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Continuous-variable entanglement and two-mode squeezing in a single-atom Raman laser
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The quantum statistical properties of light emitted by a two-photon double Raman laser is investigated. Using
the master equation derived in the good-cavity limit, we study the squeezing and entanglement properties of the
cavity field. It turns out that the cavity radiation exhibits two-mode squeezing and entanglement in the transient
as well as steady state regime for realizable parameters. We establish a connection between two-mode squeezing
and entanglement that gives insight into the physical origin of these quantum features. We also discuss the
interplay between the laser detuning and amplitude in modifying the properties of the cavity field.
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I. INTRODUCTION

Squeezing and entanglement are quantum-mechanical
properties of radiation which do not have a classical analog.
The former is generated as a result of certain nonlinear pro-
cesses. Typical examples include optical parametric oscillators
[1–3], which involve second-order nonlinearities expressed
via the susceptibility χ (2), and four-wave mixing expressed
via the third-order nonlinearity χ (3) [2,4]. Squeezing has been
experimentally demonstrated in the aforementioned systems
and many other quantum optical systems [5]. It has potential
applications in the detection of weak signals like a gravitational
wave [6], optical communications, and measurements [7].
Recently, two-mode-squeezing sources have been linked to
the generation of a macroscopic entangled state of radiation.
On the other hand, quantum entanglement was shown to be
a key resource for quantum information processing such as
quantum teleportation [8,9] and quantum cryptography [10].

In recent years, quantum entanglement in continuous
variables has received much attention due to its accessibil-
ity by experiment [11]. Among others, two-photon lasers
are promising candidates for the generation of two-mode
continuous-variable entanglement. Zubairy and coworkers
proposed an entanglement amplifier with a large number of
photons via correlated-emission lasers (CELs) [12]. This work,
however, is limited to the transient regime and hence the
entanglement is short lived. Subsequent studies have shown
steady-state entanglement in CELs [13–15] and double Raman
lasers [16] in the presence of losses and atomic relaxations.
In addition, entanglement based on quantum-beat lasers has
been put forward by a number of authors [17–19]. More
recently, single-atom lasers have also been considered as a
continuous source of entangled light with a large number of
photons [16,20], which later was demonstrated experimentally
in a single-mode cavity setup [21].

In this work, we study quantum-statistical properties of
radiation emitted by a single-atom double Raman laser in the
presence of atomic relaxations and cavity losses. The transient
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entanglement properties of this model have been investigated
[16,20]. Here, we mainly focus on the squeezing properties
and steady state entanglement behavior of the cavity radiation.
Note that, while the generation of entanglement in two-photon
lasers crucially relies on the atomic coherence induced either
by initially injecting atoms in a coherent superposition of
atomic levels or by coupling these levels by strong laser
field, the type of entanglement created varies based on the
configuration of the gain medium. As a consequence of this
variation, the criteria that can be used to detect entanglement
are quite different as well. For example, if the gain medium
constitutes three-level atoms in a cascade configuration, as
in a CEL, one would expect a two-photon entangled state
of the form α|1112〉 + β|0102〉 with α and β being complex
numbers, which can only be detected by a certain class of
entanglement criteria [22–26]. However, for the quantum-beat
laser, where the gain medium is an ensemble of a V-type
three-level atoms, the generated entanglement has the form
α|1102〉 + β|0112〉 due to the quantum inference between
the two possible pathways that lead to the lower level. In
general, the entanglement criteria for two-photon entangled
states fail to detect single-photon entangled states and vise
versa [22,27,28]. Given that our system involves two-photon
processes and exhibits non Gaussian photon statistics, the
entanglement criteria proposed in [22–26] are sufficient to
detect the entanglement in our scheme. Our results show that
the cavity field can be in an entangled state both in the transient
and steady state regimes for realizable parameters. The cavity-
mode field also exhibits two-mode squeezing for the same set
of parameters. A simple formula that relates the two-mode
squeezing and entanglement conditions is established. This
connection sheds light on the physical origin of these quantum
phenomena.

