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Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host

lungs for prolonged periods of time, however the underlying mechanism is poorly under-

stood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis
spores, mediated direct binding of complement factor H (CFH) to spores. The surface

bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition

of downstream complement activation. By comparing results from wild type C57BL/6 mice

and complement deficient mice, we further showed that BclA significantly contributed to

spore persistence in the mouse lungs and dampened antibody responses to spores in a

complement C3-dependent manner. In addition, prior exposure to BclA deletion spores

(ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas
the isogenic parent spores did not, indicating that BclA may also impair protective immunity.

These results describe for the first time an immune inhibition mechanism of B. anthracis
mediated by BclA and CFH that promotes spore persistence in vivo. The findings also sug-

gested an important role of complement in persistent infections and thus have broad

implications.

Author Summary

We discovered an immune modulatory mechanism of Bacillus anthracismediated by the
spore surface protein BclA. We showed for the first time that BclA mediated the binding
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of complement factor H, a major negative regulator of complement, to the surface of
spores. The binding led to the down-regulation of complement activities in vitro and in an
animal model. Using mice deficient in complement components, we further showed that
BclA promoted spore persistence in the mouse lungs and impaired antibody responses
against spores in a complement-dependent manner. We further provided evidence sug-
gesting a role of BclA in the development of protective immunity against lethal B. anthra-
cis challenges. These findings draw attention to a previously understudied aspect of the
complement system. They suggest that in addition to conferring resistance to comple-
ment-mediated killing and phagocytosis, complement inhibition by pathogens have long-
term consequences with respect to persistent infections and development of protective
immunity. Considering a growing list of microbial pathogens capable of modulating com-
plement activities, our findings have broad implications.

Introduction
Persistent colonization of the host by microbial pathogens can cause chronic infections, which
are often difficult to treat with conventional antibiotics. It is recognized that persistent infec-
tion is a unique phase often involving specific virulence factors and pathogenic mechanisms
[1]. Identifying and understanding these persistent mechanisms is key to developing new strat-
egies to more effectively combat chronic infections.

Bacillus anthracis is a spore forming, Gram-positive bacterium that causes anthrax. Infec-
tions are initiated by entry of spores into the host via the respiratory system, the gastrointesti-
nal tract, or cuts/wounds in the skin. Among the three forms of anthrax infections, inhalational
anthrax has the highest mortality rate. One of the characteristic features of inhalational anthrax
is the ability of spores to persist in the host lungs for prolonged periods of time [2–7]. Viable
spores can be recovered from the lungs of exposed animals including non-human primates
weeks or even months after the initial exposure. In addition, incubation periods of up to 43
days have been observed in humans [6]. This led to the 60-day antibiotic regimen recom-
mended by the Centers for Disease Control and Prevention for people with pulmonary expo-
sure to B. anthracis spores [7].

The mechanism underlying B. anthracis spore persistence is poorly understood. Mecha-
nisms used by other bacterial pathogens for persistent infections include biofilm formation [8–
12], residing in intracellular niches [13–15], suppression of innate and adaptive immune
responses [13, 16–18], and changes in bacterial physiology and metabolism that favor persis-
tent colonization [19–21]. B. anthracis spores are metabolically inactive and resistant to micro-
bicidal effectors present in vivo. It was originally thought that the dormancy and resilience of
spores were responsible for their ability to persist in the host. However, in a mouse model for
spore persistence, B. anthracis spores were found to be significantly better at persisting in the
lungs than Bacillus subtilis spores, suggesting the existence of persistence-promoting mecha-
nism(s) beyond spore dormancy and resilience [4]. B. anthracis spores were also observed to be
distributed throughout the lungs as single spores with the majority being extracellularly located
[4], suggesting that biofilm formation or hiding in an intracellular niche is unlikely to be the
major underlying mechanism. It is known that pulmonary exposure to B. anthracis spores does
not elicit robust inflammatory immune responses in the lungs. Although the spore surface
lacks typical pathogen-associated molecular patterns such as lipopolysaccharides, lipotechoic
acid, and flagellin [22], spores have been shown to be capable of activating Toll-like receptor 2
and MyD88-dependent signaling [23], triggering inflammatory cytokine production [24, 25],
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and activating natural killer cells [26, 27]. Therefore the subdued immune response is likely
due to an active immune evasion/suppression mechanism rather than a passive inactivity of
the spores. The anthrax toxins are known to inhibit host immune responses. However, spores
of a B. anthracis strain devoid of the anthrax toxins persisted as well as the parent toxin-pro-
ducing strain [4]. This speaks against the possibility that low levels of anthrax toxins produced
by a small amount of germinated spores in vivomay inhibit the overall immune response in
the lungs and contribute to spore persistence. These observations provide support for a spore-
mediated mechanism of immune suppression that has yet to be identified.

Bacillus collagen-like protein of anthracis (BclA) is the most abundant protein on the exo-
sporium, the outermost layer of B. anthracis spores. It is the structural component of the hair-
like nap on the exosporium [28]. Because of this spatial localization, BclA sits at the forefront
with respect to interactions with host factors upon entry into the host. A number of studies
have shown that BclA mediates spore uptake by macrophages and epithelial cells in both com-
plement-dependent and–independent manners [29–33]. However despite its abundance, local-
ization and interactions with host cells, the precise role of BclA in B. anthracis pathogenesis
remains unclear. In animal models of acute anthrax infections BclA did not appear to contrib-
ute to virulence [29, 34].

In this study, the ability of BclA to manipulate the complement system and its role in spore
survival and persistence in vivo was investigated. We found that BclA mediated the recruitment
of complement factor H (CFH), the major inhibitor of the alternative pathway, to the spore
surface where it facilitated C3 degradation; thereby inhibiting downstream complement activa-
tion. We further showed that BclA significantly promoted spore persistence in the mouse lungs
and dampened antibody responses to spores in a complement-dependent manner. Finally we
showed that BclA impaired protective immunity against lethal B. anthracis challenges. These
findings have important implications in B. anthracis pathogenesis, bacterial manipulation of
complement and persistent infections in general.

Results

The B. anthracis collagen-like protein BclA mediated CFH binding to
spores
Spores of B. anthracis Sterne strain 7702 and the isogenic BclA deletion mutant (ΔbclA) were
incubated with purified human CFH. Spore-CFH interaction was analyzed using flow cytome-
try (Fig 1A), solid phase binding assays (Fig 1B) and spore pull down assays (Fig 1C). In all
three different assays, deletion of BclA led to significantly reduced CFH binding compared to
7702 spores. Complementation of the deletion with the full-length bclA gene (ΔbclA/BclA)
restored CFH binding (Fig 1A–1C). Surface expression of BclA in the complemented strain
was confirmed by immunofluorescence microscopy and flow cytometry (S1 Fig).

