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We revisit the constraints that the non-observation of ultra-high-energy photons due to the GZK
cutoff can impose on models of Lorentz violation in photon propagation, following recent work
by Maccione, Liberati and Sigl [arXiv:1003.5468] that carries further an earlier analysis by the
present authors (Phys. Rev. D 63,12402 (2001), [hep-th/0012216]). We argue that the GZK cutoff
constraint is naturally evaded in the D-brane model of space-time foam presented recently by the
present authors (Phys. Lett. B 665, 412 (2008) [arXiv:0804.3566]), in which Lorentz-violating effects
on photon propagation are independent of possible effects during interactions. We also note a novel
absorption mechanism that could provide a GZK-like cutoff for photons in low-scale string models.

There has been much discussion [1] of the possible implications of Lorentz violation for ultra-high-energy cosmic
rays and the Greisen-Zatsepin-Kuzmin (GZK) cutoff [2]. In particular, it was observed that the GZK cutoff might
be removed for ultra-high-energy photons striking the cosmic microwave background [3] and/or the astrophysical
infra-red background [4]. The present authors discussed this issue [5] in the context of a space-time foam model based
on recoiling D-branes [6], proposing a formalism that has recently been used in an analysis by Maccione, Liberati and
Sigl [7]. These authors argue that the apparent observation of a GZK cutoff for cosmic-ray primaries [8], combined
with the non-observation of ultra-high-energy photons [9], is strong circumstantial evidence that the GZK mechanism
is also at work for photons, and show that this imposes very strong constraints on the class of Lorentz-violating models
considered in [5].
Since the publication of [5], however, we have developed a new class of D-particle models for space-time foam [6, 10–

12], within which the GZK constraint requires re-examination. In these models, space-time is punctuated by defects
that may be either (i) point-like D0-branes (D-particles) [10], with no electric charge, in which case only electrically
neutral matter and radiation (represented as open strings with their ends attached on the brane world representing
our Universe) can interact non-trivially with the foam, or (ii) D3-branes wrapped up around small three-cycles so as
to resemble small spheres (‘effective D-particles’), permitting charge flow on their surfaces. In the latter case, there
could be interactions of charged matter with the D-defects, which however are suppressed compared to photons, for
the purely stringy reasons discussed in [12]. Hence, the only high-energy processes where Lorentz violation might be
relevant are those involving photons, e.g., γ + γB → e+ + e− where γB is a cosmic microwave or infrared background
photon. The hadronic GZK cutoff processes, e.g., p+ γB → ∆+ → p+ π0 or n+ π+, involve an incident charged
high-energy particle (p), which has vanishing (or suppressed) interactions with the D-particles, in which case the GZK
cutoff is unaffected, as indicated by experiment [8, 9].
In these D-particle models, the propagation of photons is affected as originally suggested in [13], with the arrival

times of photons delayed by amounts proportional to their energies E, due to an energy-dependent average phase
shift: exp(i(E + c′.E2).t − p.x)), where c′ is a proportionality factor parametrizing Lorentz violation, that depends
in general on the density of foam particles as well as the microphysical model [11, 12]. On the other hand, particle
interactions conserve Lorentz-invariantly both energy E and momentum p, in a leading approximation. Thus, there
is no direct connection between Lorentz violation in the propagation of photons and in their interactions. As we
show below, it is not possible, in general, to constrain possible time-delay parameters by considerations of the GZK
cutoff: the very interesting constraints they impose on Lorentz violation [7] are evaded by the D-particle models
of [6, 10–12]. We shall make these points clearer in the following discussion, where we consider first D-foam effects
on photon propagation and subsequently those on interactions, i.e., we first consider possible effects on 2-point Green
functions and subsequently 1-particle irreducible (1PI) higher-point functions.
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The effect of D-particle foam on photon propagation in vacuo has analogies with the appearance of a refractive
index for photons propagating through a material medium [11]. In that case, photons interact with atomic electrons
of effective mass m, which may be modelled [14] as simple-harmonic oscillators with a resonant frequency ω0. In the
presence of a photon of frequency ω, these are subject to an oscillating external electric force: F = eE0e

iωt, where e
is the electron charge. The electrons are excited by the equation of motion m

(

d2x/dt2 + ω2
0x

)