The paper is organized as follows: In Sec. II, we present the
model and derive the master equation for the cavity radiation
in the good-cavity limit, which is valid for an atom-field
coupling constant that is small compared to other system
parameters. In Sec. III, we present our main results. We
show that the cavity mode exhibits transient and steady state
squeezing for a wide range of system parameters. Moreover,
using Hillery-Zubairy [22], logarithmic negativity [23–25],
and Duan et al. [26], sufficient inseparability conditions for
non-Gaussian two-mode states, we show that the cavity field
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FIG. 1. (Color online) Energy level diagram for double Raman
atom. The pump laser of Rabi frequency �p and control laser of
Rabi frequency �c are off-resonantly coupled to levels |c〉and|d〉, and
|a〉and|b〉, respectively. The quantized Stokes and anti-Stokes photons
are off resonantly coupled to transitions |d〉 ↔ |b〉 and |a〉 ↔ |c〉
via the couplings g1 and g2, respectively. γij (i,j = a,b,c,d) are
spontaneous emission rates.

of the double Raman laser can be in an entangled state
for realizable system parameters. We finally conclude by
presenting our main results in Sec. IV.

II. MASTER EQUATION

Our model consists of a single double Raman atom in a
double resonant cavity. A pump laser with Rabi frequency
�p couples levels |c〉 and |d〉 while a control laser of
Rabi frequency �c couples levels |b〉 and |a〉 (see Fig. 1).
Note that the pump and control lasers are used to create
two-photon coherence which is responsible for demonstration
of two-mode quadrature squeezing and entanglement, as
discussed in Sec. III. Besides, the atom off-resonantly interacts
with the quantized cavity modes: Stokes and anti-Stokes.
The interaction Hamiltonian which describes the interaction
of the external lasers and cavity modes with the atom is given,
in the dipole and rotating wave approximations, by

H = −h̄(�p|d〉〈c|e−i�pt + �c|a〉〈b|e−i�ct

+ g1|d〉〈b|â1e
−i�1t + g2|a〉〈c|â2e

−i�2t ) + H.c., (1)

where �p = νp − ωdb, �c = νc − ωac, with νp(νc) being the
pump (control) laser frequency and ωdb (ωac) being the atomic
transition frequency for the |d〉 → |b〉 (|a〉 → |c〉) transition.
g1 (g2) is the Stokes (anti-Stokes) atom coupling constant, and
�1 = νs − ωdb, �2 = νa − ωac with νs(νa) being the Stokes
(anti-Stokes) mode frequency.

The master equation of the cavity field derived, following
a standard laser theory methods [29], in the good-cavity limit
(κ � γ,g) and linear approximation scheme reads

dρ̂

dt
= [L1(â1ρ̂â

†
1 − ρ̂â

†
1â1) + G1(â†

1ρ̂â1 − â1â
†
1ρ̂)

+L2(â2ρ̂â
†
2 − ρ̂a

†
2â2) + G2(â†

2ρ̂â2 − â2â
†
2ρ̂)

+ e−iϕt (Q1â2ρâ1 +Q2â1ρ̂â2 −Q3ρ̂â1â2 −Q4â1â2ρ̂)]

+ H.c., (2)

where κ is the cavity decay rate and γ is the spontaneous
emission rate assumed to be the same for all levels. Lj , and Gj

are loss and gain coefficients, whereas Qj are phase-sensitive
cross-coupling coefficients that are due to atomic coherence
between levels |b〉 and |c〉. It is worthwhile mentioning here
that the presence of two-photon annihilation â1â2 and creation
â
†
1â

†
2 processes is a signature that the two-mode light would

exhibit squeezing and entanglement. φt = ϕp + ϕc − ϕ1 − ϕ2

is an effective phase for the Raman process, and Q1 + Q2 =
Q3 + Q4 [16]. Explicit expressions for Lj , Gj , and Qj are
given in the appendix.

III. QUANTUM STATISTICAL PROPERTIES

Using the solutions of the coupled equations for averages
of the cavity field operators, we study the two-mode squeezing
and entanglement using criteria that involve up to second-order
correlations.