We next investigated if BclA could mediate recruitment of CFH from human and mouse
serum, and mouse bronchial alveolar lavage (BAL) fluids. In order to distinguish between
direct CFH binding and indirect binding through C3 fragments deposited on the spore surface,
the binding assays were performed using heat-treated serum and BAL fluids so that the com-
plement system was inactivated while CFH remained functional [35]. 7702 spores were able to
recruit more CFH from normal human serum (NHS), mouse serum and mouse BAL fluids,
compared to ΔbclA and B. subtilis spores, respectively (S2 Fig).

To further determine if BclA was sufficient to mediate CFH binding to spores, we expressed
BclA on the surface of B. subtilis spores, which do not contain any BclA-encoding genes. Sur-
face expression was verified by immunofluorescence microscopy and flow cytometry (S1 Fig).
We observed that expression of BclA significantly enhanced the binding of purified CFH and
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Fig 1. B. anthracis spore surface protein BclAmediated CFH binding to spores. Spores were incubated with purified
human CFH in PBS buffer containing D-alanine. Spore-bound CFH was determined by flow cytometry (A), solid phase
binding assay (B) andWestern blot (C). Flow cytometry results were combined from at least three independent experiments.
Solid phase binding assay results were combined from two independent experiments, each with duplicate wells. Western
blots shown were representative of at least three independently performed experiments. (D) Recombinant BclA protein
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CFH in human serum, mouse serum and mouse BAL fluids to B. subtilis spores (Fig 1A–1C
and S2 Fig). BclA was further expressed as a His-tag recombinant protein (rBclA). Results
from ELISAs showed that rBclA bound to CFH in a concentration-dependent and saturable
manner, with an apparent KD of 0.91±0.45 μM (Fig 1D). Taken together, the results described
above indicated that B. anthracis spore surface protein BclA mediated direct binding of human
and mouse CFH to spores.

BclA-mediated CFH binding promoted degradation of C3b to iC3b and
inhibited further C3 activation
One of the principal functions of CFH is to act as a co-factor for complement factor I (CFI) to
cleave C3b to the inactive iC3b, which disrupts the formation of the alternative complement
pathway (ACP) C3 convertase. We first investigated the effect of BclA-mediated CFH recruit-
ment on C3b cleavage to iC3b on the spore surface using purified complement components
C3b, CFI and CFH. The results showed that the iC3b/C3b ratio on ΔbclA spores was signifi-
cantly lower than that on 7702 and ΔbclA/BclA spores (Fig 2A and 2B). We further incubated
the different spores with NHS for various length of time. The rate of iC3b accumulation on
ΔbclA spores was significantly slower compared to that on 7702 and ΔbclA/BclA spores (Fig 2C
and 2D). These results indicated that BclA-mediated CFH recruitment significantly promoted
the cleavage of C3b to iC3b on the spore surface.

The increased cleavage of C3b to iC3b in the presence of BclA could potentially reduce the
available C3b necessary for efficient C3 convertase formation, thereby reducing further C3 acti-
vation. We therefore determined if BclA-mediated CFH recruitment affected C3a production
in NHS incubated with the different spores. The results showed that C3a concentration was sig-
nificantly higher in samples incubated with ΔbclA spores compared to those incubated with
7702 or ΔbclA/BclA spores (Fig 2E, no antibody), suggesting that C3 cleavage was inhibited in
the presence of BclA-expressing spores. To further determine whether the inhibition was due
to CFH, we tested the effect of a CFH functional blocking antibody (OX24) [36]. Pre-treatment
of NHS with OX24 increased the C3a concentration in samples incubated with 7702 or ΔbclA/
BclA spores to a similar level as that seen in those with ΔbclA spores; whereas pre-treatment
with the isotype control antibody (mouse IgG1) showed a similar pattern as that seen in the no
antibody control (Fig 2E). Taken together, these results suggested that BclA-mediated CFH
recruitment significantly reduced further activation of C3.

BclA-mediated CFH recruitment led to inhibition of downstream
complement activation in vitro and in vivo
Cleavage of C3b to iC3b prevents the formation of C5 convertase complexes that cleave C5 to
C5a and C5b and the downstream formation of the membrane attack complex. Therefore, we
next investigated the effect of BclA-mediated CFH recruitment on downstream complement
activation. We first performed an indirect complement hemolytic activity assay to measure ter-
minal stage complement activation [37]. NHS was preincubated with 7702, ΔbclA or ΔbclA/
BclA spores and centrifuged. The supernatants were used as the source of complement for
hemolysis assays using opsonized sheep erythrocytes (EA-SRBC) as the target. If BclA led to
inhibition of downstream complement activation, 7702 or ΔbclA/BclA pre-incubated serum
should contain more intact complement components than ΔbclA pre-incubated serum, and

(rBclA) bound to immobilized human CFH in a concentration-dependent manner. Results were combined from three
independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001; t test.

doi:10.1371/journal.ppat.1005678.g001
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Fig 2. BclA-mediated CFH binding promoted degradation of C3b on the spore surface and
downregulated further C3 activation. (A) and (B) Spores were incubated with purified human C3b, CFH and
CFI. C3 fragments deposited on the spore surface were detected using anti-C3 polyclonal antibodies (A). The
image shown is representative of at least three independent experiments. The ratio of iC3b/C3b was determined
by quantifying the density of the corresponding bands in western blots using Image J (B). The β chain represents
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thus cause more hemolysis. We observed ~ 100% hemolytic killing of EA-SRBC in sera pre-
incubated with 7702 and ΔbclA/BclA spores respectively, but only 20% in serum pre-incubated
with ΔbclA spores (p< 0.0001) (Fig 3A).

We further measured the level of C5a in serum incubated with the different spores as a
direct method to evaluate downstream complement activation. The results showed that the
level of C5a was significantly higher in samples incubated with ΔbclA spores compared to those
incubated with 7702 or ΔbclA/BclA spores (Fig 3B, no antibody). To determine if the inhibition
was due to CFH, C5a assays were performed using OX24 or control antibody pre-treated
serum. The results showed that pre-treatment with OX24 increased the C5a concentration in
samples incubated with 7702 and ΔbclA/BclA spores, respectively, to a similar level as that seen
in those incubated with ΔbclA spores (Fig 3B). In contrast, mouse IgG1 had no effect on the
level of C5a in any of the samples. These results indicated that CFH was responsible for the
apparent effect of BclA on C5a.

