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Interaction of a quantum well with squeezed light: Quantum gatistical properties
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We investigate the quantum statistical properties of tgktlemitted by a quantum well interacting with
squeezed light from a degenerate subthreshold opticahyedria oscillator. We obtain analytical solutions
for the pertinent quantum Langevin equations in the strangling and low excitation regimes. Using these
solutions we calculate the intensity spectrum, autocatia function, quadrature squeezing for the fluorescent
light. We show that the fluorescent light exhibits bunching guadrature squeezing. We also show that the
squeezed light leads to narrowing of the width of the speciéithe fluorescent light.

PACS numbers: 42.55.Sa, 78.67.De, 42.50.Dv, 42.50.Lc

I. INTRODUCTION coupling regime, which amounts to keeping the leading terms
in the photon-exciton coupling constant We show that the
Interaction of electromagnetic radiation with atoms hagfluorescent light exhibits bunching and quadrature squeezi
led to interesting quantum features such as antibunchidg anl N€ former is due to the fact that two or more excitons in
squeezing. In particular, interaction of two-level atonrighw  the quantum well can be excited by absorbing cavity photons.
squeezed light has extensively been studied by many authofdiS implies there is a finite probability that two photonsica
[M-3]. These studies show that the squeezed light modifiege emitted S|multane_ously. We leo show that the squeezed
the width of the spectrum of the incoherent light emitted by!ight leads to narrowing of the width of the spectrum of the
the atom. On the other hand, cavity QED in semiconductofuorescentlight. _ . ,
systems has been the subject of interest in connection with Ve obtain the solution of the quantum Langevin equation
its potential application in optoelectronic devich|]4—9br f_or a.caV|ty coupled to vacuum reservoir. The resultlng. solu
example, such optical systems hold potential in realipatio 0N in the strong coupling limit, is used to calculate thten-
of optical devices that exhibits exceptional propertieshsu SitY; SPectrum, second order correlation function and carad
as monomode luminescence with high gain allowing the reluré squeezing of the fluorescent light.
alization of thresholdless laser. The quantum propertfes o
the light emitted by a quantum well embedded in a micro-
cavity has been studied by several authbrs[[10-12]. Unlike II. HAMILTONIAN AND EQUATIONS OF EVOLUTION
antibunching observed in atomic cavity QED, the fluorescent
light emitted by the quantum well exhibits bunchingl[i3,.14] We consider a system composed of a semiconductor quan-
In the strong coupling regime—when the coupling frequencyum well and a degenerate parametric oscillator operatag b
between the exciton and photon is larger than the relaxatiolPW threshold. In a degenerate parametric oscillator, agpum
frequencies of the medium and the cavity—the intensity -sped®hoton of frequencgwy is downconverted into a pair of iden-
trum of the exciton-cavity system has two well-resolvedqsea tical sinal photons of frequency,. The signal photons are
representing two p|a_ritons resonan m, 16] In the experhlghly correlated and this correlation is reSponSible oI
mental Setting, Weishuca al. ] demonstrated exciton- duction of noise below the vacuum level. Such a system pro-
photon mode splitting in a semiconductor microcavity whenduces a maximum intracavity squeezing of&0n a quantum
the quantum well and the optical cavity are in resonance: supvell, the electromagnetic field can excite an electron frben t
Sequent experiments on exciton_photon Coup"ng ConﬁrmeSHEd valance band to the conduction band thereby Creating
normal mode splitting and oscillatory emission from exgito & hole in the valance band. The electron-hole system pos-
microcavities al. sesses bound states which is also called exciton states-anal
In this work, we study the effect of the squeezed light generd0us to the hydrogenic states or more precisely to the pesitr
ated by a subthreshold degenerate parametric oscilla@JO Nium bound states. We assume that the density of the excitons
on the squeezing and statistical properties of the fluongsce S Small so that exciton-exciton interaction is negligiblée
light emitted by a quantum well in a cavity. The system isHamiltonian describing the parametric process and intierac
outlined in Fig.[1. Degenerate OPO operating below threshP€tween exciton and cavity mode in the rotating wave approx-
old is a well-known source of squeezed light/[20] 21]. weimation and at resonance is given by
explore the interaction between this light and a quantunh wel ic
with a single exciton mode placed in the OPO cavity. Our H= E(a” —a?) +ig(a’™ — ab") + Hipss (1)
analysis is restricted to the weak excitation regime whieee t
density of excitons is small so that the interactions betwee Herea andb, considered as boson operators, are the annihila-
an exciton and its neighbors can be neglected. Further, thon operators for the cavity and exciton modes, respdgtive
gain insight into the physics we investigate the dynamics of; is the exciton cavity mode couplindf|ss is the Hamilto-
the fluorescent light emitted by the quantum well in the gjron nian associated with the dissipation of the cavity and excit
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FIG. 1: Schematic representation of a driven cavity coitigia non-
linear crystal (NLC) and a quantum well (QW).

