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ABSTRACT

We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted
optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised
machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey
Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events
generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN
observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates
eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae
(SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events.
Here we characterize the algorithm’s performance in detail, and we discuss how it can inform pipeline design
decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky
Transient Facility. An implementation of the algorithm and the training data used in this paper are available at
at http://portal.nersc.gov/project/dessn/autoscan.
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1. INTRODUCTION

To identify scientifically valuable transients or moving
objects on the sky, imaging surveys have historically adopted a
manual approach, employing humans to visually inspect
images for signatures of the events (e.g., Zwicky 1964; Hamuy
et al. 1993; Perlmutter et al. 1997; Schmidt et al. 1998;
Filippenko et al. 2001; Strolger et al. 2004; Blanc et al. 2004;
Astier et al. 2006; Sako et al. 2008; Mainzer et al. 2011;
Waszczak et al. 2013; Rest et al. 2014). But recent advances in
the capabilities of telescopes, detectors, and supercomputers
have fueled a dramatic rise in the data production rates of such
surveys, straining the ability of their teams to quickly and
comprehensively look at images to perform discovery.

For surveys that search for objects on difference images—
CCD images that reveal changes in the appearance of a region
of the sky between two points in time—this problem of data
volume is compounded by the problem of data purity.
Difference images are produced by subtracting reference
images from single-epoch images in a process that involves
point-spread function (PSF) matching and image distortion
(see, e.g., Alard & Lupton 1998). In addition to legitimate
detections of astrophysical variability, they can contain artifacts
of the differencing process, such as poorly subtracted galaxies,
and artifacts of the single-epoch images, such as cosmic rays,
optical ghosts, star halos, defective pixels, near-field objects,
and CCD edge effects. Some examples are presented in
Figure 1. These artifacts can vastly outnumber the signatures of
scientifically valuable sources on the images, forcing object
detection thresholds to be considerably higher than what is to
be expected from Gaussian fluctuations.

For time-domain imaging surveys with a spectroscopic
follow-up program, these issues of data volume and purity are
compounded by time-pressure to produce lists of the most

promising targets for follow-up observations before they
become too faint to observe or fall outside a window of
scientific utility. Ongoing searches for Type Ia supernovae
(SNe Ia) out to z 1~ , e.g., those of the Panoramic Survey
Telescope and Rapid Response System Medium Deep Survey
(Rest et al. 2014) and the Dark Energy Survey (DES;
Flaugher 2005), face all three of these challenges. The DES
supernova program (DES-SN; Bernstein et al. 2012), for
example, produces up to 170 gigabytes of raw imaging data on
a nightly basis. Visual examination of sources extracted from
the resulting difference images using SExtractor (Bertin &
Arnouts 1996) revealed that 93%~ are artifacts, even after
selection cuts (Kessler et al. 2015). Additionally, the survey has
a science-critical spectroscopic follow-up program for which it
must routinely select the 10~ most promising transient
candidates from hundreds of possibilities, most of which are
artifacts. This program is crucial to survey science as it allows
DES to confirm transient candidates as SNe, train and optimize
its photometric SN typing algorithms (e.g., PSNID; Sako
et al. 2011, NNN; Karpenka et al. 2013), and investigate
interesting non-SN transients. To prepare a list of objects
eligible for consideration for spectroscopic follow-up observa-
tions, members of DES-SN scanned nearly 1 million objects
extracted from difference images during the survey’s first
observing season, the numerical equivalent of nearly a week of
uninterrupted scanning time, assuming scanning one object
takes half a second.
For DES to meet its discovery goals, more efficient

techniques for artifact rejection on difference images are
needed. Efforts to “crowd-source” similar large-scale classifi-
cation problems have been successful at scaling with growing
data rates; websites such as Zooniverse.org have accumulated
over one million users to tackle a variety of astrophysical
classification problems, including the classification of transient

Figure 1. Cutouts of DES difference images, roughly 14 arcsec on a side, centered on legitimate (green boxes; left four columns of figure) and spurious (red boxes;
right four columns of figure) objects, at a variety of signal-to-noise ratios: (a) S N 10 , (b) 10 S N 30< , (c) 30 S N 100< . The cutouts are subclassed to
illustrate both the visual diversity of spurious objects and the homogeneity of authentic ones. Objects in the “Transient” columns are real astrophysical transients that
subtracted cleanly. Objects in the “Fake SN” columns are fake SNe Ia injected into transient search images to monitor survey efficiency. The column labeled “CR/Bad
Column” shows detections of cosmic rays (rows b and c) and a bad column on the CCD detector (row a). The columns labeled “Bad Sub” show non-varying
astrophysical sources that did not subtract cleanly; this can result from poor astrometric solutions, shallow templates, or bad observing conditions. The numbers at the
bottom of each cutout indicate the score that each detection received from the machine learning algorithm introduced in Section 3; a score of 1.0 indicates the
algorithm is perfectly confident that the detection is not an artifact, while a score of 0.0 indicates the opposite.
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candidates from the Palomar Transient Factory (PTF; Smith
et al. 2011). However, for DES to optimize classification
accuracy and generate reproducible classification decisions,
automated techniques are required.

To reduce the number of spurious candidates considered for
spectroscopic follow-up, many surveys impose selection
requirements on quantities or features that can be directly and
automatically computed from the raw imaging data. Making
hard selection cuts of this kind has been shown to be a
suboptimal technique for artifact rejection in difference
imaging. Although such cuts are automatic and easy to
interpret, they do not naturally handle correlations between
features, and they are an inefficient way to select a subset of the
high-dimensional feature space as the number of dimensions
grows large (Bailey et al. 2007).

In contrast to selection cuts, machine learning (ML)
classification techniques provide a flexible solution to the
problem of artifact rejection in difference imaging. In general,
these techniques attempt to infer a precise mapping between
numeric features that describe characteristics of observed data,
and the classes or labels assigned to those data, using a training
set of feature-class pairs. ML classification algorithms that
generate decision rules using labeled data—data whose class
membership has already been definitively established—are
called “supervised” algorithms. After generating a decision
rule, supervised ML classifiers can be used to predict the
classes of unlabeled data instances. For a review of supervised
ML classification in astronomy, see, e.g., Ivezić et al. (2013).
For an introduction to the statistical underpinnings of
supervised ML classification techniques, see Willsky
et al. (2003).

