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ABSTRACT

We study the space-times of non-extremal intersecting p-brane configurations in M-

theory, where one of the components in the intersection is a “NUT,” i.e. a configuration of

the Taub-NUT type. Such a Taub-NUT configuration corresponds, upon compactification

to D = 4, to a Gross-Perry-Sorkin (GPS) monopole. We show that in the decoupling

limit of the CFT/AdS correspondence, the 4-dimensional transverse space of the NUT

configuration in D = 5 is foliated by surfaces that are cyclic lens spaces S3/ZN , where N is

the quantised monopole charge. By contrast, in D = 4 the 3-dimensional transverse space

of the GPS monopole is foliated by 2-spheres. This observation provides a straightforward

interpretation of the microscopics of aD = 4 string-theory black hole, with a GPS monopole

as one of its constituents, in terms of the correspondingD = 5 black hole with no monopole.

Using the fact that the near-horizon region of the NUT solution is a lens space, we show

that if the effect of the Kaluza-Klein massive modes is neglected, p-brane configurations

can be obtained from flat space-time by means of a sequence of dimensional reductions and

oxidations, and U-duality transformations.
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1 Introduction

Advances in the quantitative treatment of black-hole microscopics [1] represent an important

“spin-off” of M-theory unification, facilitated by developments in the quantum treatment

of non-pertubative objects in string theory, such as D-branes [2].

More recently, aspects of the black-hole microscopics have found an elegant reinterpre-

tation within the framework of the CFT/AdS correspondence [3]. Namely, the microscopic

interpretation of black hole entropy can be made quantitative in terms of the boundary

conformal field theory, as determined by the anti-de Sitter space-time, i.e. the (asymptotic)

geometry in the decoupling limit of certain black holes. In particular, the near-extremal

black holes in D = 5 [4, 5] (or D = 4) [6, 7] have a six-dimensional (or five-dimensional)

embedding [9, 10] as black strings, with or without rotation, whose geometry in the decou-

pling limit is BTZ×S3 (or BTZ×S2), where BTZ denotes the Bañados-Teitelboim-Zanelli

three-dimensional black hole space-time, which is locally AdS3 [8]. Thus its quantum states

are determined asymptotically by a two-dimensional conformal field theory at the asymp-

totic boundary [11]. The counting of states in this CFT is then used [4, 12] to reproduce

the Bekenstein-Hawking entropy. (The analysis of black holes in D ≥ 6 involves a corre-

spondence to CFT’s in D > 2, and there, due to renormalisation effects [13] in strongly

coupled CFT’s, only a qualitative modelling of the microscopic black hole entropy is pos-

sible [14, 15].) Further study of the microscopic black hole spectrum both on the gravity

AdS3 side [16], as well as on the CFT2 side [17, 18, 19], has been pursued.

This paper addresses a number of related topics. In section 2, we study the near-horizon

geometry that is relevant in the decoupling limit for extremal and non-extremal p-branes

in M -theory, in the case where one of the ingredients in the intersection is a NUT, i.e.

a configuration of the Taub-NUT type. Such intersections become four-dimensional black

holes upon dimensional reduction on T 7, with the Taub-NUT component corresponding to

a magnetic charge carried by one of the Kaluza-Klein vectors.1 If the Kaluza-Klein vector

is the one coming from the reduction step from D = 5 to D = 4, this corresponds to the

situation arising in the Gross-Perry-Sorkin (GPS) monopole (i.e. a D = 4 black hole where

the Kaluza-Klein vector from D = 5 carries a magnetic charge [20]). If, on the other hand,

we consider eleven-dimensional configurations with the same set of intersecting components,

but with no NUT, they will now already be interpretable as black holes (as opposed to

1In general, the higher-dimensional configuration with the topological twist in the fibre coordinate as-

sociated with the Kaluza-Klein vector carrying the magnetic charge will be described, for brevity, as a

NUT.
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Taub-NUT configurations) in D = 5, with one less charge than that in D = 4. (This will

be discussed further in section 2.)2 The crucial observation is that in the decoupling limit,

the foliating 3-surfaces in the transverse space of the NUT solution have the geometry of a

cyclic lens space, with the topology S3/ZN , where N is the quantised NUT charge. This

observation allows us to interpret, via the AdS/CFT correspondence, the microscopics of

such D = 4 black holes in terms of D = 5 black holes with one less charge.

