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ABSTRACT Frequencies of meiotic configurations in cy-
togenetic stocks are dependent on chiasma frequencies in
segments defined by centromeres, breakpoints, and telomeres.
The expectation maximization algorithm is proposed as a
general method to perform maximum likelihood estimations
of the chiasma frequencies in the intervals between such
locations. The estimates can be translated via mapping func-
tions into genetic maps of cytogenetic landmarks. One set of
observational data was analyzed to exemplify application of
these methods, results of which were largely concordant with
other comparable data. The method was also tested by Monte
Carlo simulation of frequencies of meiotic configurations
from a monotelodisomic translocation heterozygote, assum-
ing six different sample sizes. The estimate averages were
always close to the values given initially to the parameters. The
maximum likelihood estimation procedures can be extended
readily to other kinds of cytogenetic stocks and allow the
pooling of diverse cytogenetic data to collectively estimate
lengths of segments, arms, and chromosomes.

The length of a chromosomal segment separating two markers
can be measured according to several criteria. One of them is
physical distance, recorded in arbitrary or standard units such
as microns. Another method is molecular in nature, in number
of base pairs, which can be transformed to physical units to the
extent that the packing ratio is known and constant. A
different kind of criterion is the occurrence of crossing-over.
The average number of crossovers per chromatid between two
markers is the number of morgans, and, if multiplied by 100,
the number of centimorgans (cM). The resulting recombina-
tion-related distances are strongly associated to physical
lengths, but there is not a one-to-one functional relationship
between them (1).

Historically, the first means used to measure the recombi-
national distance between markers was linkage analysis, using
segregation of markers among progeny as the means of
inference. Another means of constructing recombination-
related maps is cytological-i.e., chiasmata analysis, using
meiotic configurations as the means of inference. It may some
day be possible to map by counting recombination nodules
between molecular cytogenetic loci in latter stages of prophase
I, but technical limitations currently preclude this approach.
Approaches for mapping that are cytological in nature are

underdeveloped and largely underexploited. In this report we
initiate an approach based on frequencies of meiotic config-
urations in metaphase I cells. In conjunction with the use of
different cytogenetic stocks, this approach permits one to
estimate the frequency of a specific segment being chiasmate-
i.e., bearing at least one chiasma. The segments are defined by
cytogenetic landmarks-namely, telomeres, centromeres, and
breakpoints. Normal cytogenetic stocks, monotelodisomics,
translocation heterozygotes, monotelodisomic translocations,

tertiary monosomics, and inversions are some examples of the
cytotypes that can be used.
A generalized statistical method for analyzing meiotic con-

figurations to make inferences about chiasma frequencies and
map distances can be helpful in several instances. The mapped
centromeres, telomeres, and breakpoints can be used as cyto-
genetic landmarks for gene mapping. Other potential appli-
cations include the following: studies of genomic affinity
between related varieties or species, based upon differences in
chiasma frequencies; estimation of overall map lengths of
chromosomes and complete genomes, to predict the number of
polymorphic molecular markers needed for a saturated map;
analysis of chiasma interference; analysis of the effects of
different cytotypes and genotypes on the frequencies of chi-
asmata; evaluation of the effects of environmental factors on
chiasma frequencies; and analysis of relationships between
physical and genetic maps. For some types of investigation,
cytologically based analyses of recombination can be much
more efficient than recombination analysis based on marker
segregation, since observations can be made directly from
meiotic cells-i.e., obviating need for creating and growing
segregating populations.

This cytological means of mapping centromeres, telomeres,
and breakpoints may be preferred to the use of molecular
markers in linkage analysis in several instances. For example,
suitable gel-based markers or mapping populations may not be
available for targeting accurately cytogenetic loci of interest;
sometimes the only available polymorphic markers are from
interspecific crosses, recombinational behavior of which may
not reflect the intraspecific situation. Perhaps even more
important is that linkage analysis with molecular markers is
also usually more time-consuming.
The use of meiotic configurations for mapping is based on

the following rationale. Telomeres, centromeres, and break-
points in a given group of chromosomes define a set of
segments. From this set, a given combination of chiasmate
segments gives a specific configuration(s). By counting con-
figurations, information about chiasma frequencies is ob-
tained. However, the task is complicated by the fact that the
relationship between chiasmate segments and meiotic config-
urations is not always one-to-one. There are configurations
that can originate by more than one combination of chiasmate
and achiasmate segments.

