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Abstract

We consider the influence of extra dimensions on the force in Casimir pistons. Suitable analytical

expressions are provided for the Casimir force in the range where the plate distance is small, and

that where it is large, compared to the size of the extra dimensions. We show that the Casimir

force tends to move the center plate toward the closer wall; this result is true independently

of the cross-section of the piston and the geometry or topology of the additional Kaluza–Klein

dimensions. The statement also remains true at finite temperature. In the limit where one wall of

the piston is moved to infinity, the result for parallel plates is recovered. If only one chamber is

considered, a criterion for the occurrence of Lukosz-type repulsion, as opposed to the occurrence

of renormalization ambiguities, is given; we comment on why no repulsion has been noted in some

previous cosmological calculations that consider only two plates.
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I. INTRODUCTION

In recent years Casimir pistons have received an increasing amount of interest because

they allow the unambiguous prediction of forces, free of the divergences that often plague

Casimir calculations. In their modern form they were introduced by Cavalcanti [5] in a

two-dimensional setting. Namely, in his paper a Casimir piston consists of a rectangular

box divided by a movable partition into two compartments, A and B, of dimensions a × b

and (L−a)×b, respectively. Imposing Dirichlet boundary conditions, as L → ∞ it is shown

that the piston is attracted to the nearest end of the box. Higher-dimensional pistons have

been considered with various boundary conditions [11, 14, 28, 29, 38, 39, 42]. Hertzberg et

al showed that in three dimensions for perfect metallic boundary conditions the rectangular

piston is attracted to the closest base [28, 29]; for pistons with rectangular cross sections

and Dirichlet or Neumann boundary conditions see also [11, 12]. The same conclusion was

reached in [14] for perfect magnetic conductor (infinitely permeable) boundary conditions

in a rectangular piston of arbitrary dimension. Finally, a unified treatment reached the

same conclusion for a scalar field with periodic, Dirichlet, or Neumann boundary conditions

and an electromagnetic field with perfect electric conductor or perfect magnetic conductor

boundary conditions [38]. However, with the judicious choice of a perfectly conducting

piston inside a closed cylinder of arbitrary cross section with infinitely permeable walls, or

a Dirichlet piston with Neumann walls, etc., a repulsive force is found [37, 39, 50]; those

results generalize the famous observation of Boyer [2] for parallel plates of unlike nature.

This work mostly considered pistons of rectangular cross section, where closed answers can

be obtained. An exception is [42] where it was shown that in three dimensions a piston

of arbitrary cross section, with all surfaces perfectly conducting, is attracted to the closest

wall.

In the limit where the transversal dimensions as well as one of the walls is sent to infinity

the configuration of two parallel plates is obtained. The scalar Casimir force between parallel

plates in the presence of compactified extra dimensions has been used to put restrictions

on the size of the extra dimensions [6, 7, 20, 21, 31, 44]; for more recent discussions of

perfectly conducting parallel plates affecting the five-component electromagnetic field in

five dimensions (reaching different conclusions) see [13, 45]. The Casimir effect was also

used to argue against the possibility that vacuum energy plays the role of a cosmological
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constant responsible for the observed dark energy [8, 41, 46]; cutoff scales that could produce

the needed dark energy led to the prediction of repulsive Casimir forces at distances between

the plates where attraction is verified experimentally [3, 36, 43].

In this article we consider three-dimensional pistons of arbitrary cross section in the

context of Kaluza–Klein models. We show that in a scalar field theory with Dirichlet or

Neumann boundary conditions the piston is attracted to the closest wall and that this state-

ment holds independently of the cross-section of the piston, of the geometry and topology

of the additional Kaluza–Klein dimensions (with one minor caveat), and of the tempera-

ture. We use zeta function techniques [4, 9, 16, 17, 27, 34] to find closed answers for the

Casimir force and to show these results. In the Appendix indications are made how to use

path sums (or images) and an ultraviolet cutoff to reach the same conclusions. It should be

noted that mathematically the Kaluza–Klein dimensions and the transverse dimensions of

the macroscopic piston play very similar roles, only their respective magnitudes relative to

the plate separation being quantitatively significant.

The correction to the force due to the additional dimensions is exponentially damped as

long as the distance between the plates is large compared to the size of the extra dimensions.

However, if the distance is comparable to or smaller than the size of the extra dimensions the

standard Casimir force in the space of the full dimension is found. The crossover between

the two regimes is complicated, and different representations clearly showing the different

behavior are provided. The expansion in terms of the ratio of distance between the plates

over size of other dimensions clearly shows how the geometry of the cross section and of the

Kaluza–Klein dimensions enters.