A. Two-mode squeezing

We seek to study the quadrature squeezing of the cavity
radiation. To this end, we introduce quadrature operators for
the two-mode cavity field as

ĉ+ = 1√
2

2∑
j=1

(â†
j + âj ), (3)

ĉ− = i√
2

2∑
j=1

(â†
j − âj ). (4)

Using these definitions the quadrature variances can be put in
the form

�c2
±
= 1 + 〈â†

1,â1〉 + 〈â†
2,â2〉

+[〈â1,â
†
2〉 ∓(〈â1,â2〉 + 1

2 〈â1,â1〉 + 1
2 〈â2,â2〉

) + adj.
]
,

(5)

where we have used the notation 〈a,b〉 = 〈ab〉 − 〈a〉〈b〉. The
quadrature operators, which can be measured using homodyne
experiment [30], satisfy the commutation relation [ĉ+,ĉ−] =
2i. Thus the two-mode light is said to in a squeezed state if
either �c2

− < 1 or �c2
+ < 1 with �c2

+ = 0 or �c2
− = 0 being

perfect squeezing and 1 no squeezing. In the steady state the
variances reduce to

�c2
± = 1 + 〈n̂1〉 + 〈n̂2〉 ± 2Re[〈â1â2〉]. (6)

Here, n̂1,n̂2 are photon number operators for the cavity modes.
It is easy to see from Eq. (6) that, for the squeezing to occur
in the ĉ+ quadrature, that means the noise is reduced below
the coherent or vacuum level, and the inequality 2Re(〈â1â2〉) <

−(〈n̂1〉 + 〈n̂2〉) should be satisfied. However, for the squeezing
to occur in the ĉ− quadrature, 2Re(〈â1â2〉) > (〈n̂1〉 + 〈n̂2〉).
Note that the form of quadrature variance (6) is also valid
when the cavity modes are initially in a vacuum state. This is
because terms that appear in Eq. (6), 〈â1〉, 〈â2〉, and 〈â2

1〉, 〈â2
2〉,

〈â1â
†
2〉 are zero at all times for this particular initial condition

as per the equations shown in the appendix.
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FIG. 2. (Color online) Temporal behavior of two-mode quadra-
ture squeezing for �p = �c = �1 = �2 = 0 and when the cavity
modes are initially in a vacuum state. Here we have
used γbc = 0, γac = γdc = γad = γab = γdb = γ , �c = γ, �p =
5γ, κ1 = 0.1γ, κ2 = 0.14γ, φt = π/2, g1 = g2 = γ and initial con-
ditions ρ(0)

aa = ρ
(0)
bb = ρ

(0)
ab = 0.5, ρ

(0)
cd = ρ

(0)
dd = ρ(0)

cc = 0. The inset
shows the time evolution of the intermode correlation and the total
mean photon number.

B. Transient squeezing

Here we explore how squeezing of the cavity field evolves
in time. We would like to mention that the exact analytical
solutions are rather lengthy; we thus present our numerical
results. First, we consider the temporal behavior of squeezing
for the case of resonant Raman scheme (�p = �c = 0) and
when the cavity modes are resonant with the Stokes and
anti-Stokes transitions (�1 = �2 = 0). We also assume that
the cavity modes are initially in a vacuum state. In Fig. 2,
we plot the variance of the squeezed quadrature �c2

− versus
dimensionless time γ t when the atom is initially in a coherent
superposition of levels |a〉 and |b〉. This figure shows that
the intracavity two-mode light is in a squeezed state with the
reduction of noise nearly 40% below the vacuum level. The
inset shows that the cross correlations are stronger than the
total mean photon numbers, indicating squeezing of the cavity
field noise. It is interesting to see that the total mean photon
number gradually grows in time and attains its steady state,
where the squeezing is stronger. Thus our scheme generates
bright squeezed light in the long-time limit.