modes by vacuum reservoir modes. We assume here that t
amplitude of the field: that drives the cavity is real and con-

stant. The quantum Langevin equations of the system taking

into account the cavity dissipationand the exciton sponta-
neous emission can be written as
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whereF, andF, are the Langevin noise operators for the cav-
ity and exciton modes, respectively. Both noise operatave h
zero mean, i.e(F.) = (F.) = 0. For a cavity mode damped

by a vacuum reservoir, the noise operator satisfy the faigw
correlations:

_%b - gCL+ Fe(t)a

(Fe(t) (4)

(FIF(t") = (F(t)Fe(t) = (FI({O)FI(¢')) = 0. (5)
The exciton noise operators satisfy the following coriefzs:
(FL(OF(t)) = 7(t —1'), (6)

(Fe(OF.(t)) = (FI(OFI()) = 0. (7)

(') = rd(t — 1),

c

(FEOF(t))

Ill. PHOTON STATISTICS

In this section we analyze the photon statistics of he fluores

cent light by calculating intensity, intensity spectrunt aec-
ond order correlation function in the strong coupling regim
The solution of Egs.[{2) andl(3) is rigorously derived in the

Appendix. In the paper paper is devoted to the dynamics of
the system in the strong coupling regime. To this end, im-

posing the strong coupling limiy(>> «, ), which amounts
to keeping only the leading terms gn one obtains from Eqgs.
(A14) and [AI®) thath = A = 4ig. As a result, the solution

given by Eqgs.[(A20) and(A21) reduce to

a(t) = A7 (1)a(0) + AS7 ()aT (0) + As()b(0) + Aa(t)bT(0)

+ / v NPt — ) Fut') + AP (8 — ) Fi (1)
0

+ / v st = ) Fe(t) + Mt = ) FI(E)],  (8)
0

b(t) = A (£)b(0) + AT (£)bT(0) — As(t)a(0) — Aa(t)al (0)

/t dt' [As(t —tF.(t') + Mt — )l ()]
0
o,

dt’” [Nt =YV E(t) + A (8- ) FHE)],

9)
where
AP ) = [(cos(gt) + 74‘9“ sin(gt)) cosh(et/2)
+ % sin(gt) smh(stm)}e—(“ﬂ)t/{ (10)
he
/\éi)(t) = [(cos(gt) L 1F sin(gt)) sinh(et/2)
+ 26_9 sin(gt) cosh(st/2)} e~ (HME/4 (11)
A3(t) = sin(gt) cosh(et/2)e~ (/4 (12)
A\4(t) = sin(gt) sinh(et /2)e~ (/4 (13)

All quantities of interest which describe the dynamics & th
system can fully be analyzed using these solutions.

A. Intensity of fluorescent light

The dynamical behavior of the intensity of light emitted by
a single quantum well in GaAs microcavity has been mea-
sured experimentally [19]. We here seek to study the dynam-
ical behavior of the light emitted by a single quantum well
interacting with squeezed light. The intensity of the flre
centlightis proportional to the mean number of excitonfe t
system. Using Eq[{9) and the properties of the noise forces,
we readily obtain

2e2 N 1
(k+7)% —4e?