We next investigated the effect of BclA on C5a level in vivo. Mice were intranasally (i.n.) inoc-
ulated with the different spores. BAL fluids were then collected by lavaging the lungs with sterile
PBS containing EDTA, which stops complement activation. We observed that C5a concentration
in the BAL fluids frommice infected with 7702 or ΔbclA/BclA spores was significantly lower
than that frommice infected with ΔbclA spores (Fig 3C). Taken together, the results described
above indicated that BclA-CFH interaction led to reduced C5 cleavage both in vitro and in vivo.

BclA significantly promoted spore persistence in the mouse lungs
We first investigated if BclA was important for spore persistence. C57BL/6 mice were i.n. inoc-
ulated with sub-lethal doses of spores. Total bacteria and spore load in the lungs at two and
four weeks post inoculation was determined. At both time points, C57BL/6 mice inoculated
with 7702 spores harbored significantly more total bacteria and spores in the lungs than those
inoculated with ΔbclA spores (Fig 4A and S5A Fig). Complementation of BclA in the ΔbclA
background significantly increased the spore counts in the lungs at both time points. We tested
the germination efficiency of 7702, ΔbclA and ΔbclA/BclA spores in three different media: a
chemically defined germination media, LB and 100% NHS (S3 Fig). We did not observe any
difference in the germination efficiency between the spores in any of the media. We also tested
bacterial dissemination to distal organs such as the spleen and found no significant difference
in bacterial burden in the spleen of mice inoculated with the different spores (S4A Fig). Hema-
toxylin and Eosin (H&E) staining was performed on lung sections from C57BL/6 mice col-
lected at two weeks post i.n. inoculation with either 7702 or ΔbclA spores. Minimum pathology
was observed in sections from both groups (S7 Fig), consistent with a previous report [4]. The
alveolar and small airway epithelium appeared intact in both groups and lymphocyte infiltra-
tion was only occasionally observed. Overall, we did not see obvious differences in inflamma-
tory responses in the lungs between the two groups.

C3b + iC3b, and the α” chain represents iC3b. Results were combined from three independent experiments. (C)
and (D) Rate of iC3b deposition on spores. Spores were incubated with 10% NHS for the indicated time and
subjected to flow cytometry analysis using iC3b-specific antibody. The results shown are mean fluorescence
intensity normalized to that at 10 minutes, respectively, and combined from at least three independent
experiments (C). The rate of iC3b deposition (ΔiC3b/Δt) was calculated by linear regression analysis of the
normalized data (GraphPad Prism 6) (D). (E) Determination of C3a concentration. GVB0 buffer containing 20%
NHS (no antibody), 20%NHS pre-treated with the CFH functional blocking antibody OX24 (240 nM final conc.) or
mouse IgG1 control (240 nM) was incubated with no spore, 7702, ΔbclA or ΔbclA/BclA spores at 37°C for 30 min
and centrifuged to remove the spores. C3a concentrations in the supernatants were determined using the
Human C3a ELISA kit (BD OptEIA™) and normalized to the respective no spore control. Data was combined
from four experiments, each with duplicate wells. *, p < 0.05; **, p < 0.01; ***, p < 0.001; t test.

doi:10.1371/journal.ppat.1005678.g002
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Fig 3. BclA-mediated CFH recruitment inhibited downstream complement activation in vitro and in vivo. (A)
Complement hemolytic assay. Spores were incubated with 20% NHS and centrifuged. The supernatants (1:10 diluted)
were used to perform complement hemolytic assays using opsonized sheep erythrocytes (EA-SRBC). Data shown
was from at least three independent experiments. (B) Determination of C5a levels in human serum incubated with the
different spores. GVB0 buffer containing 20% NHS was pre-treated with buffer only (no antibody), OX24, or control
IgG1, followed by incubation with 7702, ΔbclA or ΔbclA/BclA spores. C5a levels in the supernatants were measured
using the Human Complement Component C5a DuoSet. Data shown was combined from two independent
experiments, each with duplicate wells. (C) Determination of C5a levels in mouse BAL fluid. C57BL/6 were i.n.
inoculated with 7702 (n = 8), ΔbclA (n = 8), ΔbclA/BclA (n = 8) spores or PBS (n = 6). BAL fluids were collected 6 hours
later and C5a level in the supernatant determined using the Mouse Complement Component C5a DuoSet. Data
shown were combined from two independent experiments, each with duplicate wells. *, p < 0.05; **, p < 0.01. ****,
p < 0.0001, t test.

doi:10.1371/journal.ppat.1005678.g003
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Fig 4. BclA significantly promoted spore persistence in themouse lungs.Mice were i.n. inoculated with sub-lethal doses of various spores. Lungs were
collected, homogenized and either dilution plated to determine the total viable bacterial counts, or heated at 68°C and dilution plated to determine the spore
counts. (A). C57BL/6 mice were i.n. inoculated with ~1×108 spores of 7702, ΔbclA orΔbclA/BclA per mouse. Lungs were collected 2 weeks post inoculation.
Data shown were combined from at least two independent experiments (7702, n = 12; ΔbclA, n = 7;ΔbclA/BclA, n = 4). (B) Balb/c mice were i.n. inoculated
with ~ 1.5 ×107 spores per mouse ofB. subitilis containing pDG1662 vector (n = 20) or pDG1662-BclA (n = 20). Lungs were harvested at one week post
inoculation. Data shown were combined from two independent experiments. (C). C3-/- mice were more susceptible toB. anthracis than C57BL/6. Therefore,
a sub-lethal dose of ~ 5×105 spores/mouse was used for i.n. inoculation of C3-/- mice. Lungs were collected at 2 weeks post inoculation. Data shown were
combined from at least two independent experiments (7702, n = 14; ΔbclA, n = 12). (D—G) Mice were i.p. inoculated with lethal doses of 7702 orΔbclA
spores. (D) C57BL/6 mice were inoculated with ~1×108 spores/mouse of 7702 (n = 10) orΔbclA (n = 10) and survival monitored. Data shown were combined
from two independent experiments. (E) C3-/- mice were inoculated with ~5×106 spores/mouse of 7702 (n = 11) orΔbclA (n = 11). Data shown were combined
from two independent experiments. (F) Bacterial burden in the lungs and spleen of C57BL/6 mice inoculated with ~1×108 spores of 7702 (n = 10) orΔbclA
(n = 10) at 48 hours post inoculation. Data shown were combined from two independent experiments. (G) Bacterial burden in the lungs and spleen of C3-/-

mice inoculated with ~5×106 spores of 7702 (n = 6) orΔbclA (n = 4) at 48 hours post inoculation. Data shown were combined from two independent
experiments. *, p < 0.05; **, p < 0.01; ****, p < 0.0001; t test. Analysis of survival curves was done using Log-rank test.

doi:10.1371/journal.ppat.1005678.g004
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To determine if BclA alone was sufficient to promote spore persistence in the lungs, we fur-
ther examined B. subtilis spores expressing BclA. The results showed that expression of BclA
on the surface of B. subtilis spores significantly increased both total bacteria and spore burden
in the lungs compared to the vector control (Fig 4B). Together, these results suggested that
BclA significantly promoted spore persistence in vivo.