Such classifiers address many of the shortcomings of
scanning and selection cuts. ML algorithms’ decisions are
automatic, reproducible, and fast enough to process streaming
data in real-time. Their biases can be systematically and
quantitatively studied, and, most importantly, given adequate
computing resources, they remain fast and consistent in the
face of increasing data production rates. As more data are
collected, ML methods can continue to refine their knowledge
about a data set (see Section 5.1), thereby improving their
predictive performance on future data. Supervised ML
classification techniques are currently used in a variety of
astronomical contexts, including time-series analysis, such as
the classification of variable stars (Richards et al. 2011) and
SNe (Karpenka et al. 2013) from light curves, and image
analysis, such as the typing of galaxies (Banerji et al. 2010),
and discovery of trans-Neptunian objects (D. W. Gerdes et al.
2015, in preparation) on images. Although their input data
types differ, light curve shape and image-based ML classifica-
tion frameworks are quite similar: both operate on tabular
numeric classification features computed from raw input data
(see Section 3.2.2).

The use of supervised ML classification techniques for
artifact rejection in difference imaging was pioneered by Bailey
et al. (2007) for the Nearby Supernova Factory (Aldering
et al. 2002) using imaging data from the Near-Earth Asteroid
Tracking program39 and the Palomar-QUEST Consortium,
using the 112-CCD QUEST-II camera (Baltay et al. 2007).
They compared the performance of three supervised classifica-
tion techniques—a Support Vector Machine (SVM), a Random

Forest, and an ensemble of boosted decision trees—in
separating a combination of real and fake detections of SNe
from background events. They found that boosted decision
trees constructed from a library of astrophysical domain
features (magnitude, FWHM, distance to the nearest object in
the reference co-add, measures of roundness, etc.) provided the
best overall performance.
Bloom et al. (2012) built on the methodology of Bailey

et al. (2007) by developing a highly accurate Random Forest
framework for classifying detections of variability extracted
from PTF difference images. Brink et al. (2013) made
improvements to the classifier of Bloom et al. (2012), setting
an unbroken benchmark for best overall performance on the
PTF data set, using the technique of recursive feature
elimination to optimize their classifier. Recently, du Buisson
et al. (2014) published a systematic comparison of several
classification algorithms using features based on Principal
Component Analysis extracted from Sloan Digital Sky
Survey-II SN survey difference images. Finally, Wright
et al. (2015) used a pixel-based approach to engineer a
Random Forest classifier for the Pan-STARRS Medium Deep
Survey.
In this article, we describe autoScan, a computer program

developed for this purpose in DES-SN. Our main objective is to
report the methodology that DES-SN adopted to construct an
effective supervised classifier, with an eye toward informing
the design of similar frameworks for future time domain
surveys such as the Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration 2009) and the Zwicky Transient
Facility (ZTF; Smith et al. 2014). We extend the work of
previous authors to a newer, larger data set, showing how
greater selection efficiency can be achieved by increasing
training set size, using generative models for training data, and
implementing new classification features.
The structure of the paper is as follows. In Section 2, we

provide an overview of DES and the DES-SN transient
detection pipeline. In Section 3, we describe autoScan. In
Section 4, we present metrics for evaluating the code’s
performance and review its performance on a realistic
classification task. In Section 5, we discuss lessons learned
and areas of future development that can inform the design of
similar frameworks for future surveys.

2. THE DARK ENERGY SURVEY AND TRANSIENT
DETECTION PIPELINE

In this section, we introduce DES and the DES-SN transient
detection pipeline (“DiffImg”; Kessler et al. 2015), which
produced the data used to train and validate autoScan. DES
is a Stage III ground-based dark energy experiment designed to
provide the tightest constraints to date on the dark energy
equation of state parameter using observations of the four most
powerful probes of dark energy suggested by the Dark Energy
Task Force; (Albrecht et al. 2006): SNe Ia, galaxy clusters,
baryon acoustic oscillations, and weak gravitational lensing.
DES consists of two interleaved imaging surveys: a wide-area
survey that covers 5000 deg2 of the south Galactic cap in 5
filters grizY( ), and DES-SN, a time-domain transient survey
that covers 10 (8 “shallow” and 2 “deep”) 3 deg2 fields in the
XMM-LSS, ELAIS-S, CDFS, and Stripe-82 regions of the sky,
in four filters griz( ). The survey’s main instrument, the Dark
Energy Camera (DECam; Diehl 2012; Flaugher et al. 2012;
Flaugher et al. 2015), is a 570 megapixel 3 deg2 imager with 6239 http://neat.jpl.nasa.gov
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fully depleted, red-sensitive CCDs. It is mounted at the prime
focus of the Victor M. Blanco 4 m telescope at the Cerro Tololo
Inter-American Observatory (CTIO). DES conducted “science
verification” (SV) commissioning observations from 2012
November until 2013 February, and it began science operations
in 2013 August that will continue until at least 2018 (Diehl
et al. 2014). The data used in this article are from the first
season of DES science operations (“Y1”; 2013 August–2014
February).

A schematic of the pipeline that DES-SN employs to
discover transients is presented in Figure 2. Transient survey
“science images” are single-epoch CCD images from the DES-
SN fields. After the image subtraction step, sources are
extracted using SExtractor. Sources that pass the cuts
described in the Object section of Table 1 are referred to as
“detections.” A “raw candidate” is defined when two or more
detections match to within 1″. A raw candidate is promoted to a
“science candidate” when it passes the NUMEPOCHS require-
ment in Table 1. This selection requirement was imposed to
reject Solar System objects, such as main belt asteroids and
Kuiper Belt objects, which move substantially on images from
night to night. Science candidates are eligible for visual
examination and spectroscopic follow-up observations. During
the observing season, science candidates are routinely photo-
metered, fit with multi-band SN light curve models, visually
inspected, and slated for spectroscopic follow-up.

3. CLASSIFIER DEVELOPMENT

In this section, we describe the development of autoScan.
We present the classifier’s training data set (Section 3.1), its
classification feature set (Section 3.2), and the selection
(Section 3.3), properties (Section 3.4), and optimization
(Section 3.5) of its core classification algorithm.

3.1. Training Data

To make probabilistic statements about the class member-
ship of new data, supervised ML classifiers must be trained or
fit to existing data whose true class labels are already known.
Each data instance is described by numeric classification
“features” (see Section 3.2.2); an effective training data set
must approximate the joint feature distributions of all classes
considered. Objects extracted from difference images can
belong to one of two classes: “Artifacts,” or “Non-artifacts.”
Examples of each class must be present in the training set.
Failing to include data from certain regions of feature space can
corrode the predictive performance of the classifier in those
regions, introducing bias into the search that can systematically
degrade survey efficiency (Richards et al. 2012). Because the
training set compilation described here took place during the
beginning of Y1, it was complicated by a lack of available
visually scanned “Non-artifact” sources.
Fortunately, labeling data does not necessarily require

humans to visually inspect images. Bloom et al. (2012) discuss
a variety of methods for labeling detections of variability
produced by difference imaging pipelines, including scanning
alternatives such as artificial source construction and spectro-
scopic follow-up. Scanning, spectroscopy, and using fake data
each have their respective merits and drawbacks. Scanning is
laborious and potentially inaccurate, especially if each data
instance is only examined by one scanner, or if scanners are not
well trained. However, a large group of scanners can quickly
label a number of detections sufficient to create a training set
for a machine classifier, and Brink et al. (2013) have shown
that the supervised classification algorithm Random Forest,
which was ultimately selected for autoScan, is insensitive to
mislabeled training data up to a contamination level of 10%.
Photometric typing (e.g., Sako et al. 2011) can also be useful

for labeling detections of transients. However, robust photo-
metric typing requires well-sampled light curves, which in turn