(b') = :

(1 + e + 7ie cos(2gt)
K=" L
+ 4—(1 + 27i.) sin(2gt)) cosh(et)
g

ol =7+ 261+ 20c) sin(gt)] sinh(et)

9

) 2e sinh(et) + (k + ) cosh(et)

! (k)% — 4e?

72_ Iislnr’?(gt/2)s'n(2gt) e*(l‘@*’r'}’)t/Q’
g

—(r

+

(14)

wheren, is the mean exciton number in the cavity at initial
time. We assumed that the cavity mode is initially in vacuum
state. It is easy to see that in the steady state the meaomexcit
number reduces to

2e2
(k+7)2 —4e2’

(b (£)b(t)) ss (15)



3

o~~~ Ty threshold condition for the parametric process. In thenitigi
i ] of the threshold the mean exciton number increases rapidly
0.8¢ 1 and exceeds unity as illustrated in Figl 3. This shows that

even though there is one exciton in the cavity initially,rthe
is a finite probability for the squeezed light in the cavity to
excite two or more excitons in the quantum well. This has
an interesting effect on the photon statistics of the fluceas
light as discussed in Section C.

B. Intensity spectrum

We next proceed to calculate the power spectrum of the flu-
orescent light. The power spectrum of the fluorescent light
can be expressed in terms of the bosonic operator as

FIG. 2: Plots of the fluorescent intensity [EQ.{14)] vs sdalme~t
for vy = &, = 5, ne = 1 and for different values of /. 1 o0 T ()b(t s
0 (b (£)b(t)) 55
In the strong coupling regime the correlation function tyat

pears in the integrand of the power spectrum in the steatty sta
has the form

™

o) BTt +7))ss  [7((k+7)% —4e2) ,
*Zi O O)b(t))ss [ 1g(r + 1)z sin(g7) sinh(e1/2)
+ %(agt) (2¢ cosh(eT/2)

+(k+7) Sinh(57/2))} e~ (RH)T/4

‘ a7)
0 20 40 60 80 Substituting this result in Eq.[{1L6) and keeping the leading
N order ing, we obtain the power spectrum of the fluorescent

light to be
FIG. 3: Plots of the fluorescent intensity [Ed._{14)] neaetimold
vs scaled timeyt for /v = 1, g/v = 5, i. = 1 and for different S(w) = V+Y- [95 +397 —2yw  grk+ 39y — 2qw

W) = _
values ofz /. 2reg(k+79) L 42 + (9 — w)? i+ (9 —w)?

gr + 397+ 2vw gk + 397+ 274@

Yt (gtw)? it (gtw)? 4o

which is a contribution to intensity of the fluorescent lighie

to the optical parametric oscillator. wherey. = (v + & + 2¢)/4 are the half widths of the
In Fig. 2, we plot the intensity as a function of scaled timeLorentzians centered at = +¢g. We immediately see that
~t for different values of the scaled pump field amplitude.  the width of the power spectrum depends on the amplitude of
In this figure we have assumed that the cavity in initially-pre the pump field.
pared in such a way that it contains one excitoné& 1) but We observe that the maximum of the power spectrum oc-
no photon. For simplicity we have taken the cavity and exci-curs when the frequency equal to the coupling constgnti
ton decay rate to be the same, ie+= ~. This figure shows order of explore the effect of the squeezed light on the width
the effect of the parametric oscillator on the intensity fess  of the spectrum it is convenient to plot the the power spattru
centlight. Itis not hard to see that the intensity oscilatéth ~ normalized by its maximum value, i.& (w) = S(w)/S(g).
frequency equal to the coupling constantwhich is a sig- In Fig. [4, we plot the normalized spectrum as a function
nature of exchange of energy between the cavity and excitoof w/+ for different values of the pump amplitude)( As
modes. Moreover, the amplitude of the oscillations dependslearly indicated in the figure, the the higher the amplitude
on the amplitude of the pump field, which represents the of the pump field (the degree of squeezing), the narrower the
optical parametric oscillator in our system. The stronfer t width has become. It is also worth noting that the narrowing
pump field and the higher the amplitude of oscillation and theof the width is more pronounced close to the threshold, i.e.,
longer it takes to reach the steady state value of the iffensi when the squeezing approaches to its maximum value. This
It worth emphasizing that since optical parametric osiwila is in contrary to the result obtained when the quantum well is
is operating below threshold, the parametirconstrained by  coupled to a squeezed vacuum reservoir, where the spectrum
the inequalityx + v > 2¢. We thus interprek + v = 2¢ as  is independent of the squeeze paraméter [13].



