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Abstract

Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nos-
ocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in
the gastrointestinal tract and transform into vegetative cells. Germination begins when the
germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseu-
doprotease that activates the related CspB serine protease through an unknown mecha-
nism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC
cortex hydrolase to degrade the protective cortex layer. While these regulators are essential
for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms
controlling their function have only been partially characterized. In this study, we identify the
lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted muta-
genesis. A gerS mutant has a severe germination defect and fails to degrade cortex even
though it processes SleC at wildtype levels. Using complementation analyses, we demon-
strate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Impor-
tantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection.
Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family
members, our results contribute to a growing body of work indicating that C. difficile has
evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and
other spore-forming organisms.

Author Summary

Clostridium difficile is a spore-forming bacterium capable of causing severe diarrhea. The
dormant spore-form of C. difficile is necessary to cause infection, since vegetative cells of
this organism cannot survive in the presence of oxygen. Spores are difficult to eradicate
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because they can withstand extreme environmental conditions and chemical insults
including antibiotics. However, since spores cannot grow, they must transform back into
actively replicating cells once the appropriate environmental conditions are sensed
through a process called germination. A key step during germination is the break-down of
a specialized cell wall layer in the spore known as cortex by the SleC hydrolase. In this
paper, we identify GerS as a novel lipid-modified protein that is important for C. difficile
germination to occur. GerS is made at high levels during spore formation and gets pack-
aged into mature spores. We show that GersS is required for the cortex hydrolase SleC to
degrade the protective cortex layer, since a strain lacking GerS does not lose its cortex
layer. Loss of GerS prevents C. difficile from causing infection in a hamster model of infec-
tion, suggesting that GerS is a novel target for drug development.

Introduction

Clostridium difficile is a Gram-positive spore-former capable of causing diarrheal disease that
can lead to fatal colitis. Disease symptoms are caused by the production of two toxins, TcdA
and TcdB, which are secreted when C. difficile establishes infection in the gastrointestinal tract
of mammals [1-3]. C. difficile infections have primarily been associated with individuals
undergoing antibiotic therapy, but long hospitalizations, underlying comorbidities, commu-
nity-acquired infections, and age-related risk factors have also been documented [4-6]. These
complications lead to C. difficile disease treatment costs between $1-5 billion per year in the
United States [7,8]. Of the 0.5 million C. difficile infections in the United States each year,
approximately 30,000 lead to death [9]. These deaths are primarily due to recurrent C. difficile
infections, which occur in ~20-30% of people that clear the first infection [9,10].

Since C. difficile is an obligate anaerobe, its endospore, or spore form, is responsible for initi-
ating infection and mediating disease recurrence [11]. Spores are highly resistant, oxygen-toler-
ant, multi-layered structures composed of a tightly packed, dehydrated inner core surrounded
by the inner forespore membrane, a germ cell wall, a thick modified peptidoglycan layer
known as cortex, an outer forespore membrane, a series of proteinaceous layers known as the
coat, and, in some spore formers, an outermost exosporium layer [12,13]. The specialized pack-
aging of spores confers resistance to many chemical and physical insults and allows them to
persist in the environment, and potentially an infected human, for long periods of time [1,14].
The dehydrated core renders spores metabolically dormant and is achieved by the displace-
ment of water by calcium dipicolinic acid (Ca-DPA) in late stages of spore formation [15,16].
The thick cortex layer surrounding the core physically constrains its expansion and prevents
hydration [17].

C. difficile infections begin when spores are ingested by a susceptible host and transit to the
gastrointestinal (GI) tract [18-20]. In the GI tract, C. difficile spores sense specific bile salts,
which induce them to transform into vegetative cells in a process known as germination
[18,21]. While germination has been primarily characterized in the model organism Bacillus
subtilis and in C. perfringens [13,22], recent studies in C. difficile have revealed that C. difficile
uses a unique mechanism to regulate the initiation of spore germination [21,23-26].

While B. subtilis and C. perfringens employ highly conserved inner membrane germinant
receptors to sense small molecule nutrients (germinants), which can be amino acids, sugars,
and potassium ions [13], C. difficile and related Peptostreptococcaceae family members do not
encode inner membrane germinant receptors [22,27]. Instead, C. difficile uses the subtilisin-
like serine protease CspC as a germinant receptor [21] to sense bile salt germinants such as
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taurocholate [18,20,28-30]. Although C. perfringens encodes a CspC homolog and the related
Csp family serine proteases, CspA and CspB [25,26], CspC is dispensable for germination in C.
perfringens [25] in contrast with C. difficile [21]. Furthermore, C. perfringens CspC is catalyti-
cally competent and undergoes autoprocessing similar to other subtilisin-like serine proteases
[26], whereas C. difficile CspC carries two mutations in its catalytic triad and lacks autoproces-
sing activity [21,23]. Unlike the catalytically competent C. perfringens CspA, C. difficile CspA is
produced as a pseudoprotease that is fused to a catalytically competent CspB protease [23].
During spore formation, the C. difficile CspBA fusion protein undergoes interdomain process-
ing, and the CspB domain is incorporated into mature spores [23].

Despite these differences, CspB in both C. perfringens and C. difficile functions to process
the cortex lytic enzyme (CLE) SleC, which is found in dormant spores as the pro-SleC zymogen
[21,23-26,31]. SleC degrades the cortex layer, which is essential for spore germination to pro-
ceed [32]. In the Clostridia, SleC targets the cortex-specific modification muramic-8-lactam
(MAL), which allows SleC to avoid degrading the germ cell wall of the outgrowing cell [33,34].
In B. subtilis, the cortex lytic enzymes CwlJ and SleB target MAL [16,35], although these
enzymes exhibit little primary sequence homology to clostridial SleC. Cortex hydrolysis in C.
difficile was recently shown to be required for Ca-DPA to be released from the core [36,37],
whereas in B. subtilis, Ca-DPA is released before the cortex is hydrolyzed and actually activates
CwlJ [38,39]. These observations indicate that different regulatory factors and mechanisms
control germination in C. difficile relative to B. subtilis and even C. perfringens.

In this report, we describe the identification of a novel regulator of C. difficile spore germi-
nation, CD3464 in strain 630, herein referred to as GerS, which is conserved among sequenced
Peptostreptococcaceae family members. Using a series of biochemical, genetic, and cell biologi-
cal assays, we characterize the gerS™ phenotype and identify the stage at which spore germina-
tion is arrested. We also demonstrate that GerS is essential for virulence in hamsters.

Results

Identification of GerS as a novel regulator of C. difficile spore
germination

We previously conducted RNA-Seq analyses of C. difficile sporulation-specific sigma factor
mutants to identify gene products that might be required for spore formation and/or germina-
tion [40,41]. We hypothesized that highly expressed genes induced during sporulation would
likely encode proteins that regulate spore formation and/or germination. gerS (CD3464) and
alr2 are the second and sixth most highly expressed, sporulation-induced genes [40,41], respec-
tively, and their gene products have not been previously characterized. Interestingly, alr2 is
encoded downstream of gerS (Fig 1A), and these genes are part of a ¢"-activated operon (S1 Fig,
[42]). alr2 encodes a putative alanine racemase that in Bacillus. spp. converts L-alanine to D-ala-
nine and reduces the sensitivity of spores to L-alanine germinant [43-45]. gerS is predicted to
encode a lipoprotein that appears to be unique to the Peptostreptococcaceae family (Fig 1B).

To test whether Alr2 or GerS regulate C. difficile sporulation and/or spore germination, we
constructed TargeTron gene disruption mutants in alr2 and gerS (S2 Fig). Analysis of the alr2
and gerS mutants by phase contrast microscopy revealed that both strains produced phase-
bright spores (Fig 1C). Fluorescence microscopy analyses indicated that alr2™ and gerS™ fore-
spores appeared to develop similar to wild type (S3 Fig). However, when the alr2™ and gerS™
strains were tested for functional spore formation, the gerS mutant failed to produce detectable
heat-resistant spores, while the alr2 mutant produced wildtype levels of heat-resistant spores
(Fig 1C). Western blot analysis confirmed that the gerS mutant was defective in producing
GersS, while the alr2 mutant produced wildtype levels of GerS (Fig 1D).