Figure 2. Schematic of the DES-SN transient detection pipeline. The magnitudes of fake SNe Ia used to monitor survey efficiencyare calibrated using the zero point of
the images into which they are injected and generated according to the procedure described in Section 3.1. The autoScan step (red box) occurs after selection cuts
are applied to objects extracted from difference images and before objects are spatially associated into raw transient candidates. Codes used at specific steps are
indicated in parentheses.
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require high-cadence photometry of difference image objects
over timescales of weeks or months. This requirement is
prohibitive for imaging surveys in their early stages. Further,
because photometric typing is an integral part of the spectro-
scopic target selection process, by extension new imaging
surveys also have too few detections of spectroscopically
confirmed SNe, active galactic nuclei, or variable stars. Native
spectroscopic training samples are therefore impractical sources
of training data for new surveys.

Artificial source construction is the fastest method for
generating native detections of non-artifact sources in the early
stages of a survey. Large numbers of artificial transients
(“fakes”) can be injected into survey science images, and by
construction their associated detections are true positives.
Difficulties can arise when the joint feature distributions of
fakes selected for the training set do not approximate the joint
feature distributions of observed transients in production. In
DES-SN, SN Ia fluxes from fake SN Ia light curves are overlaid
on images near real galaxies. The fake SN Ia light curves are
generated by the SNANA simulation (Kessler et al. 2009), and
they include true parent populations of stretch and color, a
realistic model of intrinsic scatter, a redshift range from 0.1 to
1.4, and a galaxy location proportional to surface brightness.
On difference images, detections of overlaid fakes are visually
indistinguishable from real point-source transients and Solar
System objects moving slowly enough not to streak. All fake
SN Ia light curves are generated and stored prior to the start of
the survey. The overlay procedure is part of the difference
imaging pipeline, where the SN Ia flux added to the image is
scaled by the zero point, spread over nearby pixels using a
model of the PSF, and fluctuated by random Poisson noise.
These fakes are used to monitor the single-epoch transient
detection efficiency as well as the candidate efficiency in which
detections on two distinct nights are required. On average, six
detections of fake SNe are overlaid on each single-epoch CCD-
image.

The final autoScan training set contained detections of
visually scanned artifacts and artificial sources only. We did
not include detections of photometrically typed transients to
minimize the contamination of the “Non-artifact” class with

false positives. Bailey et al. (2007) also used a training set in
which the “Non-artifact” class consisted largely of artificial
sources.
With 898,963 training instances in total, the autoScan

training set is the largest used for difference image artifact
rejection in production. It was split roughly evenly between
“real” and “artifact” labeled instances—454,092 were simu-
lated SNe Ia injected onto host galaxies, while the remaining
444,871 detections were human-scanned artifacts. Compiling a
set of artifacts to train autoScan was accomplished by taking
a random sample of the objects that had been scanned as
artifacts by humans during an early processing of DES Y1 data
with a pared-down version of the difference imaging pipeline
presented in Figure 2.

3.2. Features and Processing

The supervised learning algorithms we consider in this
analysis are nonlinear functions that map points representing
individual detections in feature space to points in a space of
object classes or class probabilities. The second design choice
in developing autoScan is therefore to define a suitable
feature space in which to represent the data instances we wish
to use for training, validation, and prediction. In this section,
we describe the classification features that we computed from
the raw output of the difference imaging pipeline, as well as the
steps used to pre- and post-process these features.

3.2.1. Data Preprocessing

The primary data sources for autoScan features are
51 × 51 pixel object-centered search, template, and difference
image cutouts. The template and difference image cutouts are
sky-subtracted. The search image cutout is sky-subtracted if
and only if it does not originate from a coadded exposure,
though this is irrelevant for what follows as no features are
directly computed from search image pixel values. Photometric
measurements, SExtractor output parameters, and other
data sources are also used. Each cutout associated with a
detection is compressed to 25 × 25 pixels. The seeing for each
search image is usually no less than 1 arcsec, while the DECam

Table 1
DES-SN Object and Candidate Selection Requirements

Set Feature Lower Limit Upper Limit Description

Object MAG L 30.0 Magnitude from SExtractor
A_IMAGE L 1.5 pix. Length of semimajor axis from SExtractor
SPREAD_MODEL L 3 1.0Ss + Star-galaxy separation output parameter from SExtractor Ss is the estimated

SPREAD_MODEL uncertainty
CHISQ L 104 χ2 from PSF-fit to 35 × 35 pixel cutout around object in difference image
SNR 3.5 L Flux from a PSF model fit to a 35 × 35 pixel cutout around the object divided by the

uncertainty from the fit
VETOMAGa 21.0 L Magnitude from SExtractor for use in veto catalog check
VETOTOLa Magnitude-dependent L Separation from nearest object in veto catalog of bright stars
DIPOLE6 L 2 Npix in 35 × 35 pixel object-centered cutout at least 6σ below 0
DIPOLE4 L 20 Npix in 35 × 35 pixel object-centered cutout at least 4σ below 0
DIPOLE2 L 200 Npix in 35 × 35 pixel object-centered cutout at least 2σ below 0

Candidate NUMEPOCHS 2 L Number of distinct nights that the candidate is detected

Note.
a The difference imaging pipeline is expected to produce false positives near bright or variable stars, thus all difference image objects are checked against a “veto”
catalog of known bright and variable stars and are rejected if they are brighter than 21st magnitude and within a magnitude-dependent radius of a veto catalog source.
Thus only one of VETOMAG and VETOTOL must be satisfied for an object to be selected.
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pixel scale lies between 0.262 and 0.264 arcsec depending on
the location on the focal plane, so little information is lost
during compression. Although some artifacts are sharper than
the seeing, we found that using compressed cutouts to compute
some features resulted in better performance.

