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ABSTRACT

We present a new method of extending the single band Analysis of Vari-

ance period estimation algorithm to multiple bands. We use SDSS Stripe 82

RR Lyrae to show that in the case of low number of observations per band and

non-simultaneous observations, improvements in period recovery rates of up to

≈60% are observed. We also investigate the effect of inter-band observing ca-

dence on period recovery rates. We find that using non-simultaneous observation

times between bands is ideal for the multiband method, and using simultaneous

multiband data is only marginally better than using single band data. These

results will be particularly useful in planning observing cadences for wide-field

astronomical imaging surveys such as LSST. They also have the potential to im-

prove the extraction of transient data from surveys with few (. 30) observations

per band across several bands, such as the Dark Energy Survey.

Subject headings: methods: data analysis — stars: variables: general — stars:

variables: RR Lyrae — surveys
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1. Introduction

The period-luminosity relationship of variable stars, first discovered by Henrietta

Leavitt and calibrated by Ejnar Hertzsprung (Hertzsprung 1913), is an important step in

the astronomical distance ladder. With applications to measuring the Hubble constant

(Riess et al. 2011) and mapping out Galactic substructure (Sesar et al. 2010), periodic

variables are key science drivers for next-generation astronomical imaging surveys such as

the Large Synoptic Survey Telescope (LSST, Ivezić et al. 2008) and Gaia (Eyer et al. 2015).

Approximately 50 million variable stars will be detected by LSST (Sesar et al. 2007) and

18 million variables by Gaia (Eyer & Cuypers 2000), therefore, automated classifiers must

be relied upon to find the variable sources and determine the period of the source, if it is

periodic.

Numerous period finding algorithms have been implemented over the years (see

Graham et al. 2013 for a comparison of various algorithms). One common characteristic

of most modern period finding algorithms is the use of observational data in a single

band. For current generation transient surveys such as the intermediate Palomar Transient

Factory (iPTF; 10-5000 observations in R band for certain fields1, Law et al. 2009) and

Optical Gravitational Lensing Experiment (OGLE; 400-500 observations in I band for LMC

objects e.g., Soszyński et al. 2009a,b; Udalski et al. 1992), the volume of data in any one

band is sufficient to accurately determine the period, rendering the use of additional bands

redundant. However, in multiband surveys in which only a limited number of observations

are available in each band, single band algorithms can struggle due to poor phase coverage

(Graham et al. 2013).

Multiband period finding methods have been explored before, but the proposed

1http://www.ptf.caltech.edu/page/first data release
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methods require either simultaneous measurements (Süveges et al. 2012) or require that a

period be correctly recovered by a single band algorithm in the majority of bands sampled

(Oluseyi et al. 2012). The former case puts strict requirements on observing strategy, while

the latter still suffers from the inability of single band algorithms to return accurate results

with limited observations. Only recently (Long et al. 2014; VanderPlas & Ivezić 2015) have

methods been proposed that are general in the sense of allowing arbitrary observation times

and fully incorporating data from multiple bands into an algorithm.

In this Letter, we propose a method to extend the Analysis of Variance (AoV,

Schwarzenberg-Czerny 1996) single band algorithm to multiple bands. The method

improves period recovery rates for poorly sampled multiband light curves. In addition, we

discuss the importance of observational cadence between the bands to be used, and show

that non-simultaneous observations between bands increases the ability of our multiband

algorithm to recover the correct period.

2. Data

In this Letter, we select a sample from the 483 RR Lyrae stars from Sesar et al. (2010),

and use light curves from the Sloan Digital Sky Survey (SDSS) Stripe 82 Variable Source

Catalog (Ivezić et al. 2007). These stars have a reasonably large number of observations,

with a median number of observations per band of 56 across the SDSS g, r, and i bands,

and 55 in u and z. The data span 3340 days. Of the 483 sources found in Sesar et al.

(2010), 33 were either not found in the Variable Source Catalog, or had <10 observations

in one or more bands. Table 1 gives a complete description of the number of RR Lyrae as

a function of number of observations and downsampling method (described in section 3.2).

The three band sample uses only the g, r, and i bands. It should also be noted that the

typical time for SDSS to complete one pass through all filters is ≈ 0.004 days (5.7 mins,
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York et al. 2000).

