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ABSTRACT

Purely gravitational pp-waves in AdS backgrounds are described by the generalised

Kaigorodov metrics, and they generically preserve 1
4 of the maximum supersymmetry al-

lowed by the AdS spacetimes. We obtain 1
2 supersymmetric purely gravitational pp-wave

solutions, in which the Kaigorodov component is set to zero. We construct pp-waves in AdS

gauged supergravities supported by a vector field. We find that the solutions in D = 4 and

D = 5 can then preserve 1
2 of the supersymmetry. Like those in ungauged supergravities, the

supernumerary supersymmetry imposes additional constraints on the harmonic function as-

sociated with the pp-waves. These new backgrounds provide interesting novel features of the

supersymmetry enhancement for the dual conformal field theory in the infinite-momentum

frame.
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1 Introduction

Maximally supersymmetric pp-waves of type IIB [1] and M-theory [2] provide simple but

non-trivial backgrounds for studying [3] the AdS/CFT correspondence [4, 5, 6] since string

theory on such a background becomes massive and exact solvable [7]. These solutions can

also be obtained from the Penrose limit of AdS×sphere backgrounds of the corresponding

theories, and thus are supported by form field strengths instead of being purely gravita-

tional. A large class of pp-waves supported by field strengths in M-theory and type-IIB

supergravities were studied in [8, 9, 10]. These solutions in general have 16 “standard”

Killing spinors, that is half of the maximum supersymmetry. For appropriate choices of

field strengths and integration constants, supernumerary Killing spinors beyond the 16

standard ones could also arise [8, 9, 10, 11, 12, 13]. These include all of those from the Pen-

rose limit of AdS×sphere arising from non-dilatonic p-branes and/or intersecting p-branes,

and of AdS×sphere×sphere, arising from non-standard brane intersections [14].

It is natural to study the pp-waves in AdS background. The effect of introducing a

pp-wave can be viewed as performing an infinite boost on the boundary conformal field

theory [15, 16]. The purely gravitational pp-wave in AdS4 was constructed in the 1960s and

has been known as the Kaigorodov metric [17]. Higher dimensional generalisations, namely,

the purely gravitational pp-waves in higher AdS spacetimes, were obtained in [15]. These

metrics are homogeneous and preserve 1
4 of the supersymmetry, consisting with the fact that

in the dual conformal field theory, the original supersymmetry as well as the superconformal

symmetry, are broken by the boost [15]. The Kaigorodov metrics can also be generalised to

a class of inhomogeneous solutions, obtained in [18, 19, 20].

In this paper, we construct pp-waves in AdS gauged supergravities that are not only

purely gravitational like Kaigorodov metrics but are also those supported in addition by a

field strength of the theories as well. We show by explicit construction that supernumerary

supersymmetry can arise with appropriately chosen field strength and integration constants

in D = 4 and D = 5. The new solutions preserve 1
2 of the supersymmetry, double the

number of standard Killing spinors associated with the general pp-wave solutions including

the Kaigorodov metric. In fact we show that even in the case of pure gravitational pp-

waves, supernumerary supersymmetry can arise, extending the result of [16], where only 1
4

supersymmetric purely gravitational pp-waves were discussed. The arising of the supernu-

merary supersymmetry provides novel features of supersymmetry enhancement for the dual

conformal field theories in the infinite-momentum frame.

The paper is organised as follows: In section 2, we discuss the supersymmetry of the
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purely gravitational pp-waves in the Einstein theory with a cosmological constant in arbi-

trary dimensions. We show that 1
2 supersymmetric solutions can arise. In section 3, we

obtain pp-waves in D = 4, N = 2 Einstein-Maxwell gauged supergravity supported by the

Maxwell field. We obtain explicit supernumerary Killing spinors as well as the standard

Killing spinors. In section 4, we obtain the analogous solutions in D = 5, N = 2 Einstein-

Maxwell gauged supergravity. We show that supernumerary Killing spinors also arise in

this case. In section 5, we obtain U(1)-charged pp-wave solutions to minimal AdS gauged

supergravities in D = 6 and D = 7. In these two cases, the solutions have only standard

Killing spinors but no supernumerary ones. We conclude our paper in section 5. In ap-

pendix A, we uplift some of our solutions to M/string theories. In appendix B, we present

a general class of pp-waves supported by an n-form field strength in a D-dimensional AdS

gravity theory.

2 Purely gravitational pp-waves

In this section, we consider purely gravitational pp-waves in Einstein gravity with a negative

cosmological constant in arbitrary dimensions. The Lagrangian is given by

e−1L = R+ (D − 1)(D − 2)g2, (1)

where e =
(

− det(gMN)
)1/2

. The Killing spinor in this theory satisfies the equation

∇Mǫ = −1
2g ΓMǫ . (2)

We study AdS pp-waves using the metric ansatz

ds2D = e2gρ(−4dx+dx− +H(dx+)2 + dzi dzi) + dρ2, (3)

where the function H depends on x+, ρ and zi coordinates. The Einstein equations of

motion reduce to

H ≡
(

∂2ρ + g(D − 1)∂ρ + e2gρ
D−3
∑

i=1

∂2i

)

H = 0 , (4)

where the index i stands here for zi. To discuss the Killing spinor equations, we make a

natural choice for the vielbein basis

e+ = egρdx+ , e− = egρ(−2dx− + 1
2H dx+) , ei = egρdzi , eρ = dρ , (5)
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such that we have ds2 = 2e+e− + ezez + eρeρ. In this tangent basis, the spin connections

are given by

ω−ρ = g e+ , ω+i =
1
2e

−gρ ∂iH e+ , ω+ρ = g e− + 1
2H

′ e+ , ωiρ = g ei , (6)

where the prime denotes the derivative ∂ρ . Note that for the metric in this basis we have

η+− = 1 and η++ = η−− = 0. In the following we use the notation that all derivatives are

with respect to the curved metric and all indices on gamma matrices are vielbein indices.

The Killing spinor equations are given by

[∂+ + 1
2ge

gρ Γ+(Γρ + 1) + 1
4ge

gρH Γ−(Γρ + 1) + 1
4e
gρH ′ Γ−ρ +

1
4

D−3
∑

i

∂iH Γ−i]ǫ = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ǫ = 0 ,

[∂i +
1
2ge

gρ Γi(Γρ + 1)]ǫ = 0 , i = 1, 2, · · · ,D − 3,

[∂ρ +
1
2g Γρ]ǫ = 0 , (7)

where we have Γ2
+ = Γ2

− = 0 and {Γ+,Γ−} = 2. Thus, we see that a generic pp-wave in

a pure Einstein theory with a cosmological constant preserves 1
4 of the maximally allowed

supersymmetry. The projections are given by

(Γρ + 1)ǫ = 0 = Γ−ǫ . (8)

We are interested in finding solutions that preserve more supersymmetry. One might

expect that it would be helpful in this case first to analyse the integrability conditions

[∂M , ∂N ]ǫ = 0 among the Killing spinor equations. This calculation yields

0 = [∂+ , ∂i]ǫ = −1
4

[

ge2gρH ′ Γi + egρ∂iH
′ Γρ +

∑

j

∂j∂iH Γj
]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
4

[

egρ(H ′′ + 2gH ′)Γρ +
∑

i

∂iH
′ Γi

]

Γ−ǫ . (9)

The integrability conditions are satisfied provided that Γ−ǫ = 0. This is an example where

integrability conditions are not enough for the existence of the Killing spinors.