Consider a search, template, or difference image cutout
associated with a single detection. Let the matrix element Ix y, of
the 51 × 51 matrix I represent the flux value of the pixel at
location x y, on the cutout. We adopt the convention of zero-
based indexing and the convention that element (0, 0)
corresponds to the pixel at the top left-hand corner of the
cutout. Let the matrix element Cx y, of the 25 × 25 matrix C
represent the flux value of the pixel at location x y, on the
compressed cutout. Then C is defined element-wise from I via

IC
N

1
, 1x y

u i j
x i y j,

0

1

0

1

2 ,2 ( )åå=
= =

+ +

where Nu is the number of unmasked pixels in the sum. Masked
pixels are excluded from the sum. Only when all four terms in
the sum represent masked pixels is the corresponding pixel
masked in C. Note that matrix elements from the right-hand
column and last row of I never appear in Equation (1).

To ensure that the pixel flux values across cutouts are
comparable, we rescale the pixel values of each compressed
cutout via

R
C Cmed

, 2x y
x y

,
, ( )

ˆ
( )

s
=

-

where the matrix element Rx y, of the 25 × 25 matrix R
represents the flux value of the pixel at location x y, on the
compressed, rescaled cutout, and ŝ is a consistent estimator of
the standard deviation of C. We take the median absolute
deviation as a consistent estimator of the standard deviation
(Rousseeuw & Croux 1993), according to

C Cmed med
3

4

3
1

ˆ (∣ ( )∣) ( )s =
-

F- ⎜ ⎟⎛
⎝

⎞
⎠

where 1 3 4 1.48261( )F »- is the reciprocal of the inverse
cumulative distribution for the standard normal distribution
evaluated at 3 4. This is done to ensure that the effects of
defective pixels and cosmic rays nearly perpendicular to the
focal plane are suppressed. We therefore have the following
closed-form expression for the matrix element Rx y, ,

R
C C

C C

1

1.4826

med

med med
. 4x y

x y
,

, ( )
(∣ ( )∣)

( )»
-

-

⎡
⎣⎢

⎤
⎦⎥

The rescaling expresses the value of each pixel on the
compressed cutout as the number of standard deviations above
the median. Masked pixels are excluded from the computation
of the median in Equation (4).

Finally, an additional rescaling from Brink et al. (2013) is
defined according to

B
I I

I

med

max
. 5x y

x y
,

, ( )
(∣ ∣)

( )=
-

The size of B is 51 × 51. We found that using B instead of R or
I to compute certain features resulted in better classifier

performance. Masked pixels are excluded from the computa-
tion of the median in Equation (5).

3.2.2. Feature Library

Two feature libraries were investigated. The first was
primarily “pixel-based.” For a given object, each matrix
element of the rescaled, compressed search, template, and
difference cutouts was used as a feature. The CCD ID number
of each detection was also used, as DECam has 62 CCDs with
specific artifacts (such as bad columns and hot pixels) as well
as effects that are reproducible on the same CCD depending on
which field is observed (such as bright stars). The signal-to-
noise ratio (S/N) of each detection was also used as a feature.
The merits of this feature space include relatively straightfor-
ward implementation and computational efficiency. A produc-
tion version of this pixel-based classifier was implemented in
the DES-SN transient detection pipeline at the beginning of Y1.
In production, it became apparent that the 1877 dimensional40

feature space was dominated by uninformative features, and
that better false positive control could be achieved with a more
compact feature set.
We pursued an alternative feature space going forward,

instead using 38 high-level metrics to characterize detections of
variability. A subset of the features are based on analogs from
Bloom et al. (2012) and Brink et al. (2013). In this section, we
describe the features that are new. We present an at-a-glance
view of the entire autoScan feature library in Table 2.
Histograms and contours for the three most important features
in the final autoScan model (see Section 3.4) appear in
Figure 4.

3.2.3. New Features

In this section we present new features developed for
autoScan. Let the superscripts s t, , and d on matrices defined
in the previous section denote search, template, and difference
images, respectively. The feature r_aper_psf is designed to
identify badly subtracted stars and galaxies on difference
images caused by poor astrometric alignment between search
and template images. These objects typically appear on
difference images as overlapping circular regions of positive
and negative flux colloquially known as “dipoles.” Examples
are presented in Figure 3. In these cases the typical search-
template astrometric misalignment scale is comparable to the
FWHM of the PSF, causing the contributions of the negative
and positive regions to the total object flux from a PSF model
fit to be approximately equal in magnitude but opposite in sign,
usually with a slight positive excess as the PSF-fit is centered
on the detection location, where the flux is always positive. The
total flux from a PSF model fit to a dipole is usually greater
than but comparable to the average flux per pixel in a five-pixel
circular aperture centered on the detection location on the
template image. To this end, let F Iaper, be the flux from a five-
pixel circular aperture centered on the location of a detection on
the uncompressed template image. Let F IPSF, be the flux
computed by fitting a PSF model to a 35 35´ pixel cutout
centered on the location of the detection on the uncompressed

40 625 pixels on a 25 × 25 pixel cutout ×3 cutouts per detection + 2 non-pixel
features (snr, ccdid) = 1877.
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difference image. Then r_aper_psf is given by

F F

F
_ _ . 6

I I

I

aper, PSF,

PSF,
( )r aper psf =

+

We find that objects with r_aper_psf 1.25> are almost
entirely “dipoles.”

Let a 2, 3{ }Î , b 3, 5{ }Î . The four features nasigb-
shift represent the difference between the number of pixels
with flux values greater than or equal to a in
b b2 2( ) ( )+ ´ + element blocks centered on the detection
position in Rd and Rt. These features coarsely describe changes
in the morphology of the source between the template and
search images.

Table 2
autoScanʼs Feature Library

Feature Name Importance Source Description

r_aper_psf 0.148 New The average flux in a 5 pixel circular aperture centered on the object on the I t cutout plus the flux from a 35 × 35
pixel PSF model fit to the object on the Id cutout, all divided by the PSF model fit flux

magdiff 0.094 B12 If a source is found within 5″ of the location of the object in the galaxy coadd catalog, the difference between
mag and the magnitude of the nearby source else, the difference between mag and the limiting magnitude of
the parent image from which the Id cutout was generated

spread_model 0.066 New SPREAD_MODEL output parameter from SExtractor on Id

n2sig5 0.055 B12 Number of matrix elements in a 7 × 7 element block centered on the detection on Rd with values less than −2
n3sig5 0.053 B12 Number of matrix elements in a 7 × 7 element block centered on the detection on Rd with values less than −3
n2sig3 0.047 B12 Number of matrix elements in a 5 × 5 element block centered on the detection on Rd with values less than −2
flux_ratio 0.037 B12 Ratio of the flux in a 5 pixel circular aperture centered on the location of the detection on Id to the absolute value

of the flux in a 5 pixel circular at the same location on I t

n3sig3 0.034 B12 Number of matrix elements in a 5 × 5 element block centered on the detection on Rd with values less than −3
mag_ref_err 0.030 B12 Uncertainty on mag_ref, if it exists else imputed
snr 0.029 B12 The flux from a 35 × 35 pixel PSF model-fit to the object on Id divided by the uncertainty from the fit
colmeds 0.028 New The maximum of the median pixel values of each column on Bd