Furthermore, it is shown that a Lukosz-type repulsive force [40] can appear only in a

naive calculation where just one chamber of the piston is taken into account; for related

remarks see [28, 29]. Moreover, an unambiguous prediction in such a case is possible only

if a particular geometric invariant of the extra dimensions vanishes. A crucial point is that

this issue arises in the presence of Kaluza–Klein dimensions even when the large transverse

dimensions are infinite; indeed, it is even more cogent there than for a macroscopic box. The

present paper developed from a commentary [23] on these points as they arose in the papers

of Cheng [6, 7], and it fulfills our pledge there to publish the details of our calculations. There

is some overlap with an article by Teo [48] that appeared on the archive in the meantime

and gives special attention to the finite temperature theory. The recent cosmological papers
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[20, 21, 31, 45] do not explicitly consider the outer chamber of a piston, but nevertheless

they do not report a repulsive force; we investigate the reason for that apparent discrepancy.

The article is organized as follows. We start by considering parallel plates in the presence

of extra dimensions. We first find the Casimir force resulting from the space between the

plates only; the features just outlined are derived. We then add the contributions from

the exterior space to obtain the generically attractive force between the plates. Section IV

generalizes the results to an arbitrary cross-section of the piston. Results for plate distances

large, respectively small, compared to the size of the extra dimensions are given. For the case

of a torus as Kaluza–Klein manifold more explicit results are provided. In the Conclusions

we summarize the main results of the article and add pertinent remarks about the finite-

temperature case.

II. PARALLEL PLATES IN KALUZA–KLEIN MODELS: CONTRIBUTIONS

FROM BETWEEN THE PLATES

Let M = IR3 × N . We want to consider a piston geometry that lives in the three-

dimensional real space, and where there are additional dimensions described by the smooth

Riemannian manifold N of dimension d. We realize the parallel plates as obtained from a

piston geometry with appropriate dimensions sent to infinity: Considering one chamber of

the piston with two dimensions already sent to infinity, only two parallel plates a distance

D apart remain. The correct answer for the parallel plates is obtained by adding up answers

for D = a and D = L− a sending L → ∞. In this section we deliberately consider only one

chamber to highlight the serious flaws of this procedure.

We consider a scalar field model with Dirichlet boundary conditions on the plates. The

relevant eigenvalue spectrum of the Laplacian on M then is

ω2 = k2
1 + k2

2 +
(nπ

D

)2

+ λ2
i ,

where n and i are positive integers, k2
1 + k2

2 comes from the two free transversal dimensions

in IR3, (nπ/D)2 results from the Dirichlet plates (D = a for the left chamber and D = L−a

for the right chamber), and λ2
i are the eigenfrequencies in the additional dimensions,

−∆Nϕi = λ2
iϕi. (2.1)
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The zeta function (density) associated with this spectrum is

ζ(s) =
1

4π2

∞
∫

−∞

dk1

∞
∫

−∞

dk2

∞
∑

n=1

∞
∑

i=1

[

k2
1 + k2

2 +
(nπ

D

)2

+ λ2
i

]−s

. (2.2)

Performing the k1 and k2 integration we find

ζ(s) =
1

4π(s− 1)

∞
∑

n=1

∞
∑

i=1

[

(nπ

D

)2

+ λ2
i

]−s+1

. (2.3)

In order to write down the necessary analytical continuation of this expression, as is standard,

a resummation of the n-summation is applied. In that process, the zero modes λj = 0 need

separate treatment. Letting g0 be the degeneracy of the zero eigenstate and assuming that

λi ≥ 0 we can write

ζ(s) =
g0

4π(s− 1)

(

D

π

)2s−2

ζR(2s− 2) (2.4)

+
1

4π(s− 1)

∞
∑

n=1

∞
∑

i=1

′ [
(nπ

D

)2

+ λ2
i

]−s+1

,

where the prime at the i-summation indicates that the modes with λj = 0 are to be omitted

from the summation. We rewrite the n-summation as

∞
∑

n=1

=
1

2

(

∞
∑

n=−∞

− (n = 0)

)

,

and the n = 0 term causes the occurrence of the zeta function related to the eigenvalue

problem (2.1) on N ,

ζN(s) =
∞
∑

i=1

′

λ−2s
i . (2.5)

Using a Mellin transform this allows the rewriting of (2.4) as

ζ(s) =
g0

4π(s− 1)

(

D

π

)2s−2

ζR(2s− 2)− 1

8π(s− 1)
ζN(s− 1)

+
1

8πΓ(s)

∞
∫

0

dt ts−2

∞
∑

n=−∞

∞
∑

i=1

′

e
−

h

(nπ
D )

2
+λ2

i

i

t
. (2.6)

The last term is suitably manipulated employing for α ∈ IR+ [30]

∞
∑

n=−∞

e−αn2

=

√

π

α

∞
∑

n=−∞

e−
π2n2

α . (2.7)
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As a result, for n 6= 0 we encounter the integral representation of modified Bessel functions

[26]

Kν(zx) =
zν

2

∞
∫

0

exp

{

−x

2

(

t+
z2

t

)}

t−ν−1dt.

