal ordering of operators. On expanding
the terms of 〈: ∆2X̂θ :〉, one can minimize its value over
the whole angle θ [29], which is then given by

Sopt = 〈: ∆2X̂θ :〉min

= −2|〈â†2〉 − 〈â†〉2|+ 2〈â†â〉 − 2|〈â†〉|2, (6)

and its negative value in the range of [−1, 0) exhibits
nonclassicality. Applying the superposition operation
tâ+ râ† to a coherent state |α0〉, we obtain

Sopt = (
2|r|2
M

− 1

2
)2 − 1

4
, (7)

whereM = |tα0+rα
∗
0|2+ |r|2, and the maximal degree of

squeezing is thus −0.25 under the condition M = 4|r|2.
In addition, squeezing occurs only under the threshold
condition M > 2|r|2.
Let α0 = |α0|eiφ, t = |t| and r = |r|eiφr . We obtain

the condition |α0| =
√
3|r|/

√

1 + 2|t||r| cos(φr − 2φ) for
the optimal squeezing, which in turn gives the optimal
|r|, given α0, as

|r|2opt =
|α0|2(3 + 2

√
3|α0|+ 2|α0|2)

9 + 4|α0|4
(|α0| ≤

√
3), (8)

assuming cos(φr − 2φ) = 1. The optimal |r|opt mono-
tonically increases with |α0|, as shown in the plot of Sopt

as a function of |r| and |α0| in Fig. 5. It implies that
the coherent operation tâ+râ† achieves better squeezing
than the mere photon addition â† on a coherent state for
|α0| ≤

√
3. Moreover, it is known that the photon added

state â†|α0〉 does not produce squeezing for |α0| < 1 [4],
whereas the coherent operation always yields squeezing
[Fig. 5]. For |α0| ≥

√
3, however, the choice of |r| = 1,

i.e. photon addition, becomes optimal for squeezing. On
the other hand, a direct calculation shows that the su-
perposition operation on a thermal state does not yield
squeezing at all.
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FIG. 5: Contour plot for Sopt in Eq. (7) of the state (tâ +
râ†)|α0〉. Squeezing occurs in the region above the lowest
curve.

Second, we consider the sub-Poissonian statistics char-

acterized by the Mandel Q-factor, Q = 〈(∆a†a)2〉
〈a†a〉 − 1.

After the superposition operation on a coherent state,
we obtain

Q =
|α0|2

[

M2 +M − (1− 2|r|2)2|α0|2
]

M [M + (M − 1 + 2|r|2)|α0|2]
− 1, (9)

which always takes a negative value regardless of α0, r,
and t, with M = |tα0 + rα∗

0|2 + |r|2. The negativity
of Mandel-Q in this case increases with r and decreases
with α0, as shown in Fig. 6 (a). On the other hand, for
a thermal-state input, we obtain

Q =
2n2(n+ r2)2 − r4(1 + n)2

(n+ r2)(2n2 + r2 + 3nr2)
, (10)

from which we see that the ratio r of â† in the superpo-
sition operation must be large enough, r2 >

√
2n2/[1 −

(
√
2−1)n], to observe sub-Poissonian statistics. The neg-

ativity of Mandel-Q increases with r and decreases with
n, as shown in Fig. 6 (b).
.

IV. EXPERIMENTAL SCHEME

In this section, we propose how the superposed opera-
tion tâ + râ† can be implemented in experiment. A key
idea here is to erase which-path information on whether
the implemented operation refers to the photon subtrac-
tion â or the photon addition â†, as described below.
First, note that the success of both the operations, â

and â†, can be heralded by a detection of a single photon
in an optical scheme. When an arbitrary initial state |Ψ〉
is injected into a beam-splitter with the other input in
a vacuum state, the detection of a single-photon at one
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FIG. 6: Mandel Q-factor as a function of r on applying the
coherent operation tâ+râ† (a) for a coherent-state input with
α0 = 0.1, 0.5, and 1 (from lower to upper curves), and (b)
for a thermal-state input with n = 0.01, 0.1, and 1/

√
2 (from

lower to upper curves).

output port heralds that a photon is subtracted from the
initial state, due to the conservation of photon number.
This corresponds to the action â|Ψ〉, which holds well
particularly when the transmissivity of the beam split-
ter is large [11]. On the other hand, if the state |Ψ〉 is
injected to a signal mode of a nondegenerate paramet-
ric amplifier (NDPA) with the idler mode in a vacuum
state, the detection of a single photon at the output idler
mode heralds that one photon is added to the input state,
due to the pairwise photon-creation and -annihilation
process in the NDPA. This corresponds to the action
â†|Ψ〉, which holds well particularly when the interac-
tion strength in the NDPA is small [12]. With these two
schemes combined, if the which-path information on the
detected single-photon is erased by using an additional
beam splitter (BS2) with transmissivity t2 [Fig. 7], the
coherent superposition tâ+ râ† can be conditionally im-
plemented.
In Fig. 7, an arbitrary state |Ψ〉 is injected into the

parametric down-converter with small coupling strength
s≪ 1, which acts as

exp(−sâ†ĉ† + sâĉ)|ψ〉a|0〉c ≈ (1− sâ†ĉ†)|ψ〉a|0〉c.
(11)