We next address the effect of the coherent pumping lasers
on the degree of squeezing. Keeping the Rabi frequency of
the control laser constant and varying the pump laser Rabi fre-
quency, we show that the amount of squeezing of the two-mode

intracavity light decreases when one increases the strength of
the pump field [see Fig. 3(a)]. This can be understood by
noting that the correlation between the Stokes and anti-Stokes
photon strongly relies on the delay between the emission of
the two photons. Note that, once the atom is excited to level
|a〉 it may decay to level |c〉 via spontaneous emission or
oscillates back and forth between levels |a〉 and |b〉, depending
on the strength of the control field (�c). For Rabi frequency
of the control laser �c less than or equal to the spontaneous
emission rate γ , the atom predominantly decays to level |c〉.
Once the atom is in level |c〉 the pump laser promotes the
atom to level |d〉, which ensures subsequent emission of a
Stokes photon. When the pump laser is strong enough to make
Rabi oscillations, the likelihood of emission of the Stokes
photon becomes smaller and hence the delay between the two
photons becomes longer, which results in weaker correlation or
squeezing. In essence, a very strong pump laser decreases the
intermode correlation and hence the degree of squeezing. Note
that the photon correlation also corresponds to the squeezing
since both measure nonclassicality. Thus, a very strong pump
laser decreases the intermode correlation and hence the degree
of squeezing.

So far we have only considered resonance conditions in all
cases (�p = �c = �1 = �2 = 0). It appears that the detuning
can influence the degree of squeezing of the cavity radiation.
In the following we assume the cavity modes are at resonance
with the atom (�1 = �2 = 0) and the control laser is at
resonance with the |a〉 to |b〉 transition (�c = 0). For instance,
as illustrated in Fig. 3(b), the degree of squeezing decreases
profoundly when detuning jumps from �p = 0 to �p = 20γ .
The underlying physics can be explained by noting that the
intermode correlation crucially relies on the delay between the
emission of the Stokes and anti-Stokes photons. This delay
depends by how much the pump laser is detuned with respect
to the |c〉 → |d〉 transition. The higher the detuning, the lesser
the probability that the atom would be excited in short time,
which in turn implies the longer delay between emission of
the two photons and hence a weaker intermode correlations or
squeezing. In effect, one should tune the pump laser close to
resonance to obtain maximum squeezing. In order to clearly
see this effect we next consider the long-time behavior.

C. Steady state squeezing

As mentioned in the above discussion, the variance of
the squeezed quadrature operator becomes constant in the
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FIG. 3. (Color online) Temporal behavior of two-mode quadrature squeezing when cavity modes are initially in a vacuum state (a) for
�p = 0 and for various values of �p (b) for �p = 10γ and various values of �p . (c) Steady state squeezing versus �p/γ for various values
of �p . All other parameters are the same as Fig. 2.
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FIG. 4. (Color online) Plots of EHZ versus γ t for �p = 5γ for various values of �p and with cavity modes initially in a vacuum state. (b)
Plots of EHZ in the steady state versus �p for various values of the Rabi frequency of the pump field �p . (c) Total mean photon number versus
�p for various values of �p . All other parameters are the same as in Fig. 2.

long-time limit, indicating the existence of steady state squeez-
ing. In this respect, we study the dependence of the steady state
two-mode squeezing on detuning and amplitude of the pump
laser field. As shown in Fig. 3(c), the squeezing crucially
depends on both the detuning �p and Rabi frequency �p of
the pump laser. We observe that optimum squeezing appears
at zero detuning for �p = 5γ —the minimum value of the
Rabi frequency for which a steady state solution exists. When
the Rabi frequency increases beyond this value, the value
of the detunings that give optimum squeezing slightly shift
to the right (positive detuning). The other key aspect is that,
when the Rabi frequency increases, the range of detuning
for which the squeezing occurs becomes wider while the
maximum squeezing decreases.