BclA promoted spore persistence in a complement-dependent manner
We next investigated the role of complement in spore persistence. CFH deficiency in mice
caused uncontrolled complement activation resulting in C3 consumption [38]. Therefore, we
compared spore persistence in C3-/- mice, as C3 is where the three complement pathways con-
verge. We reasoned that if BclA-mediated inhibition of complement was responsible for the
increased spore persistence in the lungs, we should see no difference in spore persistence
between 7702 and ΔbclA in C3-/- mice. Indeed, no significant difference in either total bacteria
or spore burden was observed in C3-/- mice between 7702 and ΔbclA-infected groups at 2 or 4
weeks post inoculation (Fig 4C and S5B Fig), suggesting that BclA-mediated promotion of
spore persistence was C3-dependent. It was previously reported that BclA bound complement
component C1q. The binding leads to internalization of spores by epithelial cells through
integrin α2β1 and opsonophagocytosis of spores by macrophages [30, 32]. We examined spore
persistence in C1q-deficient (C1q-/-) mice. The results from C1q-/- mice mirrored those from
wild type C57BL/6 mice (S6A Fig), suggesting that BclA-C1q interaction was not important for
spore persistence in the mouse lungs. Taken together, the results suggested that spore persis-
tence was promoted by BclA-mediated inhibition of complement activation.

BclA did not affect mouse survival or bacterial load in an acute lethal
challenge model
To test if BclA contributes to virulence in acute infections, C57BL/6 and C3-/- mice were
injected with lethal doses of 7702 or ΔbclA spores by intraperitoneal injection (i.p.). No signifi-
cant difference in mouse survival was observed between 7702 and ΔbclA-infected groups in
either mouse strains (Fig 4D and 4E). We next compared the total bacteria and spore burden
in the lungs and spleen of C57BL/6 and C3-/- mice 48 hours post inoculation. We did not
observe any significant difference in total bacteria or spore load in the lungs or the spleen
between mice challenged with 7702 and those with ΔbclA spores (Fig 4F and 4G). These results
indicate that BclA does not contribute to virulence in this lethal challenge model. This is con-
sistent with results from previous studies using lethal infection models [29, 34]

BclA inhibited antibody responses against B. anthracis spores in a
complement-dependent manner
The complement system not only shapes the innate immune responses, but also guides the
adaptive immune responses [39–43]. We examined the effect of BclA on host antibody
responses against spores in the persistence model. Anti-spore IgG antibodies in serum from
infected mice were detected using ELISA. Both 7702 and ΔbclA spores elicited specific antibody
responses in C57BL/6 (Fig 5A), C3-/- (Fig 5B) and C1q-/- (S6B Fig) mice, respectively, com-
pared to the saline control. However, C57BL/6 and C1q-/- mice exposed to 7702 spores had sig-
nificantly lower antibody titers compared to those exposed to ΔbclA spores (Fig 5A and S6B
Fig), suggesting that BclA dampened antibody responses and that BclA-C1q interaction was
not important in this process. The difference in anti-spore IgG titers between the 7702- and
ΔbclA-infected groups was not detectable in C3-/- mice (Fig 5B), suggesting that BclA damp-
ened antibody responses against spores through downregulating C3 activation.
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BclA impaired protective immunity against lethal B. anthracis challenges
Because of the significant difference in anti-spore antibody levels, we investigated if prior expo-
sure to 7702 or ΔbclA spores triggered different protection against lethal B. anthracis chal-
lenges. In one set of experiment, C57BL/6 mice were i.n. inoculated with a sub-lethal dose of

Fig 5. BclA inhibited antibody responses against spores. (A) C57BL/6 mice were i.n. inoculated with
~1×108 spores of 7702, ΔbclA or vehicle control once and blood collected at 2 weeks post inoculation (2wk),
or inoculated again with the same spores and dose at 2 weeks and blood collected at 4 weeks after the initial
inoculation (4wk). Anti-spore antibodies in the serum were detected using ELISA. Data shown were
combined from at least three independent experiments. The mouse number for the various groups is as
follows: control, n = 8; 2wk experiment, n = 30 and 29 for 7702 and ΔbclA, respectively; 4wk experiment,
n = 30 and 28 for for 7702 and ΔbclA, respectively. (B) C3-/- mice were i.n. inoculated with vehicle control, or
~5×105 spores of 7702 or ΔbclA and blood collected at 2 weeks post inoculation. Anti-spore antibodies in the
serum were detected using ELISA. Data shown were combined from at least three independent experiments,
with n = 10, 24 and 21 for control, 7702 and ΔbclA, respectively. *, p < 0.05; **, p < 0.01; ****, p < 0.0001; t
test.

doi:10.1371/journal.ppat.1005678.g005
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7702 or ΔbclA spores and then challenged with a lethal dose of 7702 spores by intraperitoneal
(i.p.) injection two weeks later. In another set, C57BL/6 mice were i.n. inoculated with sub-
lethal doses of 7702 or ΔbclA spores at 0 and 2 weeks and then challenged with a lethal dose of
7702 spores by i.p. injection at four weeks. The results showed that for mice with one prior
exposure (Fig 6A), those pre-exposed to 7702 spores succumbed to lethal challenges within
two days, similar to those pre-exposed to saline only, whereas those pre-exposed to ΔbclA
spores had a significantly better survival rate (p = 0.0308 vs. the saline control) with a median
survival time of 4 days. For mice with two prior exposures (Fig 6B), the difference was even
more pronounced (p = 0.0002 vs. the control group, p = 0.0069 vs. 7702 pre-exposed group).
Taken together, these results suggested that BclA impaired protective immunity against lethal
B. anthracis infections.

Fig 6. BclA impaired protective immunity against lethalB. anthracis challenges. C57BL/6 mice were i.
n. inoculated with a sub-lethal dose of ~1×108 spores of 7702, ΔbclA or vehicle control once (A) or twice (B).
Mice were then challenged with ~1×1010 7702 spores by i.p. injection 15 days after the last i.n. inoculation
and monitored for survival. Data shown in (A) were combined from two independent experiments, with n = 7,
8, and 10 for ctrl-7702, 7702–7702, and ΔbclA-7702, respectively. Data shown in (B) were combined from
two independent experiments, with n = 6, 8 and 12 for ctrl-7702, 7702–7702, and ΔbclA-7702, respectively.
Log-rank test was used to statistical comparison of the survival curves.

doi:10.1371/journal.ppat.1005678.g006
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Discussion
In this study we discovered a novel function for the major B. anthracis spore surface protein
BclA. We demonstrated that BclA mediated recruitment of CFH to spores, facilitated C3b deg-
radation on the spore surface, inhibited further C3 activation, and reduced C5 cleavage both in
vitro and in vivo. We further showed that BclA promoted spore persistence in the host lungs
and inhibited antibody responses against spores in a C3-dependent manner. Furthermore,
BclA impaired protective immunity against lethal B. anthracis challenges. These results
describe for the first time a spore-mediated immune modulatory mechanism through inhibi-
tion of complement. The results also suggested an important role of complement in persistent
infections, an aspect of pathogen-complement interaction that is poorly understood.