This allows us to obtain

ζ(s) =
g0

4π(s− 1)

(

D

π

)2s−2

ζR(2s− 2)− 1

8π(s− 1)
ζN(s− 1) +

DΓ
(

s− 3
2

)

8π3/2Γ(s)
ζN

(

s− 3

2

)

+
Ds−1/2

2π3/2Γ(s)

∞
∑

n=1

∞
∑

i=1

′(
n2

λ2
i

)
1

2(s−
3

2)
K 3

2
−s (2Dnλi) . (2.8)

In order to find the Casimir energy, and then the force, for this setting, we need to

evaluate this expression about the value s = −1/2. Whereas the first and last term are

well defined at s = −1/2, and thus s = −1/2 can simply be substituted there, more care

is needed for the second and third term. From general theory, see e.g. [24, 34, 47], it is

known that ζN(s− 1) will have a pole at s = −1/2 and that ζN(s− 3/2) will not vanish at

s = −1/2. With s = −1/2 + ǫ and expanding about ǫ = 0 we therefore write

ζN(s− 1) = ζN

(

−3

2
+ ǫ

)

=
1

ǫ
Res ζN

(

−3

2

)

+ FP ζN

(

−3

2

)

+O(ǫ),

ζN

(

s− 3

2

)

= ζN(−2 + ǫ) = ζN(−2) + ǫζ ′N(−2) +O(ǫ2),

and so

1

s− 1
ζN(s− 1) = −2

3

([

1

ǫ
+

2

3

]

Res ζN

(

−3

2

)

+ FP

(

−3

2

))

+O(ǫ),

Γ
(

s− 3
2

)

Γ(s)
ζN

(

s− 3

2

)

= − 1

4
√
π

(

ζN(−2)

[

1

ǫ
− 1

2
+ 2 ln 2

]

+ ζ ′N(−2)

)

+O(ǫ).

This allows us to obtain

ζ

(

−1

2
+ ǫ

)

= −π2g0
720

1

D3
+

1

12π

(

Res ζN

(

−3

2

)[

1

ǫ
+

2

3

]

+ FP ζN

(

−3

2

))

− D

32π2

(

ζN(−2)

[

1

ǫ
− 1

2
+ 2 ln 2

]

+ ζ ′N(−2)

)

(2.9)

− 1

4π2D

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2
K2(2Dnλi).

The resulting force from one chamber therefore reads

F = −1

2

∂

∂D
ζ

(

−1

2
+ ǫ

)

= − π2g0
480D4

+
1

64π2

(

ζN(−2)

[

1

ǫ
− 1

2
+ 2 ln 2

]

+ ζ ′N(−2)

)

+
1

8π2

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2

∂

∂D

1

D
K2(2Dnλi). (2.10)
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Because of the pole at ǫ = 0 in (2.10), for ζN(−2) 6= 0 the zeta method leaves a finite

renormalization ambiguity proportional to ζN(−2). From a theoretical point of view no

prediction about the sign of the force can be made. In case ζN(−2) = 0 the force appears

to be finite. (In the setting of an ultraviolet cutoff (see the Appendix) there are additional

divergences, but we shall not discuss them here.) This can happen under certain restrictions

on the geometry of the manifold N . If we define KN(t) to be the heat kernel associated with

the eigenvalue problem (2.1), its asymptotic expansion reads

KN(t) =

∞
∑

i=1

e−λ2
i t ∼

∞
∑

l=0,1/2,1,...

bl t
l− d

2 . (2.11)

The heat-kernel coefficients are determined in terms of geometric tensors of N and its bound-

ary, if present; for a collection of known results see [24, 25, 34, 49]. Using

ζN(−2) = 2bd+4

2

= 0

[47], we thus have a geometric condition on when the force becomes finite. When this

vanishing occurs, ζ ′N(−2) < 0 indicates that the force is definitely negative (attractive). If

ζ ′N(−2) > 0, asymptotically for D ≫ 1 the force seems to be positive and turns negative at

some critical distance Dcrit. We come back to this discussion in Section V when N is chosen

to be a torus and where indeed ζN(−2) = 0.

III. PARALLEL PLATES IN KALUZA–KLEIN MODELS: ADDING EXTERIOR

CONTRIBUTIONS

Let us now take into account the second chamber of the piston. (In the present context

that merely means adding a third plate at a large distance.) Denoting the plate separations

by a and L − a and the associated zeta functions by ζa(s) and ζL−a(s), from (2.9) one has

immediately

ζa

(

−1

2
+ ǫ

)

+ ζL−a

(

−1

2
+ ǫ

)

= −π2g0
720

1

a3
− π2g0

720

1

(L− a)3

+
1

6π

(

Res ζN

(

−3

2

)[

1

ǫ
+

2

3

]

+ FP ζN

(

−3

2

))

− L

32π2

(

ζN(−2)

[

1

ǫ
− 1

2
+ 2 ln 2

]

+ ζ ′N(−2)

)

(3.1)
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− 1

4π2a

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2
K2 (2anλi)

− 1

4π2(L− a)

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2
K2 (2(L− a)nλi) .