Let us define two terms we used throughout the paper. For
a given cytogenetical condition ("cytotype") a configuration is
"nonambiguous" if and only if it arises from a unique combi-
nation of chiasmate and achiasmate segments. In contrast, a
configuration is "ambiguous" if it can arise from more than
one combination of chiasmate and achiasmate segments-i.e.,
nonuniquely. Ambiguous configurations are at the root of the
absence of an established statistical method to perform esti-
mations using all of the information provided by meiotic
configurations. As a matter of practice, there are situations in
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which reliable classification of a meiotic configuration cannot
be made beyond a limited set of alternatives, leading to
"binning" of visually indistinguishable configurations. Special
statistical techniques are required if the frequency data of
ambiguous or "binned" configurations are to be used to
estimate the overall frequencies of chiasmata.
A statistical approach to the use of meiotic configuration

data has been discussed by Sybenga (2-4). In those works, the
expected frequencies of the different configurations were

equated to the observed frequencies, assuming no chiasma
interference among segments. A description of a generalized
and systematic algorithm to perform the calculations was not
included, but the approach can be considered as moments
estimation (5). However, there are typically more equations
than unknowns, and an exact solution usually does not exist.
Menzel et al. (6) constructed a chromosome translocation

breakpoint map in disomic tetraploid cotton (Gossypium hir-
sutum L., 2n = 4x = 52) from meiotic configuration data. In
samples that involved configurations of ambiguous origin, they
calculated the minimum and the maximum frequencies of
chiasmata possible for the segment under consideration by,
respectively, attributing all or none of the ambiguous config-
urations to the presence (absence) of a chiasma in that
segment. Also, they stated that the recombination map lengths
of the six regions were slightly underestimated because the
total number of cells was used as the divisor to determine
frequencies. On the basis of empirical deduction, Stelly (7)
inferred that the overall map length reported by Menzel et al.
(6) must be an underestimate. The recently published recom-
bination map of restriction fragment length polymorphism
(RFLP) loci (8) confirmed that inference and indicated that
the genome of cotton is at least 60% longer than Menzel et al.
(6) estimated.

Here we present an algorithm that gives maximum likeli-
hood estimates of the probabilities of there being at least one
chiasma in a segment, for each of the different segments.
Description of the algorithm can be facilitated by considering
a monotelodisomic translocation heterozygote (TeNT)-e.g.,
a cytogenetic stock heterozygous for a reciprocal translocation
involving two chromosomes and a related telosome in the same
arm as the respective breakpoint (Fig. 1). The segments, as

defined by the centromeres, breakpoints, and telomeres, are
denoted by A, B, C, D, E, and F. Relative to the breakpoints,
A and C are the opposing arms, B and D are distal segments,
and E and F are the interstitial segments. For the TeNT, there
are 25 = 32 possible combinations of segments with or without
chiasmata; segment (arm) A is hemizygous due to the telosomy
and undergoes no homologous reciprocal exchange, so only
five regions (B-F) can undergo crossing-over. For a euploid
translocation heterozygote, there are twice as many combina-
tions-i.e., 64-to consider.
A nonambiguous configuration can be exemplified with the

chain of four chromosomes in a TeNT meiocyte, since it results
only if segments B-D are chiasmate (one or more chiasmata
each) and segments E and F are achiasmate (see configuration

A E FZS>

oSw" "no-fD
z.

FIG. 1. Pachytene representation of a monotelodisomic transloca-
tion heterozygote (TeNT), where each line represents two chromatids,
and the telosome is in the same arm as the breakpoint.

M17 in Table 1). An ambiguous configuration can be exem-
plified by a rod bivalent plus two univalents (a telosome and
a normal chromosome), in that it results when one or more
chiasmata occur in just one of the segments C, D, or F (see
configuration M16 in Table 1). Binning can be illustrated by
pooling configurations M14 and M16, respective occurrences of
which are not readily distinguished if unrelated chromosomes
of similar size and morphology also form rod and ring
bivalents. The maximum likelihood algorithm that is presented
here permits use of information provided by ambiguous and
binned configurations.

For the monotelodisomic depicted in Fig. 1, configurations
M1, M2, M4, M6, M8, M9, and M16 are ambiguous. Statistically,
one can opt to ignore or to use frequency data from ambiguous
and binned configurations. The maximum likelihood method
that is presented here permits use of these data, avoiding the
possibility of bias due to the use of only a subset of the available
data and reducing the variance of the estimations.