nn_dist_renorm 0.027 B12 The distance from the detection to the nearest source in the galaxy coadd catalog, if one exists within 5″ else
imputed

ellipticity 0.027 B12 The ellipticity of the detection on Id using a_image and b_image from SExtractor
amp 0.027 B13 Amplitude of fit that produced Gauss
scale 0.024 B13 Scale parameter of fit that produced Gauss
b_image 0.024 B12 Semiminor axis of object fromSExtractor on Id

mag_ref 0.022 B12 The magnitude of the nearest source in the galaxy coadd catalog, if one exists within 5″ of the detection on Id else
imputed

diffsum 0.021 New The sum of the matrix elements in a 5 × 5 element box centered on the detection location on Rd

mag 0.020 B12 The magnitude of the object from SExtractor on Id

a_ref 0.019 B12 Semimajor axis of the nearest source in the galaxy coadd catalog, if one exists within 5″ else imputed
n3sig3shift 0.019 New The number of matrix elements with values ≥ 3 in the central 5 × 5 element block of Rd minus the number of

matrix elements with values ≥ 3 in the central 5 × 5 element block of R t

n3sig5shift 0.018 New The number of matrix elements with values ≥ 3 in the central 7 × 7 element block of Rd minus the number of
matrix elements with values ≥ 3 in the central 7 × 7 element block of R t

n2sig3shift 0.014 New The number of matrix elements with values ≥ 2 in the central 5 × 5 element block of Rd minus the number of
matrix elements with values ≥ 2 in the central 5 × 5 element block of R t

b_ref 0.012 B12 Semiminor axis of the nearest source in the galaxy coadd catalog, if one exists within 5″ else imputed
Gauss 0.012 B13 χ2 from fitting a spherical, 2D Gaussian to a 15 × 15 pixel cutout around the detection on Bd

n2sig5shift 0.012 New The number of matrix elements with values ≥ 2 in the central 7 × 7 element block of Rd minus the number of
matrix elements with values ≥ 2 in the central 7 × 7 element block of R t

mag_from_limit 0.010 B12 Limiting magnitude of the parent image from which the I d cutout was generated minus mag
a_image 0.009 B12 Semimajor axis of object on Id from SExtractor
min_dist_to_edge 0.009 B12 Distance in pixels to the nearest edge of the detector array on the parent image from which the I d cutout was

generated
ccdid 0.008 B13 The numerical ID of the CCD on which the detection was registered
flags 0.008 B12 Numerical representation of SExtractor extraction flags on Id

numneg 0.007 New The number of negative matrix elements in a 7 × 7 element box centered on the detection in Rd

l1 0.006 B13 B B Bsign d d d( ) ∣ ∣ ∣ ∣å ´ å å
lacosmic 0.006 New B Fmax maxd( ) ( ), where F is the LACosmic (van Dokkum 2001) “fine structure” image computed on Bd

spreaderr_model 0.006 New Uncertainty on spread_model
maglim 0.005 B12 True if there is no nearby galaxy coadd source; false otherwise
bandnum 0.004 New Numerical representation of image filter
maskfrac 0.003 New The fraction of Id that is masked

Note. Source column indicates the reference in which the feature was first published. B13 indicates the feature first appeared in Brink et al. (2013), B12 indicates the
feature first appeared in Bloom et al. (2012), and New indicates the feature is new in this work. See Section 3.3 for an explanation of how feature importances are
computed. Imputation refers to the procedure described in Section 3.2.4.
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The feature diffsum is the sum of the matrix elements in a
5 × 5 element (2.8 2.8 arcsec2´ ) box centered on the
detection location in Rd . It is given by

R , 7
i j

x i y j
d

2

2

2

2

,c c
( )diffsum å å=

=- =-
+ +

where x y,c c is the location of the central element on Rd. It gives
a coarse measurement of the significance of the detection.

bandnum is a numeric representation of the filter in which
the object was detected on the search image. This feature
enables autoScan to identify band-specific patterns.

numneg is intended to assess object-smoothness by
returning the number of negative elements in a 7 × 7 pixel
box centered on the object in Rd , exposing objects riddled with
negative pixels or objects that have a significant number of
pixels below Rmed d( ). Used in concert with the S/N, numneg
can help identify high-S/N objects with spatial pixel intensity
distributions that do not vary smoothly, useful in rejecting hot
pixels and cosmic rays.

lacosmic was designed to identify cosmic rays and other
objects with spatial pixel intensity distributions that do not vary
smoothly, and is based loosely on the methodology that van
Dokkum (2001) uses to identify cosmic rays on arbitrary sky
survey images. Derive the “fine structure” image F from Bd

according to

F B BM M M , 8d d
3 3 7( )( ) ( )* * *= - ⎡⎣ ⎤⎦

where Mn is an n × n median filter. Then

B Fmax max . 9d( ) ( ) ( )lacosmic =

Relatively speaking, this statistic should be large for objects
that do not vary smoothly, and small for objects that
approximate a PSF. The reader is referred to Figure 3 of van
Dokkum (2001) for visual examples.

Bad columns and CCD edge effects that appear as diffuse
vertical streaks near highly masked regions of difference
images are common artifacts. Because they share a number of
visual similarities, we designed a single feature, colmeds, to

identify them:

B

i N

max med transpose ;

0 1 , 10

d
i

col

({ ( )
)

( )
}{ } ( )

colmeds=

Î ¼ -

where Ncol is the number of columns in Bd . This feature
operates on the principle that the median of a column in Bd

should be comparable to the background if the cutout is
centered on a PSF, because, in general, even the column in
which the PSF is at its greatest spatial extent in Bd should still
contain more background pixels than source pixels. However,
for vertically oriented artifacts that occupy entire columns on
Bd, this does not necessarily hold. Since these artifacts
frequently appear near masked regions of images, we define
maskfrac as the percentage of Id that is masked.
The feature spread_model (Desai et al. 2012; Bouy

et al. 2013) is a SExtractor star/galaxy separation output
parameter computed on the Id cutout. It is a normalized
simplified linear discriminant between the best fitting local PSF
model and a slightly more extended model made from the same
PSF convolved with a circular exponential disk model.

3.2.4. Data Postprocessing

When there is not a source in the galaxy coadd catalog
within 5 arcsec of an object detected on a difference image,
certain classification features cannot be computed for the object
(see Table 2). If the feature of an object cannot be computed, it
is assigned the mean value of that feature from the training set.