To see whether the metrics can admit more supersymmetry than the 1
4 , let us use the

less restrictive projection condition

g(Γρ + 1)ǫ = if Γ−ǫ , (10)

where f = f(x+, ρ, zi) is to be determined. Substituting this projection into the Killing

spinor equations, we have
[

∂+ + i
2e
gρf Γ+ Γ− − 1

4

(

egρH ′ +
∑

i

Γi∂iH
)

Γ−

]

ǫ = 0 ,

∂− ǫ = 0 , [∂i +
i
2e
gρf Γi Γ−] ǫ = 0 ,

[

∂ρ +
i
2f Γ− − 1

2g
]

ǫ = 0 . (11)
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The integrability conditions [∂M , ∂N ]ǫ = 0 among these equations are

0 = [∂i , ∂j ]ǫ = − i
2e
gρ(Γj ∂if − Γi ∂jf)Γ−ǫ ,

0 = [∂i , ∂ρ]ǫ =
i
2 [(e

gρf)′ Γi − ∂if ]Γ−ǫ ,

0 = [∂+ , ∂i]ǫ = −1
2

[

iegρ(Γi ∂+f − Γ+ ∂if) + e2gρf2 Γi +
1
2e
gρ∂iH

′

+1
2

D−3
∑

j=1

Γj∂j∂iH
]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
2

[

i∂+f + egρf2 − i(egρf)′ Γ+ + 1
2

∑

i

Γi∂iH
′

+1
2e
gρ(H ′′ + gH ′)

]

Γ−ǫ . (12)

From these integrability conditions we see that if we insist on more supersymmetry than

the usual 1
4 we must set

∂if = 0 = ∂iH
′ and ∂i∂jH = 0 , i 6= j . (13)

We then have

(egρf)′ = 0 , (14)

i∂+f + egρf2 + 1
2e

−gρ∂i∂iH = 0 , i = 1, 2, · · · ,D − 3 , (15)

i∂+f + egρf2 + 1
2e
gρ(H ′′ + gH ′) = 0 . (16)

The conditions in (13), together with (4), imply that H is given by

H = 1
2

D−3
∑

i=1

ciz
2
i +

e−2gρ

2g2(D − 3)

D−3
∑

i=1

ci + b e−(D−1)gρ , (17)

where ci and b are functions depending on x+ only. Equation (15) implies that all ci’s are

equal, and hence we let ci = c(x+). From eqs.(14) and (16) it follows that we must set

b = 0. It is straightforward to solve for f , given by

f = e−gρU(x+) , (18)

where U satisfies the following first-order non-linear equation

i
dU

dx+
+ U2 + 1

2c = 0 . (19)

Making use of eq.(19) together with the solutions for f and H we can now solve the Killing

spinor equations given in (11). The Killing spinor solution is

ǫ = e
1
2gρ

(

1− i
2U

D−3
∑

i=1

zi Γi Γ−

)(

1 + i
2g

−1f Γ−

)

×
[

1− 1
2

(

1− e−i
∫

Udx+
)

Γ+ Γ−

]

ǫ0 , (20)
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where ǫ0 is a constant spinor satisfying (Γρ + 1)ǫ0 = 0. Thus, the metric preserves 1
2 of the

supersymmetry. It is important that the final result of our Killing spinors (20) satisfy the

projection condition (10), which can be easily verified to be true.

Note that the special case of c = 0, b 6= 0 is the Kaigorodov metric. The above analysis

implies that it preserves 1
4 of the supersymmetry. In order to have 1

2 BPS solutions, it is

necessary to set the Kaigorodov component to zero.

Note that in general c is any function depending on x+. The simplest case is that c is a

constant. The x+ dependence of c has no effect on the existence of the Killing spinors, but

only modifies the explicit Killing spinor solutions.

3 PP-waves in D = 4 gauged supergravity

3.1 The solution

In this section we continue our investigations of supernumerary supersymmetry by including

a U(1) charge. We start with gauged N = 2 Einstein-Maxwell AdS supergravity, whose

Lagrangian for the bosonic sector is given by

e−1L4 = R− 1
4F

2
(2) + 6g2, (21)

where F(2) = dA(1). The supersymmetry transformation rule for the complex gravitino

ΨM = Ψ1
M + iΨ2

M is [21, 22]

δΨM =
[

∇M − i
2gAM + i

8FAB ΓAB ΓM + 1
2g ΓM

]

ǫ . (22)

We consider the following pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz2) + dρ2,

A(1) = g−1S(1− e−gρ) dx+, (23)

where H = H(x+, ρ, z) and S is here a function of x+. The equations of motion imply that

H satisfies

H ≡ H ′′ + 3g H ′ + e−2gρ∂2zH = −S2e−4gρ . (24)

The solution can be expressed as

H = S2
(

1
2c z

2 + g−2 (12c e
−2gρ − 1

4e
−4gρ + b e−3gρ)

)

+H0 , (25)

where b and c are functions of x+ and H0 satisfies �H0 = 0. (Note that the terms associated

with b and c actually belong to H0 . We extract them since they are necessary for the
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solution to reduce under g → 0 to the pp-wave that is the Penrose limit of AdS2 × S2 of

the corresponding ungauged theory.)

If we turn off the field strength by setting S = 0, and let H0 depend only on ρ, namely

H0 = c0 + b e−3gρ, then we recover the Kaigorodov metric.

3.2 Standard supersymmetry

Here we investigate the supersymmetry of the “charged” pp-wave we derived. The Killing

spinor equations in this background are given by

[∂+ + 1
2ge

gρ Γ+(Γρ + 1) + 1
4ge

gρH Γ−(Γρ + 1) + 1
4Γ−z∂zH + 1

4e
gρH ′ Γ−ρ

+ i
2S(e

−gρ − 1) + i
4e

−gρS Γρ Γ− Γ+]ǫ = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ǫ = 0 ,

[∂z +
1
2ge

gρ Γz(Γρ + 1) + i
4e

−gρS Γzρ Γ−]ǫ = 0 ,

[∂ρ − i
4e

−2gρS Γ− + 1
2g Γρ]ǫ = 0 . (26)

Imposing the following projections

(Γρ + 1)ǫ = 0 , Γ−ǫ = 0 , (27)

the Killing spinor equations become

[∂+ − i
2S]ǫ = 0 , ∂− ǫ = 0 , ∂z ǫ = 0 , [∂ρ − 1

2g]ǫ = 0 . (28)

Thus the Killing spinor is given by

ǫ = e
1
2gρ+

i
2

∫

S dx+ǫ0 , (29)

where ǫ0 is a constant spinor satisfying (Γρ+1)ǫ0 = 0 and Γ−ǫ0 = 0. The solution therefore

preserves 1
4 of the supersymmetry. We follow the literature [8, 9] and call these spinors the

standard Killing spinors, since there is no further requirement on the function H for the

existence of the ǫ, as long as H satisfies the equation of motion (24).