PLOS Pathogens | DOI:10.1371/journal.ppat.1005239  October 23, 2015 3/29



@‘PLOS | PATHOGENS

A Lipoprotein Regulates C. difficile Spore Germination

A.

Fold-change 6x

Base mean

58

Peptostrepto. VA2

ananaN

bartlettii

. bifermentans
. glycolicum

. mangenotii

. sordellii

. difficile

Peptostrepto. VA2

ananaN

bartlettii

. bifermentans
. glycolicum

. mangenotii

. sordellii

. difficile

Peptostrepto. VA2

bartlettii

. bifermentans
. glycolicum
. mangenotii

9x
150

42x
1003

signal peptide

QLSK.K

x NDSDEQ
G DVE GMKN.Y
SEILEVTE RE
VNMKLKN N

1
lipobox

KIETE
VIETD

34x
2042

26x
723

24x
700

IESMTETI\KVEA
Y TMKE)M{T®KE\KVK
E Y)4K(&RED T

TSYTCQADIT
KY)4K(&KED T
DMN Y)4{S[¢KV:\E

EFAFJHI’AHH

sordellii
difficile

ananaN

KIDMKD ILMVS
KVKLSK v F

WT Spo0A-

%k

<10

H.R. 1.0

E.

alr2

WT spoOA- gerS- 100

mm

0.01

alrz-

IIIIIIIIIIIIIIIIIIIIIII70

Sporulating cells

GerS n.a.

SpolVA

0.0001

WT  spoOA- gerS alr2-

Fig 1. C. difficile gerS is highly induced during sporulation and encodes a protein important for heat-resistant spore formation. (A) Schematic of C.
difficile gerS and alr2 genomic loci. gerS and alr2 are predicted to be part of an operon where transcription initiates from a P, promoter immediately upstream
of gerS (mapped by RNA-Seq transcriptional start site mapping, [42]) and potentially from the P, promoter upstream of acpS. Fold-change represents the
difference in gene expression between wild type and the sigk™ mutant [41]. Base mean refers to the number of transcripts detected for the respective gene
normalized to the length of that gene. (B) ClustalW alignment of GerS. Completely conserved, identical residues are blocked in blue, conserved identical
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residues are blocked in green, and conserved similar residues in yellow. The predicted signal peptide is bracketed in black, and the lipobox is bracketed in
red. The lipobox cysteine predicted to be lipidated is designated by a red asterisk. The following sequences from Peptostreptococcaceae family members
[27] were analyzed: Peptostreptococcaceae bacterium VA2 (WP_026902346), Intestini bartlettii (WP_007287647), C. bifermentans (WP_021430359), C.
glycolicum (WP_018591922), C. mangenotii (WP_027700975), C. sordellii (CEK32529), and C. difficile (YP_001089984). (C) Phase contrast microscopy of
the indicated C. difficile strains grown on sporulation media for 20 hrs. The spoOA™ mutant cannot initiate sporulation [85]. The efficiency of heat-resistant
spore formation (H.R.) was determined for each strain relative to wild type for three biological replicates. Scale bars represent 5 um. (D) Western blot analysis
of sporulating WT, spo0A™, gerS™, and alr2™ cells. The mouse anti-SpolVA antibody was used as a loading control [60]. (E) gRT-PCR analysis of alr2
transcription in the indicated mutants. RNA was isolated from the indicated strains after sporulation was induced for 18 hrs. Transcript levels were normalized
to the housekeeping gene rpoB using the standard curve method. Data represents the average of three biological replicates. Error bars indicate the standard
error of the mean. n.a. indicates not applicable, since the region amplified spans the disrupted alr2 gene. Statistical significance was determined using
ANOVA and Tukey’s test (* p < 0.05).

doi:10.1371/journal.ppat.1005239.g001

The inability of the gerS mutant to produce heat-resistant spores could be due to heat sensi-
tivity [17,46] or a general defect in spore germination. To distinguish between these possibili-
ties, we isolated spores from wild type and the gerS and alr2 mutants and tested their ability to
germinate following heat-treatment using a plate-based assay. No obvious defect in spore mor-
phology was apparent when gerS™ and alr2” spores were visualized by phase contrast micros-
copy (Fig 2A). However, alr2™ spores germinated at wildtype levels, whereas gerS™ spores
exhibited an ~5-log defect in spore germination relative to wild type (Fig 2B). Heating wildtype
and alr2” spores to 60°C for 30 min had no impact on spore germination, whereas heat treat-
ment reduced the germination efficiency of gerS™ spores by three-fold (p < 0.05, Fig 2B).
Although a similar heat treatment potentiates Bacillus sp. spore germination [47-49], this
effect has not been observed in C. difficile [37,50]. Western blot analyses verified that GerS is
packaged into wildtype and alr2™ mutant spores but not gerS™ spores (Fig 2C). Taken together,
these results strongly suggest that gerS™ spores have a significant germination defect that is
slightly heat sensitive. Furthermore, the germination defect of gerS mutant spores is unlikely to
be caused by polar effects on alr2 expression, since Alr2 itself is dispensable for heat-resistant
spore formation.

Complementation of the gerS mutant

To validate that the gerS mutant phenotype was due to absence of GerS, we complemented the
mutant in trans by ectopically expressing gerS from its native promoter(s). Since gerS transcrip-
tion originates from the proximal promoter (P;) directly upstream of gerS [42] and possibly
the distal promoter upstream of acp$ (P,, S4 Fig), we constructed gerS complementation con-
structs in which gerS transcription originates from the proximal promoter (P,, single) or from
both P, and P, promoters (dual, including the two genes upstream of gerS). Heat resistance
analyses revealed that the single and dual promoter complementation constructs both restored
heat-resistant spore formation to wildtype levels (S4 Fig). Western blot analyses indicated that
the dual and single promoter gerS complementation constructs restored GerS production to
wildtype levels in the gerS™ background (54 Fig). We chose to use the dual promoter comple-
mentation construct, since it produced GerS levels that were most similar to wildtype carrying
empty vector.

GerS regulates cortex hydrolysis

We next sought to determine why gerS mutant spores exhibit such a strong germination defect.
We first considered that GerS could affect the rate of spore germination, since a lipoprotein,
GerD, controls the speed of germination in B. subtilis [51,52]. Loss of B. subtilis GerD results in
an ~20-fold germination defect after a 15 hr incubation with germinant; however, after 48 hr, it
resembles wild type [52]. Although B. subtilis GerD exhibits no homology to C. difficile GerS,
we assessed whether gerS mutants germinated after prolonged incubation. After 48 hrs of
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Fig 2. C. difficile gerS™ mutant spores have a severe germination defect. (A) Phase contrast microscopy
of C. difficile spores isolated from wildtype, gerS™, and alr2™ strains. gerS™ and alr2™ resemble wild type in
size and their phase-bright appearance. Scale bars represent 5 pm. (B) Germination of wildtype, gerS™, and
alr2” spores following heat treatment. Heat-treated spores were incubated for 30 min at 60°C. Data
represents the average of three biological replicates. Statistical significance was evaluated using ANOVA
and Tukey’s test (* p < 0.05). (C) Western blot analysis of spores isolated from WT, gerS™, and alr2™ strains.
Anti-SpolVA was used as a loading control [60].

doi:10.1371/journal.ppat.1005239.9g002

germination on BHIS plates containing taurocholate, the change in number of colonies formed
following gerS™ spore germination was minimal and appeared to arise from spontaneous ger-
mination [53].

We next wondered whether GerS regulates germinant accessibility in C. difficile spores,
since GerP in B. subtilis and B. anthracis facilitates the interaction of germinants to inner mem-
brane germination receptors, potentially by altering coat permeability [54-56]. Bacillus spp.
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vitro germination assay shown above. The zymogen pro-SleC is processed by CspB in response to taurocholate addition [23].

doi:10.1371/journal.ppat.1005239.9003

gerP mutants exhibit slower germination and require higher levels of germinant in order to
achieve equivalent levels of germination as wild type. To test whether C. difficile gerS mutant
spores are differentially sensitive to germinant, we compared the effect of increasing concentra-
tions of taurocholate germinant on gerS™ spores carrying empty vector (gerS™/EV) relative to
wildtype carrying empty vector (WT/EV) and gerS™ spores carrying the wildtype complemen-
tation construct (gerS /gerS). gerS™ spores exhibited a similar dose-dependent germination
response to taurocholate as wild type and the gerS complementation spores, although gerS™
spores still had an ~5-log defect in spore germination in the presence of 1% taurocholate (Fig
3A), which leads to germination levels equivalent to those obtained by plating on BHIS plates
containing 0.1% taurocholate.