The ability of BclA to mediate CFH binding was demonstrated by 1) ΔbclA spores bound
significantly less CFH than the parent spores, and the defect was restored by complementing
BclA, 2) BclA expressed on the surface of B. subtilis spores was sufficient to promote CFH
binding, and 3) recombinant BclA protein bound to purified CFH in a concentration-depen-
dent manner. We observed weaker CFH binding by ΔbclA and B. subtilis control spores. It is
possible that there is another unknown low-affinity CFH binding protein on these spores or
non-specific binding of CFH to spores. Our results also suggest that recognition of CFH by
BclA is not human specific, i.e., BclA can bind both human and murine CFH, unlike some
other CFH binding proteins such as the CFH-binding protein (fHbp) of Neisseria meningitidis
[44] and PspC of Streptococcus pneumoniae [45]. A group A streptococcal collagen-like protein
(Scl1) was reported to bind CFH via the C-terminal variable region of Scl1 [46]. While BclA is
also a collagen-like protein, sequence comparison indicated no significant sequence similarities
between the two proteins beyond the GXY triplet-repeating motif. BclA also did not show any
significant sequence similarities to other reported microbial CFH binding proteins. Thus BclA
is a novel CFH binding protein. BclA-bound CFH retained its co-factor activity, as shown by
increased C3b degradation on the surface of parent and complemented spores compared with
ΔbclA spores. BclA-CFH interaction inhibited further C3 activation, and decreased C5 activa-
tion as shown by C5a ELISA and hemolytic assays. The finding that C5 cleavage was also
reduced in the mouse lungs in the presence of BclA further suggested that this effect was rele-
vant in vivo. In addition, CFH functional blocking antibodies completely abolished the comple-
ment inhibitory activity of BclA, suggesting that the BclA-CFH interaction was responsible for
this activity.

It has been known for decades that B. anthracis spores were able to persist in the host lungs
for prolonged periods of time. This capability was thought to be due to the dormancy and resil-
ience of spores. The results from this study describe for the first time a specific persistence-pro-
moting mechanism mediated by the spore surface protein BclA. The observation that the
difference in spore load in the lungs between 7702 and ΔbclA-infected mice disappeared in
C3-/- mice suggests BclA promotes spore persistence in the lungs by inhibiting complement
activities. It was previously reported that BclA directly binds C1q and this interaction leads to
activation of the classical complement pathway and opsonophagocytosis of spores by macro-
phages [30, 32]. However, the results obtained from C1q-/- mice suggest that BclA-C1q interac-
tion is not important for spore persistence or antibody response to spores. This suggests that in
this model system, inhibition of the alternative pathway plays a dominant role in promoting
spore persistence. Recently it was shown that binding of CFH to the PspC protein of S. pneu-
moniae promoted pneumococcal nasal colonization by CFH-mediated bacterial adherence to
the epithelium [47]. In our case, CFH is present in C3-/- mice, suggesting that BclA-mediated
promotion of spore persistence ultimately depends on C3 and works by inhibiting complement
activities. Thus the persistence colonization mechanism described here is distinct from that of
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S. pneumoniae. The percentage of bacteria recovered from the lungs at 2 weeks post inoculation
versus the initial inoculum was ~ 0.05%. This is in the same range as reported previously in
Balb/c mice (~ 0.08%) [4].

The role of BclA in pathogenesis has been controversial despite the fact that it is a dominant
protein on the spore surface. Studies in lethal infection models did not show any contribution
of BclA to virulence [29, 34]. In the lethal spore challenge model here, our results also show no
difference in either mouse survival or bacterial burden between mice challenged with 7702 and
ΔbclA spores, consistent with previous studies. The findings here suggest that the primary role
of BclA in vivomay be to promote the long term survival of spores through inhibition of com-
plement activities.

We observed that 7702 spores led to significantly lower anti-spore antibody levels compared
to ΔbclA spores in C57BL/6 and C1q-/- mice. The reduced antibody response was not due to a
lower bacterial burden of 7702 in vivo; on the contrary 7702 infected mice had a higher spore
burden in the lungs and a similar burden in the spleen compared to ΔbclA-infected mice. The
fact that there was no difference in antibody responses in C3-/- mice suggested that BclA-medi-
ated inhibition of C3 and/or downstream complement activation was responsible for the
reduced antibody response to spores. The complement system influences B cells, T cells and
antigen-presenting cells, the major cell types in the adaptive immune system [48–57]. The
interaction between BclA and CFH can potentially affect all these components of the adaptive
immune system. It has also been reported that CFH binding led to impaired antibody
responses against the corresponding CFH-binding protein [47, 58–61]. Antibodies tend to rec-
ognize epitopes outside the CFH binding sites hence do not block CFH binding, or even
enhance CFH binding. It would be interesting to investigate how BclA-CFH interaction affects
antibody responses against B. anthracis spores.

Finally we observed that pre-exposure to 7702 spores conferred virtually no protection
against lethal challenges whereas pre-exposure to ΔbclA spores provided significant protection
in our infection model. The finding that BclA not only inhibited antibody responses against
spores but also impaired protective immunity against B. anthracis lethal challenges has impor-
tant implications in anthrax vaccine development and in persistent infections in general. With
respect to vaccine development, BclA has been pursued as a vaccine candidate together with
protective antigen (PA) as a multicomponent anthrax vaccine. Vaccination with BclA either as
a recombinant protein or as a DNA vaccine augmented the protective efficacy of PA [62–64].
However, vaccination with formalin killed spores showed that ΔbclA spores provided greater
protection than BclA-producing spores [65]. Our findings here suggest that the latter observa-
tion may be due to the effect of BclA on complement. The fHbp of N.meningitidis was
approved as a component in multicomponent vaccines against serogroup B meningococcus
[66–68]. Recent studies found that fHbp mutant proteins defective in CFH binding were more
immunogenic and elicited stronger protective antibody responses than wild type proteins [59,
60, 69]. This raised the possibility that perhaps BclA mutants defective in CFH binding may
offer better protection against anthrax infections.