3.3 Supernumerary supersymmetry

When the integration constants of H satisfy further conditions, there can arise additional

Killing spinors, which are called supernumerary Killing spinors in [8, 9]. In order to obtain
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these Killing spinors, we consider the integrability conditions [∂M , ∂N ]ǫ = 0. We find that

0 = [∂z , ∂ρ]ǫ =
i
4ge

−gρS Γz Γ−(Γρ + 1)ǫ ,

0 = [∂+ , ∂−]ǫ = − i
2gS Γ−(Γρ + 1)ǫ ,

0 = [∂+ , ∂z ]ǫ =
i
4gS(3 − 2Γ+ Γ−)Γz(Γρ + 1)ǫ− i

4e
−gρ∂+S Γzρ Γ−ǫ

−1
4e
gρ∂zH

′ Γρ Γ−ǫ− 1
4

[

ge2gρH ′ + ∂2zH + 1
2e

−2gρS2
]

Γz Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = − i
4ge

−gρS(3− Γ+ Γ−)(Γρ + 1)ǫ+ i
4e

−2gρ∂+S Γ−ǫ

−1
4∂zH

′ Γz Γ−ǫ+
1
4e
gρ
[

gH ′ + e−2gρ∂2zH + 1
2e

−4gρS2
]

Γρ Γ−ǫ . (30)

To arrive at the last integrability condition we made use of equation (24) for H. It is clear

that the integrability conditions are satisfied with the projections given in (27). However,

we now show that it is possible to relax these projections. We find that the integrability

conditions can also be satisfied, with the following less restrictive projection

g(Γρ + 1)ǫ = if Γ−ǫ , (31)

where f = f(x+, ρ, z) . This gives the projected Killing spinor equations

[∂+ − i
2S − 1

2g
−1e−gρfS Γ− + i

2(e
gρf + 1

2e
−gρS)Γ+ Γ−

−1
4(e

gρH ′ + Γz∂zH)Γ−]ǫ = 0 , ∂− ǫ = 0 ,

[∂z +
i
2 (e

gρf + 1
2e

−gρS)Γz Γ−]ǫ = 0 ,

[∂ρ +
i
2(f − 1

2e
−2gρS)Γ− − 1

2g]ǫ = 0 . (32)

The integrability conditions among these equations are

0 = [∂z , ∂ρ]ǫ = − i
2

[

Γz∂zf − (egρf)′ + 1
2ge

−gρS
]

Γz Γ−ǫ ,

0 = [∂+ , ∂z ]ǫ = −1
2

[

i(egρ∂+f + 1
2e

−gρ∂+S)Γz − (iegρ Γ+ − g−1e−gρS)∂zf

+(egρf + 1
2e

−gρS)2 Γz +
1
2(e

gρ∂zH
′ + Γz∂

2
zH)

]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
2

[

i(∂+f − 1
2e

−2gρ∂+S) + g−1S(e−gρf)′

−i
(

(egρf)′ − 1
2ge

−gρS
)

Γ+ + 1
2e
gρ(H ′′ + gH ′) + 1

2Γz∂zH
′

+egρ(f2 − 1
4e

−4gρS2)
]

Γ−ǫ . (33)

It is clear from these expressions that if we want more supersymmetry than 1
4 we need again

to impose ∂zf = 0 = ∂zH
′. The vanishing of the integrability conditions in this case then
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yields the equations

(egρf)′ − 1
2ge

−gρS = 0 ,

i(∂+f + 1
2e

−2gρ∂+S) +
1
2e

−gρ∂2zH + egρ(f + 1
2e

−2gρS)2 = 0 , (34)

i(∂+f − 1
2e

−2gρ∂+S) + g−1S(e−gρf)′ + 1
2e
gρ(H ′′ + gH ′) + egρf2 − 1

4e
−3gρS2 = 0 .

From the first of eqs.(35) we obtain

f = −1
2e

−2gρS + e−gρU , (35)

where U = U(x+) is in general a complex function. Note that S is a real function. Using

the solution for f and the equation for H the remaining two equations in (35) gives

i
dU

dx+
+ U2 + 1

2∂
2
zH = 0 ,

i
dS

dx+
− e−gρS2 + 3S U + ge3gρH ′ + egρ∂2zH = 0 . (36)

Since the functions S and U depend only on x+ we need to check that the ρ dependence in

the equation for S drops out before we can proceed. For this we need to make use of the

solution for H, which is given by (25). Setting H0 = 0, and substituting H into eqs.(36) we

have1

i
dS

dx+
− 3S(b S − U) = 0 , i

dU

dx+
+ U2 + 1

2c S
2 = 0 . (37)

In order to solve these equations we rewrite U into an real and imaginary part U = u+ iv.

Eqs.(37) then yield the following set of equations:

dS

dx+
+ 3v S = 0 ,

du

dx+
+ 2u v = 0 , S(u− b S) = 0 ,

dv

dx+
+ v2 − u2 − 1

2c S
2 = 0 . (38)

We have four equations for the five functions S, u, v, b and c , and so one function will be

left arbitrary. We present the solution to eqs.(38) in terms of the function b. The solution

is given by

S =
k

b3
, u =

k

b2
, v = b−1 db

dx+
,

c =
2b5

k2

[ d2b

dx+2
− k2

b3

]

, (39)

where k is an arbitrary constant and we have taken S 6= 0. (The case with S = 0 was

considered in section 2.) Note that the original generic 1
4 supersymmetric solution depending

1It is straightforward to verify that in general supernumeary supersymmetry requires that H0 be given

by (17), which is not the most general solution for �H0 = 0 .
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on the three functions b, c and S now only have one independent function in order for the

solution to have the enhanced 1
2 supersymmetry.

We next turn to presenting the explicit Killing spinors. The Killing spinor equations

are

[∂+ − i
2S − 1

2g
−1e−gρfS Γ− + i

2U Γ+ Γ− − 1
4 (e

gρH ′ + c z S2 Γz)Γ−]ǫ = 0 ,

∂− ǫ = 0 , [∂z +
i
2U Γz Γ−]ǫ = 0 , [∂ρ − i

2g
−1f ′ Γ− − 1

2g]ǫ = 0 , (40)

where f is given by (35). The third equation of the above implies ǫ = (1 − i
2z U Γz Γ−) ×

χ(ρ, x+). Substituting this into the fourth equation yields the solution χ = e
1
2gρ(1 +

i
2g

−1f Γ−)η(x
+) . The equation for η can be obtained from the first equation of (40) after

making use of eqs.(37). We have

dη

dx+
− i

2 [S − U Γ+ Γ−]η = 0 . (41)

Note that it requires conspiracy for the z and ρ dependent terms to drop out. Finally, we

arrive at the Killing spinor, given by

ǫ = e
1
2 gρ+

i
2

∫

S dx+(1− i
2z U Γz Γ−)(1 +

i
2g

−1f Γ−)

×
[

1− 1
2 (1− e−i

∫

Udx+)Γ+ Γ−

]

ǫ0 , (42)

where ǫ0 is a constant spinor, satisfying the projection

(Γρ + 1)ǫ0 = 0 . (43)

There are two special cases that are worth considering. The first case is that b is set to

a constant, implying that v = 0. It follows then that the functions S and u are constants

as well, and c = −2b2. Assuming S = µ the Killing spinor in this case is given by

ǫ = e
1
2 gρ+

i
2µx

+

(1− i
2µb z Γz Γ−)(1 +

i
2g

−1f Γ−)

×
[

1− 1
2(1− e−iµbx+)Γ+ Γ−

]

ǫ0 , (44)

where ǫ0 is a constant spinor, satisfying the projection (Γρ+1)ǫ0 = 0. Thus after imposing

the condition c = −2b2, the solution has 1
2 of the supersymmetry instead of the 1

4 for

a generic pp-wave solution. The standard Killing spinors are those with an additional

projection Γ−ǫ0 = 0, in which case, ǫ of (44) becomes that in (29). The supernumerary

Killing spinors are the remaining half with Γ−ǫ0 6= 0.