= eE0e
iωt, inducing

an electric field Ea = −(ene/ǫ0)i(eE0/[m(ω2 − ω2
0)])e

iω(t−z) , where we use units in which the unmodified velocity
of light c = 1, ǫ0 is the dielectric constant of the vacuum and ne is the area density of electrons in the medium.
As a consequence, light propagates through the medium at a speed 1/n, where n is the refractive index, causing a
delay ∆t while traversing a distance ∆z given by ∆t = (n − 1)∆z. Representing the electric field before and after
passing through a medium of thickness ∆z as Ebefore = E0e

iω(t−z) and Eafter = E0e
iω(t−z−(n−1)∆z), in the case of

small deviations from the vacuum refractive index we have Eafter ≃ E0e
iω(t−z) − i[ω(n− 1)∆z]E0e

iω(t−z), where the
last term on the right-hand-side of this relation is just the field Ea produced by the oscillating electrons after passing
through the medium. Thus we find the standard formula for the refractive index in a conventional medium:

n = 1 +
ρee

2

2ǫ0m(ω2
0 − ω2)

, (1)

where ρe is the density of electrons. We see in (1) that the refractive index in an ordinary medium is inversely
proportional to (the square of) the frequency ω of light, as long as it smaller than the oscillator frequency, where the
refractive index diverges. Notice that physical recoil of the electrons during scattering with photons is not relevant in
the derivation of the refractive index (1).
In the D-foam models [6, 10–12], the rôle of the electrons of the material medium is played by the D-particles

themselves. In our preferred formulation of the D-foam, as discussed in [11], when a photon strikes a D-particle it
creates an intermediate string between the D-particle and the D3-brane on which the photon moves. This string
stores the energy E of the photon as potential energy, by stretching to a length L and acquiring N internal oscillator
excitations, cf, the electron oscillators discussed above:

E =
L

α′
+

N

L
. (2)

The maximal string length is Lmax = α′E/2, and the time taken by the string to grow to this length and then shrink
back to its minimal size is

∆t ∼ α′E. (3)

This is then the order of magnitude of the time delay experienced by a photon interacting with a single D-particle.
Using the same relation ∆t = (n− 1)∆z/c as in the case of a conventional medium, we infer that the refractive index
n for a photon propagating through a gas of D-particles of density ρD is of order

n(E) = 1 + α′EσρD (4)

where σ is the photon-D-particle scattering cross section. In this case, we see in (4) that the refractive index in a
D-particle medium is proportional to the energy E of the photon, at least as long as it smaller than the string energy
scale. At energies comparable to the D-particle mass scale, a more complete estimate is required, and there may be
an analogue of the divergence in (1), as we discuss below. Notice also, that as in the derivation of (1), physical recoil
of the D-particle during scattering with photons is not directly relevant in the derivation of the refractive index (4).
We had previously given a heuristic argument for the formula (4), based on the observation that collisions of photons

with D-particles would in general cause the latter to recoil, modifying the effective metric ‘felt’ by the photons during
propagation and giving it the off-diagonal form:

Gµν = ηµν + hµν , h0i = ui ≪ 1 , (5)

where

ui =
gs
Ms

∆pi, (6)

is the velocity of the recoiling D-particle following scattering by the photon through a momentum transfer ∆pi ≡ rpi.
Here gs the string coupling, Ms is the string scale, and the D-particle mass ∼ Ms/gs. It was assumed in [5] and in
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our early models of D-foam [6] that there is an average background recoil velocity field ≪ ui ≫= gs
r

Ms

pi 6= 0 over
the collection of D-particles encountered by the photon. The expression (5) is a Finsler metric, in the sense that it
depends on the momentum pi of the particle, which leads (on average) to a modified dispersion relation for a massless
particle such as the photon:

pµpνGµµ = E2 + p
2 + 2ξ E p

2 = 0 : ξ ≡ gs
r

Ms
. (7)

Such a modified dispersion relation would lead to a non-trivial refractive index, n− 1 of the form

n = 1 +O (ξ |p|) > 1 , (8)

where ξ ∼≪ ui ≫. It is the quantity ξ that was argued in [7] to to be constrained by ξ < 10−12. However, this
constraint is evaded in isotropic foam models with ≪ ui ≫= 0, and in particular it does not apply to the stretched-
string model discussed above, for the reasons we discuss below.
To understand the impact of the constraint due to [7], we first recall that it was based on an analysis of 1PI