Despite the fact that the Casimir energy in general needs renormalization, the force this

time is always well-defined no matter what the geometry or topology of N looks like. In

particular,

F = −1

2

∂

∂a

[

ζa

(

−1

2
+ ǫ

)

+ ζL−a

(

−1

2
+ ǫ

)]

= − π2g0
480a4

+
π2g0

480(L− a)4
(3.2)

+
1

8π2

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2

∂

∂a

1

a
K2(2anλi)

+
1

8π2

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2

∂

∂a

1

L− a
K2(2(L− a)nλi).

The force vanishes for a = L/2, is negative for a < L/2 and is positive for a > L/2; that is,

the plate at a is always attracted to the closer wall. As L → ∞ the very simple result

F = − π2g0
480a4

+
1

8π2

∞
∑

n=1

∞
∑

i=1

′
λ2
i

n2

∂

∂a

1

a
K2(2anλi) (3.3)

is obtained. The force is negative independently of any details of the topology or geometry

of the extra dimensions (within the confine λi ≥ 0).

IV. PISTONS WITH FINITE CROSS SECTION

In this section we show that a negative force is guaranteed whenever the boundary condi-

tions on the plates are both Dirichlet (or both Neumann), no matter what the cross section

C and the manifold N are. Assume two parallel plates of some arbitrary shape within a

cylinder of that same cross section, along with general Kaluza–Klein dimensions. With

Dirichlet boundary conditions on the plates (at separation D), this gives rise to a spectrum

of the form

ω2 =
(nπ

D

)2

+ µ2
i . (4.1)
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The part µ2
i comes from the manifold T = C ×N . Proceeding exactly as before, denoting

ζT (s) =
∞
∑

i=1

′

µ−2s
i ,

we obtain

ζ(s) = π−2sD2sg0ζR(2s)−
1

2
ζT (s) +

DΓ
(

s− 1
2

)

2
√
πΓ(s)

ζT

(

s− 1

2

)

+
2Ds+1/2

√
πΓ(s)

∞
∑

n=1

∞
∑

i=1

′(
n2

µ2
i

)1/2(s−1/2)

K1/2−s (2Dnµi) . (4.2)

The zeta function for the piston is the sum of two such contributions with D replaced by a

and L− a respectively. For the force this gives

F = − πg0
24a2

+
πg0

24(L− a)2
(4.3)

+
1

2π

∞
∑

n=1

∞
∑

i=1

′
µi

n

∂

∂a
K1(2anµi)

+
1

2π

∞
∑

n=1

∞
∑

i=1

′
µi

n

∂

∂a
K1(2(L− a)nµi).

Again it is clearly seen that even in this generalized scenario the piston is attracted to the

closest wall. In the limit L → ∞, the force reduces to

F = − πg0
24a2

+
1

2π

∞
∑

n=1

∞
∑

i=1

′
µi

n

∂

∂a
K1(2anµi), (4.4)

which again is manifestly negative.

The essential difference between this calculation and that of Sec. III is that we have only

one infinite dimension instead of three; up to this point the transverse and the Kaluza–Klein

dimensions have played identical roles. If we had carried out the analog of Sec. II, we would

have encountered similar results. In particular, the famous repulsive force of Lukosz [40]

corresponds to rectangular cross section and N = ∅.
Although the representation (4.3) is most suitable for reading off the sign of the force, it

is not useful numerically unless the plate separation is sufficiently large compared to other

scales. An expression suitable for reading off the small-a behavior is found by following

formally a procedure used for large-mass expansions [35], where the role of the mass is

played by the large parameter π/a. We first rewrite the zeta function associated with the
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spectrum (4.1) as

ζ(s) =
1

Γ(s)

∞
∑

n=1

∞
∑

i=1

∞
∫

0

dt ts−1e
−

h

(nπ
D )

2
+µ2

i

i

t
. (4.5)

We note that the small-D expansion follows from the small-t behavior of the heat-kernel,

K(t) =

∞
∑

i=1

e−µ2
i t ∼

∞
∑

l=0,1/2,1,...

al t
l− d+2

2 ;

note that the spectrum µ2
i results from a second-order partial differential operator in dimen-

sion (d+ 2).

Substituting this expansion into (4.5), asymptotically as D → 0 we find

ζ(s) =
1

Γ(s)

∞
∑

l=0,1/2,1,...

al Γ

(

s + l − d+ 2

2

)(

D

π

)2s+2l−d−2

ζR(2s+ 2l − d− 2).