This result suggested that gerS™ spores can sense germinant similar to wildtype spores. Con-
sistent with this finding, no difference in the levels of CspC germinant receptor and CspB ger-
mination protease were observed between the strains by Western blotting (Fig 3B), and no
difference in CspB-mediated processing of SleC in response to increasing amounts of
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germinant was observed. Since CspB-mediated processing of C. perfringens SleC activates its
cortex hydrolase function [26], and CspB-mediated processing of C. difficile SleC is required
for optimal spore germination [23], these results suggested that GerS acts after SleC-mediated
cortex hydrolysis.

In order to test this hypothesis, we developed a transmission electron microscopy (TEM)
assay to visualize and quantify cortex hydrolysis. Although cortex hydrolysis can be measured
biochemically [24,36,57], it is difficult to obtain the amount of spores required for these analy-
ses using the JIR8094 strain background. For the TEM assay, wildtype, gerS™, and sleC™ spores
were exposed to germinant for 45 min, and cortex thickness was measured over time for a min-
imum of 50 spores per time point (Fig 4). Within 15 min of exposure to germinant, cortex thin-
ning was visible in wildtype spores (Fig 4A), and the average thickness decreased by 3-fold
(p < 0.0001, Fig 4B). Cortex thickness decreased even further at 45 min. In contrast with wild
type, no change in cortex thickness was observed in either sleC™ or gerS™ spores even after 45
min of incubation with germinant (Fig 4B). Thus, even though taurocholate induces CspB-
mediated pro-peptide removal from the pro-SleC zymogen in gerS™ spores (Fig 3), SleC does
not appear to be active (Fig 4). These results suggest that GerS may regulate SleC activity
through an unknown post-translational mechanism or by altering the availability of the SleC
substrate, MAL, in the cortex layer.

If SleC activity is indeed dependent on the presence of Gers, it should be possible to bypass
the need for SleC-mediated cortex hydrolysis by artificially germinating gerS™ spores. During
artificial germination, a reducing agent, thioglycollate, is added to permeabilize the coat layers
followed by lysozyme addition to degrade the cortex layer [13,58]. Treatment of wildtype,
gerS™, and sleC™ spores with thioglycollate and lysozyme restored outgrowth to gerS™ and sleC™
spores (Fig 5); no statistically significant difference in artificial germination between wildtype,
gerS™, sleC™ spores was observed. In contrast, wildtype spores germinated much more effi-
ciently than the mutants upon “natural” exposure to taurocholate. The small amount of germi-
nation observed in sleC™ spores is likely due to spontaneous germination [37,46], which can
occur even in the absence of the germinant receptor [21].

Ca-DPA release does not occur in the absence of GerS

Since recent studies have shown that Ca-DPA release immediately follows cortex hydrolysis
[36,37], we next tested whether the gerS mutant releases Ca-DPA in response to germinant (S5
Fig). Whereas wildtype spores released ~80% of their Ca-DPA stores in response to germinant,
gerS™ spores released <5% of their Ca-DPA stores. Since wildtype and gerS™ spores contained
similar amounts of Ca-DPA (88%, S5 Fig), Ca-DPA storage does not appear to be affected by
the gerS mutation, consistent with the recent observation that Ca-DPA release depends on cor-
tex hydrolysis in C. difficile [36,37] in contrast with B. subtilis [13,38].

GerS localizes to a “coat-extractable” (CE) fraction

Having shown that GerS is important for SleC activity, we next wanted to understand how
GerS carries out its function. We first tested whether GerS and SleC were present in the “coat-
extractable” (CE) fraction. To this end, we subjected wildtype and gerS™ mutant spores to a
mild boric acid decoating treatment [57] to generate a CE supernatant fraction and a pellet
fraction. Western blotting of these fractions revealed that both SleC and GerS co-localized to
the CE fraction in wildtype spores but not to the pellet fraction, which consists of decoated
spore lysate (Fig 6). Analysis of germination regulators CspC and CspB revealed that they also
are concentrated in the CE fraction of wildtype and gerS™ spores. These results indicate that the
germination regulators GersS, SleC, CspB, and CspC are located in a similar cellular fraction.
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(B) Box and whiskers plot of cortex thickness of the in vitro germination assay shown in (A). Statistical
significance was determined using ANOVA and Tukey’s test (**** p < 0.0001).

doi:10.1371/journal.ppat.1005239.g004

Since C. perfringens SleC has been shown to localize to the cortex using immunoelectron
microscopy [59], and CspB and SleC were recently reported to localize to a CE fraction in C.
perfringens [31], these results imply that the CE fraction includes cortex and outer forespore
membrane proteins in C. perfringens and likely in C. difficile (although it remains formally pos-
sible that SleC does not localize to the cortex region in C. difficile). Importantly, the coat mor-
phogenetic protein SpoIVA [60] localized exclusively to the CE fraction of wildtype and gerS™
mutant spores, whereas the forespore-localized germination protease (GPR) [40,61,62] was
found exclusively in the pellet fraction of these spores.

Secretion, but not lipidation, of GerS is required for its function

Since GersS is predicted to be a lipoprotein based on the presence of a putative N-terminal sig-
nal peptide containing a lipobox [63-65], we tested whether GerS undergoes lipidation and
whether its function depends on lipidation and/or secretion. The signal peptide of lipoproteins
directs their transport across membranes after which Lgt, a prolipoprotein diacylglyerol trans-
ferase, adds a diacylglycerol group to the lipobox cysteine via a thioether bond. Following lipi-
dation, the lipoprotein signal peptidase (Lsp) cleaves off the signal peptide, and the lipoprotein
inserts into the plasma membrane in Gram-positive bacteria [63]. Since mutation of the con-
served cysteine residue in the lipobox to serine is sufficient to prevent lipidation [63-65], we
complemented the gerS mutant with a construct that produces GerS carrying a cysteine 22 to
serine (C22S) mutation. We also complemented the gerS mutant with a construct that deletes
the GersS signal peptide sequence to prevent secretion (ASP, Figs 1B and 7A). The C22S com-
plementation strain produced heat-resistant spores at levels comparable to wild type, whereas
the ASP complementation strain exhibited a >4-log decrease in functional (heat-resistant)
spore formation relative to wildtype (H.R., Fig 7B). These results suggest that secretion but not
lipidation is required for GersS to activate cortex hydrolysis. Western blot analyses of the com-
plementation strains revealed that only full-length GerS was detectable in the C22S strain,

108 = * *kkk *kkk

106 =
- = B Natural Germination

[ Attificial Germination
n.s. between strains

E3 No Geminant

10%

1024

Germinated spore CFUs

al

WT gerS- sleC-

Fig 5. Artificial germination of gerS™ bypasses its germination defect. Wildtype, gerS™, and sleC™~ spores were incubated with no germinant,
taurocholate (natural germination) or thioglycollate and lysozyme (artificial germination). Mutants defective in cortex hydrolysis can be artificially germinated
[58]. Data represents the average of 4 biological replicates. No statistical significance was observed between strains subjected to artificial germination, in
contrast with natural germination. Statistical significance was determined using ANOVA and Tukey’s test (* p < 0.05; **** p <0.001).

doi:10.1371/journal.ppat.1005239.9005
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Fig 6. Germination proteins localize to a “coat-extractable” (CE) fraction. Western blot analyses of
“coat-extractable” (CE) and decoated spore lysate (pellet) fractions from wildtype and gerS™ spores. It should
be noted that the CE fraction likely includes proteins localized to the cortex and outer-forespore membrane.
Input represents the whole spore lysate without fractionation. SpolVA is a coat morphogenetic protein [60].
GPR (germination protease) is localized to the core of spores [40,61,62].

doi:10.1371/journal.ppat.1005239.g006

whereas both full-length and cleaved GerS were observed in wild type and the wildtype gerS
complementation strain. These observations strongly suggest that Cysteine 22 is important for
cleavage of the signal peptide, similar to other lipoproteins [63-65]. Neither full-length nor
cleaved GerS could be detected in ASP sporulating cells, implying that loss of the signal peptide
leads to destabilization of GerS (Fig 7B). To test this hypothesis, we measured gerS transcript
levels in the complementation strains by qRT-PCR relative to wildtype carrying empty vector.
The gerS™ complementation strains all produced an excess of gerS transcripts relative to wild-
type carrying empty vector; this over-expression is likely due to the multi-copy nature of the
pMTL83151 plasmid used for complementation (S6 Fig). Thus, GerS lacking its signal peptide
appears to be unstable in the mother cell cytosol of sporulating cells.