3. Method

3.1. AoV Multiband Extension

As our model for the variation of brightness with time in a single band, we adopt a

sinusiod with K harmonics. Assuming nb observations in each of B bands, our data are of

the form {(tbi, mbi, σbi)
nb

i=1}
B
b=1, where tbi is the time of the i-th observation in band b, mbi is

the measured magnitude at that time, and σbi is the uncertainty associated with mbi. We

assume ω, the frequency, is constant across all bands. Our model can be written as

mbi = β0b +

K∑

k=1

abk sin(kωtbi + φbk) + ǫbi (1)

= β0b +

K∑

k=1

(abk cos(φbk) sin(kωtbi) + abk sin(φbk) cos(kωtbi)) + ǫbi

where ǫbi ∼ N(0, σ2
bi) are independent across i and b. This model is equivalent to the

multiphase Nbase = 0, Nband = K model of VanderPlas & Ivezić (2015). The periodogram

we construct (see Equation 5, this article) is different than that of VanderPlas & Ivezić

(2015). See Equation 5 and the discussion in section 5 for more details. Long et al. (2014)

studies this model with K = 1 and termed it MGLS. The authors did not construct

periodograms for this model, and did not study the effects of inter-band observing cadence

on period recovery.

One natural approach for estimating ω is to use maximum likelihood. Let

ab = (ab1, . . . , abK) and a = (a1, . . .aB). Analogous definitions apply for φb and φ. Let

β0 = (β01, . . . , β0B). Since the error model is normal, maximum likelihood is equivalent

to finding the ω which minimizes the weighted sum of squares, sometimes known as
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“chi–squared minimization.”

ω̂ = argmin
ω

min
a,φ,β0

B∑

b=1

nb∑

i=1

(
mbi −

∑
(abk cos(φbk) sin(kωtbi) + abk sin(φbk) cos(kωtbi))− β0b

σbi

)2

= argmin
ω

B∑

b=1

min
ab,φb,β0b

nb∑

i=1

(
mbi −

∑
(abk cos(φbk) sin(kωtbi) + abk sin(φbk) cos(kωtbi))− β0b

σbi

)2

.

We moved the min inside the sum over b because the bth summand only depends on

ab,φb, β0b.

The sum over i can be simplified by noting the linearity of the model and

reparameterizing. Letmb = (mb1, . . . , mbnb
)T . Let βbk1 = abk cos(φbk) and βbk2 = abk sin(φbk).

Define βb = (β0b, βb11, βb12, . . . , βbK1, βbK2)
T ∈ R

2K+1. Let Σb be a nb × nb diagonal matrix

where Σbii = σ2
bi. Define

Xb(ω) =




1 sin(ωtb1) cos(ωtb1) . . . sin(Kωtb1) cos(Kωtb1)

1 sin(ωtb2) cos(ωtb2) . . . sin(Kωtb2) cos(Kωtb2)

...
...

...
. . .

...
...

1 sin(ωtbnb
) cos(ωtbnb

) . . . sin(Kωtbnb
) cos(Kωtbnb

)




∈ R
nb×(2K+1)

We rewrite the ML estimator as

ω̂ = argmin
ω

B∑

b=1

min
βb

(mb −Xb(ω)βb)
TΣ−1

b (mb −Xb(ω)βb)

The problem is now identical to weighted least squares so the βb which minimizes the

expression is

β̂b(ω) = (XT
b (ω)Σ

−1
b Xb(ω))

−1Xb(ω)
TΣ−1

b mb

Define

RSSb(ω) = (mb −Xb(ω)β̂b(ω))
TΣ−1

b (mb −Xb(ω)β̂b(ω)) (2)

and we have

ω̂ = argmin
ω

B∑

b=1

RSSb(ω) (3)
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One can reconstruct maximum likelihood estimators for the original parameterization from

the β̂b(ω̂). From a computational perspective, the ML estimator requires performing B

weighted least squares estimates at each frequency.

Rather than obtain a single period estimate, it may be useful at any proposed ω to

have a measure of the confidence that ω is the true frequency. Periodograms are functions

which map frequencies to some measure of confidence. Often periodograms are constructed

so that under the null hypothesis of no magnitude variation (i.e., mbi = βb0 + ǫbi), the

periodogram has a known distribution at any particular frequency. We construct such a

periodogram for the model specified by Equation (1). The frequency which maximizes this

periodogram will be shown to be the maximum likelihood estimator in Equation (3). This

periodogram is a direct generalization of the AoV periodogram of Schwarzenberg-Czerny

(1996) to multiband data because:

• With a single band, the periodogram simplifies to the AoV periodogram of

Schwarzenberg-Czerny (1996).