In section 3, we show that by performing a sequence of dimensional reductions and

oxidations on the U(1) fibres of the foliating 3-spheres of a flat 4-dimensional transverse

space, supplemented by appropriate U-duality transformations, we can generate p-brane

configurations in M-theory from the flat space. This provides a new way of generating BPS

solutions, by starting from a flat space-time and just using symmetries of the theory as a

solution-generating procedure.

2 Decoupling limit and microscopics of D = 4 black-hole

states with GPS-monopole

In four-dimensional maximal supergravity, which is the effective low-energy limit of M -

theory compactified on the 7-torus, black-hole solutions form multiplets under the E7(+7)

U-duality group. The prototype solution is specified by four charges. (The generating

solution of the most general black hole, consistent with the no-hair theorem, is actually

specified by five charges [21]; however the global space-time features are essentially captured

by the 4-charge solution.) In the “diagonal” case where each of the charges is associated

with a specific harmonic function (i.e. a generating solution), the solutions have a simple

structure, and are referred to as four-charge solutions (first specified by two electric and two

magnetic charges of the Neveu-Schwarz-Neveu-Schwarz (NS-NS) sector and given explicitly

in [22]). The possible field strength configurations that can give rise to such simple 4-charge

2Note that when one speaks of a configuration of N intersecting objects, this is not the same thing as a

configuration of (N + 1) intersecting objects in which the (N + 1)’th charge is set to zero. The reason for

this is that the individual ingredients in an intersection are distributed uniformly over the world-volumes of

the other ingredients. For example, in the case where one sets the charges of all but one of the ingredients in

an intersection to zero, the remaining configuration will not be a single isotropic object, but instead it will

be smeared uniformly over all the spatial world-volume directions of the (now-vanished) other ingredients.

Thus when we speak of an eleven-dimensional configuration “but with no NUT,” we mean the configuration

that one would have considered if the NUT were never introduced, as opposed to the the configuration that

would result from setting the NUT charge to zero in the original intersection.
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solutions are given by [23]

N = 4 : {F(2)ij, F(2)kℓ, F(2)mn, ∗Fp
(2)}105+105 , {F(2)ij , ∗F(2)ik,F j

(2), ∗Fk
(2)}210 ,

{F(2)ij, F(2)kℓ, ∗F(2)ik, ∗F(2)jℓ}210 . (2.1)

(We are using the notation of [24, 25, 23] here.) The subscripts on each bracketed set

of field strengths denotes the multiplicities of the solutions (corresponding to the possible

permutations of index choices on the field strengths). The Hodge duals indicate that the

associated fields carry electric charges if the fields without duals carry magnetic charges,

and vice versa.

When oxidised back to D = 6, there are four possible near-horizon limits that can arise,

namely

AdS3 × S3, AdS3 × (S2 × S1), (AdS2 × S1)× S3, (AdS2 × S1)× (S2 × S1) . (2.2)

(To be precise, the AdS3 refers only to the local space-time, which can be globally that of

the BTZ black hole, and also the S3 can in general be squashed and/or factored by a cyclic

group, in the manner described in [26] and in subsequent discussions.) If we oxidise these

near-horizon solutions further, to D = 10 or D = 11, then the additional dimensions provide

further factors of T 4 or T 5 respectively. These near-horizon geometries are related to each

other by Hopf T-duality, which is a T-duality that makes use of the U(1) isometry of the fibre

bundle coordinate over the base space [27]. The U-duality and T-duality transformations

that relate the different topologies in (2.2) leave the areas of the horizons invariant, and

they may therefore be called isentropic mappings [26].

The first of the three cases in (2.1) can be viewed in D = 11 as the intersection of three

M2-branes and one NUT, or else the magnetic dual of this, namely, three M5-branes and a

gravitational pp-wave [28]. (The microscopic state counting in the context of the AdS/CFT

correspondence has been given in [6] for static black holes, and in [7] for rotating black

holes.) The third case in (2.1) can be viewed as the intersection of two M2-branes and two

M5-branes [28].