We evaluate this about s = −1/2 using well known properties of the Γ-function and of the

Riemann zeta function [26]. The answers for d even and odd look slightly different; we

denote by
∑

l
d the summation over l = 0, 1, ..., (d+ 2)/2, l > (d+ 4)/2 for d even, but over

l = 1/2, 3/2, ..., (d + 2)/2, l > (d + 4)/2 for d odd. Furthermore, ⌊x⌋ denotes the greatest

integer not larger than x. With s = −1/2 + ǫ, we get

ζ

(

−1

2
+ ǫ

)

= − 1

2
√
π

∑

l

d
al Γ

(

l − d+ 3

2

)(

D

π

)2l−d−3

ζR(2l − d− 3)

+

⌊ d+3

2 ⌋
∑

j=1

a d+3

2
−j

(−1)j+1

j!
√
π

( π

D

)2j

ζ ′R(−2j)

+ a d+3

2

(

1

4
√
πǫ

+
ln(4D)− 1

2
√
π

)

+ a d+4

2

(

− D

4πǫ
+

D

2π

(

1− γ + ln
( π

D

))

)

+O(ǫ).

This result is used to find the force from the left chamber. The contribution to the force

from the right chamber, where D = L− a with L → ∞, follows easily to be

F2 =
1

8πǫ
ζT (−1) +

1

8π
(ζ ′T (−1) + ζT (−1) [−1 + ln 4])

= − 1

8π
a d+4

2

(

1

ǫ
− 1 + ln 4

)

+
1

8π
ζ ′T (−1).
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Here we used ζT (−1) = −a(d+4)/2. As before, when the forces are added, the terms singular

as ǫ → 0 cancel and, asymptotically as a → 0, the unambiguous answer for the force is

found,

F =
1

2π3/2

∑

l

d
al Γ

(

l − d+ 1

2

)

(a

π

)2l−d−4

ζR(2l − d− 3)

+
1

π3/2

⌊ d+3

2 ⌋
∑

j=1

a d+3

2
−j

(−1)j+1

(j − 1)!

(π

a

)2j+1

ζ ′R(−2j) (4.6)

− 1

4
√
πa

a d+3

2

+
1

8π
ζ ′T (−1)− 1

4π
a d+4

2

(

ln

(

2π

a

)

− γ − 1

2

)

.

Explicit expressions for given cross sections C and Kaluza–Klein manifolds N are easily

obtained from known expressions for the heat-kernel coefficients [24, 34, 49].

In particular, if there are no additional dimensions, N = ∅, and Neumann boundary

conditions are imposed on the cylinder walls, then

a0 = (4π)−1vol(C), a1/2 =
1

4
(4π)−1/2vol(∂C),

and the first few terms of the expansion reproduce the results in [28, 29].

If the manifold N is nonempty and has no boundary, this time imposing Dirichlet bound-

ary conditions on the cylinder walls, one easily finds

a0 = (4π)−
d+2

2 vol(C)vol(N), a1/2 = −1

4
(4π)−

d+1

2 vol(∂C)vol(N),

and the leading two terms in the asymptotic expansion of the force read

F ∼ 2−d−3π
d+3

2 vol(C)vol(N)a−d−4







Γ
(

−d+1
2

)

ζR(−d− 3) d even

2(−1)
d+1
2

( d+1

2 )!
ζ ′R(−d− 3) d odd

−2−d−3π
d+2

2 vol(∂C)vol(N)a−d−3







(−1)d/2

(d/2)!
ζ ′R(−d− 2) d even

1
2
Γ
(

−d
2

)

ζR(−d− 2) d odd
(4.7)

Higher orders would involve the extrinsic curvature of ∂C and the curvature ofN . It is clearly

seen that as soon as the plate separation gets small compared to the sizes of other dimensions,

the Casimir force between the plates is significantly modified, revealing information about

the volume, and at higher order the curvature, of the Kaluza–Klein dimensions.
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V. TORUS AS KALUZA–KLEIN MANIFOLD

The series over the Bessel functions in eqs. (2.10), (3.3) and (4.4) are numerically suitable

as long as the argument of the Bessel function grows sufficiently fast with the eigenvalues. If

that is the case, taking into account only a few eigenvalues will be enough as contributions

are exponentially damped. However, in order to analyze how the Casimir force behaves

when the distance between the plates is smaller than the size of the extra dimensions, a

different procedure is necessary, as we have seen, and in general only asymptotic answers

can be obtained.