1.0F _ ((k+7)* 4+ 42?) cosh(eT) + 4(k + 7)e sinh(eT)
i 2= 4e2 ’

0'8; Expression[(21) is valid only in the strong coupling regime
—~ 0.6/ (9> k,7). ) ) )
3 I The behavior oy () as a function of the pump ampli-
A 0.4 tude €) and for constany is illustrated in Fig.[6. This fig-

T ure shows that the correlation function oscillates at fesopy
I equals tog. The amplitude of this oscillations decreases fast
0.2} when we increase the valueafThe autocorrelation function
[ atT = 0 has the forny(® (0) = 2+ (k+7)?/4¢? > 1 indicat-
0.0t ing the phenomenon of photon bunching. Here the underlying

physics can be explained in terms of the mean exciton num-
ber (see Fig.[13). In that figure we have showed that, even
though we start of one exciton initially, there is finite pasb
FIG. 4: Plots the normalized intensity spectrum of the flsoemt  Dility of exciting two or more excitons in the quantum well by
light [Sx (w) = S(w)/S(g)] vs scaled frequency /~ for k/v = 1,  the squeezed light. This allows the possibility of emissin
g/~ = 5, e = 1, and for different values of /~. two photon at a time which leads to of phenomenon of bunch-
ing in the fluorescent light.

We further note that the spectrum has two peaks symmetri- F
cally located at-g. This is the result of the strong coupling 25¢
approximation § > «,~). Both peaks have the same width [
which depends on the exciton and cavity modes decay rates 20}
and the amplitude of the pump field. PR

= 15
N L
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C. Autocorrelation function 10¢

We now turn our attention to the calculation of autocor- 5t
relation function, which is proportional to the probalyilitf 7
detecting one photon at+ 7 given that another photon was o~

detected at earlier time t. Quantum mechanically autotrre
tion is defined by

(bt (£)bT (¢ + 7)b(t 4 7)b(t)) (19) FIG. 5: Autocorrelation function versus normalized time for
<bT(t)b(t)>2 ’ g/v =5, k/v =1, n. = 1, and for different value of pump ampli-
tudee/~.
Using the Gaussian properties of the noise fortes [22], the
autocorrelation function in the steady state can be put in a
simpler form

9@ (1) =

|<bT(t)bT(t+T)>SS|2 |<bT(t)b(t+T)>ss|2 IV. QUADRATURE SQUEEZING

(01 (£)b(t))2, (01 (£)b(t))2, . : :

20 The squeezing properties of the fluorescent light can be ana-
In order to find a closed form analytical expression for thelyzed by calculating the variances of the quadrature opesat
autocorrelation function, one has to determine the two timel he variances of the quadrature operators for the fluoréscen
correlation functions that appear in EG.}(19). This can beedo light are given by
using the solutior {9) along with the correlation propertié
the noise forces. After algebraic manipulations, we oltfagn AbY =1+2(b'b) + (b*) + (b'), (22)
final expression of the autocorrelation function to be

g P (r) =1+

9@ (7) = 14 27 cos(gr) [pa sin(g7) + p2 cos(g7)] , Aby =1+ 2(b'b) — ((b*) + (b)), (23)
(21)
whereb; = bf + b andby = i(b! — b). These quadrature
where operators satisfy the commutation relatidn, b3] = 2i. On
242 the basis of these definitions the fluorescent light is salmkto
[y = V(5 +79)" — 4e%) [(k +7) cosh(er) + 2esinh(e7)],  in @squeezed state if eith&w? < 1 or Ab3 < 1. In deriving