The function H, for the pp-wave with supernumerary supersymmetry, is given by

H = −µ2 b2z2 − g−2f2 = −µ2
(

b2z2 + g−2(b2 e−2gρ + 1
4e

−4gρ − b e−3gρ)
)

,

f = −1
2µ(e

−2gρ − 2b e−gρ) . (45)
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If we set b = 1
2 , we have H = −µ2 [14z2+g−2 sinh2(12gρ) e

−3gρ]. We can then take the g → 0

limit and obtain a pp-wave in ungauged D = 4, N = 2 Einstein Maxwell supergravity. The

solution is given by

ds2 = −4dx+ dx− − 1
4µ

2(z2 + ρ2) (dx+)2 + dz2 + dρ2, (46)

F(2) = −µdx+ ∧ dρ . (47)

This is precisely the pp-wave arising from the Penrose limit of AdS2 × S2, which is known

to have supernumerary supersymmetries [8, 9].

Note that in the ansatz (23), we could instead have used A(1) = µz dx+. The metric in

this case is identical to that with A(1) given in (23). However, we verified that the solution

would be non-supersymmetric, because of the explicit A(1) dependence in the supersymmetry

transformation rule.

Charged pp-waves with c = 0 were also obtained in [23], by performing an infinite boost

of the AdS charged black holes. It can be deduced from the above analysis that the solution

with c = 0 has only the standard supersymmetry. We can also obtain pure gravitational 1
2

supersymmetric pp-waves by setting b = b̃/µ and then sending µ→ 0.

In [24] a general class of pp-waves that preserve 1
4 of the supersymmetry were given.

PP-waves with 1
2 of the supersymmetry were also obtained in [25], where the Killing spinors

were given in component language, whilst ours are presented in an elegant form, in terms

of constant spinors satisfying a single gamma matrix projection.

The second special case corresponds to the absence of the Kaigorodov component b

which can be achieved by taking a degenerate limit of (39). It is worth examing on its own.

In this case we have the coupled system

dS

dx+
+ 3v S = 0 ,

dv

dx+
+ v2 − 1

2c S
2 = 0 . (48)

This implies a relation between the metric functions c and S, given by

c = −2
3S

−3 d
2S

dx+2 + 8
9S

−4
( dS

dx+

)2
. (49)

Making use of these equations together with the solutions for H and f the Killing spinor

equations (40) yield the solution

ǫ = e
1
2 gρ e

i
2

∫

S dx+(1 + 1
2z v Γz Γ−)(1 +

i
2g

−1f Γ−)

×
[

1− 1
2 (1− e

∫

v dx+)Γ+ Γ−

]

ǫ0 , (50)
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where ǫ0 is a constant spinor satisfying (Γρ + 1)ǫ0 = 0. For the functions H and f we have

H = 1
2S

2
[

c z2 + 1
2g

−2e−2gρ(2c− e−2gρ)
]

,

f = −1
2e

−2gρS + ie−gρv . (51)

We can consider a special case of eqs.(48) by setting c ≡ constant and v = k̃S where k̃ is

a (real) constant. In this case the equations fixes k̃ to k̃2 = −1
4c with c < 0. The equation

for S is
dS

dx+
+ k̃S2 = 0 , (52)

with the solution given by S(x+) = 1/(1 + k̃ x+) .

4 PP-waves in D = 5 gauged supergravity

4.1 The solution

For simplicity, we consider simple gauged supergravity in D = 5. The Lagrangian for the

bosonic sector is given by [26]

e−1L5 = R− 1
4F

2
(2) +

1
12

√
3
ǫMNPQRFMNFPQAR + 12g2. (53)

Analogous to the D = 4 discussion, we use the following pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz21 + dz22) + dρ2,

A(1) = 1
2g

−1S(1− e−2gρ) dx+, (54)

where S = S(x+). The supergravity equations of motion then reduce to the following

H ≡ H ′′ + 4gH ′ + e−2gρ
2

∑

i=1

∂2iH = −e−6gρS2. (55)

The solution is given by

H = S2
[

1
2 (c1z

2
1 + c2z

2
2) + g−2(14(c1 + c2) e

−2gρ − 1
12e

−6gρ + b e−4gρ)
]

+H0 , (56)

where ci and b are functions of x+ and �H0 = 0. The generalised Kaigorodov-type metric

is obtained by setting S = 0 and H0 = c0 + b e−4gρ with c0 and b now being constants.

4.2 Supersymmetry

The supersymmetry transformation on the gravitino is given by

δΨM = [∇M − 3 i
2
√
3
gAM − i

16
√
3
FAB (ΓM ΓAB − 3ΓAB ΓM) + 1

2g ΓM ]ǫ , (57)

12



where ǫ is a complex symplectic spinor. For our pp-wave background, the Killing spinor

equations are given by

[∂+ + 1
2ge

gρ Γ+(Γρ + 1) + 1
4ge

gρH Γ−(Γρ + 1) + 1
4e
gρH ′ Γ−ρ

+1
4

2
∑

i=1

Γ−i∂iH + 3 i
4
√
3
S(e−2gρ − 1)

+ i
8
√
3
e−2gρS Γρ(Γ+ Γ− + 3Γ− Γ+)]ǫ = 0 ,

[∂− − gegρ Γ−(Γρ + 1)]ǫ = 0 ,

[∂i +
1
2ge

gρ Γi(Γρ + 1) + i
4
√
3
e−2gρS Γiρ Γ−]ǫ = 0 , i = 1, 2,

[∂ρ − i
2
√
3
e−3gρS Γ− + 1

2g Γρ]ǫ = 0 . (58)

As in the case of D = 4, the standard Killing spinors, which exist for all H satisfying (55),

arise with the following projections (Γρ+1)ǫ = 0 and Γ−ǫ = 0. The Killing spinor equations

become

[∂+ − i
√
3
4 S]ǫ = 0 , ∂− ǫ = 0 , ∂i ǫ = 0 , [∂ρ − 1

2g]ǫ = 0 . (59)

Thus, the generic pp-waves we considered preserve 1
4 of the standard supersymmetry. In

[27], a general class of null solutions with 1
4 of the supersymmetry were obtained, however,

the issue of supernumerary supersymmetry was not addressed. We demonstrate below that,

as in the case of D = 4, supernumerary Killing spinors can also arise.