Consistent with our analyses of sporulating cells, purified spores from the C22S strain ger-
minated at wildtype levels, while ASP spores exhibited an ~4-log defect in germination relative
to wild type (Fig 7B). Only full-length GerS was detected in C22S spores, whereas only cleaved
GerS was detected in wildtype spores carrying empty vector and gerS™ spores carrying the wild-
type complementation construct. GerS was undetectable in ASP spores. Taken together, these
analyses suggest that GerS secretion across the mother cell-derived membrane is necessary for
GerS function, while lipidation and signal peptide removal are dispensable for GerS to activate
cortex hydrolysis.

To test whether alterations to the signal peptide affected the heat sensitivity of gerS™
mutant spores, we heated spores for 30 min at 60°C prior to plating on media containing
taurocholate germinant. As expected, heat treatment had no impact on the germination of
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Fig 7. The signal peptide of GerS, but not its lipidation site, is required for germination. (A) Schematic of gerS complementation constructs. C22S
designates a construct encoding a mutation of the invariant lipidation site cysteine to serine. ASP designates a construct encoding a truncated GerS lacking
its signal peptide. (B) Western blot analyses of GerS in sporulating cells and purified spores from wild type carrying empty vector (EV) and the gerS mutant
carrying either empty vector or the indicated complementation constructs. SpolVA was used as a loading control [60]. The efficiency of heat-resistant spore
formation (H.R.) during sporulation is shown, as is the germination efficiency (G.E.) of purified spores. Data is representative of at least 4 replicates.

doi:10.1371/journal.ppat.1005239.9007

wildtype spores carrying empty vector or wildtype complementation spores (S7 Fig). No dif-
ference in spore germination between untreated and heat-treated C22S or ASP spores was
observed. In contrast, gerS™ mutant spores carrying empty vector showed a statistically sig-
nificant decrease in the number of germinating spores following heat treatment (p < 0.01),
similar to results with gerS™ spores (Fig 2B).

GerS is necessary to cause disease in hamsters

Since bile acid-mediated germination has previously been shown to be important for C. difficile
pathogenesis [21], we tested whether gerS™ could cause disease in the hamster model of C. diffi-
cile infection (CDI). Hamsters inoculated with gerS™ spores carrying empty vector had a 100%
survival 7 days post inoculation, whereas wildtype spores carrying empty vector resulted in
50% survival at the same time point (Fig 8). Inoculation with the gerS™/gerS construct resulted
in 100% of the hamsters being euthanized by day 5 after inoculation. These results indicate that
the gerS mutant’s in vitro germination defect correlates with an inability to cause disease in a
hamster model of CDI.
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Fig 8. GerS is required for virulence. Kaplan-Meier survival curve of clindamycin-treated Syrian hamsters
inoculated with 1,000 isolated spores of wildtype carrying empty vector (WT/EV), the gerS mutant carrying
either empty vector (gerS™/EV), or the wildtype complementation construct (gerS™/gerS). The control
designates antibiotic-treated hamsters that were not inoculated with spores.

doi:10.1371/journal.ppat.1005239.9008

Since a possible explanation for the greater lethality of the gerS™/gerS strain might be a faster
rate of spore germination relative to wildtype spores carrying empty vector, we analyzed the
rate of germination initiation by measuring the decrease in optical density at 600 nm when
spores form the complementation strains were exposed to taurocholate germinant (S8 Fig).
This assay revealed that the C22S and gerS™/gerS strains germinated with similar kinetics as
wild type, albeit slightly less efficiently, whereas no major change in ODgo was observed for
ASP and gerS™/EV spores, as expected.

Discussion

Recent studies of C. difficile spore germination have uncovered a unique signaling pathway for
sensing bile salt germinants and initiating spore outgrowth relative to previously studied
organisms [12]. Although the germination regulators SleC and the Csp family proteases are
conserved between C. difficile and C. perfringens [22], they can have different functions and/or
activities in these organisms [21,23-26]. In this study, we identified a novel protein specific to
C. difficile and related Peptostreptococcaceae family members that functions as a critical regu-
lator of SleC cortex hydrolase activity and is essential for germination in vivo in a hamster
model of infection under the conditions tested. While C. difficile strain JIR8094 contains muta-
tions in the flagellar operon that impacts motility and toxin gene expression, a gerS mutant
nevertheless causes significantly less disease than wild type JIR8094.

In particular, we showed that GerS regulates SleC activity downstream of CspB-mediated
processing of SleC. This processing event had previously been thought to be sufficient to acti-
vate SleC’s cortex hydrolase activity, since studies in C. perfringens showed that CspB-mediated
cleavage of the pro-SleC zymogen was necessary for SleC to degrade cortex fragments in vitro
[26,57], and loss of C. difficile CspB protease activity markedly reduced SleC processing and
spore germination [23]. However, unlike C. perfringens SleC, full-length C. difficile SleC can
degrade cortex fragments in vitro [33], calling into question why SleC does not automatically
degrade cortex in dormant spores. It will be important in future studies to precisely determine
the impact of pro-peptide removal in activating SleC function in vitro and in C. difficile.
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How then does GerS regulate SleC activity? Our results indicate that gerS is under the con-
trol of the mother cell-specific sigma factor 6" (Fig 1A) and thus should be produced in the
mother cell cytosol [40,41,61]. Deletion of the signal peptide from GerS destabilizes GerS in
sporulating cells (Fig 7 and S6 Fig). This observation is consistent with the notion that GerS is
transported across the outer forespore membrane into the cortex region during sporulation
(Fig 9); more evidence is nevertheless needed to test this hypothesis. Since mutation of the
invariant cysteine in the GerS lipobox prevents signal peptide removal but does not affect GerS
function (Fig 7), the signal peptide of GerS C22S may insert into the outer forespore membrane
where it can apparently function like lipidated wildtype GerS (Fig 7). Although mutation of the
invariant lipobox cysteine frequently disrupts lipoprotein function [51,66,67], lipidation of
some bacterial lipoproteins can be dispensable for their activity because they remain embedded
in the plasma membrane through their signal peptide [63,68]. These observations suggest that
GerS may exert its function on the surface of the outer forespore membrane facing the cortex
(Fig 9). Notably, SleC activity also appears to be localized to this region, since TEM analyses of
germinating wildtype spores revealed that cortex thinning initiates at the outer forespore mem-
brane and radiates inward in C. difficile (Fig 4). While more studies are clearly needed to deter-
mine the exact locations of SleC and GerS$ in mature spores, our results suggest that these
germination regulators may be localized to the outer forespore membrane, which likely frac-
tionates with the coat (Fig 9), raising the intriguing possibility that GerS retains SleC at this
site. It will be interesting to determine in future work whether GerS acts as a direct or indirect
activator of SleC and/or whether GerS is necessary for SleC to recognize its cortex substrate, for
example by controlling the predicted modification of NAM residues to muramic acid 8-lactam
in the cortex [34,35], particularly since GerS lacks homology to other proteins aside from its
lipobox.

Although GersS carries a signal peptide that directs its secretion across mother cell-derived
membranes (Fig 9), SleC lacks a canonical N-terminal signal sequence. Thus, it is unclear how
SleC is transported across the outer forespore membrane so that it can bind its cortex substrate.
Similarly, how CspB is transported across this mother cell-derived membrane to cleave pro-
SleC, and how CspC is presumably translocated across this membrane to activate CspB,
remains unknown, since both CspB and CspC lack a canonical signal sequence.