For the case where N = T d it is possible to obtain closed answers that allow consideration

of several limits exactly. For simplicity let us assume an equilateral torus of radius R,

with the two macroscopic transverse dimensions effectively infinite. The relevant eigenvalue

spectrum then reads

ω2 = k2
1 + k2

2 +
(nπ

D

)2

+
1

R2

d
∑

i=1

n2
i . (5.1)

For reasons explained above, the previously obtained representations involving the Bessel

functions cannot be used easily to analyze the range where D ≪ R. If only the asymptotic

behavior as D → 0 is wanted, the use of (4.6) is sufficient. For the torus, however, it is pos-

sible to recover also the exponentially damped contributions as D → 0. In fact, all technical

tools have been provided to find closed expressions in that regime. In particular it is again

the resummation (2.7) that is relevant, but it should be applied to the toroidal dimensions

and not to the dimension in which Dirichlet conditions are applied. Applying resummation

to all d-sums originating from the torus, the result for the left chamber corresponding to

eq. (2.8) reads

ζ(s) =
π

3d
2
−2s+1Γ

(

s− d
2
− 1
)

4Γ(s)

(

R

D

)d

D2s−2ζR(2s− d− 2) (5.2)

+
π

d
2
−1

2Γ(s)

(

R

D

)d/2

(R D)s−1

×
∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ...+ n2

d

)
1

2(1−s+ d
2)

K1+ d
2
−s

(

2π2R

D
n
√

n2
1 + ... + n2

d

)

.

For the right chamber we are mostly interested in the limit D → ∞, and so eq. (2.8) is the

12



appropriate form. Because

λ2
i =

1

R2

d
∑

j=1

n2
j ,

the zeta function ζN(s) turns out to be the Epstein function [18, 19]

Zd(s;R) = R2s

∞
∑

n1,...,nd=−∞

′ (n2
1 + ... + n2

d)
−s. (5.3)

Its analytical continuation is very well understood [1, 15, 16, 32, 33] and we get

ζ(s) =
π1−2sD2s−2

4(s− 1)
ζR(2s− 2) (5.4)

− 1

8π(s− 1)
Zd(s− 1;R) +

D

8π3/2

Γ
(

s− 3
2

)

Γ(s)
Zd

(

s− 3

2
;R

)

+
Ds−1/2Rs−3/2

2π3/2Γ(s)

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ... + n2

d

)
1

2(s−
3

2)
K 3

2
−s

(

2Dn

R

√

n2
1 + ...+ n2

d

)

.

Using this representation (5.4) for both chambers, and noting g0 = 1, we get immediately

from eq. (3.3) the force

F = − π4

480a4
(5.5)

+
1

8π2R2

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′ n2
1 + ...+ n2

d

n2

∂

∂a

1

a
K2

(

2an

R

√

n2
1 + ...+ n2

d

)

.

This representation is particularly suitable for R < a because the contributions from K2 are

exponentially damped. It shows that as long as the size of the extra dimensions is small

compared to the separation of the plates, the correction to the well-known Casimir force

between parallel plates is very small.

The above representation is not suitable for the range with plate separation smaller than

R, because K2(z) ∼ 2/z2 as z → 0. As we will see, the leading contribution as a → 0 will

then come from the series. A better suited representation is obtained by rewriting eq. (5.5)

using the fact that eqs. (5.2) and (5.4) equal each other. This first shows

Ds−1/2Rs−3/2

2π3/2Γ(s)

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ...+ n2

d

)
1

2(s−
3

2)
K 3

2
−s

(

2Dn

R

√

n2
1 + ... + n2

d

)

=
π

3d
2
−2s+1Γ

(

s− d
2
− 1
)

4Γ(s)

(

R

D

)d

D2s−2ζR(2s− d− 2)

+
π

d
2
−1

2Γ(s)

(

R

D

)d/2

(R D)s−1

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ...+ n2

d

)
1

2(1−s+ d
2)

13



×K1+ d
2
−s

(

2π2R

D
n
√

n2
1 + ...+ n2

d

)

− π1−2sD2s−2

4(s− 1)
ζR(2s− 2) +

1

8π(s− 1)
Zd(s− 1;R)− D

8π3/2

Γ
(

s− 3
2

)

Γ(s)
Zd

(

s− 3

2
;R

)

.

Analytically continuing this to s = −1/2, one obtains

1

8π2R2

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′ n2
1 + ... + n2

d

n2

∂

∂a

1

a
K2

(

2an

R

√

n2
1 + ... + n2

d

)

=

− (d+ 3)
π

3

2
(d+1)

16

(

R

a

)d

a−4







Γ
(

−d+3
2

)

ζR(−d− 3), d even

2(−1)
d−1
2

( d+3

2 )!
ζ ′R(−d− 3), d odd

+
π2

480a4
− 1

64π2
Z ′

d (−2;R)

+
π

d−3

2 R
d−3

2

8

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ... + n2

d

)
3+d
4 ∂

∂a
a−

3+d
2 K d+3

2

(

2π2R

a
n
√

n2
1 + ...+ n2

d

)

.

