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The Euclidean analogues of the sine-Gordon solitons are used as sources of the het-

erotic fivebrane solutions in the ten-dimensional heterotic string theory. Some properties

of these soliton solutions are discussed. These solitons in principle can appear as string-like

objects in 4-dimensional space-time after proper compactifications.
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The study of solitons has been long pursued in various aspects of physics. It involves

the investigation of nonlinear evolution equations in general. Now string theory is not

an exception anymore. Lately the structures of the classical solitonic solutions of string

theory have been actively investigated[1]. In particular, the heterotic fivebrane solution

conjectured by Duff[2] and constructed by Strominger[3] exceptionally interesting in the

sense that it is dual to the fundamental string in a generalized sense of the electric-magnetic

duality1. However, most of the solutions known so far are rather ten-dimensional solutions

so that their fate in 4-d space-time after compactification is still elusive.

Thus it is important to address a question that what would be the implications of the

physics of the fivebrane in ten-dimension on the physics in four-dimensional space-time

after some proper compactification. There may be some physical consequences due to the

above duality, although such a duality does not necessarily require the existence of the

dual object. For example, the origin of the electric-magnetic duality in four-dimension

might be such a string-fivebrane duality in ten-dimension. In other words, the monopole

solution in four-dimension might be related to the fivebrane solution in ten-dimension. This

aspect was already advocated by Harvey and Liu[5]. The dynamical similarities between

these two systems are investigated classically in ref.[6]. Furthermore, we could conjecture

that the solitonic sector in four-dimension could be originated from the solitonic sector of

ten-dimension.

In this letter, as a first step toward such structures in the solitonic sector of string

theory, we attempt to investigate how these solutions appear in the lower dimensional sub-

spaces of the (1 + 9)-dimensional space-time. By proper dimensional reductions imposing

the Killing symmetries we make the fields in these subspaces independent from the rest of

the space.2

Also in this letter we shall in particular examine whether sources other than Yang-

Mills (YM) instantons can provide fivebranes. We find that this is indeed possible. As an

example we explicitly work out the case of the (Euclidean) sine-Gordon solitons. As is well

known, the Euclidean sine-Gordon system does not allow any finite-action static solutions,

namely instantons. But there are infinite-action static solutions, which are good enough

for our purpose.

1 This duality which interchanges Noether charge (e.g. electric charge) and topological charge

(e.g. monopole charge) is in principle the foundation for the Montonen-Olive conjecture[4], which

is yet to be confirmed rigorously.
2 Note that the Killing reduction does not change the dimensionality of the objects.
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Solitonic solutions of other systems reduced from the SDYM equation also can be used

to construct fivebranes. To name a few more examples, the hyperbolic monopoles and

vortices are among them. The detail will be presented elsewhere[7]. Also we can attempt

to analyze the motion of strings in the fivebrane geometry inside (1+3)-dimensional space-

time, using the metric suggested here[8].

Heterotic Fivebranes

A fivebrane is a five dimensional extended object and the existence of such a higher

dimensional object is in some sense surprising. Nevertheless, such a solution exists in string

theory. Let us first review the derivations given in refs.[3][9]. The heterotic fivebrane is a

solution to the equations of the supersymmetric vacuum for the heterotic string

δψM =
(

∇M − 1
4HMABΓ

AB
)

ǫ = 0, (1)

δλ =
(

ΓA∂Aφ+ 1
6HAMCΓ

ABC
)

ǫ = 0, (2)

δχ = FABΓ
ABǫ = 0, (3)

where ψM , λ and χ are the gravitino, dilatino and gaugino, while the anomaly equation

is given by

dH = α′ (trR ∧R− 1
30TrF ∧ F

)

+O(α′2). (4)

In the above we have properly rescaled all the field variables and that the string coupling

gs = e−φ and α′ are the only independent couplings. In the heterotic string theory α′ is

proportional to κ2/gYM, where κ is the gravitational coupling constant.

The corresponding low-energy effective action for the heterotic string up to the leading

order of α′ is

S =
1

κ2

∫

d10x
√
−ge2φ

(

R + 4∂µφ∂
µφ− 1

3H
2 − 1

30α
′TrF 2 + · · ·

)

, (5)

where the dots include the fermionic part of the action that are not relevant for our purpose

now.

The basic idea to have fivebranes is due to the observation that the transverse space to

these extended objects is a four dimensional space, which is conformally equivalent to the

Euclidean space, and they should appear as usual particle-like objects in such a transverse

space. Thus it is convenient to work on the decomposed space M1,9 →M1,5 ×M4. Note
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that for solitons the Poincaré symmetry is not necessarily required, which makes such a

decomposition possible.