3.3. Classification Algorithm Selection

After we settled on an initial library of classification features,
we compared three well-known ML classification algorithms: a
Random Forest (Breiman 2001), a SVM (Vapnik 1995), and an
AdaBoost decision tree classifier (Zhu et al. 2009). We used
scikit-learn (Pedregosa et al. 2012), an open source
Python package for ML, to instantiate examples of each model
with standard settings. We performed a three-fold cross-
validated comparison using a randomly selected 100,000-
detection subset of the training set described in Section 3.1.

Figure 3. Difference image cutouts (left four columns; r_aper_psf values indicated) and corresponding template image cutouts (right four columns) for objects
with r_aper_psf 1.25> .
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The subset was used to avoid long training times for the SVM.
For a description of cross validation and the metrics used to
evaluate each model, see Sections 4 and 4.2. The results appear
in Figure 5. We found that the performance of all three models
was comparable, but that the Random Forest outperformed the
other models by a small margin. We incorporated the Random
Forest model into autoScan.

Random Forests are collections of decision trees, or
cascading sequences of feature-space unit tests, that are
constructed from labeled training data. For an introduction to
decision trees, see Breiman et al. (1984). Random Forests can
be used for predictive classification or regression. During the
construction of a supervised Random Forest classifier, trees in
the forest are trained individually. To construct a single tree,
the training algorithm first chooses a bootstrapped sample of
the training data. The algorithm then attempts to recursively
define a series of binary splits on the features of the training
data that optimally separate the training data into their
constituent classes. During the construction of each node, a
random subsample of features with a user-specified size is
selected with replacement. A fine grid of splits on each feature

is then defined, and the split that maximizes the increase in the
purity of the incident training data is chosen for the node.
Two popular metrics for sample-purity are the Gini

coefficient (Gini 1921) and the Shannon entropy (Shan-
non 1948). Define the purity of a sample of difference image
objects to be41

P
N

N N
, 11NA

A NA
( )=

+

where NNA is the number of non-artifact objects in the sample,
and NA is the number of artifacts in the sample. Note that
P 1= for a sample composed entirely of artifacts, P 0=
for a sample composed entirely of non-artifacts, and
P P1 0( )- = for a sample composed entirely of either
artifacts or non-artifacts. Then the Gini coefficient is

P P N NGini 1 . 12A NA( )( ) ( )= - +

Figure 4. Contours of r_aper_psf, magdiff, and spread_model—the three most important features in the autoScan Random Forest model, computed using
the feature importance evaluation scheme described in Section 3.4—and the signal-to-noise ratio, S/N. The importances of r_aper_psf, magdiff, and
spread_model were 0.148, 0.094, and 0.066, respectively. The contours show that the relationships between the features are highly nonlinear and better suited to
ML techniques than hard selection cuts.

41 Some authors define P
w

w w
i

i i

NA

NA A
= å

å +å
, where wi is the weight of instance i,

Aå is a sum over artifact events, and NAå is a sum over non-artifact events.
This renders the definition of the Gini coefficient in Equation (12) as

P P wGini 1 i i( )= - å .
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A tree with a Gini objective function seeks at each node to
minimize the quantity

Gini Gini , 13lc rc ( )+

where Ginilc is the Gini coefficient of the data incident on the
node’s left child, and Ginirc is the Gini coefficient of the data
incident on the node’s right child. If Gini Gini Ginilc rc+ > ,
then no split is performed and the node is declared a terminal
node. The process proceeds identically if another metric is
used, such as the Shannon entropy, the most common
alternative. The Shannon entropy S of a sample of difference
image objects is given by

S p p p plog log , 14NA 2 NA A 2 A( ) ( ) ( )= - -

where pNA is the proportion of non-artifact objects in the
sample, and pA is the proportion of artifacts in the sample.

Nodes are generated in this fashion until a maximum depth
or a user-specified measure of node purity is achieved. The
number of trees to grow in the forest is left as a free parameter
to be set by the user. Training a single Random Forest using the
entire ∼900,000 object training sample with the hyperpara-
meters selected from the grid search described in Table 3 took

4.5~ minutes when the construction of the trees was distributed
across 60 1.6 GHz AMD Opteron 6262 HE processors.

Random Forests treat the classes of unseen objects as
unknown parameters that are described probabilistically. An
object to be classified descends each tree in the forest,
beginning at the root nodes. Once a data point arrives at a
terminal node, the tree returns the fraction of the training
instances that reached that node that were labeled “non-
artifact.” The output of the trained autoScan Random Forest
model on a single input data instance is the average of the
outputs of each tree, representing the probability that the object
is not an artifact, henceforth the “autoScan score” or “ML
score.” Ultimately, a score of 0.5 was adopted as the cut τ to
separate real detections of astrophysical variability from
artifacts in the DES-SN data; see Section 4.4 for details. Class

prediction for 200,000 unseen data instances took 9.5 s on a
single 1.6 GHz AMD Opteron 6262 HE processor.

3.4. Feature Importances

Numeric importances can be assigned to the features in a
trained forest based on the amount of information they
provided during training (Breiman et al. 1984). For each tree
T in the forest, a tree-specific importance for feature i is
computed according to

N n B n m n m n , 15i T
n T

i, ch[ ]( ) ( ) ( ) ( ) ( )åz = -
Î

where n is an index over nodes in T, N n( ) is the number of
training data points incident on node n, B ni ( ) is 1 if node n
splits on feature i and 0 otherwise, m n( ) is the value of the
objective function (usually the Gini coefficient or the Shannon
entropy; see Section 3.3) applied to the the training data
incident on node n, and m nch ( ) is the sum of the values of the
objective function applied to the node’s left and right children.
The global importance of feature i is the average of the tree-
specific importances:

I
N

1
, 16i

T T
i T, ( )åz=

where NT is the number of trees in the forest. In this article,
importances are normalized to sum to unity.

3.5. Optimization

The construction of a Random Forest is governed by a
number of free parameters called hyperparameters. The
hyperparameters of the Random Forest implementation used
in this work are n_estimators, the number of decision trees
in the forest, criterion, the function that measures the
quality of a proposed split at a given tree node, max_fea-
tures, the number of features to randomly select when
looking for the best split at a given tree node, max_depth, the
maximum depth of a tree, and min_samples_split, the
minimum number of samples required to split an internal node.
We performed a 3-fold cross-validated (see Section 4.2) grid

search over the space of Random Forest hyperparameters
described in Table 3. A total of 1884 trainings were performed.
The best classifier had 100 trees, used the Shannon entropy
objective function, chose 6 features for each split, required at
least 3 samples to split a node, and had unlimited depth, and it
was incorporated into the code. Recursive feature elimination
(Brink et al. 2013) was explored to improve the performance of

Figure 5. Initial comparison of the performance of a Random Forest, a support
vector machine with a radial basis function kernel, and an AdaBoost Decision
Tree classifier on the DES-SN artifact/non-artifact classification task. Each
classifier was trained on a randomly selected 67% of the detections from a
100,000-detection subset of the training set, then tested on the remaining 33%.
This process was repeated three times until every detection in the subset was
used in the testing set once. The curves above represent the mean of each
iteration. The closer a curve is to the origin, the better the classifier. The
unoptimized Random Forest outperformed the other two methods, and was
selected.