D. Entanglement of cavity modes

Here we present the transient and steady state behavior of
the entanglement as a function of laser detuning and strength
of coherent field. It is worthwhile to mention here that, since
our scheme involves two-photon emissions and annihilations
as ascribed by the master equation, the type of entanglement
we expect is of the form |1112〉 ± |0102〉. Not all two-mode
entanglement criteria can detect such type of entanglement.
The class of inequalities that can detect this entanglement
include a particular Hillery-Zubairy [22] criterion, logarithmic
negativity [23–25], and Duan-Giedke-Cirac-Zoller (DGCZ)
[26] criterion which all depend on second-order moments.
Here we employ all the three inseparability criteria above
to study the entanglement properties of the cavity radia-
tion. In particular, we show that, for certain combinations
of the quadrature operators, the DGCZ criterion reduces
to the two-mode squeezing condition. Note also that, since
the cavity modes do not exhibit Gaussian statistics, these tests
are only sufficient to determine whether the cavity field is in
an entangled state or not.

1. Hillery-Zubairy criterion

The Hillery-Zubairy (HZ) criterion, which depends on
second-order moments of the cavity-mode operators, states
that the state of a two-mode system is said to be entangled if
the following inequality is satisfied:

EHZ ≡ 〈n1〉〈n2〉 − |〈a1a2〉|2 < 0; (7)

that is, for the cavity modes to be entangled, the product of
the mean photon number in each mode should be smaller than
the modulus squared of the intermode correlation. In Fig. 4(a),
we plot EHZ versus dimensionless time γ t for various values
of detuning �p. We assume that the cavity modes are initially
in a vacuum state and the atom is prepared in a coherent
superposition of the levels |a〉 and |b〉. We see from this figure
that the two cavity modes are entangled at all times for the
given parameters. The function EHZ approaches to zero (no
entanglement) as the pump laser detuning increases. Recall
that the strength the intermode correlation becomes weaker
when the pump laser detuning increases. Since the source
of entanglement is the correlation between the photons, it is
anticipated to see weaker entanglement at large detunings.

Figure 4(b) shows the dependence of the steady state
entanglement on the pump laser detuning and Rabi frequency
�p. This figure shows that the function EHZ has a dip
(negative value) in the vicinity of resonance (�p = 0). The
center of the dip slightly shifts to the right when the Rabi
frequency is increased; the dips are centered at �p/γ =
1.92, 2.52, and 3.12 corresponding to �p = 5.0γ , 5.5γ , and
6.0γ , respectively. For larger detunings, the function EHZ

approaches zero, indicating disentanglement of the cavity
modes. Furthermore, to gain insight into the relation between
entanglement and number of photons in the cavity, we show
in Fig. 4(c) the total mean photon number of the cavity field as
a function of detuning and pump Rabi frequency for the same
parameters as in Fig. 4(b). The intensity of the cavity field
increases with decreasing Rabi frequency of the pump field.
This is encouraging because the emitted light is relatively
intense when in the regime where the entanglement is robust,
making our scheme a source of bright entangled light. Another
interesting aspect is that, although one would naively expect
the maximum intensity to occur exactly at resonance, it rather
appears at a small positive detuning similar to Fig. 4(b).

2. Logarithmic negativity

The entanglement generated can also be determined by
applying logarithmic negativity, which is necessary and
sufficient entanglement monotone for Gaussian states and
only sufficient for non-Gaussian states [23–25]. Recently,
the method of logarithmic negativity has been used to test
continuous-variable entanglement in a three-level cascade
laser with a parametric oscillator [31]. It has been shown that
logarithmic negativity can be used as an alternative approach to
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test entanglement in two-mode continuous-variables systems.
The logarithmic negativity for a two-mode state is defined as

EN = max[0, − log2 V], (8)

where V is the smallest eigenvalue of the simplistic matrix
which is given by [25]

V = 1√
2

[σ +
√

σ 2 − 4 det ϒ]1/2, (9)

with σ = detA1 + detA2 − 2 detA12. Here, A1,A2, and A12

are 2 × 2 matrices that appear in the covariant matrix

ϒ =
(A1 A12

AT
12 A2

)
. (10)