In (1 + 9)-dimension we have Majorana-Weyl fermions, which decompose down to

chiral spinors according to SO(1,9)⊃SO(1,5)⊗SO(4) for such a decomposition. For such

spinors the dilatino equation eq.(2) is satisfied by

Hµνλ = ±ǫµνλσ∂σφ, (6)

where µ, ν, ... are indices for the transverse space M4 and φ = φ(xµ), while we shall use

indices a, b, ... for M1,5.

Then other equations are solved by constant chiral spinors ǫ± and

gab = ηab, gµν = e−2φδµν (7)

such that
δψµ =

(

∇µ + 1
2
Γµν∂

νφ
)

ǫ± = ∂µǫ± = 0,

δψa = ∇aǫ± = ∂aǫ± = 0,
(8)

and

δχ = F±
µνΓ

µνǫ± = −F±
µνΓ

µνǫ± = 0, (9)

where eq.(9) is achieved using the instanton configuration for the (anti)self-dual YM equa-

tion in M4

F±
µν = ±1

2 ǫ
ρσ

µν F±
ρσ (10)

for an SU(2) subgroup of E8 ×E8 or SO(32).

Solutions of eq.(10) are basic ingredients to build fivebrane solutions. For example,

the instanton solutions lead to the Strominger’s fivebrane solutions. In this case the basic

fivebrane solution is called the “gauge” solution. Note that φ = φ(r2) now, i.e. no angular

dependence, where r2 =
∑

(xµ)2 so that the transverse space has a rotational symmetry.

With a finite instanton scale size λ, from eqs.(4)(6) we obtain

e−2φ = e−2φ0 + 8α′ (r
2 + 2λ2)

(r2 + λ2)2
+O(α′2), (11)

where φ0 is the value of the dilaton at spatial infinity. Thus we have a fivebrane living in

M1,5 which is a point-like object in M4.

Now we would like to call the reader’s attention to the fact that any solution of eq.(10)

in principle leads to a fivebrane solution, as long as the anomaly equation eq.(4) provides
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a nontrivial solution for the dilaton. In particular many lower dimensional solutions to the

self-dual YM equation are known[10] so that in principle we can relate all these solitonic

solutions to the heterotic fivebranes.

Euclidean Sine-Gordon Case

The (anti)self-dual YM equations have an interesting reduction to the two-dimensional

solitonic system, namely the sine-Gordon equation. Here we shall attempt a new reduction

of the (A)SDYM equation to the Euclidean sine-Gordon equation for the gauge group

SU(2) and the Euclidean signature, then to solve the anomaly equation eq.(4) for this

solution. For the Euclidean signature we can introduce two sets of complex coordinates

for convenience, although one can use the real coordinates, as

z = x+ iy, z = x− iy, w = u+ iv, w = u− iv, (12)

where (x, y, u, v) are the cartesian coordinates. In this coordinate system the SDYM equa-

tions will be written as

Fzz − Fww = 0, Fzw = 0, Fzw = 0, (13)

while the ASDYM equations are

Fzz + Fww = 0, Fzw = 0, Fzw = 0. (14)

For the gauge group SU(2) with the generators J± = 1√
2
(J1 ± iJ2), J3, which are in

the adjoint representation such that (Ja)bc = −iǫabc, we can introduce an ansatz for the

gauge fields as

Az = f1J3, Az = f2J3, Aw = g1J+ + g3J−, Aw = g2J− + g4J+. (15)

With such identifications the SDYM equations reduce to

f1 = ∂z ln g2 = −∂z ln g4,

f2 = −∂z ln g1 = ∂z ln g3,

0 = ∂zf2 − ∂zf1 − g1g2 + g3g4,

(16)

and the conditions that ∂wf1 = ∂wf2 = 0, ∂wg2 = ∂wg3, ∂wg4 = ∂wg1. The last conditions

can be simply satisfied by requiring two Killing symmetries along (u, v) directions that
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none of the fields depend on the (u, v)-coordinates. For the ASDYM equation we obtain

more or less the same set of equations.

Now defining

g1 = −g2 = e−
i

2
ψ , g3 = −g4 = e

i

2
ψ, (17)

we obtain the Euclidean version of the sine-Gordon equation,

∂z∂zψ − 2sinψ = 1
4
(∂2x + ∂2y)ψ − 2sinψ = 0. (18)

The above is related, redefining y = it, to the (m2 = 8) sine-Gordon equation

(∂2t − ∂2x)ϕ+
m2

λ
sinλϕ = 0, (19)

where the coupling constant λ can be rescaled away since we are not interested in quantizing

this system here.

In this background the anomaly equation eq.(4) becomes up the first order of α′

(∂2x + ∂2y)e
−2φ = 2α′ [sinψ

(

∂2x + ∂2y
)

ψ + cosψ
(

(∂xψ)
2 + (∂yψ)

2
)]

. (20)

Using the above sine-Gordon equation we can easily solve this equation to obtain a solution

e−2φ = e−2φ0 + 2α′(1− cosψ), (21)

where ψ satisfies the sine-Gordon equation and φ0 is the value of the dilaton φ at x, y =

±∞.