Table 3
Grid Search Results for autoScan Hyperparameters

Hyperparameter Values

n_estimators 10, 50, 100, 300
criterion gini, entropy
max_features 5, 6
min_samples_split 2,3, 4, 10, 20, 50
max_depth Unlimited, 100, 30, 15, 5

Note. A three-fold cross-validated search over the grid of Random Forest
hyperparameters tabulated above was performed to characterize the the
performance of the machine classifier. The hyperparameters of the best-
performing classifier appear in bold.
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the classifier, but we found that it provided no statistically
significant performance improvement.

4. PERFORMANCE

In this section, we describe performance of autoScan on a
realistic classification task and the effect of the code on the
DES-SN transient candidate scanning load. Performance
statistics for the classification task were measured using
production Y1 data, whereas candidate-level effects were
measured using a complete reprocessing of Y1 data using an
updated difference imaging pipeline. The reprocessed detection
pool differed significantly from its production counterpart,
providing a out-of-sample data set for benchmarking the effects
of the code on the scanning load.42

4.1. Performance Metrics

The performance of a classifier on an n-class task is
completely summarized by the corresponding n × n confusion
matrix , also known as a contingency table or error matrix.
The matrix element ij represents the number of instances from
the task’s validation set with ground truth class label j that were
predicted to be members of class i. A schematic 2 × 2
confusion matrix for the autoScan classification task is
shown in Figure 6.

From the confusion matrix, several classifier performance
metrics can be computed. Two that frequently appear in the
literature are the False Positive Rate (FPR) and the Missed
Detection Rate (MDR; also known as the False Negative Rate
or False Omission Rate). Using the notation from Figure 6, the
FPR is defined by:

F

F T
FPR , 17

p

p n
( )=

+

and the MDR by

F

T F
MDR . 18n

p n
( )=

+

For autoScan, the FPR represents the fraction of artifacts in
the validation set that are predicted to be legitimate detections
of astrophysical variability. The MDR represents the fraction of
non-artifacts in the task’s validation set that are predicted to be
artifacts. Another useful metric is the efficiency or true positive
rate,

T

T F
, 19

p

p n
( ) =

+

which represents the fraction of non-artifacts in the sample that
are classified correctly. For the remainder of this study, we
often refer to the candidate-level efficiency measured on fake
SNe Ia, F (see Section 4.4).
Finally, the receiver operating characteristic (ROC) is a

graphical tool for visualizing the performance of a classifier. It
displays FPR as a function of MDR, both of which are
parametric functions of τ, the autoScan score that one
chooses to delineate the boundary between “non-artifacts” and
“artifacts.” One can use the ROC to determine the location at
which the trade-off between the FPR and MDR is optimal for
the survey at hand, a function of both the scanning load and the
potential bias introduced by the classifier, then solve for the
corresponding τ. By benchmarking the performance of the
classifier using the the ROC, one can paint a complete picture
of its performance that can also serve as a statistical guarantee
on performance in production, assuming a validation set and a
production data set that are identically distributed in feature
space, and that detections are scanned individually in
production (see Section 4.4).

4.2. Classification Task

We used stratified five-fold cross-validation to test the
performance of autoScan. Cross validation is a technique for
assessing how the results of a statistical analysis will generalize
to an independent data set. In a k-fold cross-validated analysis,
a data set is partitioned into k disjoint subsets. k iterations of
training and testing are performed. During the ith iteration,
subset i is held out as a “validation” set of labeled data
instances that are not included in the training sample, and the
union of the remaining k 1- subsets is passed to the classifier
as a training set. The classifier is trained and its predictive
performance on the validation set is recorded. In standard k-
fold cross-validation, the partitioning of the original data set
into disjoint subsets is done by drawing samples at random
without replacement from the original data set. But in a
stratified analysis, the drawing is performed subject to the
constraint that the distribution of classes in each subset be the
same as the distribution of classes in the original data set.
Cross-validation is useful because it enables one to characterize
how a classifier’s performance varies with respect to changes in
the composition of training and testing data sets, helping
quantify and control “generalization error.”

4.3. Results

Figure 7 shows the ROCs that resulted from each round of
cross-validation. We report that autoScan achieved an

Figure 6. Schematic confusion matrix for the autoScan classification task.
Each matrix element ij represents the number of instances from the task’s
validation set with ground truth class label j that were predicted to be members
of class i.

42 Although the re-processing of data through the difference imaging pipeline
from the raw images is not useful for getting spectra of live transients, it is quite
useful for acquiring host-galaxy targets for previously missed transients and is
therefore performed regularly as pipeline improvements are made.
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average detection-level MDR of 4.0% ± 0.1% at a fixed FPR
of 2.5% with 0.5t = , which was ultimately adopted in the
survey; see Section 4.4. We found that autoScan scores were
correlated with detection S/N. Figure 8 displays the fake
efficiency and false positive of autoScan using all out-of-
sample detections of fake SNe from each round of cross-
validation. At S N 10 , the out-of-sample fake efficiency is
markedly lower than it is at higher S/N. The efficiency
asymptotically approaches unity for S N 100 . The effect
becomes more pronounced when the class discrimination
boundary is raised. This occurs because legitimate detections
of astrophysical variability at low S/N are similar to artifacts.
The FPR remains relatively constant in the S N 10 regime,
where the vast majority of artifacts reside.

4.4. Effect of autoScan on Transient
Candidate Scanning Load

As discussed in Section 2, DES-SN performs target selection
and scanning using aggregates of spatially coincident detec-
tions from multiple nights and filters (“candidates”). After the
implementation of autoScan, the NUMEPOCHS requirement
described in Table 1 was revised to require that a candidate be
detected on at least two distinct nights having at least one
detection with an ML score greater than τ to become eligible
for visual scanning. In this section we describe the effect of this
revision on the scanning load for an entire observing season
using a full reprocessing of the Y1 data.

We sought to minimize the size of our transient candidate
scanning load with no more than a 1% loss in F . By
performing a grid search on τ, we found that we were able to
reduce the number of candidates during the first observing
season of DES-SN by a factor of 13.4, while maintaining

99.0%F > by adopting 0.5t = . After implementing auto-
Scan using this τ, we measured the quantity N NA NA〈 ñ, the
average ratio of artifact objects to non-artifact detections that a
human scanner encountered during a scanning session, using
random samples of 3000 objects drawn from the pool of objects
passing the modified and unmodified cuts in Table 1. We found
that the ratio decreased by a factor of roughly 40 after the

production implementation of autoScan. Table 4 sum-
marizes these results.