• The periodogram retains the F distribution under the null hypothesis of constant

magnitude in every band.

We now discuss how to construct the periodogram following the notation of Section

3.1. We then go into further detail regarding the equivalence of this periodogram to

Schwarzenberg-Czerny (1996), and compare this periodogram to VanderPlas & Ivezić

(2015).

Under the notation of the previous section the model in Equation (1) can be written as

mb = Xb(ω)βb + ǫb (4)
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where ǫb ∼ N(0,Σb) for all b. Consider testing the null hypothesis

H0 : mb = 1βb0 + ǫb ∀ b.

This hypothesis states that the magnitude is a constant βb0 in each band. Since the first

column of Xb(ω) is 1, this is a submodel of Equation (4). The weighted least squares

estimator for the submodel is

β̂b0 = (1TΣ−1
b 1)−11TΣ−1

b mb =
1∑nb

i=1 σ
−2
bi

nb∑

i=1

mbi

σ2
bi

The residual sum of squares is

RSS0
b = (mb − 1β̂b0)

TΣ−1
b (mb − 1β̂b0)

Standard results in statistics (for example Sections 2.5 and 2.6 of Scheffé 1959) show that

under the null hypothesis

RSS0
b −RSSb(ω) ∼ χ2

2K

RSSb(ω) ∼ χ2
nb−2K−1

where χ2
j refers to a chi–squared distribution with j degrees of freedom. Further these two

quantities are independent. Since the sum of χ2 random variables is χ2 we have

B∑

b=1

RSS0
b −

B∑

b=1

RSSb(ω) ∼ χ2
2KB

B∑

b=1

RSSb(ω) ∼ χ2∑
B

b=1
nb−2KB−B

Finally we define the periodogram at frequency ω to be the ratio of these quantities divided

by their respective degrees of freedom

Θ(ω) =
(
∑B

b=1 nb − 2KB − B)
(∑B

b=1RSS0
b −

∑B

b=1RSSb(ω)
)

2KB(
∑B

b=1RSSb(ω))
(5)

Under H0, Θ(ω) ∼ F2KB,
∑

B

b=1
nb−2KB−B. A few comments on the periodogram:
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• In practice, the frequency which maximizes the periodogram is often used as a

period estimate. The frequency which maximizes the periodogram will minimize
∑B

b=1RSSb(ω), which we showed in Equation (3) is the maximum likelihood estimator.

• With a single band the periodogram becomes

Θ(ω) =
(n− 2K − 1) (RSS0 − RSS(ω))

2K(RSS(ω))

which matches the periodogram of Schwarzenberg-Czerny (1996) Equation 11

(although with different notation).

In addition to developing the single band AoV algorithm, Schwarzenberg-Czerny

(1996) also developed a fast routine for evaluating RSSb(ω) based on finding orthogonal

polynomials on the unit circle. For this reason, we use a Fortran implementation of the

single band AoV algorithm2 as the basis for constructing our multiband periodogram. A

small python code demonstrating how to do this been made available3. As input parameters

to the single band AoV algorithm used in this work, we use a minimum frequency of 1

day−1, an upper frequency of 5 day−1, a frequency step of 0.0001 day−1 and one harmonic

(corresponding to FR0=1, FRU=5, FRS=0.0001, and NH2=2 in the AoV code).

This periodogram is different from that of VanderPlas & Ivezić (2015) (see Equation

22 in their paper). They use RSS0
b in the denominator instead of RSSb(ω). The

unregularized models of VanderPlas & Ivezić (2015) follow an incomplete beta distribution

(see Schwarzenberg-Czerny (1998), Eqn. 6). It should also be noted that this multiband

method implicitly assumes that the period of oscillation is the same for each band. If the

period varies significantly across bands, this method will not be suitable for use.

2http://users.camk.edu.pl/alex/

3https://github.com/Mondrik/Multiband AoV Demo
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Figure 1 compares the multiband periodogram with its single band components.