In this paper, we shall concentrate on the second case in (2.1). These configurations

can be viewed as intersections of an M2-brane and an M5-brane, together with a wave and

a NUT. In particular, we shall consider the case where the indices j and k take the values

{j, k} = {6, 7}, so that the solution can be oxidised back to D = 6 to become [29] a dyonic

string [30, 31, 32, 33] with a pp-wave propagating on its word-sheet, and a NUT planted in

its transverse space. If the index i takes any of the values i = 2, 3, 4, or 5, the dyonic string

belongs to the R-R sector, If instead the index i takes the value i = 1, the dyonic string
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belongs to the NS-NS sector [29]. In this latter case, the discussion is equally applicable to

the heterotic string.

2.1 Extremal case

Although the extremal solution can be obtained by taking the extremal limit of the non-

extremal solution, their respective geometries are quiet different and we shall discuss them

separately. We begin with the extremal solution. The extremal 4-charge black hole for the

field configuration {F(2)i6, ∗F (2)i7,F6
(2), ∗F7

(2)} is a solution of the bosonic Lagrangian

κ24 e
−1 L = R− 1

2 (∂
~φ)2 − 1

4e
~ai6·~φ (F(2)i6)

2 − 1
4e

~ai7·~φ (F(2)i7)
2 − 1

4e
~b6·~φ (F6

(2))
2 − 1

4e
~b7·~φ (F7

(2))
2 ,

(2.3)

where the index i can be any number from 1 to 5. The dilaton vectors ~cα = {~ai6,~ai7,~b6,~b7}
can be found in [24, 25]; they satisfy [34]

~cα · ~cβ = 4δαβ − 1 . (2.4)

Four-charge black hole solutions were constructed in [22]. In this case, the solution is given

by

ds24 = −(HeHmK U)−1/2 dt2 + (HeHmK U)1/2 (dρ2 + ρ2 dΩ2
2) ,

A(1)16 = H−1
e dt , F(2)17 = QmΩ(2), A6

(1) = K−1 dt , F7
(2) = QNUT Ω(2) ,

~φ = 1
2~a16 logHe − 1

2~a17 logHm + 1
2
~b6 logK − 1

2
~b7 logU , (2.5)

where the harmonic functions are

He = 1 +
Qe

ρ
, Hm = 1 +

Qm

ρ
, K = 1 +

Qwave

ρ
, U = 1 +

QNUT

ρ
. (2.6)

The metric of the extremal 4-charge black hole (2.5) in D = 4 has a regular horizon at

ρ = 0, near to which the geometry approaches AdS2 × S2. The entropy of the solution is

S ≡ Area

4κ24

=
ω2

4κ24

√
QeQmQwave QNUT . (2.7)

Here ω2 = 4π is the volume of the unit two-sphere. (In this paper we use ωn to denote the

volume of the unit n-sphere, and Ω(n) to denote its volume form. Thus ωn =
∫
Ω(n). We

denote the metric of the unit n-sphere by dΩ2
n.)
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2.1.1 D = 4 and D = 5 black holes

First, let us consider the oxidation of the 4-charge black-hole solution (2.5) to D = 5. Since

the internal coordinate associated with this step is z7, which we shall denote by y, it follows

that the charges Qe, Qm and Qwave will now be supported by the field strengths F(2)i6,

∗F(3)i and F6
(2) in D = 5. However the charge QNUT, being associated with the Kaluza-Klein

vector A7
(1) of the D = 5 to D = 4 reduction step, becomes instead a topological “NUT

charge” in D = 5. The metric in (2.5) oxidises to become

ds25 = −(HeHmK)−2/3 dt2+(HeHmK)1/3)
[
U (dρ2+ρ2 dΩ2

2)+U−1 (dy+QNUT B)2
]
(2.8)

in five dimensions, where B is a 1-form on the unit 2-sphere, such that dB = Ω(2).