5. DISCUSSION

With the development of autoScan and the use of fake
overlays to robustly measure efficiencies, the goal of automat-
ing artifact rejection on difference images using supervised ML
classification has reached a certain level of maturity. With
several historical and ongoing time-domain surveys using ML
techniques for candidate selection, it is clear that the approach
has been successful in improving astrophysical source selection
efficiency on images. However, there are still several ways the
process could be improved for large-scale transient searches of
the future, especially for ZTF and LSST, whose demands for
reliability, consistency, and transparency will eclipse those of
contemporary surveys.

5.1. Automating Artifact Rejection in Future Surveys

For surveys like LSST and ZTF, small decreases in MDR are
equivalent to the recovery of vast numbers of new and
interesting transients. Decreasing the size of the feature set and
increasing the importance of each feature is one of the most
direct routes to decreasing MDR. However, designing and
engineering effective classification features is among the most
time-consuming and least intuitive aspects of framework
design. Improving MDR by revising feature sets is a matter
of trial and error—occasionally, performance improvements
can result, but sometimes adding features can degrade the
performance of a classifier. Ideally, surveys that will retrain
their classifiers periodically will have a rigorous, deterministic
procedure to extract the optimal feature set from a given
training data set. This is possible with the use of convolutional
neural networks (CNNs), a subclass of Artificial Neural
Networks, that can take images as input and infer an optimal
set of features for a given set of training data. The downside to
CNNs is that the resulting features are significantly more
abstract than astrophysically motivated features and conse-
quently can be more difficult to interpret, especially in
comparison with Random Forests, which assign each feature
a relative importance. However, CNNs have achieved high
levels of performance for a diverse array of problems. They
remain relatively unexplored in the context of astrophysical
data processing, and bear examination for use in future surveys.
Next, unless great care is taken to produce a training data set

that is drawn from the same multidimensional feature
distribution as the testing data, dense regions of testing space
might be completely devoid of training data, leading to an
unacceptable degradation of classification accuracy in produc-
tion. Developing a rigorous method for avoiding such sample
selection bias is crucial for future surveys, for which small
biases in the training set can result in meaningful losses in
efficiency. The idea of incorporating active learning techniques
into astronomical ML classification frameworks has been
advanced as a technique for reducing sample selection bias
(Richards et al. 2012).
Given a testing set and a training set which are free to be

drawn from different distributions in feature space, in the pool-
based active learning for classification framework, an algorithm
iteratively selects, out of the entire set of unlabeled data, the
object (or set of objects) that would give the maximum
performance gains for the classification model, if its true label

Figure 7. Five-fold cross-validated receiver operating characteristics of the
best-performing classifier from Section 3.5. Six visually indistinguishable
curves are plotted: one translucent curve for each round of cross-validation, and
one opaque curve representing the mean. Points on the mean ROC
corresponding to different class discrimination boundariesτ are labeled.
τ = 0.5 was adopted in DES-SN.
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were known. The algorithm then solicits a user to manually
input the class of the object under consideration, and then the
object is automatically incorporated into future training sets to
improve upon the original classifier. Under this paradigm,
human scanners would play the valuable role of helping the
classifier learn from its mistakes, and each human hour spent
vetting data would immediately carry scientific return. Active
learning could produce extremely powerful classifiers over
short timescales when used in concert with generative models
for training data. Instead of relying on historical data to train
artifact rejection algorithms during commissioning phases,
experiments like LSST could use generative models for survey
observations to simulate new data sets. After training a
classifier using simulated data, in production active learning
could be used to automatically fill in gaps in classifier
knowledge and augment predictive accuracy.

In this work, we used a generative model of SN Ia
observations—overlaying fake SNe Ia onto real host

galaxies—to produce the “Non-artifact” component of our
training data set. However, the nearly 500,000 artifacts in
our training set were human-scanned, implying that future
surveys will still need to do a great deal of scanning before
being able to get an ML classifier off the ground. A new
survey should not intentionally alter the pipeline to produce
artifacts during commissioning, as it is crucial that the
unseen data be drawn from the same feature distributions as
the training data. For surveys with N N 100A NA〈 ñ , Brink
et al. (2013) showed that a robust artifact library can be
prepared by randomly sampling from all detections of
variability produced by the difference imaging pipeline.
For surveys or pipelines that do not produce as many
artifacts, some initial scanning to produce a few 104-artifact
library from commissioning data should be sufficient to
produce an initial training set (Brink et al. 2013; du Buisson
et al. 2014).

5.2. Eliminating Spurious Candidates

Using a two-night trigger, some spurious science candidates
can be created due to nightly variations in astrometry,
observing conditions, and repeatedly imaged source bright-
nesses that cause night-to-night fluctuations in the appearance
of candidates on difference images. These variations lead to a
spread of ML scores for a given candidate. As an observing
season progress, artifacts can accumulate large numbers of
detections via repeated visits. Although for a typical artifact the
vast majority of detections fail the ML requirement, the
fluctuations in ML scores can cause a small fraction of the
detections to satisfy the autoScan requirement. Figure 9
shows an example of this effect.
Mitigating the buildup of spurious multi-night candidates

could be achieved by implementing a second ML classification
framework that takes as input multi-night information,

Figure 8. Object-level fake efficiency and FPR as a function of S/N, at several autoScan score cuts. The S/N is computed by dividing the flux from a PSF model fit
to a 35 × 35 pixel cutout around the object in the difference image by the uncertainty from the fit. The artifact rejection efficiency and MDR are 1 minus the false
positive rate and fake efficiency, respectively. The fake efficiency of autoScan degrades at low S/N, whereas the false positive rate is relatively constant in the S/N
regime not dominated by small number statistics. τ = 0.5 (bold) was adopted in DES-SN.

Table 4
autoScan DES Y1 Reprocessing Results

No ML ML (τ = 0.5 ) ML/No ML

Nc
a 100,450 7489 0.075

N NA NA〈 ñb 13 0.34 0.027

F c 1.0 0.990 0.990

Notes.
a Total number of science candidates discovered.
b Average ratio of artifact to non-artifact detections in human scanning pool
determined from scanning 3000 randomly selected detections from all science
candidate detections.
c autoScan candidate-level efficiency for fake SNe Ia.
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including the detection-level output of autoScan, to predict
whether a given science candidate represents a bona-fide
astrophysical source. Training data compilation could be
performed by randomly selecting time-contiguous strings of
detections from known candidates. The lengths of the strings
could be drawn from a distribution specified during framework
development. Candidate-level features could characterize the
temporal variation of detection level features, such as the
highest and lowest night-to-night shifts in autoScan score,
magnitude, and astrometric uncertainty.
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