Next, the BS1 (transmissivity: t1 ≈ 1) acts on the state
[13] as

B̂ab(1− sâ†ĉ†)|ψ〉a|0〉b|0〉c
≈ (1 − r∗1

t1
âb̂†)(1− sâ†ĉ†)|ψ〉a|0〉b|0〉c, (12)

Finally, the beam splitter BS2 (transmissivity: t2) with

the transformations b̂′ = t2b̂ + r2ĉ and ĉ′ = −r∗2 b̂ + t∗2ĉ

yields

|S|ψ〉〉

≡ [1− r∗1
t1
â(t2b̂

† − r∗2 ĉ
†)− sâ†(r2b̂

† + t∗2ĉ
†)

+s
r∗1
t1
ââ†(t2b̂

† − r∗2 ĉ
†)(r2b̂

† + t∗2ĉ
†)]|ψ〉a|0〉b|0〉c.

(13)

With the detection of single-photon at PD1 (PD2) and
no photon at PD2 (PD1), we see from Eq. (13) that the

state collapses to |ψ〉out ∼ (tâ+ râ†)|ψ〉a, where t ∼ r∗1
t1
t2

(
r∗1
t1
r∗2) and r ∼ sr2 ( −st∗2). Experimental imperfections,

e.g. nonideal photo-detection, will be further considered
in the next section to investigate the implemented opera-
tion particularly on generating an arbitrary superposition
state.
As a remark, we note the identity Ŝ†âŜ = â cosh s +

â†eiφ sinh s and Ŝ†â†Ŝ = â† cosh s + âe−iφ sinh s, where
Ŝ ≡ e

1
2
(ξâ†2−ξ∗â2) is the squeezing operator (ξ ≡ seiφ).

Thus, one may alternatively implement the coherent op-
eration tâ + râ† by a sequence of squeezing operation,
photon subtraction (addition), and the inverse squeez-

ing, Ŝ†âŜ (Ŝ†â†Ŝ), for the case of |t| > |r| (|t| < |r|).
However, this scheme seems to be more demanding than
the above proposal based on a single-photon interferom-
eter, as the number of required nonlinear resources is
increased. Moreover, a very large squeezing s → ∞
is needed to implement tâ + râ† when the subtraction
and the addition parts are comparable to each other, i.e.
|t| ≈ |r|. Even assuming that the squeezing operations
can be performed perfectly, we have calculated the out-
put fidelity for superposition states C0|0〉+C1|1〉+C2|2〉
similar to Fig. 8 and found that this alternative scheme
does not make improvement. Therefore, in the next
section, we will focus on the interferometric setting de-
scribed above to implement the coherent operation.

V. GENERATION OF A SUPERPOSITION OF

|0〉, |1〉 AND |2〉

In this section, we show that the coherent operation
tâ + râ† together with a displacement operator D̂(β) =

eβâ
†−β∗â can be employed to generate an arbitrary field

state. In particular, we investigate the generation of a
superposition state involving up to two photons in detail.
First, note the identity Ô(β, t, r) ≡ D̂†(β)(tâ +

râ†)D̂(β) = (tâ+ râ† + β′), where β′ = tβ + rβ∗, which
sequentially represents a displacement, the coherent op-
eration, and the inverse displacement. If a single pho-
ton state |1〉 is used as an input, Ô(β, t, r) yields a su-

perposition of number states as Ô(β, t, r)|1〉 = t|0〉 +
β′|1〉 +

√
2r|2〉. In principle, a succession of Ô(β, t, r),

i.e.,
∏

i Ô(βi, ti, ri)|1〉 will yield any desired superposi-
tion state by properly choosing the parameters βi, ti and
ri.
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FIG. 7: Experimental scheme to implement the coherent op-
eration tâ+ râ† on an arbitrary state |Ψ〉. BS1 and BS2 are
beam splitters with transmissivitties t1 and t2, respectively.
PD1 and PD2: photo detectors. The coherent operation is
successfully achieved under the detection of a single-photon
only at PD1 or PD2.