Using this in eq. (5.5) then gives the force in the form

F =
π

3

2
(d+1)

8

(

R

a

)d

a−4







Γ
(

−d+1
2

)

ζR(−d− 3), d even

2(−1)
d+1
2

( d+1

2 )!
ζ ′R(−d− 3), d odd

− 1

64π2
Z ′

d (−2;R) (5.6)

+
π

d−3

2 R
d−3

2

8

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′

(

n2

n2
1 + ...+ n2

d

)
3+d
4 ∂

∂a
a−

3+d
2 K d+3

2

(

2π2R

a
n
√

n2
1 + ...+ n2

d

)

.

This result shows that if a ≪ R, the compactness of the extra dimensions can be ignored,

and the force is the standard Casimir force, but in the space of the full dimension, namely

of dimension 3 + d. The first term agrees with the general result (4.7) when specialized to

N = T d.

For this example it is clear that ζN(−2) = Zd(−2;R) = 0, because the torus is a flat

manifold without boundary. Therefore the force resulting from one chamber only, as given

in (2.10), is finite. Using the reflection formula for the Epstein function [1] it is obtained as

F = − π2

480a4
+

Γ
(

d
2
+ 2
)

32π6+d/2R4
Zd

(

d

2
+ 2; 1

)

(5.7)

+
1

8π2R2

∞
∑

n=1

∞
∑

n1,...,nd=−∞

′
n2
1 + ...+ n2

d

n2

∂

∂a

1

a
K2

(

2an

R

√

n2
1 + ...+ n2

d

)

,

For a ≫ R this force, obtained by neglecting the second chamber, is positive and asymp-

totically constant. Considering N to be a rectangle with Dirichlet or Neumann boundary
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conditions leads to the same result [6]. Whatever may be the case for a macroscopic con-

ducting box (where there may not be an external piston shaft), in a Kaluza–Klein cosmology

the extra dimensions are indisputably present outside the parallel plates as well as inside.

Therefore, formula (5.7) surely must be rejected as spurious.

However, the papers [20, 21, 31, 45] did not take the outer chamber of the Kaluza–Klein

piston into account, but nevertheless they did not find a repulsive force. Closer examination

(see, for example, eqs. (24) and (25) of [45], or p. 5 of [20]) shows that all those authors have

indeed subtracted the term (linear in a) that we here consider to be the piston correction.

Their reasoning is to subtract the Casimir energy (caused by the small compact dimensions)

that would exist in the region between the plates if the plates were not there. In the

Cavalcanti piston, the analogous reasoning would be to make the piston shaft infinite in

both directions, ignore the outer chambers, remove the plates, and subtract the energy in

the inner chamber. We believe that our analysis is more convincing.

VI. CONCLUSIONS

In this article we have analyzed forces occurring in pistons of arbitrary cross section in

a cosmological Kaluza–Klein setting. We have shown that irrespective of the details of the

cross section and of the geometry and topology of the Kaluza–Klein manifold, the piston

is always attracted to the closest wall. This implies that parallel plates always attract

no matter what the properties of the additional dimensions are (except for the physically

mild restriction that the eigenvalues λ2
i or µ2

i all be nonnegative). Repulsive forces between

Dirichlet plates can occur only in a naive calculation that takes into account only one of the

chambers; see the explanations at the ends of Secs. II and V. Furthermore, we have derived

an asymptotic expansion of the force for small distances between the piston and the wall,

eq. (4.7). It is clearly seen how the geometries of the cross section and the Kaluza–Klein

manifold enter the answer. In this limit the plates notice the dimensions of all space and

the force obtained is the standard Casimir force in the space of the full dimension.

All results for the force remain valid if Neumann boundary conditions on both plates

instead of Dirichlet boundary conditions are considered, because the Neumann and Dirichlet

spectrum differ only by a-independent eigenvalues.

The attraction of the piston to the closest wall is further enhanced by finite-temperature
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contributions. Assuming a piston with arbitrary cross section, the relevant finite temperature

spectrum reads

ω2 =

(

2πj

β

)2

+
(nπ

D

)2

+ µ2
i , j ∈ ZZ,

where β is the inverse temperature. The energy associated with the system is defined to be

[9, 27]

E = −1

2

∂

∂β

[

ζ ′β(0) + ζβ(0) lnµ
2
]

,

ζβ(s) as the zeta function arising from this spectrum and µ is a renormalization scale. Using

as is standard a resummation of the Matsubara sum, the following form can be obtained

[10]:

E =
1

2
FPζ

(

−1

2

)

+ Res ζ

(

−1

2

)

ln
(µe

2

)

+

∞
∑

n=1

∞
∑

i=1

λi,n

(eβλi,n − 1)
,

where λ2
i,n =

(

nπ
D

)2
+ µ2

i and ζ(s) is the zeta function analyzed in Section IV. The temper-

ature contribution is a decreasing function of D [48]. Thus, when the contributions of the

two chambers are added, the finite-temperature part, just like the zero-temperature part

discussed previously, tends to move the piston toward the closer wall.