Intriguingly, all the known germinant regulators in C. difficile, CspC, CspBA, SleC, and
Gers, are produced under the control of mother cell-specific sigma factors [40,42,61]. In con-
trast, the germination regulators of B. subtilis, the GerAA-AC complex and GerD, are all under
the control of the forespore-specific sigma factor 6 [69]. These observations suggest that the
topology of germination signaling differs significantly between C. difficile and B. subtilis. In B.
subtilis, the germinant receptors are located in the inner forespore membrane [70-72], since
decoated spores germinate efficiently [73]. Germinant sensing stimulates release of Ca-DPA
from the core through the inner forespore membrane-localized channel SpoVAC [13]; Ca-
DPA then activates the CwlJ cortex lytic enzyme [46]. In C. difficile, the germinant receptor
CspC, the germination protease CspB, the cortex hydrolase SleC, and the lipoprotein GerS, all
localize to the CE fraction (Fig 5). Thus, these regulators are unlikely to be associated with the
inner forespore membrane in contrast with B. subtilis. Since SleC cortex hydrolase activation
precedes Ca-DPA release in C. difficile (S5 Fig, [21,37]), the germinant signal appears to travel
from the outside-in, whereas in B. subtilis the signal appears to travel from the inside-out.

While our genetic analyses demonstrated that GerS is a key germination regulator in C. diffi-
cile, they also showed that Alr2, a putative alanine racemase, is dispensable for germination
(Fig 2). It should be noted that this observation does not exclude the possibility that Alr2 could
alter the sensitivity of C. difficile spores to L-alanine, which has been shown to function as a co-
germinant for C. difficle in vitro [74]. In B. anthracis and B. cereus, the Alr2 homolog alanine
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and CspB, likely localize to the cortex region and/or to the outer forespore membrane. The possible association of these regulators into a “germinosome”
complex [86] is designated by the bracket. The taurocholate (TA) germinant is depicted by the red star. Red arrows depict SleC-mediated cortex hydrolysis
from the outer forespore membrane to the inner forespore membrane. * lipidation event; ** signal peptide cleavage event; dashed arrow designates an

unknown event.

doi:10.1371/journal.ppat.1005239.g009

racemase converts L-alanine, a known germinant, to D-alanine to reduce the sensitivity of
spores to L-alanine germinant [43,44,75]. Whether Alr2 modulates C. difficile spore germina-
tion remains to be determined, in particular whether it functions in suppressing germination.
However, Howerton and Abel-Santos have shown that D-alanine is not an inhibitor of C. diffi-
cile spore germination [74], suggesting that Alr2 plays little role in C. difficile spore germination
or has an as-yet-unknown function.

In summary, in identifying a novel germination regulator conserved in C. difficile and other
Peptostreptococcaceae family members, our study reveals yet another difference between the
regulation of spore germination in C. difficile relative to B. subtilis and C. perfringens. While
many unanswered questions remain, cortex hydrolysis in C. difficile appears to be subject to an
additional level of regulation during germination by GerS. Thus, GerS could be a potential tar-
get for inhibiting C. difficile disease transmission, especially given its limited conservation in
spore-forming organisms.

Materials and Methods

Bacterial strains and growth conditions

C. difficile strains are listed in Table 1 and derive from the parent strain JIR8094, an erythromy-
cin-sensitive derivative of the sequenced clinical isolate 630. C. difficile strains were grown on
solid BHIS media, which consists of brain heart infusion media supplemented with yeast
extract and 0.1% (w/v) L-cysteine [76]. BHIS media was supplemented with taurocholate (TA;
0.1% w/v), thiamphenicol (5-10 pg/mL), kanamycin (50 pg/mL), cefoxitin (16 pg/mL), FeSO,4
(50 uM), and/or erythromycin (10 pg/mL) as indicated. Cultures were grown at 37°C, under
anaerobic conditions using a gas mixture containing 85% N, 5% CO,, and 10% H,.

Sporulation was induced on solid media containing 70% BHIS and 30% SMC (90 g Bacto-
Peptone, 5 g protease peptone, 1 g NH,SO,, 1.5 g Tris base, 15 g agar per liter) [77], as previ-
ously described. For strains carrying pMTL83151 derivatives, sporulation was induced on
70:30 media containing 5 ug/mL thiamphenicol.

HB101/pRK24 strains were used for conjugations and BL21(DE3) strains were used for pro-
tein production. E. coli strains (Table 1) were routinely grown at 37°C, shaking at 225 rpm in
Luria-Bertani broth (LB). Media was supplemented with chloramphenicol (20 pg/mL), ampi-
cillin (50 ug/mL), or kanamycin (30 ug/mL) as indicated.

E. coli strain construction

E. coli strains are listed in Table 1; all primers are listed in S1 Table. For disruption of gerS and
alr2, a modified plasmid containing the retargeting group II intron, pCE245 (a gift from C.
Ellermeier, University of Iowa), was used as the template. Primers for amplifying the targeting
sequence from the template carried flanking regions specific for each gene target and are listed
as follows: gerS (#1122, 1123, 1124 and 532, the EBS Universal primer (Sigma Aldrich) and
alr2 (#1385, 1386, 1385 and 532). The resulting retargeting sequences were digested with BsrGI
and HindIII and cloned into pJS107 [21], which is a derivative of pJIR750ai (Sigma Aldrich).
The ligations were transformed into DH50 and confirmed by sequencing. The resulting plas-
mids were used to transform HB101/pRK24.
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Table 1. Strains and Plasmids used in this study.

Strain

#

Strain name

C. difficile strains

11 JIR8094

35 SPo0A™

47 sleC™

278 gerS™

111 JIR8094/EV

330 gerS™/EV

425 alr2™

520 gerS~/gerS

574 gerS/single

630 gerS™/ASP

632 gerS™/C22S

E. coli strains

4 DH5a

269 pET28a

373 pET22b-CPDSacl

531 HB101/pRK24

556 DH5a/pJS107

686 pMTL83151

892 BL21(DE3)

951 pJS107/gerS

982 pET22b-cspC_opt-
CPD

1112 pET28a-gerS

1266 pJS107-alr2

1373 pMTL83151-gerS
(dual)

1396 pMTL83151-single

1434 pMTL83151-C22S

1435 pMTL83151-ASP

Plasmids
pET28a
pMTL83151
pJS107
pMTL83151
pCE245

doi:10.1371/journal.ppat.1005239.t001

Relevant genotype or features

erm-sensitive derivate of 630

JIR8094 spo0A::ermB

JIR8094 sleC::ermB

JIR8094 gerS::ermB

JIR8094 carrying pMTL83151 empty vector

JIR8094 gerS::ermB/pMTL83151

JIR8094 alr2::ermB

JIR8094 gerS::ermB/pMTL83151-acpS-CD3465-gerS
JIR8094 gerS::ermB/pMTL83151-gerS

JIR8094 gerS::ermB/pMTL83151-acpS-CD3465-ASPgerS
JIR8094 gerS::ermB/pMTL83151-acpS-CD3465-gerS(C22S)

F— ®80/lacZAM15 A(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK—, mK+) phoA supE44 \- thi-

1 gyrA96 relA1
pET28a in DH5a
pET22b-CPD encoding MARTXy,. toxin 3442-3650 aa

F- mcrB mrr hsdS20(rB- mB-) recA13 leuB6 ara-13 proA2 lavYl galK2 xyl-6 mtl-1 rpsL20

carrying pRK24

pJS107 in DH5a

pMTL83151 in HB101/pK424

F—ompT hsdSB(rB—, mB-) gal dcm (DE3)
pJS107-gerS targeting bp 177 in HB101/pK424
pET22b-cspC codon optimized fused to CPD

pET28a-gerS encoding 66—591 aa (no signal peptide)
pJS107-alr2 targeting bp 666 in HB101/pK424
pMTL83151-acpS-CD3465-gerS in HB101/pK424

pMTL83151-Proximal promoter-gerS in HB101/pK424
pMTL83151-Dual promoter-acpS-CD3465-gerS(C22S) in HB101/pK424
pMTL83151-Dual promoter-acpS-CD3465-gerS(ASP) in HB101/pK424

IPTG-inducible expression plasmid, Kan®

Multi-copy complementation plasmid, Cam”

TargeTron construct based on pJIR750ai (group Il intron ermB::RAM, [trA); catP
pCB102, Tra™; catP

TargeTron construct based on pJIR750ai (group Il intron ermB::RAM, ltrA); catP

Source or
reference

(83]
[40]
(23]
This study
[23]
This study
This study
This study
This study
This study
This study

D. Cameron

M. Bogyo
[78]
C. Ellermeier

[21]