This is an appropriate juncture at which to comment further on the observation made

in footnote 2. If we set the NUT charge QNUT in (2.8) to zero, then we get

ds25 = −(HeHmK)−2/3 dt2 + (HeHmK)1/3)
[
dρ2 + ρ2 dΩ2

2 + dy2
]
. (2.9)

Although this ostensibly looks like a standard 3-charge black hole in D = 5 it is actually a

line of 3-charge black holes, since the remaining harmonic functions He, Hm and K depend

only on ρ, rather than on the entire radial coordinate R =
√

ρ2 + y2 in the 4-dimensional

transverse space: A standard isotropic 3-charge black hole would have harmonic functions

of the form 1+4Q/R2, rather than 1+Q/ρ. In fact the line of black holes described by the

metric (2.9) is precisely what would result from performing a normal vertical oxidation of

an isotropic 3-charge black hole in D = 4. As we shall now show, if we instead perform the

oxidation when QNUT is an additional non-vanishing fourth charge in a D = 4 black hole,

with y the fibre coordinate of the U(1) bundle associated with the NUT charge, we instead

arrive at a configuration that does correspond to an isotropic 3-charge black hole in D = 5.

If we go to a region near the horizon, defined by the requirement that ρ << QNUT so

that we can drop the “1” in the harmonic function U = 1+QNUT/ρ, and if we also define a

new radial coordinate r by ρ = r2/4, we find that the five-dimensional metric (2.8) can be

approximated as

ds25 = −(HeHmK)−2/3 dt2 +QNUT (HeHmK)1/3)
[
dr2 + 1

4r
2 dΩ2

2 +
1
4r

2(
dy

QNUT

+B)2
]
,

(2.10)

The metric

dΩ2
3(QNUT) ≡ 1

4dΩ
2
2 +

1
4(

dy

QNUT

+B)2 (2.11)

is locally the standard metric on the unit 3-sphere. In fact it would be precisely the unit

metric on S3 if y had the period 4π QNUT. If instead y has the period 4π, then the metric
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describes the cyclic lens space S3/ZQNUT
, where the fibre coordinate of the U(1) bundle

over the S2 base is identified3 after a translation by a fraction 1/QNUT of its total length

in S3. (The charges are normalised here so that the Dirac quantisation condition requires

that they be integers.) In fact we are obliged to take y to have the period 4π, rather than

4π QNUT, since we require that four-dimensional black holes, for any integer value of the

charge QNUT, should be oxidisable to regular geometries in D = 5. If we were instead to

took the period of y to be 4π QNUT for some value of QNUT 6= 1, then effectively this value

of QNUT would itself define the minimum allowed “unit” of charge, and no smaller values

would be permitted. This is because one cannot have a regular geometry whose U(1) fibres

exceed the length that corresponds to the case of S3 itself. Only integer fractions of the

length of the fibres for S3 give regular geometries.

Rewriting the metric (2.10) in terms of dΩ2
3(QNUT), we obtain

ds25 = −(HeHmK)−2/3 dt2 +QNUT (HeHmK)1/3) (dr2 + r2 dΩ2
3(QNUT)) . (2.12)

As a result of the coordinate transformation ρ = r2/4, the functions He, Hm and K given

in (2.6), which were harmonic in the original 3-dimensional transverse space, are now given

by

He = 1 +
4Qe

r2
, Hm = 1 +

4Qm

r2
, K = 1 +

4Qwave

r2
. (2.13)

These are harmonic with respect to the 4-dimensional transverse space. Note that in this

“Hopf” oxidation on the U(1) fibres, unlike a standard vertical oxidation in the transverse

space, the harmonic functions are still isotropic in the higher dimension. (By contrast, in

the usual vertical oxidation the harmonic functions would describe smeared lines of charge

in the higher dimension.) The five-dimensional solution can be recognised as having the

structure of the isotropic 3-charge black hole, at least if y is identified with period 4πQNUT.