To obtain the supernumerary Killing spinor and the corresponding conditions on H, we

impose the following projection on the spinors

g(Γρ + 1)ǫ = if Γ−ǫ . (60)

The Killing spinor equations become

[

∂+ − 3i
4
√
3
S + i

2(e
gρf + 1

2
√
3
e−2gρS)Γ+ Γ− − 1

4

∑

i

Γi Γ−∂iH

−1
4(e

gρH ′ +
√
3g−1e−2gρf S)Γ−

]

ǫ = 0 , ∂− ǫ = 0 ,

[∂i +
i
2(e

gρf + 1
2
√
3
e−2gρS)Γi Γ−]ǫ = 0 ,

[∂ρ +
i
2(f − 1√

3
e−3gρS)Γ− − 1

2g]ǫ = 0 . (61)
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The integrability conditions among these equations are

0 = [∂i , ∂ρ]ǫ = − i
2

[

∂if − (egρf)′ Γi +
1√
3
ge−2gρS Γi

]

Γ−ǫ ,

0 = [∂+ , ∂i]ǫ = −1
2

[

i(egρ∂+f + 1
2
√
3
e−2gρ∂+S)Γi − (iegρ Γ+ − 3

2
√
3
g−1e−2gρS)∂if

+1
2e
gρ∂iH

′ + 1
2

∑

j

Γj∂j∂iH + (egρf + 1
2
√
3
e−2gρS)2 Γi

]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
2

[

i(∂+f − 1√
3
e−3gρ∂+S) +

3
2
√
3
g−1S(e−2gρf)′ + 1

2

∑

i

Γi∂iH
′

−i
(

(egρf)′ − 1√
3
ge−2gρS

)

Γ+ + 1
2e
gρ(H ′′ + gH ′)

+(f − 1√
3
e−3gρS)(egρf + 1

2
√
3
e−2gρS)

]

Γ−ǫ . (62)

To have more supersymmetry than the 1
4 we need to set

∂if = 0 = ∂iH
′ and ∂j∂iH = 0 , i 6= j . (63)

The integrability conditions then imply

f = − 1
2
√
3
e−3gρS + e−gρU ,

i
dU

dx+
+ U2 + 1

2∂
2
iH = 0 , i = 1, 2,

i
( dS

dx+
− 2√

3
e2gρ

dU

dx+

)

− g−1e3gρS(e−2gρf)′ − 1√
3
e4gρ(H ′′ + gH ′)

− 2√
3
e3gρU(f − 1√

3
e−3gρS) = 0 , (64)

where U = U(x+). Substituting in the solution for H, given by (56), we find that it is

necessary to have that c1 = c2 ≡ c, and that H0 is given by (17). For simplicity, we set

H0 = 0 here since the H0 represents the pure gravitational component, which was discussed

in section 2. The equations for S and U are then given by

i
dS

dx+
− 4S(

√
3 b S − U) = 0 , i

dU

dx+
+ U2 + 1

2c S
2 = 0 . (65)

Substituting U = u+ iv into the above yields the equations

dS

dx+
+ 4v S = 0 ,

du

dx+
+ 2u v = 0 , S(u−

√
3 b S) = 0 ,

dv

dx+
+ v2 − u2 − 1

2c S
2 = 0 . (66)

The solution to these equations is

S =
k

b2
, u =

√
3 k

b
, v =

1

2b

db

dx+
,

c =
b3

k2

[ d2b

dx+2
− 1

2b

( db

dx+

)2 ]

− 6 b2, (67)
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where k is an arbitrary constant and we have taken S 6= 0. Note that as in the case of

D = 4, the original generic 1
4 -supersymmetric metric depending on the four functions b,

c1, c2 and S now only have one independent function in order for the solution to have the

enhanced 1
2 supersymmetry.

The Killing spinor is calculated from the equations

[∂+ − 3 i
4
√
3
S − 3

4
√
3
g−1e−2gρfS Γ− + i

2U Γ+ Γ−

−1
4

(

egρH ′ + c S2(z1 Γ1 + z2 Γ2)
)

Γ−]ǫ = 0 ,

∂− ǫ = 0 , [∂i +
i
2U Γi Γ−]ǫ = 0 , [∂ρ − i

2g
−1f ′ Γ− − 1

2g]ǫ = 0 . (68)

The solution is

ǫ = e
1
2 gρ+i

√
3
4

∫

S dx+(1− i
2U (z1 Γ1 + z2 Γ2)Γ−

)

(1 + i
2g

−1f Γ−)

×
[

1− 1
2(1− e−i

∫

Udx+)Γ+ Γ−

]

ǫ0 , (69)

where ǫ0 is a constant spinor satisfying (Γρ+1)ǫ0 = 0. As in D = 4 we consider two special

cases. The first corresponds to v = 0 , which implies that b, c and S are all constants, with

c = −6b2. Letting S = µ the Killing spinor in this case is given by

ǫ = e
1
2gρ+i

√
3
4 µx+

(

1− i
√
3
2 µb(z1 Γ1 + z2 Γ2) Γ−

)

(1 + i
2g

−1f Γ−)

×
[

1− 1
2(1− e−i

√
3µbx+)Γ+ Γ−

]

ǫ0 , (70)

where ǫ0 is a constant spinor satisfying (Γρ + 1)ǫ0 = 0. Thus the solution preserves half

of the supersymmetry. Among all the Killing spinors, the standard ones are those with

Γ−ǫ0 = 0, whilst the remaining half with Γ−ǫ0 6= 0 are the supernumerary ones. The

function H for the pp-waves with supernumerary supersymmetry is given by

H = −3µ2b2(z21 + z22)− g−2f2

= −µ2[3b2(z21 + z22) + g−2(3b2 e−2gρ + 1
12e

−6gρ − b e−4gρ)] ,

f = − 1
2
√
3
µ(e−3gρ − 6b e−gρ) . (71)

If we further let b = 1
6 , we have H = − 1

12µ
2(z21 + z22 + 4g−2 sinh2(gρ) e−4gρ). This enables

us to take the limit g → 0, giving rise to a pp-wave in the corresponding ungauged D = 5

supergravity, given by

ds2 = −4dx+dx− − 1
12µ

2 (z21 + z22 + 4ρ2) (dx+)2 + dz21 + dz22 + dρ2,

F(2) = −µdx+ ∧ dρ . (72)
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This pp-wave can also arise from the Penrose limit of AdS3× S2 or AdS2× S3, which have

supernumerary supersymmetries.

The second case is that of b = 0, and hence eqs.(66) reduce to

dS

dx+
+ 4v S = 0 ,

dv

dx+
+ v2 − 1

2c S
2 = 0 . (73)

The Killing spinor is then given by

ǫ = e
1
2 gρ ei

√
3
4

∫

S dx+(1 + 1
2v(z1 Γ1 + z2 Γ2)Γ−

)

(1 + i
2g

−1f Γ−)

×
[

1− 1
2(1− e

∫

v dx+)Γ+ Γ−

]

ǫ0 , (74)

where ǫ0 is a constant spinor satisfying (Γρ + 1)ǫ0 = 0 and

H = 1
2S

2
[

c (z21 + z22) + 2g−2e−2gρ(c− 1
12e

−4gρ)
]

,

f = − 1
2
√
3
e−3gρS + ie−gρv . (75)

If we specialise to v = k̃S and c = −6k̃2 where k̃ is a constant, the system (73) simplifies

to
dS

dx+
+ 4k̃S2 = 0 . (76)

5 PP-waves in D = 6 and D = 7

5.1 D = 6

Our next example is in the Romans six-dimensional gauged N = (1, 1) supergravity [28].