[23]
Novagen
This study
This study

This study
This study
This study

This study
This study
This study

Novagen

(84]

[21]

N. Minton, [84]
C. Ellermeier

To construct the dual promoter complementation construct (54 Fig), primers #1464 and
1466 were used to amplify an ~1.8 kB construct containing acpS, CD3465, gerS, and 360 bp
upstream of acp$ using 630 genomic DNA as the template. To construct the single promoter
complementation construct, primers #1667 and 1466 were used to amplify gerS containing 367
bp upstream of gerS using 630 genomic DNA as the template. The gerS C22S and ASP comple-
mentation constructs were made using PCR splicing by overlap extension (SOE). For C228,
primer pair #1464 and 1734 was used to amplify the 5’ SOE product (containing the C22S
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mutation), while primer pair #1733 and 1466 was used to amplify the 3’ SOE product (contain-
ing the C22S mutation). The resulting fragments were mixed together, and flanking primers
#1464 and 1466 were used to generate the dual promoter complementation construct that
encodes the C22S mutation. To construct the ASP complementation construct, SOE primers
#1464 and 1727 were used to generate a 5’ fragment; primers #1726 and 1466 were used for the
3’ SOE product. The flanking primers #1464 and 1466 were used to amplify the ASP comple-
mentation construct, which deletes the region encoding residues 2-22. All complementation
constructs were digested with NotI and Xhol and ligated into pMTL83151 digested with the
same enzymes.

To construct a strain producing GerS$ for antibody production, primer pairs #1278 and 1173
were used to amplify gerS lacking the signal peptide sequence using genomic DNA as the tem-
plate. The resulting PCR products were digested with Ndel and Xhol, ligated to pET28a, and
transformed into DH5a. The resulting pET28a-gerS plasmid was used to transform BL21
(DE3) for protein production. To construct a strain for generating mouse anti-CspC antibod-
ies, primer pairs #1128 and 1166 were used to amplify codon-optimized cspC using pJS148 as
the template. The resulting PCR products were digested with Ndel and Sacl, ligated to
pET22b-CPDSacl [78], and transformed into DH5a. The resulting pET22b-cspC_opt-CPD
was transformed into BL21(DE3) for protein production.

Bioinformatic analyses

Homologs of C. difficile 630 GerS (CD3464) were identified using NCBI psi-blast. Homologs
identified in Peptostreptococcaceae family members gave an e-value < e %, whereas the next
closest homolog in a Clostridium spp. gave an e-value > ¢>”. When GerS lacking its N-terminal
signal peptide was used in the psi-blast search, the difference in e-value cut-offs was < e for
Peptostreptococcaceae family members and the next closest homolog in a Clostridium spp.
gave an e-value > e >,

C. difficile strain construction

C. difficile strains were constructed using TargeTron-based gene disruption as described previ-
ously (S2 Fig, [40,79]). TargeTron constructs in pJS107 were conjugated into C. difficile using
E. coli HB101/pRK24 as the donor strain. HB101/pRK24 strains containing the appropriate
pJS107 construct were grown aerobically to exponential phase in 2.5 mL of LB supplemented
with ampicillin (50 pg/mL) and chloramphenicol (10 pg/mL). Cultures were pelleted, trans-
ferred into the anaerobic chamber, and resuspended with 1.5 mL of late-exponential phase C.
difficile JIR8094 cultures (grown anaerobically in BHIS broth). The resulting cell mixture was
plated as seven 100 pL spots onto pre-dried, pre-reduced BHIS agar plates. After overnight
incubation, all growth was harvested from the BHIS plates, resuspended in 2.5 mL pre-reduced
BHIS, and twenty-one 100 pL spots per strain were plated onto three BHIS agar plates supple-
mented with thiamphenicol (10 pg/mL), kanamycin (50 pg/mL), and cefoxitin (16 pug/mL) to
select for C. difficile containing the pJS107 plasmid. After 24-48 hrs of anaerobic growth, single
colonies were patched onto BHIS agar supplemented with thiamphenicol (10 pg/mL), kanamy-
cin (50 ug/mL), and FeSO, (50 uM) to induce the ferredoxin promoter of the group II intron
system. After overnight growth, patches were transferred to BHIS agar plates supplemented
with erythromycin (10 pug/mL) for 24-72 hrs to select for cells with activated group II intron
systems. Erythromycin-resistant patches were struck out for isolation onto the same media and
individual colonies were screened by colony PCR for a 2 kb increase in the size of gerS (primer
pair #1212 and 1173) and alr2 (primer pair #1352 and 1359) (S2 Fig).
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C. difficile complementation

HB101/pRK24 donor strains carrying the appropriate complementation construct were grown
in LB containing ampicillin (50 pg/mL) and chloramphenicol (20 pg/mL) at 37°C, 225 rpm,
under aerobic conditions, for 6 hrs. C. difficile recipient strains gerS™ and alr2™ containing
group II intron disruptions, were grown anaerobically in BHIS broth at 37°C with gentle shak-
ing for 6 hrs. HB101/pRK24 cultures were pelleted at 2500 rpm for 5 min and the supernatant
was removed. Pellets were transferred to the anaerobic chamber and gently resuspended in 1.5
mL of the appropriate C. difficile culture. The resulting mixture was inoculated onto pre-dried,
pre-reduced BHIS agar plates, as seven 100 pL spots for 12 hrs. All spots were collected anaero-
bically and resuspended in 1 mL PBS. One hundred microliters of the resulting suspension was
spread onto pre-dried, pre-reduced BHIS agar plates supplemented with thiamphenicol (10 pg/
mL), kanamycin (50 pg/mL), and cefoxitin (10 ug/mL), five plates per conjugation. Plates were
monitored for colony growth for 24-72 hrs. Individual colonies were struck out for isolation
and analyzed for complementation using the heat resistance assay to test for functional spore
formation and Western blot analysis. A minimum of two independent clones from each com-
plementation strain was phenotypically characterized.

Sporulation

C. difficile strains were grown from glycerol stocks on BHIS plates supplemented with TA
(0.1% w/v), or with TA and thiamphenicol (5 pg/mL) for strains carrying pMTL83151-derived
vectors. Colonies that arose on BHIS agar plates were then used to inoculate 70:30 agar plates
containing 5 ug/mL thiamphenicol for 17-24 hrs depending on the assay. Sporulating cells
were harvested into PBS, pelleted, and resuspended in PBS for visualization by phase contrast
microscopy and further processing as needed.

Heat resistance assay

C. difficile strains were induced to sporulate as described above and functional (heat-resistant)
spore formation was measured as previously described [41] with the following exceptions.
After 24 hrs of growth, cells were harvested into 600 uL of pre-reduced PBS. The sample was
divided into two tubes. One tube was exposed to 60°C for 25-30 minutes. Heat-treated and
untreated cells were serially diluted, and dilutions were plated on pre-reduced BHIS-TA plates.
After ~20 hrs colonies were counted, and cell counts were determined. The percent of heat-
resistant spores was determined based on the ratio of heat-resistant cells to total cells, and
heat-resistance efficiencies were determined based on the ratio of heat-resistant cells for a
strain compared to wildtype. Results are based on a minimum of three biological replicates.
The raw data for the heat resistance assay is provided in S2 Table.

Spore purification

Sporulation was induced by growing C. difficile strains on 70:30 plates (with 5 pg/mL thiam-
phenicol when appropriate for 2-3 days, and spores were harvested in ice-cold water as previ-
ously described [23,76] with the following modifications. Spores were incubated on ice
overnight following multiple water washes. The following day, they were pelleted and treated
with DNase (New England Biolabs) at 37°C for 30 minutes. Following DNAse treatment, the
spores were purified on a HistoDenz (Sigma Aldrich) gradient, evaluated for purity by phase
contrast microscopy, and the optical density of the suspension was measured at ODg. Spores
were stored in water at 4°C.
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Germination assay

Approximately 1 x 107 spores (equivalent of 0.35 ODgq units) were re-suspended in 100 uL of
water. Ten microliters of the suspension was serially diluted in PBS, and dilutions were plated
onto pre-reduced BHIS-TA. After ~22 hrs, colonies arising from germinated spores were
counted. Germination efficiency represents the number of CFUs produced by germinating
spores of a given strain relative to wild type. Results are based on a minimum of three biological
replicates. The remaining 90 pL of the spores were pelleted and resuspended in EBB buffer for
Western blot analyses.