4g(k +7)e? (22) and [2ZB) we have uséd(t)) = 0, which can easily be



verified using[(P). Applying Eq[{9) and the properties of the 3.0
noise operators the variances turn out to be [
2.5F
2e r
Ab} =1+ —— e k=224 (¢ :
! kE+vy—2e ‘ ®) aw 2.0F
Re) [
+e 2 (1), 24) a_
1.5¢
1.0
Ab2=1-— _ 2% + e*(kJr'YJr%)t/?A+ (t) [
2 k+v+2e ? ]
—(k+~y+e)t/2 2 0'57‘HHM‘HMH“HHMH“HHF
+e Bi(#), (25) 00 05 10 15 20 25 30
. . (3
in which 4
i i ) FIG. 6: Plots of the quadrature variance [Hg.](25)] vs sctitad vt
Ay (t) =1+ e + e cos(2gt) for g/ = 5, k = 7, n. = 1 and for the different values of the pump
— —v+£2 i i .
[74 K et n K z 5(1 +20,)] sin(2gt), field amplitudes /~
g g

V. CONCLUSION
(5 +7)e*? k-7 .
Kty t2e + 2 sinh(et/2) sin(2g1). The quantum statistical properties of the fluorescent light
emitted by exciton in a quantum well interacting with
It is straightforward to see that the variances reduce in th€queezed light is presented. Analytical solutions for tae p
steady state to tinent quantum Langevin equations are rigorously derived.
These solutions, in the strong coupling limit in which the
% exciton-cavity mode coupling is much greater than the cav-
—— (26) ity as well as exciton spontaneous decay rages> x,7) are
used to study the dynamical behavior of the generated light.
We find that the squeezed light enhances the mean photon
number and narrows the width of the intensity spectrum of the
- (27)  fluorescent light. Further, the fluorescent light shows radfm
k+y+2e mode splitting, which is a signature of strong coupling. We

. , note that unlike atomic cavity QED where the fluorescentligh
Expressiond(26) anfl(P7) represent the quadrature var@nc exhibits antibunching, the fluorescent light in the presyst

a parametric oscillator operating below threshold. At shre ¢ th hibits bunching. Th fostati f bunchi
old k + v = 2¢, the squeezing becom&8% which is the rem rather exnibits bunching. 1he manitestation ot bunghin

. ing that be obtained f bthresh ‘ attributed to the possibility of exciting two or more excis
maximum squeezing that can be oblained from SULIFESNOY ye gy antum well which in turn leads a finite probability of
parametric oscillator [21]. Itis then not difficult to seatthe

. ) emission of two photons simultaneously.
squeezing occurs in the quadrature.

In Fig. [, the time evolution of the variance of tlg
quadrature [(25), is plotted versus scaled tippe The vari- Acknowledgments
ance in this quadrature oscillates with frequency equal to
twice the Rabi frequency. The amplitude of oscillation damp
out at longer time and eventually become flat at steady stat?r.
Moreover, it is interesting to note that the fluorescenttligh
is not squeezed at initial moment however, it starts to ex-
hibit transient squeezing before it becomes unsqueezéa. aga
The more the exciton interacts with the squeezed light, the
stronger the squeezing becomes. As a result of this we ob- ) ) ) ) )
serve squeezed fluorescent light in longer periods which ult N this appendix we derive the solution of the following
mately approaches to % maximum squeezing limit ob- duantum Lagevin equations:
served in parametric oscillator. The reduction of fluctomagi da p
noted in the fluorescent light is due to the interaction betwe — = ——a+ea' + gb+ F.(t), (A1)
the long-lived squeezed photons in the cavity and excitons i dt 2
the quantum well. As can be seen from Hig). 6, the degree of
squeezing of the fluorescent light depends on the amplithide o db

i
the pump field. o= —§b —ga+ Fe(t). (A2)