3.2. Testing the Algorithm

To test the algorithm, we downsample the number of observations per band for

each light curve using both simultaneous and non-simultaneous downsampling. For

non-simultaneous downsampling, observations (consisting of a time of observation, band,

magnitude, and photometric error) are randomly selected from all available observations.

Observations are selected until all bands have nobs observations. For simultaneous

downsampling, an observation in one band is chosen. We then choose observations in the

other bands such that the absolute difference in observation times is ≤ 0.005 days (7.2

minutes) from the initial observation time. This is repeated nobs times. Since the time

for SDSS to complete one pass through all filters is about 5.7 minutes (York et al. 2000),

these observations are as close in phase space as possible. We also choose to use a flat time

difference rather than a fraction of the known period in order to mimic the lack of a priori

knowledge of the variable object, as is the case in survey planning. We then define a period

as correctly recovered if |PAlg − PTrue| ≤ 0.001 days, where PAlg is the period corresponding

to the largest value of the multiband or single band AoV periodogram, and PTrue is the

period as measured by Sesar et al. (2010). The results are shown in Figure 2. Error bars are

estimated by assuming a binomial distribution at each nobs characterized by the estimated

completeness and number of objects.
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4. Discussion

4.1. Benefit of Multiband over Single Band

The most striking result shown in Figure 2 is the large separation between the

multiband non-simultaneous completeness fraction and the single band non-simultaneous

completeness fraction; even the use of as few as 3 bands can significantly improve recovery

rates over single band methods. For surveys with a low number of observations per band

(nobs . 30), such as the Dark Energy Survey (The Dark Energy Survey Collaboration 2005),

multiband methods can provide a significant increase in fraction of correctly recovered

periods, allowing for more accurate classification of transient objects in the survey.

4.2. Impact of Inter-band Observing Cadence

The second major result noticeable in Figure 2 is the difference between the

simultaneous and non-simultaneous downsampling groups. It should be noted that in the

single band case, simultaneous and non-simultaneous downsampling should have no effect,

so the scatter between the two is indicative of the randomness in choosing the observations.

The difference between multiband non-simultaneous and simultaneous downsampling arises

primarily from the increase in phase space coverage of the non-simultaneous downsampling

relative to the simultaneous downsampling. In the case of simultaneous downsampling,

the additional bands add little new information about the light curve not contained in

other bands, leading to poorer performance, despite having the same number of total

observations.

Figure 3 demonstrates the failure modes of our multiband model in the case of

non-simultaneous and simultaneous observations. We plot the best fit period from the

AoV multiband model with 15 observations per band against the period taken from Sesar
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et al. (2010). In the non-simultaneous case, the multiband method fails primarily along

beat periods, given by Pn = P/(1 + nP ) for integer n, as discussed in VanderPlas & Ivezić

(2015). In the simultaneous case, the multiband method tends to fail in a much more

random fashion.

4.3. Constructing Data Sets for Maximized Period Recovery Rates

The improvement of recovery rates with unique phase space observations (non-

simultaneous observations) suggests that recovery rates cannot be significantly improved by

downsampling 25 simultaneous observations to, for example, sets of 12 observations that

are less simultaneous. Fundamentally, there are only 25 unique phase space observations

of the object, which constrains the maximum amount of phase space separation between

the bands. In order to construct a truly non-simultaneous dataset, we require a minimum

of nobs per band times the number of bands. Hence our non-simultaneous downsampling

set is not truly non-simultaneous, since we are randomly downsampling from less than 125

observations across 5 bands (at 25 observations per band). Since the typical number of

observations per band is ≈ 55, it is impossible for us to separate the observations completely

for nobs > 11 in 5 bands. In this case, the algorithm is limited by the construction of the data

set, i.e., how non-simultaneous the observations are. It would therefore be advantageous to

construct a data set that is as non-simultaneous as possible, rather than downsample from

a simultaneous data set, in order to use the maximum number of observations.

4.4. Implications for Future Imaging Surveys

This method of constructing a data set has a major potential impact on observational

cadence planning for upcoming wide-field imaging surveys such as LSST. By varying
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observation times between bands, accurate periods for variable sources can be estimated

much sooner than otherwise possible. The phase space effect also has implications for our

ability to extract transient data from ongoing surveys such as the Dark Energy Survey,

which could see a boost in period recovery rates by employing an algorithm similar to our

proposed method.