Previous studies on the effect of pathogen manipulation of complement have been primarily
focused on the more immediate effects of complement such as complement-mediated killing
and opsonophagocytosis in the context of acute infections. For those bacteria that are suscepti-
ble to complement-mediated killing such as Gram-negative pathogens (e.g., N.meningitidis) or
spirochetes (e.g., Borrelia burgforderi), inhibition of complement activation by recruiting CFH
or other mechanisms confers serum resistance to the bacteria and is important for bacterial
survival and virulence in vivo [66, 70–72]. For Gram-positive bacteria which are relatively
resistant to serum killing due to their thick peptidoglycan cell wall, inhibition of complement
activation can hinder phagocytosis and protects bacteria from phagocytic clearance. For
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example, Streptococcus pyogenes was found to inhibit phagocytosis by inactivating C3b in a
strain-dependent mechanism [73]. Binding to CFH or C4-binding protein by S. pyogenes led to
increased mortality in mouse models [74]. In contrast, the long-term effect of complement
inhibition by pathogens has not been well studied in a systematic manner. The results pre-
sented here suggest that inhibition of complement by pathogens can play an important role in
promoting persistent infections. In addition, because spores are resistant to lysis by comple-
ment and to phagocytic killing [30, 75], the role of complement observed in this study was
likely due to the indirect activities of the complement effectors on the innate and adaptive
immune system. This finding is particularly relevant to Gram-positive, encapsulated, or spore-
forming pathogens, which tend to be relatively resistant to complement-mediated or phago-
cytic killing. With respect to how inhibition of complement promotes spore persistence, there
may be multiple mechanisms involving both the innate and adaptive immune systems.
Decreased production of C3a and C5a can affect cytokine production and the activation status
of phagocytes. CFH binding to spores may not only dampen antibody responses but also affect
the specific antibodies produced, as found in N.meningitidis. In addition, T cell and/or B cell
functions can be affected [48–57]. Further studies to elucidate the detailed mechanism underly-
ing the role of complement in persistent infections will be important.

In conclusion, we characterized the first CFH-binding protein of B. anthracis and described
for the first time a spore-mediated immune inhibition mechanism of B. anthracis. These results
shed light on the role of BclA in vivo. In addition, our findings suggest that in addition to con-
ferring resistance to complement-mediated killing and opsonophagocytosis, complement inhi-
bition by pathogens have long-term consequences with respect to persistent infections and
protective immunity. Considering a growing list of microbial pathogens capable of modulating
complement activities [76–80], our findings have broad implications.

Methods and Materials

Bacterial strains, spores, and reagents
Strains and plasmids used in this study are listed in S1 Table. Spores of B. anthracis and B. sub-
tilis were prepared by culturing in a PA broth or on LB agar plates as described [4, 30]. To
inhibit spore germination, a germination inhibitor D-alanine (2.5 mM) was included in solu-
tions for assays involving spores. Normal human serum (NHS), GVB0 buffer (Gelatin Veronal
Buffer without Ca2+, Mg2+, 0.1% gelatin, 5 mM Veronal, 145 mM NaCl, 0.025% NaN3, pH
7.3), VBS++ buffer (5 mM Veronal, 145 mM NaCl, 0.025% NaN3, pH 7.3, 0.15 mM CaCl2 and
0.5 mMMgCl2), purified complement proteins and goat anti-human CFH, anti-human C1q
and anti-human C3 antibodies, were from Complement Technology unless otherwise stated.
Secondary antibodies were from Thermo Fisher Scientific unless otherwise stated. 2,2,2-Tribro-
moethanol (Avertin), bovine serum albumin (BSA), chicken ovalbumin (OVA), D-alanine,
and L-alanine were purchased from Sigma. Heat inactivation of complement was carried out at
56°C for 30 min.

Complementation of BclA mutant strain and heterologous expression of
BclA on the surface of B. subtilis spores
A DNA fragment containing the bclA gene and its upstream sequence (~ 1kb) was cloned into
an E. coli—B. anthracis shuttle vector pUTE583 [81]. The construct was then introduced into
ΔbclA by electroporation as described previously [82]. To express BclA on the surface of B. sub-
tilis spores, a DNA fragment encoding amino acid residues 39–400 of BclA was fused to the C-
terminus of CgeA, a protein on the outermost surface of B. subtilis spores [83]. The first 38
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amino acid residues were omitted because this region was reported to be proteolytically cleaved
before anchorage of BclA onto the B. anthracis spore surface [84]. CgeA-BclA fusion was
cloned into pDG1662, which allows the ectopic integration at the non-essential amyE locus in
the B. subtilis chromosome [85, 86]. Surface expression was evaluated by staining spores with
anti-BclA antibodies and fluorescently labeled secondary antibodies followed by immunofluo-
rescence microscopy or flow cytometry analysis, as described in S1 Text.

Spore pull down assays
To detect CFH recruitment to the spore surface, ~ 5×107 spores were incubated at 37°C for 30
min in PBS containing 2.5 mMD-alanine and supplemented with one of the following: purified
human CFH (10 μg/ml), bovine serum albumin (10 μg/ml), 10% (v/v) heat-inactivated NHS,
10% (v/v) heat-inactivated mouse serum (from C57BL/6), or heat-inactivated mouse BAL fluid
(from C57BL/6). The spores were then washed three times with ice-cold PBS containing 2.5
mMD-alanine and resuspended in the same buffer. An aliquot of the spore suspension was
used to titer the spores by dilution plating and the rest were frozen until ready for analysis.
Equal amounts of spores were boiled in SDS-sample loading buffer and the supernatants were
subjected to Western blot analysis using goat anti-human CFH (1:10000) or sheep anti-CFH
antibody (1:2000, Abcam) followed by incubation with rabbit anti-goat antibody conjugated to
horseradish peroxidase (HRP) (1:10000, Invitrogen) or HRP-conjugated rabbit anti-sheep IgG
(1:10000, Invitrogen) for 1 hr.

To detect iC3b deposition, ~ 5×107 spores were incubated in PBS buffer containing 500 μg/
ml C3b, 100 μg/ml CFH, 4 μg/ml CFI, 0.1% BSA, 1 mMMgCl2 and 2.5 mM D-alanine at 37°C
for 10 min. Spores were washed three times with ice-cold PBS containing 2.5 mMD-alanine.
Equal amounts of spores were subject to Western blot analysis following the procedure
described above. C3 fragments were detected using goat-anti human C3 (1:10000) and rabbit
anti-goat HRP (1:10000). Band intensities were quantified using Image J.