To assess the effect of heat treatment on spore viability, the procedure above was followed,
with the exception that 2 x 10” spores were re-suspended in 200 pL of water (equivalent of 0.7
ODyg units) and the sample was divided into two. One half was incubated at 60°C for 30 min,
while the other half was left untreated.

The effect of taurocholate concentration on spore germination efficiency was determined by
re-suspending ~4 x 107 spores (~1.4 ODgq units) in 160 uL of water in triplicate. Two hundred
microliters of BHIS was added to each spore suspension. Ninety microliters of this suspension
was added to either 10 pL of water, 0.1% TA, 1% TA, or 10% TA (to give a final concentration
0f 0.01% TA, 0.1% TA, or 1% TA). The samples were incubated for 20 min at 37°C, and a
10 pL aliquot was removed for 10-fold serial dilutions into PBS. Ten microliters of the serial
dilutions were plated on BHIS to determine the number of spores that had initiated germina-
tion. The serial dilutions for untreated and 1% TA-treated spores were also plated on BHIS-TA
plates to determine the maximum level of spore germination. Spore germination was maximal
following exposure to 1% TA. The remaining samples were pelleted for Western blot analysis.

Antibody production

The anti-GerS used in this study was raised against GerS-His lacking its signal peptide in rab-
bits by Cocalico Biologicals (Reamstown, PA). The anti-CspC mouse antibodies were raised
against recombinant untagged CspC in mice by Cocalico Biologicals (Reamstown, PA). Ger-
S-His was purified from E. coli strains #1112 using Ni**-affinity resin as previously described
[23]. Recombinant, untagged CspC was purified using the autoprocessing CPD tag as previ-
ously described [78] followed by gel filtration [23].

Western blot analyses

C. difficile cell pellets were processed as previously described [40,60]. Briefly, pellets were
freeze-thawed three times, diluted in EBB buffer (8 M urea, 2 M thiourea, 4% (w/v) SDS, 2%
(v/v) B-mercaptoethanol), and incubated at 95°C for 20 min with vortexing every 5 min. C. dif-
ficile spores (~1 x 10°) were resuspended in EBB buffer, which can extract proteins in all layers
of the spore including the core. Samples were centrifuged for 5 min at 15,000 rpm and 4X sam-
ple buffer (40% (v/v) glycerol, 1 M Tris pH 6.8, 20% (v/v) B-mercaptoethanol, 8% (w/v) SDS,
and 0.04% (w/v) bromophenol blue), was added. Samples were incubated again at 95°C for
5-15 minutes with vortexing followed by centrifugation for 5 min at 15,000 rpm. The samples
were resolved by SDS-PAGE and transferred to Millipore Immobilon-FL membrane. The
membranes were blocked in Odyssey Blocking Buffer. Rabbit polyclonal rabbit anti-GerS or
anti-GPR [40] antibodies were used at a 1:1,000 dilution; anti-CspB [23] antibodies were used
ata 1:2,500 dilution, and the anti-SleC [23] antibody was used at a 1:5,000 dilution. Polyclonal
mouse anti-SpoIVA [80] and anti-CspC antibodies were used at 1:2,500 dilutions. IRDye
680CW and 800CW infrared dye-conjugated secondary antibodies were used at 1:20,000 dilu-
tions. The Odyssey LiCor CLx was used to detect secondary antibody infrared fluorescence
emissions.
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RNA processing

RNA from WT/EV, gerS™/EV, gerS/gerS, gerS™/C22S, and gerS™/ASP strains grown for 24 hrs
on 70:30 sporulation media containing thiamphenicol (5 ug/mL) was extracted for qRT-PCR
analyses of the gerS transcript. RNA was extracted using a FastRNA Pro Blue Kit (MP Biomedi-
cal) and a FastPrep-24 automated homogenizer (MP Biomedical). Contaminating genomic
DNA was depleted using three successive DNase treatments, and mRNA enrichment was done
using an Ambion MICROBExpress Bacterial mRNA Enrichment Kit (Invitrogen). Samples
were tested for genomic DNA contamination using quantitative PCR for rpoB. Enriched RNA
was reverse transcribed using Super Script First Strand cDNA Synthesis Kit (Invitrogen) with
random hexamer primers.

Quantitative RT-PCR

Transcript levels of gerS and rpoB (housekeeping gene) were determined from cDNA templates
prepared from 3 biological replicates of WT/EV, spo0A™/EV, gerS™/EV, gerS™/gerS, gerS™/C22S,
and gerS™/ASP strains. Gene-specific primer pairs for gerS (#1278 and #1173), alr2 (#1668 and
#1356), and rpoB [40] were used. Quantitative real-time PCR was performed (as described by
[41]. Briefly, using Maxima ™ SYBR™ Green qPCR Master Mix (Thermo Scientific), 50 nM
of gene specific primers, and an ABI PRISM 7900HT Sequence Detection System (Applied Bio-
systems). Transcript levels were normalized to the housekeeping gene rpoB using the standard
curve method.

Fluorescence microscopy

For live cell fluorescence microscopy studies, C. difficile strains were harvested in PBS, pelleted,
and resuspended in PBS. For characterization of mutant phenotypes, cells were resuspended in
PBS containing 1 pg/mL FM4-64 (Molecular Probes) and 15 pg/mL Hoechst 33342 (Molecular
Probes). All live bacterial suspensions (4 pL) were added to a freshly prepared 1% agarose pad
on a microscope slide, covered with a 22 x 22 mm #1 coverslip and sealed with VALAB (1:1:1
of vaseline, lanolin, and beeswax) as previously described [41,81].

DIC and fluorescence microscopy was performed using a Nikon PlanApo V¢ 100x oil
immersion objective (1.4 NA) or a Nikon PlanApo V¢ 60x oil immersion objective (1.4 NA) on
a Nikon Eclipse Ti2000 epifluorescence microscope. Multiple fields for each sample were
acquired with an EXi Blue Mono camera (QImaging) with a hardware gain setting of 1.0 and
driven by NIS-Elements software (Nikon). Images were subsequently imported into Adobe
Photoshop CS6 for minimal adjustments in brightness/contrast levels and pseudocoloring.

Artificial germination assay

Artificial germination was determined using thioglycollate and lysozyme treatment. About 1 x
10° spores were pelleted at 8,000 RPM for 3 min, resuspended in 250mM thioglycollate, and
incubated at 50°C for 30 min based on previously methods developed [21,58]. Spores were
washed with 150 uL of PBS, pelleted, resuspended in 150 pL (2 mg/mL) lysozyme and incu-
bated at 37°C for 15 min. Equivalent numbers of spores for each strain were incubated at the
indicated temperatures without thioglycollate or lysozyme treatment for the untreated sample.
The spore samples were plated on either BHIS or BHIS-TA. Natural germination represents
the number of spores in the untreated sample that outgrew to form colonies on BHIS-TA
media. Artificial Germination represents the number of thioglycollate/lysozyme-treated spores
that germinated and outgrew to form colonies on BHIS media.
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Decoating assay

About 1 x 10” spores (~0.35 ODg) were pelleted and resuspended in 30 uL of decoat buffer
(0.1 M H3BO; pH 10.0, 1% SDS, 2% B-ME) [57]. The sample was incubated for 30 min at 37°C
and then pelleted. The supernatant, representing the “coat-extractable” (CE) fraction, was
removed, and the pellet was washed in 20 puL decoat buffer and incubated for 10 min. The sam-
ple was re-pelleted, and the supernatant was added to the CE; 40 pL of EBB was added to the
pooled fractions. The decoated spores were re-suspended in 90 uL EBB to produce the cell
lysate (pellet) fraction. For the input fraction, representing whole spore lysate, equal numbers
of spores were pelleted and resuspended in 90 uL EBB. All samples were boiled for a minimum
of 15 min, followed by centrifugation and sample resuspension. Fractions were pelleted one
more time before the samples were resolved by SDS-PAGE and analyzed by Western blotting
as described above.