The bosonic field content comprises the metric, a dilaton φ, a 2-form potential, a U(1)

potential and the gauge potentials Ai(1) of SU(2) Yang-Mills. The Lagrangian describing

the bosonic sector is [29]

L = R ∗ 1l− 1
2∗dφ ∧ dφ+ (2g21X

2 + 8
3g1g2X

−2 − 2
9g

2
2X

−6) ∗1l

− 1
2X

4 ∗F(3) ∧ F(3) − 1
2X

−2
(

∗G(2) ∧G(2) + ∗F a(2) ∧ F a(2)
)

(77)

− A(2) ∧ (12dB(1) ∧ dB(1) +
1
3g2A(2) ∧ dB(1) +

2
27g

2
2A(2) ∧A(2) +

1
2F

a
(2) ∧ F a(2)) ,

where X ≡ e−
1

2
√
2
φ
, F(3) = dA(2) , G(2) = dB(1) +

2
3g2A(2) , F

a
(2) = dAa(1) +

1
2g1ǫabcA

b
(1) ∧Ac(1).

The fermions of this theory comprise symplectic-Majorana gravitinos ΨMi and dilatinos λi
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where i = 1, 2 is an SP (1) index. The supersymmetry transformations are given by [30]

δΨMi = [DM − 1
48X

2FABC ΓABC ΓMΓ7 − 1
4
√
2
(g1X + 1

3g2X
−3) ΓM ]ǫi

+ 1
16

√
2
(ΓM ΓAB − 2ΓAB ΓM)X−1(GAB δi

j − i Γ7FAB i
j)Γ7ǫj ,

δλi = [− 1
2
√
2
ΓM∂Mφ+ 1

24X
2FABC ΓABC Γ7 + 1

2
√
2
(g1X − g2X−3)]ǫi

+ 1
8
√
2
X−1(GAB δi

j − i Γ7FAB i
j) ΓAB Γ7ǫj . (78)

The gauge covariant derivative is defined as DMǫi = ∇Mǫi +
i
2g1AM i

jǫj where AM i
j ≡

AaM(−σa)ij with the field strength given by FMNi
j = ∂MANi

j + i
2g1AMi

kANk
j − (M ↔ N)

and σa are the usual Pauli matrices.

In this paper, we consider pp-wave solutions supported by only one field strength. Owing

to the Chern-Simons modifications to various field strengths, we find that this can only be

done with a U(1) vector field coming from the SU(2) Yang-Mills. Thus we consistently set

all the remaining form fields to zero, and also without loss of generality (while insisting on

AdS background) take g1 = g2 = −3g/
√
2. This leads to the pp-wave ansatz

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz21 + dz22 + dz23) + dρ2,

A(1) = 1
3g

−1S(1− e−3gρ) dx+, (79)

where S = S(x+). The equations of motion reduce to

H ≡ H ′′ + 5gH ′ + e−2gρ
3

∑

i=1

∂2iH = −e−8gρS2, (80)

and the solution for H is given by

H = S2
[

1
2

3
∑

i=1

cizi + g−2
(

1
6(c1 + c2 + c3)e

−2gρ − 1
24e

−8gρ + b e−5gρ
)

]

+H0 , (81)

where �H0 = 0. The b and ci are functions of x+.

We now investigate the supersymmetry of the pp-waves. This is more conveniently done

if we rewrite the symplectic-Majorana spinors using a Dirac notation. (See [31] for details.)

The Killing spinor equations from the gravitino transformation rule are given by

[

∂+ − i
2
√
2
S + i

2(e
gρf + 1

4
√
2
e−3gρS)Γ+ Γ− − 1

4

∑

i

Γi∂iH Γ−

− 1
2
√
2
(g−1e−3gρfS + 1√

2
egρH ′)Γ−

]

ǫ = 0 , ∂− ǫ = 0 ,

[∂i +
i
2(e

gρf + 1
4
√
2
e−3gρS)Γi Γ−]ǫ = 0 , i = 1, 2, 3,

[∂ρ +
i
2 (f − 3

4
√
2
e−4gρS)Γ− − 1

2g]ǫ = 0 , (82)
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where we have made use of the projection condition g(Γρ + 1)ǫ = if Γ−ǫ and where f =

f(x+, ρ, zi). The integrability conditions [∂M , ∂N ]ǫ = 0 among these projected Killing spinor

equations are

0 = [∂i , ∂ρ]ǫ = − i
2

[

∂if − (egρf + 1
4
√
2
e−3gρS)′ Γi

]

Γ−ǫ ,

0 = [∂+ , ∂i]ǫ = −1
2

[

i(egρ∂+f + 1
4
√
2
e−3gρ∂+S)Γi +

1
2

∑

j

Γj∂j∂iH

+1
2e
gρ∂iH

′ + (egρf + 1
4
√
2
e−3gρS)2 Γi − (iegρ Γ+ − 1√

2
g−1e−3gρS)∂if

]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
2

[

i(∂+f − 3
4
√
2
e−4gρ∂+S) +

1
2

∑

i

Γi∂iH
′

−i(egρf + 1
4
√
2
e−3gρS)′ Γ+ + 1√

2
g−1S(e−3gρf)′

+(f − 3
4
√
2
e−4gρS)(egρf + 1

4
√
2
e−3gρS) + 1

2e
gρ(H ′′ + gH ′)

]

Γ−ǫ . (83)

As before it is required that we set

∂if = 0 = ∂iH
′ and ∂j∂iH = 0 , i 6= j , (84)

and ci = c . The integrability conditions yield after using the solution for H the following

results

f = − 1
4
√
2
e−4gρS + e−gρ U ,

i
dU

dx+
+ U2 + 1

2c S
2 = 0 ,

i
dS

dx+
+ 1

12
√
2
e−3gρS

[

S(7− 240b e3gρ) + 60
√
2 e3gρ U

]

= 0 . (85)

In the case of S = 0, corresponding to purely gravitational waves, discussed in section 2,

the last equation is trivially satisfied. When S 6= 0, due to the ρ dependence, we conclude

that no supersymmetry enhancement can occur here. This is expected, since in ungauged

D = 6, N = (1, 1) supergravity, the pp-waves supported by a 2-form field strength also

have no supernumerary supersymmetry. The solution does have standard supersymmetry

though. The Killing spinor is given by

ǫ = e
1
2 gρ+

i
2
√
2

∫

S dx+

ǫ0 , (86)

where (Γρ+1)ǫ0 = 0 = Γ−ǫ0. It is easy to verify that the Killing spinor equations associated

with both the gravitino and dilatino transformation rules are satisfied. Thus the solution

preserves 1
4 of the supersymmetry.
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5.2 D = 7

The Lagrangian for the bosonic sector of half-maximum supergravity in seven dimensions

[32] can be written as follows [33]

L = R ∗1l− 1
2∗dφ ∧ dφ− 1

2X
4 ∗F(4) ∧ F(4) − 1

2X
−2 ∗F a(2) ∧ F a(2)

+1
2F

a
(2) ∧ F a(2) ∧A(3) − 1

2
√
2
g2F(4) ∧A(3)