APPENDIX A: THE METHOD OF IMAGES

As in Section V, consider two infinite transverse dimensions; one Dirichlet plate separa-

tion, D; and d periodic Kaluza–Klein dimensions, all of circumference 2πR. The system can

easily be treated by the methods of [22] (for example).

The free cylinder kernel (a certain Green function for the Laplacian in IRd+4) is

T0 = Cd+3 t[t
2 + ‖x− x′‖2]−(d+4)/2, Cd+3 =

Γ
(

d+4
2

)

π
d+4

2

. (A1)

Thus

− 1

2

∂T0

∂t
=

1

2
Cd+3

{

−[t2 + ‖x− x′‖2]−(d+4)/2 + (d+ 4)t2[t2 + ‖x− x′‖2]−(d+6)/2
}

.(A2)

The corresponding Green function T (t,x,x′) in a rectangular geometry is given exactly by

a sum over all classical paths from x′ to x, or, equivalently, by a sum over T0 displaced to
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appropriate “image charges”. In the limit t ↓ 0, formally the energy density is

T00 = − 1

2

∂T

∂t

∣

∣

∣

∣

t=0

= −1

2

∑

images

Cd+3‖x− x′‖−(d+4). (A3)

For a careful study of divergences one would maintain the last factor in the form [t2 + ‖x−
x′‖2]−(d+4)/2. Let Bd = −1

2
Cd+3 .

Let N = (N1, . . . , Nd) ∈ ZZd, and let k̂ be the unit vector perpendicular to the plates in

the physical space (the z direction). Periodic boundary conditions are imposed by summing

displacements of formula (A3) over a periodic lattice, and the lattice of Dirichlet images is

a difference of two periodic lattices:

T00 = Bd

∞
∑

N1=−∞

· · ·
∞
∑

Nd=−∞

∞
∑

N=−∞

{‖x− (x+ 2Dk̂N + 2πRN)‖−(d+4))

− ‖x− (x− 2zk̂− 2Dk̂N − 2πRN)‖−(d+4)}

= Bd

∞
∑

N1=−∞

· · ·
∞
∑

Nd=−∞

∞
∑

N=−∞

{‖2Dk̂N + 2πRN|−(d+4)

− ‖2zk̂ + 2Dk̂N + 2πRN‖−(d+4)}. (A4)

To get the energy per unit area one should integrate over z and over the periodic coordinates.

The latter amounts to multiplying by (2πR)d.

We now sketch the process of discarding divergent terms (which appear in the present

ultraviolet-cutoff method as negative powers of t, but were automatically eliminated by the

zeta-function regularization). The term N = 0, N = 0 is the free vacuum energy. The other

periodic terms with N = 0 (the analog of terms called PV in [22]) are (after the integration)

Bd(2πR)−4D
∑

N6=0

‖N‖−(d+4). (A5)

This expression (with D = a) will add to the corresponding term from the piston shaft (with

D = L − a) to give an energy per area independent of a, hence no pressure. Without the

shaft, however, (A5) (with D = a) gives a repulsive Lukosz pressure independent of a. The

remaining terms in the periodic orbit sum (the first term in the final version of (A4)) are

Bd(πR)d2−4D
∑

N 6=0

∑

N

‖πRN+Dk̂N‖−(d+4). (A6)

These are the PD and PH terms; (A6) (with D = a) is the main Casimir energy. With more

effort it could be shown to yield the same forces as found in Sec. V.
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In the terminology of [22] there are no VP, VD, or C terms in this problem, because there

are no reflections in the periodic directions. The last term in (A4) consists of HP terms

(N = 0) and HD terms. The first of these formally give the energy

− (constant)

∫ D

0

dz

∞
∑

N=−∞

|z +DN |−(d+4) = −(constant)

∫ ∞

−∞

|z|−(d+4)dz. (A7)

The integral (which would converge if we had kept t > 0) is independent of D and hence

gives no force. This is the surface energy of the plates (renormalizes their masses). Finally,

the HD terms, before integration over z, are

− Bd(πR)d2−4
∑

N6=0

∞
∑

N=−∞

‖(z +DN)k̂+ πRN‖−(d+4)

= −Bd(πR)d2−4
∑

N6=0

∞
∑

N=−∞

[(z +DN)2 + (πR)2‖N‖2]−(d+4)/2.

Upon integration the N sum again telescopes:

− Bd(πR)d2−4
∑

N6=0

∫ ∞

−∞

[z2 + (πR)2‖N‖2]−(d+4)/2 dz. (A8)

Again this contribution is independent of D (being a surface effect, albeit dependent on the

geometry of the extra dimensions). The HD energy does not contribute to the force, just as

in the original Cavalcanti piston (or single box).
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