Cortex hydrolysis assay

Cortex hydrolysis was analyzed by transmission electron microscopy for untreated spores (0°)
and 15’ and 45’ after germinant addition. About 4 x 10 spores (1.4 ODgj units) were resus-
pended in 160 uL of water in triplicate. Two hundred microliters of BHIS was added to each
spore suspension. Forty microliters of water was added to one sample, while 40 pL of 10% taur-
ocholate (w/v) was added to the remaining samples. The spores were incubated under anaero-
bic conditions for the indicated time point after which a small sample was removed for
visualizing by phase-contrast microscopy and plating on BHIS and BHIS-TA. The remainder
of the sample was pelleted and re-suspended in osmium tetroxide fixative for TEM analysis as
previously described [60]. TEM grids for each sample analyzed were prepared as previously
described [41]. A minimum of 50 spore pictures chosen at random were analyzed for each
strain observed. To account for asymmetrical spore shapes, two orthologous cortex lengths
were measured such that a minimum and maximum cortex thickness was obtained for every
spore. Cortex length was defined as the distance between the outer most germ cell wall and the
cortex outer edge. The minimum and maximum measurements were averaged for each spore
and the upper and lower values were discarded. The cortex length reported represents the aver-
age of these measurements.

Ca-DPA release assay

To evaluate the amount of Ca-DPA released in response to germinant relative to the total
amount of Ca-DPA observed in the spore core, a modified Ca-DPA release assay was adopted
from [21]. About 2x107 spores from each strain were re-suspended in (i) 1 mL of germination
buffer (0.3 m M (NH,),SO,, 6.6 mM KH,POy,, 15 mM NaCl, 59.5 mM NaHCOs, and 35.2 mM
Na,HPO,) and incubated at 37°C for 30 min (background); (ii) 1 mL of germination buffer con-
taining 10% freshly prepared taurocholate and 10 mM glycine and incubated at 37°C for 30 min
(DPA release); (iii) 1 mL of germination buffer and incubated at 100°C for 1 hr (total DPA).
After incubation, samples were spun down at 15,000 RPM for 2 min. 700 pL was transferred to
UV clear cuvettes, and the A,;, was determined. The % Ca-DPA release was determined by sub-
tracting the background DPA release value from the germinant containing DPA release value
and dividing by total DPA. Total DPA measured in wild type was set as 100% total DPA.

O.D. kinetics assay

Approximately 1 x 107 spores (0.48 ODg units) were resuspended in BHIS to a total volume
of 1100. The sample was divided into two: 540 pL was added to a cuvette containing 60 uL of
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water, while the other sample was added to a cuvette containing 60 uL of 10% taurocholate.
The samples were mixed, and the ODgg, was measured every 3-6 mins for 45 min.

Virulence studies

All animal studies were performed with prior approval from the Texas A&M University Insti-
tutional Animal Care and Use Committee. Female Syrian golden hamsters (80-120 g) were
housed and tested for C. difficile susceptibility as previously described [21,82]. To induce C. dif-
ficile infection, hamsters were gavaged with 30 mg/kg clindamycin prior to C. difficile spore
inoculum. After 5 days, 10 hamsters per C. difficile strain tested were gavaged with 1,000 spores
and monitored for signs of disease. Hamsters showing disease symptoms (wet tail, poor fur
coat and lethargy) were euthanized by CO, asphyxia followed by thoracotomy as a secondary
means of death.

Ethics statement

All animal procedures were performed with prior approval from the Texas A&M Institutional
Animal Care and Use Committee under the approved Animal Use Protocol number 2014-
0085. Animals showing signs of disease were euthanized by CO, asphyxia followed by thora-
cotomy as a secondary means of death, in accordance with Panel on Euthanasia of the Ameri-
can Veterinary Medical Association. Texas A&M University’s approval of Animal Use
Protocols is based upon the United States Government’s Principles for the Utilization and Care
of Vertebrate Animals Used in Testing, Research and Training and complies with all applicable
portions of the Animal Welfare Act, the Public Health Service Policy for the Humane Care and
Use of Laboratory Animals, and all other federal, state, and local laws which impact the care
and use of animals.

Supporting Information

S1 Fig. Representative images of Integrated Genome Viewer software [87] used to visualize
RNA-Seq data [41]. Histograms of RNA sequence reads obtained for the indicated strains are
shown in grey. The direction of transcription is indicated by the angle bracket. gerS and alr2
are under the control of mother cell-specific ¢ [40,41,61].

(TIF)

S2 Fig. Generation of gerS™ and alr2™ strains using Targetron gene disruption. (A) Sche-
matic of the Group II Intron system [79] used for insertional mutagenesis of gerS and alr2. (B)
Colony PCR of wildtype, gerS™, and alr2” strains using primers that flank the gene of interest.
The Group II Intron is ~2 kb.

(TIF)

S3 Fig. Sporulation of gerS™ and alr2™ strains is similar to wild type. Fluorescence micros-
copy analysis of wild type, spo0A~, gerS™, and alr2™ sporulating cells. Strains were grown on
sporulation media for 20 hrs and visualized by live differential interference contrast (DIC). The
nucleoid was stained with Hoechst (blue), and membranes were stained with FM4-64 (red).
Orange arrows designate forespores that have not progressed beyond asymmetric division (flat
polar septa); blue arrows designate cells that stain with both Hoechst and FM4-64; yellow
arrows designate forespore compartments that exclude Hoechst but stain with FM4-64; and
white arrows designate forespores that are DIC-bright and exclude both Hoechst and FM4-64.
Scale bars represent 5 um.

(TTF)
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S4 Fig. Plasmid complementation of gerS™. (A) Schematic of constructs used to assay for
gerS™ complementation. Dual (gerS) designates a complementation construct that includes 2
potential gerS promoters and the upstream genes acpS and CD3465. The P; promoter has been
mapped by RNA-Seq transcriptional start site mapping [42]. Single designates a complementa-
tion construct where gerS transcription is driven from the P; promoter alone. (B) Western blot
analyses of gerS™ complementation strains grown on sporulation media for 22 hrs. The strains
carry empty vector (EV) or the indicated complementation constructs. The efficiency of heat-
resistant spore formation was determined for each strain relative to wildtype from three biolog-
ical replicates. H.R. = heat resistance.

(TIF)

S5 Fig. gerS™ does not release Ca-DPA in response to germinant. Spores isolated from wild-
type carrying empty vector (WT/EV) and gerS™ carrying empty vector (gerS™/EV) or a gerS
complementation construct (gerS™/gerS) were analyzed for total Ca-DPA content and Ca-DPA
release in response to taurocholate germinant and glycine co-germinant. The amount of Ca-
DPA released by wildtype spores after boiling for 1 hr was set to 100% total Ca-DPA. Percent
Ca-DPA release represents the A, value after response to germinant incubation relative to
the total DPA value obtained for a given strain. The results represent the average of 4 biological
replicates.

(TIF)

S6 Fig. gerS transcript levels in gerS™ complementation strains. Transcript levels of the gerS
were analyzed by qRT-PCR for RNA isolated from wildtype carrying empty vector (WT/EV)
or gerS™ carrying either empty vector (gerS™/EV) or the indicated complementation constructs
induced to sporulate for 24 hrs. Transcript levels were normalized to the housekeeping gene
rpoB using the standard curve method. Data represents the average of three biological repli-
cates. Error bars indicate the standard error of the mean. n.a. indicates not applicable, since the
region amplified spans the disrupted gerS gene.

(TIF)

S7 Fig. Effect of heat-treatment on gerS™ spore germination. Spores isolated from wildtype
carrying empty vector (WT/EV) or gerS™ carrying either empty vector or the indicated comple-
mentation constructs were heat-treated for 30 min at 60°C prior to plating on germination
media. No statistically significant changes occurred between untreated () or heat-treated (+)
spores for a given strain with the exception of gerS™ spores carrying empty vector (gerS™/EV).
Results represent the average of three biological replicates (** p < 0.01).

(TTF)

S8 Fig. Comparison of germination initiation rates in gerS complementation strains. Puri-
fied spores from the indicated strains were re-suspended in BHIS. Germination was induced by
the addition of taurocholate (1% final concentration). The ratio of the ODgq at a given time
relative to the ODg at time zero is plotted. The data represent the average of three indepen-
dent experiments, and error bars indicate the standard deviation for each time point measured.
(TIF)

S1 Table. Primers used in this study.
(DOCX)

S2 Table. Raw data from heat-resistant spore formation assays.
(DOCX)
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