+(2g21X
2 + 2g1g2X

−3 − 1
4g

2
2X

−8) ∗1l , (87)

where X = e
− 1√

10
φ
, F(4) = dA(3) and F

a
(2) = dAa(1) +

1
2g1ǫabcA

b
(1) ∧ Ac(1). In addition there is

a ”self-duality” condition that must be imposed, given by

X4 ∗F(4) = − 1√
2
g2A(3) +

1
2ω(3) , (88)

where ω(3) is defined as ω(3) = Aa(1) ∧F a(2)− 1
6g1 ǫabcA

a
(1) ∧Ab(1) ∧Ac(1) . This theory has a pair

of symplectic-Majorana gravitinos ψMi and a pair of dilatinos λi, where i = 1, 2 is an SP (1)

index. The fermionic supersymmetry transformations are given by [30]

δψMi = ∇Mǫi +
i
2g1AMi

jǫj +
1

960X
2FABCD(ΓM ΓABCD + 5ΓABCD ΓM)ǫi

− i
40

√
2
X−1(3ΓM ΓAB − 5ΓAB ΓM)FABi

jǫj − 1
5
√
2
(g1X + 1

4g2X
−4)ΓMǫi ,

δλi = [− 1
2
√
2
ΓM∂Mφ+ 1

48
√
5
X2FABCD ΓABCD]ǫi − i

4
√
10
X−1FABi

j ΓABǫj

+ 1√
10
(g1X − g2X−4)ǫi , (89)

where AMi
j ≡ Aa

M
(−σa)ij . Owing to the odd-dimensional self-duality condition for the

A(3), our standard ansatz for the pp-wave metric does not work for A(3). We thus consider

the pp-wave supported only by the U(1) subsector of the SU(2) Yang-Mills. The pp-wave

solution is given by

ds2 = e2gρ(−4dx+ dx− +H(dx+)2 + dz21 + dz22 + dz23 + dz24) + dρ2,

A(1) = 1
4g

−1S(1− e−4gρ) dx+, (90)

where S = S(x+) and H satisfies

H ≡ H ′′ + 6gH ′ + e−2gρ
4

∑

i=1

∂2iH = −e−10gρS2. (91)

Here we have set g1 = g2 = −2
√
2 g. The function H can be solved, given by

H = S2
[

1
2

4
∑

i=1

ciz
2
i + g−2

(

1
8

4
∑

i=1

ci e
−2gρ − 1

40e
−10gρ + b e−6gρ

)

]

+H0 , (92)
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with �H0 = 0 and b and ci are functions of x+.

The projected Killing spinor equations from the gravitino transformation rule are given

by

[

∂+ − i
2
√
2
S + i

2(e
gρf + 1

5
√
2
e−4gρS)Γ+ Γ− − 1

4

∑

i

Γi∂iH Γ−

− 1
2
√
2
(g−1e−4gρfS + 1√

2
egρH ′)Γ−

]

ǫ = 0 , ∂− ǫ = 0 ,

[∂i +
i
2(e

gρf + 1
5
√
2
e−4gρS)Γi Γ−]ǫ = 0 , i = 1, 2, 3, 4,

[∂ρ +
i
2 (f − 4

5
√
2
e−5gρS)Γ− − 1

2g]ǫ = 0 . (93)

The integrability conditions

0 = [∂i , ∂ρ]ǫ = − i
2

[

∂if − (egρf + 1
5
√
2
e−4gρS)′ Γi

]

Γ−ǫ ,

0 = [∂+ , ∂i]ǫ = −1
2

[

i(egρ∂+f + 1
5
√
2
e−4gρ∂+S)Γi +

1
2

∑

j

Γj∂j∂iH

+1
2e
gρ∂iH

′ + (egρf + 1
5
√
2
e−4gρS)2 Γi − (iegρ Γ+ − 1√

2
g−1e−4gρS)∂if

]

Γ−ǫ ,

0 = [∂+ , ∂ρ]ǫ = −1
2

[

i(∂+f − 4
5
√
2
e−5gρ∂+S) +

1
2

∑

i

Γi∂iH
′

−i(egρf + 1
5
√
2
e−4gρS)′ Γ+ + 1√

2
g−1S(e−4gρf)′

+(f − 4
5
√
2
e−5gρS)(egρf + 1

5
√
2
e−4gρS) + 1

2e
gρ(H ′′ + gH ′)

]

Γ−ǫ , (94)

imply that there is no supernumerary Killing spinors in this case. This should be expected

since in D = 7, even in ungauged supergravities, there is no pp-wave supported by a 2-

form field strength that has supernumerary supersymmetry. The solution does have 1
4 of

standard supersymmetry, with the Killing spinor given by

ǫ = e
1
2 gρ+

i
2
√
2

∫

S dx+

ǫ0 , (95)

where (Γρ + 1)ǫ0 = 0 = Γ−ǫ0 .

6 Conclusions

In this paper, we have constructed U(1)-charged pp-wave solutions in AdS gauged super-

gravities in 4 ≤ D ≤ 7 dimensions. Generically these solutions preserve 1
4 of the super-

symmetry. In D = 4 and D = 5, with an appropriate choice for the integration constants,

we have shown that supernumerary supersymmetry can arise so that the solutions instead

preserve 1
2 of the supersymmetry. These solutions can take a limit to become the pp-waves

that are the Penrose limits of AdS×sphere of the corresponding ungauged supergravities.

20



In D = 6 and D = 7, we find that there can be no supernumerary supersymmetry for the

U(1)-charged pp-waves. We also considered a general class of purely gravitational pp-waves

in Einstein gravity with a cosmological constant in diverse dimensions. We showed that

supernumerary supersymmetry could arise and obtained explicitly the 1
2 -BPS gravitational

pp-waves.

The introduction of a pp-wave in the AdS background can be viewed as performing an

infinite boost in the strong coupled dual conformal field theory with a finite momentum

density. The non-vanishing momentum breaks the original supersymmetry and supercon-

formal symmetry, and hence the supersymmetry is now 1
4 of the unboosted theory. We have

shown in the supergravity side that the supersymmetry can be doubled when the pp-wave

is U(1) charged, corresponding to an R charge in the dual field theory. This indicates a

novel supersymmetry enhancement associated with the R charges in the dual three- and

four-dimensional field theories. It is of interest to discover such a phenomenon in the dual

quantum field theory in the infinite-momentum frame.
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APPENDICES

A Uplifting to M/String theory

In this appendix we uplift the supersymmetric solutions supported by the U(1) charge to

ten and eleven dimensions. In the case of the four- and five-dimensional solutions we uplift

those with S being a constant. The four- and seven-dimensional solutions are embedded in

M-theory and the solutions in D = 5 and D = 6 are uplifted to type-IIB supergravity and

to Romans massive theory, respectively.
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A.1 D = 4 oxidised to D = 11

The embedding formulae to eleven dimensions were obtained in [34] or we can also use the

ansatz in [35] after truncating to our case. We obtain

dŝ11 = e2gρ[−4dx+dx− − µ2(14z2 + g−2 sinh2(12gρ)e
−3gρ)(dx+)2 + dz2] + dρ2

+4g−2dξ + g−2[c2 (σ21 + σ22 + h23) + s2 (σ̃21 + σ̃22 + h̃23)] ,

F̂(4) = −6ge3gρdx+ ∧ dx− ∧ dρ ∧ dz − µg−2[s c dξ ∧ σ3 + 1
2c

2σ1 ∧ σ2
−s c dξ ∧ σ̃3 + 1

2s
2 σ̃1 ∧ σ̃2] ∧ dx+ ∧ dz , (96)

where σi are the three left-invariant 1-forms on S3 satisfying dσi = −1
2ǫijkσj ∧ σk . They

are given by σ1 + iσ2 = e−iψ(dθ + i sin θ dϕ) and σ3 = dψ + cos θ dϕ in terms of the Euler

angles. The σ̃i are left-invariant 1-forms on a second S3. We have also defined

c ≡ cos ξ , s ≡ sin ξ ,

h3 ≡ σ3 − 1
2µ(1− e−gρ)dx+, h̃3 ≡ σ̃3 − 1

2µ(1− e−gρ)dx+,

ǫ(3) = σ1 ∧ σ2 ∧ h3 , ǫ̃(3) = σ̃1 ∧ σ̃2 ∧ h̃3 . (97)

In this pp-wave, the internal S7 is twisted but not flattened. Analogous solution but with

untwisted round S7 can be found in [36].