Likelihood Function

We are going to assume independence among the different
segments for the occurrence of chiasma-i.e., no interference.
Let n1, n2,.. . , nt be the observed numbers of cells bearing the
configurations M1, M2, . . ., Mt, respectively. Let Cik be the kth
set (combination) of chiasmate segments giving rise to the ith
meiotic configuration-i.e., the kth pattern of crossovers lead-
ing to the ith configuration. Let us state a function that
indicates the presence or absence of chiasma in a given
segment as follows: the indicator function of Cik, denoted by
Cik(-), has domain equal to the complete set of segments S =
{S1, S2, . . , Ss}, where s is the total number of distinguishable
segments that can form chiasmata, and counterdomain equal

Table 1. Meiotic configurations in a TeNT, their associated
combinations of segments with chiasmata, and observed and
expected frequencies

Chiasmate Frequency
Code Configuration segments Observed Expected

M1 X9 BCDEF, BCEF, CDEF 0 0.17

M2 }3 BDEF, BEF, DEF 0 0.01

M3 9I CEF 1 0.01

M4 31 EF, CE, BD 2 4.14

M5 Dl BCDE 0 0.57

M6 JS BCE, CDE 1 1.73

M7 YW BDE 0 0.03

M. Y. BE, DE, BF 1 0.14

M, J B, E 0 0.49

M10Ok BCDF 1 4.95

M11 F. BCF 0 0.61

M12 JC BDF 0 0.29

M13 - C,ODF 12 14.56

M14 COF 5 1.79

M}I's DF 4 0.84

M16 ]'3 C, D, F 37 36.20

M17 BBOD 78 67.89

MIS V\^. BC 6 8.32

M,9 P. CD 196 199.84

M20 none 0 1.42

The telosome is in the same arm as the breakpoint.
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to the set consisting of the two real numbers 0 and 1 and
defined by

J1 if Sj E Cik
IC,k( i) o0 if Sj 0 Cik

In other words, ICik(Sj) "indicates" binarily the presence (1) or
absence (0) of chiasma in segment Sj for the given (ik) combi-
nation of possible chiasmate segments. On the other hand, the
absence of chiasma in the given segment is indicated by

ICk(Si) = 1 - Ica-

Using the indicator function, the expected frequency of the ith
configuration can be written as follows:

mi s

I > H Pj IC&k(Si) + (1 - pi) kik(Si)
k=1 j=1

where mi (i = 1, 2, ..., t) is the number of different possible
sets (combinations) of chiasmate segments for the ith meiotic
configuration, and p1 is the probability of at least one chiasma
in the segment Sj. An mi = 1 will define a nonambiguous
configuration, whereas mi > 1 will define an ambiguous
configuration. For the TeNT example (Table 1), configuration
M3 is nonambiguous (m3 = 1) and has an expected frequency

f3 = PCPEPF (1 PB) (1 -PD),

whereas the configuration M6 is ambiguous (M6 = 2) and has
an expected frequency

f6 = PBPCPE(1 - PD) (1 - PF) + PCPDPE(l -PB) (1 - PF)

For a set of N meiotic cells, the likelihood function of p, the
vector of probabilities of at least one chiasma, is defined by

N!
L(p) n1!n2! ... nt!1ff2 *ft.

The values of p1 (j = 1, 2, . .. , s) in the interval (0, 1) that
maximize L(p) are the maximum likelihood estimates being
sought.

An Iterative Algorithm

Analytic maximization of the mentioned likelihood function is
quite complex in most cases, so we used an iterative numerical
algorithm to solve this problem-namely, the expectation maxi-
mization (EM) algorithm described by Dempster et al. (9). This
simple but elegant algorithm is suitable for incomplete data and
has been shown to give maximum likelihood solutions. It has been
used successfully in several analogous genetic situations (10-12).
A good "seed value" in the EM algorithm can expedite conver-
gence and help to avoid local maxima that do not represent the
global maximum. Thus, we propose use of the following tech-
nique to obtain relatively good preliminary estimates.
We use data from specific pairs of nonambiguous configu-