Flow cytometry to determine CFH binding and iC3b deposition
For CFH binding, ~ 5×107 spores were incubated in buffer containing 2.5 mM D-alanine and
supplemented with either 25 μg/ml purified human CFH or 10% heat inactivated NHS at 37°C
for indicated length of time. Spores were then washed and fixed with 2% paraformaldehyde for
20 min at room temperature. Bound CFH was detected using goat anti-human CFH (1:400,
Santa Cruz) followed by donkey anti-goat PE (1:400, Santa Cruz). For iC3b deposition, spores
were incubated in buffer containing 10% NHS and 2.5 mM D-alanine for indicated length of
time. iC3b was detected using mouse monoclonal antibody to human iC3b (neoantigen)
(1:400; Quidel) and donkey anti-mouse 647 (1:400; SantaCruz). Samples were analyzed in a
two laser Accuri C6 analytical flow cytometer using forward and side scatter parameters to gate
on at least 20,000 spores. The red laser was used to measure the mean fluorescence intensity
(MFI) of PE-labeled samples and data were analyzed using CFlow Plus (Accuri Cytometers)
and graphed using GraphPad Prism 6 analysis software.

Solid phase binding assays
Recombinant BclA (rBclA) was purified as described previously [32]. Microtiter 2HB plates
were coated with 10 ug/ml purified CFH or ovalbumin (OVA) in HBS (20 mMHEPES and 50
mMNaCl, pH 7.4) overnight at 4°C. The wells were washed to remove unbound proteins by
HBS with 0.05% Tween 20 (HBST), blocked in HBST with 1% OVA for 1 hr at room tempera-
ture, and incubated with increased concentrations (0.01, 0.1, 1, 5, 15 and 30 μM) of His-tagged
rBclA in HBST for 2 hrs at room temperature. The wells were then washed three times with
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HBST and incubated with anti-His HRP (1:3000, Alpha Diagnostic Intl. Inc.) for 1 hr. Plates
were developed with Sigmafast OPD and read at 450 nm. Apparent KD was determined by
non-linear regression (GraphPad Prism 6).

For spore binding, purified human CFH was immobilized onto wells of 96-well plates,
blocked and incubated with ~ 1×107 biotin-labeled spores suspended in the blocking buffer
supplemented with 2.5mMD-alanine for 30 min at 37°C followed by washing and incubation
with streptavidin-conjugated to HRP.

Determination of C3a and C5a levels in vitro
Approximately 5×107–1×108 spores were incubated in GVB0 buffer containing 20% NHS and
2.5 mM D-alanine at 37°C for 30–60 min. Complement activation was terminated by adding
50 mM EDTA. The samples were centrifuged to remove spores. C3a and C5a levels in the
supernatants were determined using Human C3a ELISA kit (BD OptEIA™) and Human Com-
plement Component C5a DuoSet (R&D), respectively. To determine the effect of CFH func-
tional blocking antibody OX24, 20% NHS in GVB0 buffer was pre-incubated with OX24
(Pierce Antibody) or isotype control mouse IgG1 (Sigma) at 240 nM or 480 nM final concen-
tration at 37°C for 30 min. The reaction mix was then incubated with spores as described
above.

Complement hemolytic assay
Spores were incubated in buffer containing 20% NHS and 2.5 mMD-alanine at 37°C for 60
min. After centrifugation, the supernatants were diluted (1:10) in VBS++ (Ca2+, Mg2+) and
used as the source of complement in hemolytic assays with opsonized sheep erythrocytes
(1×107 cells) following the instructions of the supplier (EA-SRBC, CompTech). %Lysis is calcu-

lated as OD540ðtestÞ�OD540ðBlankÞ
OD540ðtotal lysisÞ�OD540ðBlankÞ � 100.

Determination of C5a levels in vivo
C57BL/6 mice were i.n. inoculated with different spores (~1×108 spores/mouse) and BAL fluid
was collected 6 hours later by lavaging the lungs with 1ml cold sterile PBS containing 50 mM
EDTA. The lavage fluids were centrifuged to remove cells and bacteria. C5a level in the super-
natants was measured using the Mouse Complement Component C5a DuoSet (R&D).

Mouse infection and determination of bacterial burden
All animal procedures were performed according to protocols approved by the Institutional
Animal Care and Use Committee, Texas A&MHealth Science Center (TAMHSC). C57BL/6
(originally purchased from the Jackson Laboratories), C1q-/- [87] and C3-/- [88] mice were
maintained at the animal facility at TAMHSC. Mice were euthanized by i.p. injection with an
overdose of 2,2,2-Tribromoethanol (Avertin) followed by terminal bleed. Intranasal inocula-
tion was performed as previously described [4]. Briefly, 6–12 week old mice were anesthetized
with Avertin (0.3 mg/g body weight) and then inoculated with 20 μls of an indicated sub-lethal
dose of spores. For lethal challenge experiments, mice were inoculated with a lethal dose of
spores by i.p. injection. Mice were monitored for survival and other symptoms daily. Both
male and female mice were used in the experiments in a sex-matched manner.

Lungs and spleens were homogenized in 1 ml sterile ice-cold PBS containing 2.5 mMD-ala-
nine, and either directly dilution plated to determine the total bacterial counts or heated at
68°C for 60 min and dilution plated to determine the spore counts. Lungs were also fixed for
histological evaluation as described in S1 Text.
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Determine serum IgG levels by ELISA
Total exosporium proteins were extracted from 7702 spores as previously described [89] with
slight modifications. Briefly, ~5×109 spores were resuspended in 200 μl of an extraction buffer
(50 mM Tris-HCl, pH 7.4, 8 M urea, and 2% (v/v) 2-mercaptoethanol), heated for 20 min at
90°C, and centrifuged at 13,000× g for 10 min. The supernatant was then treated with 20% (v/
v) ice-cold trichloroacetic acid for 30 min on ice and centrifuged at 13,000×g at 4°C for 25 min.
The pellet was washed once with 1 ml ice-cold acetone, centrifuged at 7000 r.p.m for 2 min,
and dissolved in 100 μl of a solution of 200 mM Tris-HCl (pH 7.4) and 0.1 M glycine.

Blood was collected either from the saphenous vein, or by terminal bleed from the posterior
vena cava, at two weeks after mice were inoculated with spores. Blood was allowed to clot at
room temperature for 45 min before centrifugation at 4000 r.p.m. at 4°C for 10 min. Serum
was either stored immediately at -80°C or at 4°C with 0.1% sodium azide. Extracted spore anti-
gens were immobilized onto 96-well plates at 0.5 μg/well. The plates were washed twice with
PBS containing 0.1% Tween-20 (PBST), and blocked with PBST containing 3% BSA at 37°C
for 1 hr. Serum samples were diluted (1:100 for serum from C57BL/6 and C1q-/-, and 1:2 for
serum from C3-/- mice) with PBS containing 3% BSA and incubated at 37°C for 1 hr. The wells
were washed three times with PBST. Bound IgG was detected using goat anti-mouse IgG conju-
gated with HRP (1:2500, Invitrogen).