5. Comparison with VanderPlas & Ivezić (2015)

As we mentioned earlier, another method similar to ours in spirit is that of VanderPlas

& Ivezić (2015). Both methods use truncated Fourier series to model given observations

across an arbitrary number of bands. However, the method used in VanderPlas & Ivezić

(2015) is effectively an extension of the Lomb-Scargle periodogram (Scargle 1982; Lomb

1976), while ours extends the Analysis of Variance periodogram. In the single band

case, Graham et al. (2013) show that the multiharmonic AoV algorithm (AOVMHW

in their notation, AoV in ours) tends to be among the top performers in any test of

period estimation. Schwarzenberg-Czerny (1998) asserts that statistically, the use of PDM

(Jurkevich 1971; Stellingwerf 1978), AoV, and χ2 statistics is largely a matter of taste,

although it will be interesting to perform another analysis similar to that of Graham et al.

(2013) on multiband data using methods such as ours and that of VanderPlas & Ivezić

(2015) to determine when each algorithm is most effective.

6. Conclusion

We have introduced a new method of estimating periods of periodic variables using

multiband imaging data. We extended the existing AoV period estimation algorithm to

incorporate data from multiple bands while maintaining the fundamental characteristics
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of the single band algorithm. This allows for the use of relatively few observations

(≈ 25) per band across several bands while maintaining a reasonable level of completeness

(≈ 70− 80%). We have also shown the importance of the (non-)simultaneity of observation

timing. For a fixed number of observations per band, non-simultaneous observations offer

better opportunity for period recovery than simultaneous observations. This effect of

observational simultaneity has implications for the area of survey planning, particularly in

the early period of surveys such as LSST, when the volume of data is not enough to render

multiband period estimation redundant. It also has implications for non-transient surveys

imaging fields at multiple epochs. By carefully choosing the observation time and band,

our proposed mutiband algorithm can extract periods from data previously considered too

poorly sampled to be of use.
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Sesar, B., Ivezić, Ž., Lupton, R. H., et al. 2007, AJ, 134, 2236
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Fig. 1.— The single band AoV periodograms and multiband periodogram constructed using

Equation (5). The AoV statistic is an indication of how well the trial function of the AoV

algorithm fits the light curve folded with period P , with higher values indicating a better

fit. The multiband periodogram is given by the blue dashed line, while the ugriz single

band periodograms are given by the solid black lines. The periodogram was generated using

non-simultaneous downsampling (to 19 observations per band in 5 bands) of an RR Lyrae

from Sesar et al. (2010).
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Fig. 2.— Completeness fraction (number of periods correctly recovered divided by number

of light curves attempted, period is successfully recovered if |PAlg − PTrue| ≤ 0.001 days.)

as a function of observations per band across the SDSS ugriz bands. The 483 RR Lyrae of

Sesar et al. (2010) were used as a dataset, as described in section 2. Single band periods

and one multiband period were estimated for each object. The single band completeness is

obtained by dividing the number of correct single band period identifications by the total

number of single band light curves attempted (i.e., 5x, 3x, or 1x the number of RR Lyrae),

while multiband completeness is calculated by dividing the number of multiband correct

period identifications by the number of RR Lyrae attempted. The solid (dashed) black

line with circles represent the completeness fraction for 5 band (ugriz ) non-simultaneous

(simultaneous) downsampling. The green solid (dashed) lines and star markers is the same,

but for 3 bands (gri) of data. The single band counterparts for non-simultaneous and

simultaneous downsampling are given by the solid red line and dashed blue line with triangles,

respectively. For simultaneous observations, the typical separation between observations is

. 0.005 days.
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Table 1. Number of RR Lyrae in sample

nobs per band Non-simultaneous 5 band Simultaneous 5 band Non-simultaneous 3 band Simultaneous 3 band

10 450 450 450 450

13 450 449 450 450

15 450 448 450 449

17 448 447 448 448

19 448 445 448 447

21 447 445 447 445

23 445 440 445 443

25 444 438 444 441
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Fig. 3.— Comparison of best fit periods from this work to Sesar et al. (2010) for the multi-

band method in the non-simultaneous (left) and simultaneous (right) cases. Periodograms

were made using 15 observations per band. The solid line represents a 1:1 match, while the

dashed lines represent beat frequencies. In general, the non-simultaneous data set fails along

beat frequencies, while the simultaneous data set fails in a more random manner.
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