The elements of the covariant matrix are given by

ϒij = 1
2 〈X̂iX̂j + X̂j X̂i〉 − 〈X̂i〉〈X̂j 〉, (11)

where the quadrature operators for each mode are defined
as X̂1 = â

†
1 + â1, X̂2 = i(â†

1 − â1), X̂3 = â
†
2 + â2, and X̂4 =

i(â†
2 − â2). For the cavity modes initially in a vacuum state,

the covariant matrix has the simple form

ϒ =

⎛
⎜⎜⎜⎝

m 0 c 0

0 m 0 −c

c 0 n 0

0 −c 0 n

⎞
⎟⎟⎟⎠ , (12)

where m = 〈â†
1â1〉 + 〈â1â

†
1〉, n = 〈â†

2â2〉 + 〈â2â
†
2〉, and c =

〈â1â2〉 + 〈â†
1â

†
2〉. Based on this criteria, the two modes are

said to be entangled when the logarithmic negativity EN is
positive which, according to (8), implies that log2 V should
be negative or V < 1. Thus one might consider V < 1 as a
sufficient condition to detect entanglement in our system.

Figure 5(a) shows the smallest eigenvalue V in the steady
state as a function of the Rabi frequency of the pump field.
It is clear from this figure that the cavity radiation exhibits
entanglement, which gradually dies out when the detuning
increases. The smallest eigenvalue strongly relies on the
strength of the pump laser. As shown in Fig. 5(a), the width
of the dip of the smallest eigenvalue becomes larger as the
Rabi frequency �p of the pump laser increases. The minimum
of the dip occurs for small Rabi frequency, showing better
entanglement. Ironically, the minimum value of V does not
occur at resonance and shifts away to the right for larger

Rabi frequency. While the minimum value for V decreases
with increasing �p, the interval of detuning for which the
entanglement exists become wider for larger Rabi frequency.

3. DGCZ criterion

To make a connection between the two-mode squeezing
and entanglement, we next consider the criterion that is based
on the quadrature of the cavity field [26]. According to DGCZ,
the state of a system is known to be entangled if the quantum
fluctuations of the two Einstein-Podolsky-Rosen–like operator
û and v̂ of the two modes satisfy the inequality

D = �u2 + �v2 < 2, (13)

where we define û = X̂a1 − X̂a2 and v̂ = P̂a1 + P̂a2 differently
with X̂j = (ĵ † + ĵ )/

√
2, P̂j = i(ĵ †−ĵ )/

√
2 (with ĵ = â1,â2)

being the quadrature operators for the two modes of the cavity
field. It is not difficult to show that, for the cavity modes
initially in a vacuum state, the sum of the variances (13) has a
form

D = 2(1 + 〈n̂1〉 + 〈n̂2〉 − 2Re〈â1â2〉) = 2�c2
−. (14)

This is a direct relationship between two-mode squeezing and
entanglement of the cavity field. Similarly, if we had defined
û = X̂a1 + X̂a2 and v̂ = P̂a1 − P̂a2 we would have had �u2 +
�v2 = 2�c2

+. Therefore, whenever there is squeezing in the
system the cavity field exhibits entanglement.

In order to gain insight into the connection between the
inseparability criteria used to detect entanglement in our
system, we illustrate all three criteria in Fig. 5 for the
same set of parameters. Although the three criteria show
qualitatively similar behavior as a function of pump laser
detuning and Rabi frequency, there is notable disparity among
the entanglement detected. For example, for �p = 10γ , the
logarithmic negativity and DGCZ criteria exhibit entangle-
ment for a certain range of detuning., with the logarithmic
negativity showing entanglement for relatively wider detuning.
However, the HZ criteria shows entanglement for a wider
range, mostly in the positive detuning territory. When one
increases the Rabi frequency further, all three criteria show
similar behavior. Since there is no physical reason that the
entanglement be “switched on” or “switched off” at a particular
detuning, as indicated in the logarithmic negativity and DGCZ
criteria, we thus note that the HZ is a stronger criterion than
DGCZ to detect entanglement in our scheme. It is worth
noting that the logarithmic negativity and DGCZ criteria are

p 10
p 15
p 20

100 50 0 50 100

0.75

0.80

0.85

0.90

0.95

1.00

p

V

p 20

p 15
p 10

100 50 0 50 100

0.06

0.05

0.04

0.03

0.02

0.01

0.00

p

E
H

Z

p 10
p 15
p 20

100 50 0 50 100

1.5

1.6

1.7

1.8

1.9

2.0

p

u
2

v2

γ
γ
γ

γ γ

γ
γ
γ

γ
γ
γ

γ

(a) (b) (c)