Due to the Derrick’s theorem[11] applied to the Euclidean sine-Gordon theory, there

is no finite-action static solution for ψ. Nevertheless, we can have infinite-action static

solutions, which do not generate any tunnelling effect. In fact we can easily find the

following solution:

ψ = 4Q tan−1
[

γeαx+βy
]

, (22)

where γ is an arbitrary irrelevant constant so that we can set γ = 1 without loss of

generality, and α2 + β2 = 8. Q = ±1 is the soliton charge. This solution is related to the

soliton solutions of the sine-Gordon equation eq.(19),

ϕ = 4Q tan−1

[

exp m
x− ct√
1− c2

]

, (23)
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identifying

y = it, c = ic̃, α =
m√
1 + c̃2

, β =
mc̃√
1 + c̃2

, m = 2
√
2. (24)

It is straightforward to show that the corresponding action of the Euclidean sine-

Gordon theory is indeed infinite for these solutions. However, this cannot be a reason to

abandon these solutions for our purpose because this action is not an essential ingredient

for fivebrane solutions. Note that the SDYM equation is not an equation of motion so

that the action for any reduced system from the SDYM equation is not relevant to us.

Due to the self-dual YM structure, the corresponding fivebrane solutions can still saturate

the Bogomol’nyi bound of the action of the heterotic string theory. Strictly speaking, the

fivebrane is not an instanton related to the tunnelling effect because we work on the (1+9)

dimensional spacetime. From this point of view, whether the action of the heterotic string

is finite or not is not really a relevant issue to us. We are just interested in looking for

some solitonic solutions.

Using eq.(22), now the dilaton eq.(21) becomes

e−2φ = e−2φ0 + 16α′ e2(αx+βy)
(

e2(αx+βy) + 1
)2 . (25)

Note that this solution does not have any singularity and depends on the x, y-coordinates

explicitly, not just on x2 + y2. This dilaton solution does not care about the sign of the

soliton charge Q = ±1, while the YM fields depend on the charge Q = ±1. We can also

express the YM fields eq.(15) in terms of eq.(22) as follows:

Az = −Q(β + iα)
e(αx+βy)

e2(αx+βy) + 1
J3,

Az = Q(β − iα)
e(αx+βy)

e2(αx+βy) + 1
J3,

Aw =
1− e2(αx+βy) − i2Qe(αx+βy)

e2(αx+βy) + 1
J+ +

1− e2(αx+βy) + i2Qe(αx+βy)

e2(αx+βy) + 1
J−,

Aw =
1− e2(αx+βy) − i2Qe(αx+βy)

e2(αx+βy) + 1
J− +

1− e2(αx+βy) + i2Qe(αx+βy)

e2(αx+βy) + 1
J+.

(26)

The fact that there are all the four dimensional YM fields indicates that the solutions we

have here are still fivebrane solutions.

Now let us count the zero modes. In the two-dimension parametrized by (x, y) coor-

dinates the soliton solutions eq.(22) generate four zero modes, which are two for the two
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translational symmetries of the x, y-directions, one for the (α2 + β2 = 8) “scaling” sym-

metry and one for the O(2) rotational symmetry of (αx+ βy). This last O(2) symmetry

is due to the fact that the O(2) rotation of (x, y) can be compensated by O(2) rotation

of (α, β). Since the two Killing symmetries, (∂u, ∂v), generate four extra zero modes for

the fivebrane, the fivebrane solution still has 120 bosonic zero modes, including 112 zero

modes due to E8 → SU(2) × E7, like in the “gauge” solution case. We expect that the

fermionic zero modes counting is also similar to the “gauge” solution case.

Discussion

In general one could expect that the fivebranes could appear as particles, strings

or membranes in the (1 + 3) dimensional spacetime. In this letter we have presented an

explicit construction of solitonic solutions in the two dimensional subspace of the transverse

space M4, reduced from the heterotic fivebrane solutions in ten-dimension. The fivebrane

solution we have derived looks like a string in the (1+3) dimensional space defined by (x, y)

plane and a (1 + 1) dimensional subspace of M1,5. Whether this solution should behave

like a cosmic string is another issue because we have not mentioned anything about the

symmetry breaking structure yet. But after we find out the detail of the compactification

scheme, this should be an important issue to be addressed.

We also expect that the origin of the electric-magnetic duality in four-dimensional

world is originated from the string-fivebrane duality in ten-dimension in such a way that

the solitonic sector of the four-dimensional effective field theory might be coming from the

fivebrane sector of the string theory.

From this point of view, further study of the properties of these solutions presented

here should be important in future.
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