rations that differ in chiasmate condition for only a single
segment. The frequency ratios of pairs of configurations can be
used singly or multiply to estimate the frequency of a segment
being chiasmate. For each chromosome segment Sj, define two
sets of nonambiguous configurations, Rj and Kj, whose inter-
section is empty and with the following characteristics: (i) All
the configurations in Rj indicate the presence of chiasma in Sj.
(ii) For each configuration in Rj there is one and only one
corresponding configuration in Kj. This element in Kj is
originated by the same combination of segments with chias-
mata as the related element of Rj, except for the segment Si.
There are no elements in Kj other than these. As an example

for segment D in the TeNT case, the meiotic configuration M13
is chiasmate in segments C, D, and F and is an element of RD,
whereas M14 is chiasmate in segments C and F but not D and
is the related element of KD.
The numbers of cells observed to have meiotic configura-

tions listed in sets Rj and Kj are then used to calculate the "seed
value" for segmentj:

nRj
Pi nRj + nK

This estimation states that the probability of segment j being
chiasmate equalspj, irrespective of the occurrence of chiasma
in other segments. Other information about the segments in
question can also be used to set up seeding information for the
EM algorithm.
The first step of the EM algorithm is the E step. The seeded

Pi estimates are used to calculate the expected number E[nck]
of each combination of chiasmate segments in ambiguous (or
binned) configurations. The number of cells having the con-
figuration is multiplied by the conditional probability of each
combination of chiasmate segments given that configuration.
This conditional probability is estimated as the expected
frequency of that combination over the sum of the expected
frequencies of all combinations giving rise to the common
meiotic configuration:

s

H [Pi Ic&k(Si) + (1 - Pj) IC,k (Si)]
j=1

E[nc,k] = ni
m, s

E fjp ici,(Sj) + (1 pi) Cize (Si)]
z=l j=l

In the M step, the maximization step, the probability of a
segment being chiasmate is reestimated for each segment. For
calculation, the expected numbers of combinations giving rise
to ambiguous configurations are temporarily taken as if they
were true observations. The probability of at least one chiasma
in segment Sj is estimated by adding the observed and esti-
mated numbers of cells in which the segment was chiasmate
and dividing by the total number of observations in the
experiment. With this new set of estimatedpj values, the E step
is started again; the cycling will stop at convergence.
Our maximum likelihood algorithm ends with the estima-

tions of the probabilities of at least one chiasma. Recombina-
tional map distances can then be calculated by transformation,
but the final result will depend on the particular function being
used and it will be considered, by functional invariance, the
maximum likelihood estimate of that function. Note, however,
that mapping functions may be inaccurate when applied to long
distances (4) and no global mapping function can be correct
everywhere (13).
Map distances can be estimated from the relationship pi =

1 - e-2a, as a = - (1/2)ln(1 - p), where p is the probability
of at least one chiasma in a given interval and a is its length
in morgans (2). This is the equivalent to use of Haldane's
mapping function (14): 2r = 1 -e-2a, where r, the recombi-
nation frequency between two markers, is equated to half the
probability of chiasmate condition.

Numerical Example

To illustrate the method, consider observations on 344 cotton
(Gossypium hirsutum L.) metaphase I meiotic cells (Table 1)
from a TeNT involving the telosome for the short arm of
chromosome 4 and a related reciprocal translocation involving
chromosomes 4 and 5 (TT04-05, line IV2).

Proc. Natl. Acad. Sci. USA 92 (1995)
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The seeded values used to start the EM algorithm, where the
subscript of p denotes the segment, were:

fnli +nlu + nl12 + nl17

PB=(nl0+ nl~ + n12 +n17,)+Qzl3 +n14+n15+ni9)=027

Pc

n5 + nio + nl3

(n5 + n10+ n13) + (n7 + nl2 + n15)
0.76,

PD
nl3 +n17 n14 n1=

0.89,

PE

PF

n3 n5

(n3 + n5) + (nI4 + n17)

ni0 + nill + nl3

(n,o + nil + n13) + (nl7 + n18 + n19)

0.01,

= 0.04.

For the E step one must calculate the expected numbers of
cells having the specific chiasma combinations that generate
the ambiguous configurations. Such calculations are shown for
the ambiguous configuration M16 (see Table 1); the subscript
of n represents a combination of segments with chiasmata.