FIG. 5. (Color online) Plots of entanglement criteria: (a) smallest eigenvalue V , (b) HZ (EHZ), and (c) DGCZ (�u2 + �v2) versus �p/γ

for various values of �p . All other parameters and initial conditions are the same as in Fig. 2.
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based on quadrature operators of the cavity modes and hence
have similar behavior, as illustrated in Figs. 5(a) and 5(c).
Conversely, HZ depends on the photon number and intermodal
correlations. The HZ criteria depends on the magnitude of the
intermode correlation while the other criteria (squeezing, EN

and DGCZ) depend on its magnitude as well as its phase.

IV. CONCLUSION

We have shown that the cavity field of a single-atom
double Raman laser can exhibit two-mode squeezing and
entanglement both in transient and steady state regimes.
Atomic spontaneous emission and cavity losses have been
taken into account in our analysis. We found that the existence
of squeezing in the system crucially relies on the intermode
correlation measured via 〈â1â2〉. Whenever this correlation
exceeds the total mean photon number of the cavity field,
which requires tuning several system parameters, the cavity
field starts to exhibit squeezing. This transient squeezing
survives for a long time and reaches the steady state regime.
In both transient and steady state cases, the squeezing depends
on detuning and amplitude of the pump laser. The higher
amplitude and detuning, the lower the squeezing becomes.
Based on one of the criteria we used, the entanglement of
the cavity field also depends on the intermode correlation,
but this time, the modulus of the correlation has to be larger
than the product of the mean photon number in each mode.

Our results also show that the cavity field exhibits transient
as well as steady state entanglement for a wide range of
control parameters. Moreover, we have established a direct
relationship between two-mode squeezing and entanglement.
This link is particularly not surprising given that both originate
from the quantum coherence induced by the driving laser
fields. The fact that the entanglement generated is detected
by three different entanglement criteria makes our scheme a
viable candidate for a source of robust two-mode continuous-
variable entanglement.
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APPENDIX: EQUATIONS FOR EXPECTATION
VALUES OF CAVITY-MODE OPERATORS

Using the relation d〈a〉/dt = Tr[(dρ/dt)a] together with
the master equation, we obtain the time evolution of the
expectation values of the cavity-mode operators to be

d

dt
〈â1〉 = −(L∗

1 − G∗
1 )〈â1〉 + eiϕt (Q∗

1 − Q∗
3)〈â†

2〉, (A1)

d

dt
〈â2〉 = −(L∗

2 − G∗
2 )〈â2〉 + eiϕt (Q∗

2 − Q∗
3)〈â†

1〉, (A2)

d

dt

〈
â
†2
1

〉 = −2(L1 − G1)
〈
â
†2
1

〉 + 2e−iϕt (Q1 − Q3)〈â†
1â2〉, (A3)

d

dt

〈
â2

2

〉 = −2(L∗
2 − G∗

2 )
〈
â2

2

〉 + 2eiϕt (Q∗
2 − Q∗

3)〈â†
1â2〉, (A4)

d

dt
〈â†

1â2〉 = −(L1 − G1 + L∗
2 − G∗

2 )〈â†
1â2〉 + eiϕt (Q∗

2 − Q∗
3)