By(t) = —

Ab? =1+

2
Ab2 =1 °
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Appendix A: Solution for the quantum Langevin equations
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In order to solve these equations it is more convenient to in- A _ V=16g2 + (Y — Kk +26)2, y_ = l(ﬁ 4+ — 2¢)
troduce new variable defined by ’ 4 (A14)
ar —a' +a by = bt + . (A3) Note that the solution of the coupled equatidnsl(A6) and

(A7) can easily be obtained by replacintyy —¢, F'y by F_,
With the help of Eqs [{All) an@{A2) and their complex adjoint andG. by G_ in the solution of Eqs[{A4) anf (A5). We thus

we obtain have
d 1 t
S0+ = (k= 2e)ay +gby + Fy (Ad) 4 (t) = a_(0)hy(t) +b_(0)ha(t) + / ho(t —t")F_(t")dt’
0
d 7 t
P Lo L (AS) +/ ho(t —t)G_(t')dt' (A15)
0
d 1
P —5(.% +2)a_ +gb_ + F_ (AB) t
d 5 b_(t) =b_(0)h_(t) —a—(0)ha(t) +/ h_(t —t")G_(t")dt
_— = —— — 0
dtb_ 2b_ ga_ +G_, (A7) .
/ ho(t —t")F_(t")dt', (A16)
whereFy = FI+F.andG. = Ff+F,. Note that Eqs[[A4) 0
and [A5) are decoupled frorh (A6) arld (J]A7). These coupled h
equations can be solved using the method of Laplace trand!Nere
form. 9
The Laplace transform of Eq$._(A4) afd (A5) gives hi(t) = {Cosh(At/ H+2 Z = sinh(At/4)| e+
(A17)
Als) = %G(s) + @F(s) )
. ha(t) = Kg sinh(At/4)e =7+, (A18)
+2 [4gb4 (0) +2(2s + 7)a4 (0)] (A8)
2 4g A =/=169% + (v — 1 — 2¢)?, 7+:i(“+7+25)
1 Applying the inversion formula = (a4 — a_)/2 andb =
3 [ —49a4(0) +2(k + 25 — 22)b1.(0)],  (A9) (b, — b_)/2 the solution fora(t) andb(t) turn out to be

J(#)a(0) + 05" ()at (0) + 05" (£)b(0) + 75 (15T (0)

[0 (¢ — ) Fet) + 0 (1 — ) E ()]

wherey = 4¢% + (25 + 7)(k + 25 — 2¢) and A(s) = 77%
L(ay),B(s) = L(by),G(s) = L(G4) andF(s) = L(F}y) /

with £ denoting Laplace transform. The inverse Laplace
transform of Eqs[{A8) and (A9) yields

(= tVE(t) + 05t — ) FL(t)],

at(t) = a4 (0) f4 () + b4 (0 / [t =) Fy(t)dt’ (A20)
+ ot — )G (¢t (A10)
0 b(t) = 17 (1)b(0) + 05 (£)bT(0) — 0§ (H)a(0) — 157 ()at (0)
(+) ¢ ’ (=)p g /
b0 = 0 O)]-0) ~ ar O£0) + [ -0~ )6 () / mHRE) G- OEE)
- (=)p 4t /
T I R TGRS )(]2\21)
where
where
Jlt) = {COSh(At/ 4)1%%”}1(&/ D™ B = 1(cOsh(At/4) prortz sinh(At/4) et
(A12) 12 —HA— 2e
+ §(cosh(At/4) +7 A 'nh(At/4))e_”+t

fa(t) = L%g sinh(At/4)e~7-". (A13) (A22)



st (1) = %(cosh(At/él) + %”5 sinh(At/4))e =" (1) = %9 sinh(At/4)e 7" £ %9 sinh(At/4)e 7+,
— k- A24
- % (cosh(At/4) + %25 sinh(At/4))e_Wt (A24)
(A23)
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