Let us define a, 13, and y as:

a = -PB)PC(O -PD)(1 -PE)(1 -F),

= (1 -PB)(1 -1PC)PD(1 -PE)(1 PF),

Y = (1 -PB)(1 -jPC)(1 -PD)(1 3PE)PFF

Therefore the expectations are:

a

E[nc] = n16a + +
= 10.37,

E[nD] = nl6 + = 26.49,
1+ 3+ -y

E[lF]=l6a + 3 + y

Note that E[nc] + E[nD] + E[nF] = 37.
The M step reestimates the frequency of the chiasmate

condition for each segment. For each segment the summed
number of observations in which that segment was chiasmate,
including the expected numbers for combinations within am-

biguous configurations, is divided by the total number of cells.
For example, to reestimate PF, we have

PF =1/N)[n, + n2 + n3 +E[nBF] + n1o + ]Pnj + n12 + n13 + n14 + n15 + E[nF] 007

The E step is reexecuted with the new estimates. The results
for five cycles are summarized in Table 2 including the
log-likelihood in each cycle (without the logarithm of the
multinomial constant).

After 20 cycles, the estimation exhibited convergence, at
values of 0.254 for PB, 0.945 forpc, 0.891 forpD, 0.008 for pE,
and 0.068 for PF. The vector of first derivatives of the log-
likelihood evaluated on our estimates was (0, 0, 0, 0, 0) with
12-digit accuracy, which is a good indication that the point is
indeed a maximum. The inverse of the information matrix was
used to estimate standard errors according to the maximum
likelihood theory. The procedure will be presented elsewhere;
meanwhile the reader is referred to basic texts (15, 16). The
estimates were 0.024 for SPB' 0.019 for SPc, 0.023 for SPD' 0.005

for SPE' and 0.014 for SPF.
Using the transformation proposed by Sybenga (2), which

assumes a Poisson distribution of chiasmata, we estimated map

lengths of 14.6 cM for region B, 145.2 cM for region C, 110.7
cM for region D, 0.4 cM for region E, and 3.5 cM for region
F. Our estimates of the lengths of chromosome 5 segments C
and D are more than twice the lengths reported graphically by
Menzel et al. (6); however, there is agreement when compared
to our nontransformed estimates. The difference is that they
did not use any mapping function. Our results and those of
Menzel et al. (6) concordantly indicated that interstitial seg-
ments E (chromosome 4) and F (chromosome 5) are recom-
binationally very short. A significant disparity seems to exist
for the short arm of chromosome 4 (segments B and E), which
Menzel et al. (6) estimated to be 50 cM, whereas we estimated
it to be 15 cM. The discordance could reflect effects of the
telosomy.
There is a very good agreement between our estimations and

the recently published RFLP map of cotton by Reinisch et al.
(8). From our results the length of chromosome 5 can be
estimated as the sum of the lengths for segments C, D, and
F-i.e., 259.4 cM, which is close to the reported map length of
244.3 cM. Due to the use of the telosome, the overall length
of chromosome 4 cannot be estimated from our Te4sh NT4-5
cytogenetic data alone, and the RFLP loci have not yet been
placed relative to the centromeres.

In this example we tested the algorithm with 10 random
guesses and the estimations always converged to the same
point, so it seems that good seeding may be dispensable in
some instances-e.g., when we have only a few ambiguous
types.
Expected frequencies of the different configurations calcu-

lated with our estimations are presented in Table 1. Appre-
ciable excesses of M14 and M17 configurations were found. In
addition, the observed frequency of M1o was less than ex-
pected. Such departures do not collectively indicate failure of
the assumption of no interference among segments, because
configuration M14 originates by crossing-over in adjacent
segments, whereas configuration M17 originates by crossing-
over in nonadjacent segments. Configuration M1o is originated
by crossing-over in both, adjacent and nonadjacent segments.
A goodness-of-fit test was done with the likelihood ratio (5),
and a significant departure (P < 0.01) from expectation was
found. Misclassifications could have led to these results.
We also applied the algorithm to some data from rye, Secale

cereale, that involved binning, and allowed comparison to the
method of Sybenga (2). No good seeding values were available,
so we used 60 different sets of random "seeds" to start the EM
algorithm. In every instance, convergence occurred at one of
two different local maxima. Although the maximum likelihood
estimates differed from the moments estimates reported by
Sybenga (2), his estimates corresponded to those placed in the
lower local maximum of the likelihood function. We did not
find significant differences between the observed frequencies
of meiotic configurations and the expected ones generated by
our maximum likelihood method.