(amputated) scattering amplitudes involving photons. In conventional quantum field theory, energy-momentum is
conserved in any scattering process, but this assumption needs to be re-examined within any Lorentz-violating frame-
work, as was pointed out in [5]. At our present level of ignorance, for the phenomenological purposes of establishing
constraints [7], Lorentz violation and/or energy non-conservation in a 1PI scattering amplitude should be considered
independently from Lorentz violation during particle propagation.
In general in our approach, since the tree-level 1PI amplitude for γ + γB → e+e− involves an internal electron, not

a photon, and Lorentz violation is absent for electrons in our D-foam model, it is absent in the tree-level amplitude.
Possible effects due to virtual photons in loop corrections need to to be investigated, but it is clear that Lorentz
violation must be strongly suppressed, if it appears at all. Moreover, within the framework (2, 3, 4) of string
formation, stretching and decay that we now prefer [11], there is also no mechanism for momentum non-conservation
in 1PI amplitudes. Furthermore, the appropriate kinematics is that the external legs should all be regarded as
on mass-shell. This is to be contrasted with the framework based on metric distortion, where momentum is still
conserved in 1PI amplitudes, but where the metric (5) should be used for the external photons, with Pµ = GµνP

ν

and the modified energy-momentum relation (7).
The argument of [7] therefore does not constrain the string formation framework (2, 3, 4) of [11], though it does

impose a severe constraint on the metric distortion framework. However, we recall that the modification (7) of the
standard energy-momentum relation is proportional to ≪ ui ≫, and so could be evaded even in this framework if
≪ ui ≫= 0 (‘isotropic foam’). However, even in this case one would expect non-trivial stochastic fluctuations:

≪ uiuj ≫ = σ2δij , σ2 ≡ g2s
≪ r2 ≫

M2
s

. (9)

In this case, the recoiling D-particles in the foam provide a background ‘electric-type’ field, ~u, for the σ-model that
describes the open-string excitations corresponding to photon fields in the first-quantized formalism we use [15]. It is
known [16] that, in the presence of such electric field backgrounds, there is space-time non-commutativity, with the
string coupling replaced by an effective coupling

geffs = gs(1 − |~u|2)1/2 , (10)

and the space-time metric seen by the photon becomes:

Gµν = ηµν
(

1− |~u|2
)

, µ, ν = 0, 1 , Gµν = ηµν µ, ν 6= 0, 1 , (11)

where we assume that the direction of the recoil is along the x1 coordinate, and that the space-time is initially flat.
The Finslerian (momentum-dependent) induced metric (11) depends on the square of the recoil velocity and hence is
non-zero even in isotropic recoil models in which ≪ ui ≫= 0. The average momentum-energy relation of a photon in
such a D-foam background takes the form

pµpνGµν = 0 = E2 − p
2 +O

(

g2s
E2

p
2

M2
s

)

, (12)

where the modification is suppressed quadratically by the string mass scale, as a result of (6).
Notice, however, that both the effective string coupling (10) and the metric (11) exhibit singular behaviours as

|~u|2 → 1, reminiscent of the singularity in the case (1) of a conventional material medium. For this reason, caution
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should be exercised in testing this formalism using ultra-high-energy cosmic rays in low-scale string models [17], in
which it is possible that the photon energy E ∼ Ms. The precise forms of the effective string coupling (10) and the
metric (11) are no longer valid when |~u|2 = O(1), as may happen when E ∼ Ms/gs. In fact, for energies above this
value, the effective low-energy local field theory description breaks down [18], implying that such ultra-high-energy
photons would be destabilized when interacting with a D-particle. There would be a strong space-time distortion
leading to absorption of such photons by the defects, implying the non-observation of such ultra-high-energy photons.
Thus, such models could be in agreement with the current experimental indications of GZK cutoffs for both protons
and photons [8, 9].
We conclude, therefore, that the impressive constraints of [7] may be evaded in at least three different ways. (1) In

the string formation, stretching and decay framework (2, 3, 4) that we now prefer [11], the kinematics and the 1PI
scattering amplitude for γ + γB → e+e− are identical with those in conventional QED. (2) In the metric deformation
framework (5) the kinematics assumed in [7] are inapplicable if the recoil is isotropic: ≪ ui ≫= 0. (3) An extended
formalism is required in models with a low string scale Ms < E, including a novel absorption mechanism for the
GZK cutoff for photons. In such models, there would be compatibility [19] with the hints of time delays associated
with photon refraction found by the MAGIC [20] and other experiments [21], in particular if there is a low density of
D-particle defects per string length at red-shifts z = 0.03 [22].
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