2.1.2 D = 6 dyonic string with pp-wave and Taub-NUT charge

In order to give a microscopic interpretation for the above semi-classical Hawking entropy,

we shall first oxidise the solution back to D = 6, where it describes [29] a dyonic string,

3Note that the identification has no fixed points, and thus S3/ZQNUT
is a smooth manifold, and not an

orbifold. However, if one considers the flat-space metric

ds2 = dr2 + 1
4
r2 dΩ2

2 +
1
4
r2(

dy

QNUT

+B)2 ,

and takes y to have the period 4π, then there is a fixed point at the origin when the integer QNUT is not equal

to unity, where the foliating lens spaces shrink down to a point. This gives rise to an orbifold singularity in

the manifold R4/ZQNUT
.
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together with a pp-wave and a NUT. As mentioned previously, the dyonic string will be

supported by charges in the NS-NS sector if the index i takes the value i = 1, and otherwise it

will be supported by charges in the R-R sector. The associated six-dimensional Lagrangian

is of the form κ26 e
−1 L = R − 1

2(∂φ)
2 − 1

4e
−φ (F(3))

2. The six-dimensional metric, which is

independent of the choice of i (i.e. it is the same whether the fields are in the R-R or the

NS-NS sector), is obtained by performing a further step of dimensional oxidation of (2.8),

leading to [29]:

ds26 = (HeHm)−1/2
(
−K−1 dt2 +K(dx+ (K−1 − 1)dt)2

)

+ (HeHm)1/2
(
U(dρ2 + ρ2 dΩ2

2) + U−1(dy +QNUT B)2
)
, (2.14)

where again dB = Ω(2) is the volume form of the unit 2-sphere. Here, x = z6 is the

compactification coordinate of the S1 reduction step from D = 6 to D = 5.

As we shall see presently, the area of the horizon (at r = 0) for the above metric implies

that the entropy of this D = 6 boosted dyonic string with NUT charge is:

S ≡ Area

4κ26

=
1

4κ26
((Qe Qm)1/4 Qwave

1/2 Lx) (2QNUT
1/2 (QeQm)1/4)3 ω3/QNUT

=
2ω3 Lx

κ26

√
QeQmQwaveQNUT . (2.15)

Note that we have taken the period of the internal coordinate x to be Lx. The period of the

internal coordinate y for the reduction step from D = 5 to D = 4 is 4π, and so the volume

of the internal 2-torus is 4π Lx. It then follows that the gravitational constants κ4 and κ6

in D = 4 and D = 6 satisfy the following relationship:

κ26 = 4π Lx κ
2
4 . (2.16)

Taking into account the fact that ω3 = π ω2/2, it follows that the entropy (2.15) of the

D = 6 string (with the Taub-NUT-charge) is the same as (2.7), that of the D = 4 black

hole. This result is of course a natural consequence of the fact that entropy is preserved

under dimensional reduction.

2.1.3 Near-horizon region and counting of microstates

We now turn to the near-horizon region ρ → 0, which in turn corresponds to the gravity

decoupling limit in the AdS/CFT correspondence:

ρ ≪ (Qe, Qm, QNUT) . (2.17)
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Note that this limit does not impose any restriction on the value of Qwave, relative to ρ.

The metric takes the following form:

ds26 =
r2

4
√
QeQm

(
− r2

r2 + 4Qwave
dt2 + (1 +

4Qwave

r2
) (dx− 4Qwave

r2 − 4Qwave
dt)2

)

+4
√

QeQmQNUT

dr2

r2
+ 4

√
QeQmQNUT dΩ

2
3(QNUT) , (2.18)

where we have, as previously, made the coordinate transformation ρ = r2/4, and dΩ2
3(QNUT)

denotes the metric (2.11) on the unit cyclic lens space S3/ZQNUT
, where the coordinate

y has the period 4π. Note that the volume of the unit-radius lens space is ω3/QNUT,

where ω3 is the volume of the unit-radius three-sphere. The fact that the space associated

with the line element dΩ2
3(QNUT) is a lens space with the topology S3/ZN , where N is

the quantised value of the charge QNUT, has important implications for the microscopic

interpretation. The metric (2.18) describes a direct product of two three-dimensional spaces,