Simulation Results

To test the method further, we generated sets of observations
by Monte Carlo simulation for a TeNTwith the telosome in the
same arm, as the breakpoint. For each set, we estimated the
frequency of segments being chiasmate. A total of 300 simu-
lations were made for each of six sample sizes-namely, 50,
100, 150, 200, 250, and 300 cells. The true frequencies for the
segments were fixed at 0.3 forpB, 0.7 forpc, 0.9 forpD, 0.2 for
PE, and 0.1 for PF. For each sample size we calculated the
average estimations and their standard deviations (Table 3).
Given the considerable number of simulations, these standard
deviations provided good estimations of standard errors.
The average estimations were always very close to the true

values. In one case the two-sided t test (5) revealed a statis-
tically significant departure of the mean from the true param-

Genetics: Reyes-Valde's and Stelly
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Table 2. Iterative estimation of chiasma frequencies with the EM algorithm

Segment Log-

Cycle B C D E F likelihood

0 0.270 0.760 0.890 0.010 0.040 -496.840
1 0.253 0.902 0.934 0.008 0.068 -465.673
2 0.253 0.915 0.922 0.008 0.068 -464.481
3 0.253 0.923 0.913 0.008 0.068 -463.875
4 0.254 0.930 0.906 0.008 0.068 -463.559
5 0.254 0.934 0.902 0.008 0.068 -463.393

Results for five cycles are given.

eter. Nevertheless, the deviation was not big from a practical
standpoint and, since only 1 case in 36 exhibited a significant
departure, this could have occurred by chance. Therefore, one
cannot conclude that the method gives biased estimations.

Extensions and Limitations of the Algorithm

In situations when binning is used, a new pooled class is created
by the union of two or more possible meiotic configurations,
usually ones that are visually difficult to distinguish. To avoid
potential bias, no meiotic configuration that belongs to a
pooled class can belong to any other class. Otherwise, differ-
ential representation of component configurations could re-
sult, which would lead to erroneous estimation in the expec-
tation step-i.e., E[nckI].

Since the assumption in the model is that the frequencies of
chiasmata conditions among segments are statistically inde-
pendent, large departures from independence could give rise
to considerable error in estimations. Such errors would be
especially likely if there were a high frequency of ambiguous
or binned configurations. Errors could also arise if the cyto-
genetic condition affects chiasma frequencies. However, the
method described here can be used to detect such an effect.
Finally, as in recombination mapping, additional assumptions
are entailed by whatever mapping function is used to transform
the algorithm-derived estimates of pj (frequencies of the

Table 3. Statistics from 300 replications of simulations for a
monotelodisomic translocation, with different sample sizes (N)
and fixed frequencies of at least one chiasma of 0.3 for segment
B, 0.7 for C, 0.9 for D, 0.2 for E, and 0.1 for F

Segment

Parameter B C D E F

N = 50
Mean 0.294 0.709 0.882* 0.206 0.104
SD 0.074 0.087 0.080 0.063 0.042

N = 100
Mean 0.299 0.701 0.902 0.201 0.101
SD 0.049 0.056 0.046 0.045 0.029

N = 150
Mean 0.298 0.701 0.898 0.198 0.099
SD 0.041 0.043 0.038 0.036 0.023

N = 200
Mean 0.299 0.701 0.901 0.201 0.101
SD 0.034 0.038 0.031 0.032 0.022

N = 250
Mean 0.302 0.699 0.898 0.199 0.101
SD 0.028 0.034 0.029 0.026 0.020

N = 300
Mean 0.300 0.701 0.900 0.201 0.102
SD 0.028 0.030 0.025 0.025 0.018

*, P < 0.01.

chiasmate conditions) into the average number of chiasmata
per segment and centimorgans.
The algorithm can be extended to cases where ambiguities

arise from uncertainty during cytogenetic classification. In
fact, the EM algorithm will help most when the frequency of
ambiguous or binned configurations is high. The method can
be applied coherently across multiple cytogenetic types affect-
ing the same chromosome segments. For example, it would be
feasible to pool observations from a translocation heterozy-
gote and a related tertiary monosomic or duplication-deficient,
to generate a collective estimation of chiasma frequencies in
each segment.

In situ hybridization to meiotic chromatin enhances the
amount of information provided by metaphase I configura-
tions (17). Moreover, applicability of the algorithm described
here is empowered by extension to molecular meiotic data, as
we will discuss elsewhere (unpublished).
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