〈
â
†2
1

〉 + e−iϕt (Q1 − Q3)
〈
â2

2

〉
, (A5)

d

dt
〈â1â2〉 = −(L∗

1 + L∗
2 − G∗

1 − G∗
2 )〈â1â2〉 + eiϕt [(Q∗

1 − Q∗
3)〈â†

2â2〉 + (Q∗
2 − Q∗

3)〈â†
1â1〉 − Q∗

3], (A6)

d

dt
〈n1〉 = −(L1 + L∗

1 − G1 − G∗
1 )〈â†

1â1〉 + eiϕt (Q∗
1 − Q∗

3)〈â†
1â

†
2〉 + e−iϕt (Q1 − Q3)〈â1â2〉 + G1 + G∗

1 , (A7)

d

dt
〈n2〉 = −(L2 + L∗

2 − G2 − G∗
2 )〈â†

1â1〉 + eiϕt (Q∗
2 − Q∗

3)〈â†
1â

†
2〉 + e−iϕt (Q2 − Q3)〈â1â2〉 + G2 + G∗

2 , (A8)

where

L1 = |g1|2
χ

[ − i�c

(
�2

p − �2
c − �∗

ac�
∗
bc

)
ρ

(0)
ab + (

�∗
ac�

∗
ad�

∗
bc + �2

p�∗
bc + �2

c�
∗
ad

)
ρ

(0)
bb

] + κ1, (A9)

G1 = |g1|2
χ

[ − i�p

(
�2

p − �2
c + �∗

ac�
∗
ad

)
ρ

(0)
dc + (

�∗
ac�

∗
ad�

∗
bc + �2

p�∗
bc + �2

c�
∗
ad

)
ρ

(0)
dd

]
, (A10)

L2 = |g2|2
χ

[ − i�p

(
�2

p − �2
c + �∗

bc�
∗
db

)
ρ

(0)
cd + (

�∗
ad�

∗
bc�db + �2

p�∗
ad + �2

c�
∗
bc

)
ρ(0)

cc

] + κ2, (A11)

G2 = |g2|2
χ

[ − i�c

(
�2

p − �2
c − �∗

ad�db

)
ρ

(0)
ba + (

�∗
ad�

∗
bc�db + �2

p�∗
ad + �2

c�
∗
bc

)
ρ(0)

aa

]
, (A12)

Q1 = g1g2

χ

[
�p�c(�∗

bc + �∗
ad )ρ(0)

cc + �c�p(�bc + �ad )ρ(0)
dd + i�c(�∗

ac�
∗
bc − �ad�

∗
db)ρ(0)

cd

]
, (A13)
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Q2 = g1g2

χ

[
�p�c(�∗

bc + �∗
ad )ρ(0)

aa + �c�p(�bc + �ad )ρ(0)
bb + i�p(�bc�

∗
db − �ad�

∗
ac)ρ(0)

ba

]
, (A14)

Q3 = g1g2

χ

[
�p�c(�∗

bc + �∗
ad )ρ(0)

aa + �c�p(�bc + �ad )ρ(0)
dd + i�p

(
�2

p − �2
c + �∗

ac�
∗
ad

)
ρ

(0)
ba + i�c

(
�2

p − �2
c − �ad�

∗
db

)
ρ

(0)
cd

]
,

(A15)

Q4 = g1g2

χ

[
�p�c(�∗

bc + �∗
ad )ρ(0)

cc + �c�p(�bc + �ad )ρ(0)
bb + i�p

(
�2

p − �2
c + �bc�

∗
db

)
ρ

(0)
ba − i�c

(
�2

p − �2
c − �∗

ac�
∗
bc

)
ρ

(0)
cd

]
,

(A16)

with

χ = �∗
ac�

∗
ad�

∗
bc�db + �2

p(�∗
ac�

∗
ad + �∗

bc�db) + �2
c(�∗

ac�
∗
bc + �∗

ad�db) + (�p − �c)2, (A17)

with ρ
(0)
ii and ρ

(0)
ij (i,j=a,b,c,d) being initial populations and coherences, respectively. �ac = i�2+γac, �ad = i(�c − �1) + γad ,

�bc = i(�p − �1) + γbc, and �db = i�1 + γdb are complex dephasings.
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