In this paper, we focus on the generation of superposi-
tion states C0|0〉+C1|1〉+C2|2〉 with practical imperfec-
tions such as the non-unit photodetection efficiency and
the nonideal single-photon source considered. In partic-
ular, we investigate the effect of on-off detector that does
not resolve photon numbers, which can be represented
by a two-component POVM, Π̂0 =

∑

n(1− η)n|n〉〈n| (no
click) and Π̂1 = Î−Π̂0 (click), where η is the detector effi-
ciency. On the other hand, a practically generated single-
photon source is identified as a mixture of one-photon
and vacuum state, ρsingle = ηs|1〉〈1| + (1 − ηs)|0〉〈0|,
where ηs is the source efficiency [30]. When inserted
into the experimental scheme of Fig. 7 following after the
displacement operation D(β), the state ρsingle is trans-
formed to ρcoh = ηs|S|1〉β 〉〈S|1〉β |+ (1 − ηs)|S|0〉β 〉〈S|0〉β |,
where |S|ψ〉〉 is given in Eq. (13) and |n〉β ≡ D̂(β)|n〉.
Thus, the output state emerges after the inverse dis-
placement D̂†(β), under the condition of click at PD1

and no-click at PD2, as ρout =
Trb,c[ρcon]
Tra,b,c[ρcon ]

, where ρcon ≡
D̂†
a(β)ρcohD̂a(β) · Π̂b1 ⊗ Π̂c0. Calculation shows

ρcon = ηsη (|Φ〉〈Φ|+A|φ〉〈φ|)
+(1− ηs)η (|Ψ1〉〈Ψ1|+A|Ψ2〉〈Ψ2|) , (14)

where

|Φ〉 = R1t2|0〉+ (R1t2β + sr2β
∗)|1〉+

√
2sr2|2〉,

|φ〉 = β∗|0〉+ (2 + |β|2)|1〉+
√
2β|2〉,

|Ψ1〉 = (R1t2β + sr2β
∗)|0〉+ sr2|1〉,

|Ψ2〉 = (1 + |β|2)|0〉+ β|1〉,
A = s2|R1|2(1− η + 2η|t2r2|2) (15)

with R1 =
r∗1
t1
.
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FIG. 8: Average fidelity Favg between an ideal superposi-
tion state and an experimentally realizable state as a func-
tion of detector efficiency η (on-off detector) for the single-
photon source efficiency ηs = 0.69(diamond), 0.85(square),
and 1(circle), with s = R1 = 0.01.

To evaluate the overall performance of the pro-
posed scheme, we calculate the average fidelity of
the produced state ρout with a target state |Φ〉 =
sin θ cosφ|0〉 + sin θ sinφ|1〉 + cos θ|2〉, that is, Favg =
1
4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ〈Φ|ρ{θ,φ}out |Φ〉 over the entire range of

angles θ and φ. Note that |Φ〉 in Eq. (15) is the ideal
state that would be obtained using a perfect single-
photon source (ηs = 1) and a perfect photon-number-
resolving detector. Thus, by identifying it with the state
|Φ〉 = sin θ cosφ|0〉 + sin θ sinφ|1〉 + cos θ|2〉, we obtain
the state parametrization as

t2 =

√
2sB1

√

R2
1 + 2s2B2

1

, r2 =
|R1|

√

R2
1 + 2s2B2

1

,

β =

√
2B2

1 +
√
2B1

, (16)

where B1 ≡ tan θ cosφ and B2 ≡ tan θ sinφ.
In Fig. 8, the average fidelity Favg is plotted as a func-

tion of the detector efficiency η for various source efficien-
cies ηs = 0.69, 0.85, and 1, with s = R1 = 0.01. From
Eq. (14), we see that even with a perfect single-photon
source (ηs = 1) and a unit detector efficiency (η = 1), the
contribution of the unwanted state |φ〉 to the fidelity Favg

cannot be completely eliminated [Cf. the coefficient A in
Eq. (15)]. This is due to the use of on-off detector that
does not distinguish photon-numbers and |φ〉 arises in the
output state ρcon due to the detection of higher-number
of photons than a single-photon. In general, nevertheless,
the fidelity Favg is largely insensitive to the detector effi-
ciency η, and depends substantially on the single-photon
source efficiency ηs only. With ηs = 0.69 previously re-
ported in [30], a high fidelity Favg ∼ 0.85 seems to be
readily achievable within the current technology.

VI. CONCLUSION

In this paper, we have investigated a coherent superpo-
sition tâ+râ† acting on continuous variable systems that
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can be used for quantum state engineering. It has been
shown that the operation creates nonclassicality out of a
classical state with observable effects such as squeezing
and sub-Poissonian statistics. For the coherent-state in-
puts, the degree of nonclassicality measured by negative
volume in phase space increases with the ratio r, while
that measured by nonclassical depth due to C. T. Lee
is maximal regardless of r. In particular, given an in-
put coherent amplitude α0, the squeezing effect occurs
optimally for r < 1, which implies that the coherent op-
eration generally achieves better squeezing than the bare
photon addition â†. For the thermal-state inputs, the de-
gree of nonclassicality increases with r measured by both
the negative volume and the nonclassical depth.
We have also proposed an optical experimental scheme

to implement the coherent operation tâ+ râ† in a single-
photon intereference setting. Furthermore, it has been
shown that the coherent operation combined with the
displacement operations can be employed to generate an
arbitrary superposition state and that a high fidelity par-
ticularly in producing a superposition state involving up
to two photons is achievable against experimental imper-
fections using the currently available techniques.
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