namely the extremal BTZ black hole [8] and the lens space S3/ZQNUT
. To see this, we first

make the coordinate rescaling r → r/
√
QNUT, and then we dimensionally reduce the six-

dimensional metric (2.18) on the lens space. Specifically, we take the lens space metric for

the compactification to be scaled to ds2 = 4
√
QeQmQNUT dΩ

2
3(QNUT). With this choice

for the internal metric, the (constant) breathing-mode scalar takes the value 0, and hence

there is no conformal rescaling of the space-time metric. (See [38] for a detailed discussion

of Kaluza-Klein reduction on spheres and other spaces.) The resulting three-dimensional

space-time metric is then given by

ds23 = − r4

ℓ2R2
dt2 +R2 (

dx

ℓ
− 2κ23 J

R2
dt)2 + ℓ2

dr2

r2
, (2.19)

where

J = M ℓ , ℓ = 2(Qe Qm)1/4 QNUT
1/2 , M =

Qwave

2κ23
√
QeQm

,

R2 = r2 + 2κ23 M ℓ2 . (2.20)

This is precisely the extremal BTZ black hole solution [8], i.e. a rotating black hole solution

of three-dimensional Einstein gravity with a negative cosmological constant, described by

the Lagrangian κ23 e
−1 L = R− 2ℓ−1. Note that the extremal BTZ black hole is an example

of a generalised Kaigorodov metric, specialised to D = 3 [15]. The entropy is given by

S =
ω1

4κ23
=

π

κ3

√
2ℓ2 M . (2.21)

Since the coordinate x has to be periodic with the period Lx = 2π ℓ, the three-dimensional

gravitational constant κ23, when expressed in terms of Lx and either κ24 or κ26, is given by:

κ23 =
κ26

8(Qe Qm)3/4 QNUT
1/2 ω3

8



=
Lx κ

2
4

(QeQm)3/4 QNUT
1/2 ω2

(2.22)

=
4π κ24

(QeQm)1/2 ω2
.

In particular we see that when κ23 is expressed in terms of κ24, it is independent of QNUT. Note

that the three-dimensional gravitational constant κ3 is related to the Newton’s constant G

defined in [4] by κ23 = 2G.

Substuting M and ℓ from (2.20), and κ3 from (2.23), into the extremal BTZ entropy

(2.21) reproduces precisely the entropy of the four-dimensional 4-charge black hole, given

in (2.7), as one would expect. Thus the microscopic counting in [4, 12], which reproduces

precisely the BTZ entropy (2.21) in terms of the asymptotic two-dimensional CFT with

the SL(2, R)L × SL(2, R)R isometry [11] (via the AdS/CFT correspondence), in its turn

reproduces the microscopic entropy formula of the four-dimensional 4-charge black hole as

well!

Here we should like to comment on the ranges of the various charges for which the

above microscopic counting is valid. The discussion of the entropy of the four-dimensional

4-charge black hole splits in two parts. The first step, in which the near-horizon geometry

of the D = 4 black hole is mapped to the BTZ black hole in D = 3, can be implemented

when the gravity decoupling limit is valid. This is discussed in detail in [15], and can be

specified roughly by (2.17). This is the condition for the field theory on the intersecting p-

brane configuration to decouple from gravity. The second step makes use of Cardy’s entropy

formula for two-dimensional CFT [35], leading to the microscopic state-counting formula

for the entropy of the BTZ black hole:

S = 2π
√

1
6cNR + 2π

√
1
6cNL . (2.23)

Here the central charge is given by c = 3ℓ/κ23, and the Virasoro level numbers NL ≡ L0 and

NR ≡ L̄0 are related to the BTZ mass M and angular momentum J by L0 + L̄0 = M ℓ and

L0 − L̄0 = J [4]. Cardy’s formula is valid only in the asymptotic limit where the growth

of the numbers of states is such that NL +NR >> c. This constraint implies that we must

have
M ℓ

3ℓ/κ23
=

Qwave

6
√
QeQm

>> 1 . (2.24)