A.2 D = 5 oxidised to type IIB

Using the uplifting formulae to type IIB in [34, 37] we obtain for the metric

dŝ210 = e2gρ[−4dx+dx− − 1
12µ

2(z21 + z22 + 4g−2 sinh2(gρ) e−4gρ)(dx+)2

+dz21 + dz22 ] + dρ2 + g−2
3

∑

i=1

[

dµ2i + µ2i (dφi +
1

2
√
3
µ(1− e−2gρ)dx+)2

]

, (98)

and for the 5-form field strength F(5) = G(5) + ∗G(5),

G(5) = −8ge4gρdx+ ∧ dx− ∧ dρ ∧ d2z − 1
2
√
3
µg−2

3
∑

i=1

d(µ2i ) ∧ dφi ∧ dx+ ∧ d2z . (99)

The µi are parameterised as

µ1 = sin θ , µ2 = cos θ sinψ , µ3 = cos θ cosψ , (100)

in terms of the angles on a 2-sphere.
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A.3 D = 6 oxidised to Romans massive theory

The bosonic sector of Romans massive theory [38] is described by the Lagrangian

L10 = R̂∗̂1l− 1
2 ∗̂dφ̂ ∧ dφ̂− 1

2e
3
2 φ̂∗̂F̂(2) ∧ F̂(2) − 1

2e
−φ̂∗̂F̂(3) ∧ F̂(3) − 1

2e
1
2 φ̂∗̂F̂(4) ∧ F̂(4)

−1
2dÂ(3) ∧ dÂ(3) ∧ Â(2) − 1

6mdÂ(3) ∧ (Â(2))
3 − 1

40m
2(Â(2))

5 − 1
2m

2e
5
2 φ̂∗̂1l , (101)

where the field strengths are defined as

F̂(2) = dÂ(1) +mÂ(2) , F̂(3) = dÂ(2) ,

F̂(4) = dÂ(3) + Â(1) ∧ dÂ(2) +
1
2mÂ(2) ∧ Â(2) . (102)

Note that the Bianchi identities in this theory are given by

dF̂(4) = F̂(2) ∧ F̂(3) , dF̂(3) = 0 , dF̂(2) = mF̂(3) . (103)

Using the embedding formulae obtained in [29] we can lift our six dimensional solution to

a solution of the above theory. It is given by (with m = g)

dŝ210 = s
1
12 [ds26 +

4
9g

−2dξ2 + 1
9g

−2c2 (σ21 + σ22 + h23)] ,

F̂(4) = 10
81g

−3s1/3c3 dξ ∧ ǫ(3) − 2
9
√
2
g−2e−3gρS[s1/3c σ3 ∧ dξ − 1

2s
4/3c2 σ1 ∧ σ2] ∧ dx+ ∧ dρ ,

F̂(3) = 0 , F̂(2) = 0 , eφ̂ = s−5/6, (104)

where ds26 is given by (79) and (81), and s, c, ǫ(3) and σi have the same definitions as before

and h3 = σ3 − 1√
2
S(1− e−3gρ)dx+.

A.4 D = 7 oxidised to D = 11

Using the embedding ansatz in [33] we obtain

dŝ11 = ds27 +
1
4g

−2dξ2 + 1
16g

−2c2(σ21 + σ22 + h23) , (105)

Â(3) = 1
64g

−3(2s+ s c2)ǫ(3) +
1

8
√
2
g−2S e−4gρs dx+ ∧ dρ ∧ σ3 ,

where ds27 is given by (90) and (92). The field strength F̂(4) = dÂ(3) is

F̂(4) = 3
64g

−3c3 dξ ∧ ǫ(3) + 1
8
√
2
g−2S e−4gρc dx+ ∧ dρ ∧ dξ ∧ σ3

+ 1
16

√
2
g−2S e−4gρ s c2 dx+ ∧ dρ ∧ σ1 ∧ σ2 , (106)

where s, c, ǫ(3) and σi have the same definitions as before and h3 = σ3− 1√
2
S(1− e−4gρ)dx+.
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B A general class of pp-waves

In this appendix we present the AdS pp-waves supported by an arbitrary n-form field

strength in any dimensions D. The Lagrangian for such a system is given by

e−1L = R− 1

2n!
F 2
(n) + (D − 1)(D − 2)g2, (107)

where the field strength is defined as F(n) = dA(n−1). Our pp-wave ansatz is

ds2 = e2gρ(−4dx+ dx− +H (dx+)2 + dz2) + dρ2,

A(n−1) =
(

zS1(x
+)− S2(x

+)

g(D − 2n + 1)
(e−(D−2n+1)gρ − 1)

)

dx+ ∧ dn−2z . (108)

The field strength and its dual are

F(n) = −S1 dx+ ∧ dzn−1 + S2e
−(D−2n+1)gρdρ ∧ dx+ ∧ dn−2z ,

∗F(n) = S1e
(D−2n−1)gρdρ ∧ dx+ ∧ dD−n−2z − S2dx+ ∧ dD−n−1z . (109)

Thus the equation of motion d∗F(n) = 0 is trivially satisfied. The Einstein equation implies

H = −S2
1e

−2ngρ − S2
2e

−2(D−n)gρ ,

= ∂2ρ + g(D − 1)∂ρ + e−2gρ
D−3
∑

i=1

∂2i , (110)

with the solution given by

H(x+, ρ, zi) = a+ b e−(D−1)gρ +
e−2gρ

2g2(D − 3)

D−3
∑

i=1

ci +
S2
1 e

−2ngρ

2g2n(D − 2n − 1)

− S2
2 e

−2(D−n)gρ

2g2(D − n)(D − 2n+ 1)
+ 1

2

D−3
∑

i=1

ciz
2
i . (111)

The a, b and ci are functions of x
+. This solution is not valid for D = 2n− 1 or D = 2n+1

which have to be considered separately. We find that

H(D = 2n+ 1, x+, ρ, zi) = a+ b e−2ngρ +
e−2gρ

4g2(n− 1)

2(n−1)
∑

i=1

ci +
(2ngρ+ 1)S2

1

4n2g2
e−2ngρ

− S2
2

4g2(n+ 1)
e−2(n+1)gρ + 1

2

2(n−1)
∑

i=1

ciz
2
i , (112)

and H(D = 2n − 1) can be obtained from H(D = 2n+ 1) by making the substitution

n→ n− 1 and S1 ←→ S2 . (113)

(This substitution is not performed on the field strength.)
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