Spore germination
Spore germination was evaluated as described in S1 Text.

Statistical analysis
Pairwise comparison was carried out using Student’s t test. Survival analysis was performed
using the Log-rank test (GraphPad Prism 6).

Ethics statement
All animal experiments were performed in accordance to procedures approved by the Institu-
tional Animal Care and Use Committee at Texas A&MHealth Science Center (IACUC# 2015-
0361-IBT). The Texas A&M University Health Science Center—Institute of Biosciences and
Technology is registered with the Office of Laboratory Animal Welfare per Assurance A4012-
01. It is guided by the PHS Policy on Human Care and Use of Laboratory Animals (Policy), as
well as all applicable provisions of the Animal Welfare Act. Mice were euthanized by intraperi-
toneal injection of overdosed Tribromethanol/Avertin followed by terminal bleed. Mice were
anesthetized with Avertin before intranasal inoculation of spores. All efforts were made to min-
imize animal suffering.

Supporting Information
S1 Text. Supporting methods and materials.
(DOCX)

S1 Table. Strains and plasmids used in this study.
(DOCX)

S1 Fig. Expression of BclA on the surface of B. anthracis and B. subtilis spores. Immunoflu-
orescence microscopy and flow cytometry was performed as described in Supporting Methods
and Materials. A. Imunofluorescence microscopy of spores of B. anthracis 7702, ΔbclA, ΔbclA/
BclA, and B. subtilis pDG1662-CgeA vector only and B. subtilis pDG1662-CgeA-BclA. Spores
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were labeled with Texas Red to visualize spores. They were then incubated with rabbit anti-
BclA antiserum and goat anti-rabbit antibodies conjugated to Alexa Fluor 488. B. Flow cytome-
try analysis. Spores were incubated with anti-BclA antiserum and secondary antibodies conju-
gated to Alexa Fluor 594, or with secondary antibodies only. C. Spores were incubated with
rabbit pre-bleed serum and secondary antibodies conjugated to Alexa Fluor 594. The spores
were then examined by phase contrast and fluorescence microscopy.
(TIF)

S2 Fig. Recruitment of CFH from heat-inactivated serum and BAL fluids. Spores of B.
anthracis 7702 and ΔbclA, and B. subtilis (B. sub), B. subtilis carrying pDG1662-CgeA vector
control (pDG1662) and pDG1662-CgeA-BclA (pDG1662-BclA) were incubated in 10% heat-
inactivated mouse serum (A and B), 10% heat-inactivated human serum (C andD) or heat-
inactivated BAL fluid (E and F) at 37°C for 30 min. Spore-bound CFH was detected using pull
down assays as described in the Methods and Materials section. Different amounts of spores
(~5×106, 5×107 and 5×108 spores) were used for the experiment in panel A, and ~ 5×107 spores
were used for experiments in panels B—F. Data shown were from representative experiments.
(TIF)

S3 Fig. Germination of 7702, ΔbclA and ΔbclA/BclA spores. Spores were heat activated at
68°C for 30 min and resuspended in a germination buffer (50 mM Tris-HCl, pH 7.4, 10 mM
NaCl, 100 mM L-alanine) (A), LB (B) or NHS (C) to reach OD580 of 1.0. Kinetic readings were
performed every 5 or 10 min at 37°C for 60 min using a Synergy H1 Multi-Mode Reader. The
experiment was performed twice, each with duplicate wells. Data was normalized to OD at
time zero.
(TIF)

S4 Fig. Bacteria and spore burden in the mouse spleen at two weeks post inoculation.
C57BL/6 (A) and C1q-/- (B) mice were i.n. inoculated with ~1×108 spores per mouse. C3-/- (C)
mice were i.n. inoculated with ~ 5×105 spores per mouse. Spleens were collected at 2 weeks
post inoculation and homogenized in 1ml sterile PBS containing 2.5 mMD-alanine. The
homogenates were either plated directly to determine the total viable bacterial counts or heated
at 68°C for 1 hr and dilution plated to determine spore counts. Data shown were combined
from at least two independent experiments. C57BL/6, n = 12 and 7 for 7702 and ΔbclA, respec-
tively; C1q-/-, n = 6 and 5 for 7702 and ΔbclA, respectively; C3-/-, n = 6 and 5 for 7702 and
ΔbclA, respectively.
(TIF)

S5 Fig. Bacteria and spore load in the mouse lungs at 4 weeks post inoculation. This was
performed as described in the legend for Fig 4 except that lungs were collected at 4 weeks post
inoculation. C57BL/6 (A) and C3-/- (B) mice were i.n. inoculated with sub-lethal doses of
spores of 7702, ΔbclA or ΔbclA/BclA. Bacterial and spore load in the lungs at 4 weeks post inoc-
ulation was determined. Data shown were combined from at least two independent experi-
ments. C57BL/6 mice, n = 14, 15, and 14 for 7702, ΔbclA and ΔbclA/BclA, respectively; C3-/-

mice, n = 9 and 7 for 770 and ΔbclA, respectively. ��, p< 0.01; ����, p< 0.0001; t test.
(TIF)

S6 Fig. Bacteria and spore burden in the lungs, and serum antibody titers in C1q-/- mice.
(A) C1q-/- mice were i.n. inoculated with ~ 1×108 spores per mouse of 7702 (n = 7), ΔbclA
(n = 9) or ΔbclA/BclA (n = 5). Lungs were collected at 2 weeks post inoculation, and total viable
bacteria and spore counts determined. Data shown were combined from two independent
experiments. (B) C1q-/- mice were i.n. inoculated with ~ 1×108 spores per mouse of 7702,
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ΔbclA or vehicle control once (2wk) or twice (4wk). Blood was collected 2 weeks after the last
inoculation. Antibody titers in the serum were measured using ELISA with spore protein
extracts as antigens. Data shown were combined from at least two independent experiments.
Ctrl, n = 6; 7702-2wk, n = 17; ΔbclA (2wk), n = 12; 7702-4wk, n = 17; ΔbclA (2wk), n = 12. �,
p< 0.05; ��, p< 0.01; ���, p< 0.001; ����, p< 0.0001; t test.
(TIF)

S7 Fig. H&E stained lung sections from C57BL/6 mice inoculated with spores. C57BL/6
mice were i.n. inoculated with 1×108 7702 or ΔbclA spores and lungs collected at 2 weeks post
inoculation. Representative images of lung sections from 7702 (A) and ΔbclA (B)-inoculated
mice (n = 2/group) are shown.
(TIF)
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