Thus we see that in order to have a conformal-field-theoretic microscopic interpretation

for the entropy, the momentum of the wave must be very large. Note, however, that if

we nevertheless blindly apply Cardy’s formula for the case 1 ≪ NL,R ≤ c, i.e. Qwave ≤
(Qe, Qm), we still precisely reproduce the classical results!
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It is important to note that the constraint (2.24) is independent of the value of the

Taub-NUT charge. A particular case corresponds to the choice QNUT = 1, for which the

six-dimensional near-horizon geometry is precisely BTZ×S3. This is exactly the same as

the near-horizon geometry of the boosted dyonic string, which gives rise to the 3-charge

Reissner-Nordström-type black hole in D = 5. (Its microscopic state counting, using the

CFT/AdS correspondence, was understood for static black holes in [4], and for rotating

black holes in [5].)

To summarise, we have seen that from the six-dimensional point of view the near-horizon

geometries of the 3-charge D = 5 and 4-charge D = 4 black holes are given by

D = 5 : BTZ× S3

D = 4 : BTZ× S3/QNUT . (2.25)

Thus the oxidation to six dimensions of the near-horizon geometry of the five-dimensional

black hole can be viewed as a special case of the oxidation of the four-dimensional black

hole, in which QNUT = 1. Since κ3, when expressed in terms of κ4, is independent of QQNUT
,

the above analysis shows that the microscopics of the five-dimensional 3-charge black hole

precisely reproduce those of the four-dimensional 4-charge black hole, in the case where

the fourth charge comes from the reduction on the U(1) fibre coordinate of the lens space

S3/ZQNUT
. In other words, we have

SD=4 =
√

QNUT SD=5 . (2.26)

Note that the implications are not only for the (asymptotic) microscopic counting of states,

but also also for the whole black hole spectrum. (The microscopic counting of the four-

dimensional black hole entropy was also discussed in [36] using D-brane techniques. How-

ever, the counting was only valid for QNUT = 1, which corresponds to, in essence, to 5-

dimensional black holes.)

2.2 Non-extremal case

We now turn to the consideration of non-extremal solutions, highlighting the new features

that arise here. The non-extremal 4-charge black hole solution can be found in [37]. In

terms of our field configuration, it is given by

ds24 = −(HeHmK U)−1/2 e2f dt2 + (HeHmK U)1/2 (e−2f dρ2 + ρ2 dΩ2
2) ,

A(1)16 = coth µeH
−1
e dt , A(1)17 = QmΩ(2) ,

A6
(1) = coth µwaveK

−1 dt , A7
(1) = QNUT Ω(2) , (2.27)
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where the functions He, Hm, K, U and f are

He = 1 +
k sinh2 µe

ρ
, He = 1 +

k sinh2 µm

ρ
,

K = 1 +
k sinh2 µwave

ρ
, U = 1 +

k sinh2 µNUT

ρ
, e2f = 1− k

ρ
. (2.28)

The four charges are given by

Qe =
1
2k sinh 2µe , Qm = 1

2k sinh 2µm ,

Qwave =
1
2k sinh 2µwave , QNUT = 1

2k sinh 2µNUT . (2.29)

The Hawking temperature and entropy are of the form

T = (4π k coshµe coshµm coshµwave coshµNUT)
−1 ,

S =
k2 ω2

4κ24
cosh µe coshµm coshµwave cosh µNUT . (2.30)

2.2.1 D = 6 boosted dyonic string with a NUT charge

As in the extremal case, we may oxidise the 4-charge solution in D = 4 back to D = 6, to

obtain the metric

ds26 = (HeHm)−1/2
(
−K−1 e2f dt2 +K (dx+ coth µwave (K

−1 − 1) dt)2
)

+(HeHm)1/2
(
U (e−2f dρ2 + ρ2 dΩ2

2) + U−1 (dy +QNUT B)2
)
. (2.31)

We shall be concerned with the near-extremal regime, which is defined by taking k to be

small, with µe, µm and µNUT large, so that

Qe ∼ 1
4k e

2µe , Qm ∼ 1
4k e

2µm , QNUT ∼ 1
4k e

2µNUT , (2.32)

are all finite and non-vanishing. It follows that in the near-horizon region ρ → 0, the “1” in

the functions He, Hm and U can be dropped, and we have k sinh2 µe ∼ Qe, k sinh
2 µm ∼ Qm

and k sinh2 µNUT ∼ QNUT. Note that we do not impose any restriction on µwave. Making

the coordinate transformation

ρ =
r2

4k sinh2 µNUT

, (2.33)

the metric (2.31) becomes

ds26 = − r2(r2 − 4k2 sinh2 µNUT)

ℓ2 (r2 + 4k2 sinh2 µwave sinh2 µNUT)
dt2

+
r2 + 4k2 sinh2 µwave sinh2 µNUT

ℓ2

(
dx− 4Qwave k sinh2 µNUT

r2 + 4k2 sinh2 µwave sinh2 µNUT

dt
)2

+
ℓ2 dr2

r2 − 4k2 sinh2 µNUT

+ ℓ2
(
1
4 coth

2 µ4(
dy

QNUT

+B)2 + 1
4 dΩ

2
2

)
, (2.34)
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where ℓ2 = 4k2 sinhµe sinhµm sinh2 µNUT. We see that this six-dimensional metric is the

direct sum of two three-dimensional metrics. In particular, the factor

ds̄23 = ℓ2
(
1
4 coth

2 µNUT (
dy

QNUT

+B)2 + 1
4 dΩ

2
2

)
(2.35)

describes a squashed three-dimensional cyclic lens space, where the squashing parameter

is coth2 µNUT and the 3-sphere is factored by ZQNUT
. (We are assuming that, as usual,

y has period 4π.) In the extremal limit with non-vanishing QNUT, which requires that

µNUT → ∞, the squashing parameter coth µNUT becomes 1 and the space becomes the

unsquashed lens space. In the decoupling limit, which corresponds to the near-extremal

region with µNUT >> 1, the squashing effect is very small, and the lens space is almost

round. (If we set QNUT to zero, and hence µNUT = 0, the space will instead be untwisted,

becoming S2 × S1.) The volume of this squashed lens space is given by

V =
π ω2 ℓ

3 coth µNUT

2QNUT

= 2π ℓω2 k sinhµe sinhµm . (2.36)

2.3 Microscopic counting and the BTZ black hole

Dimensionally reducing the metric (2.34) on the squashed lens space (2.35), we obtain

precisely the three-dimensional BTZ black hole, given by

ds23 = −r2 (r2 − r2+)

ℓ2 R2
dt2 +R2(

dx

ℓ
− 2κ23 J

R2
dt)2 +

ℓ2

r2 − r2+
dr2 , (2.37)

where

R2 = r2 + 1
2(4κ

2
3 Mℓ2 − r2+) ,

ℓ2 = 4k2 sinhµe sinhµm sinh2 µNUT ∼ 4
√

QeQmQNUT ,

M ℓ2 =
k2

κ23
cosh 2µwave sinh2 µNUT ∼ QNUT

κ23
k cosh 2µwave , J = M ℓ tanh 2µwave ,

r2+ = 4κ23 Mℓ2
√

1− (
J

Mℓ
)2 = 4k2 sinh2 µNUT ∼ 4k QNUT . (2.38)

Thus the coordinate x has the period of Lx = 2π ℓ. Following the same discussion as in

the extremal case, we find that the three-dimensional gravitational constant κ3 is related

to that of the original four-dimensional theory by

κ23 =
4π κ24

ω2 k sinhµe sinhµm
∼ 4π κ24

(Qe Qm)1/2 ω2
. (2.39)

The entropy of the BTZ black hole in this case takes the form:

S =
π

κ3

(√
ℓ(M ℓ+ J) +

√
ℓ(M ℓ− J)

)
. (2.40)
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Substituting the variables in (2.38) and κ23 into the above entropy formula, we obtain

S =
k2 ω2

4κ24
sinhµe sinhµm coshµwave sinhµNUT

∼ ω2

4κ24

√
QeQmQNUT k cosh2 2µwave , (2.41)

which is precisely the entropy (2.30) for the four-dimensional black hole in the near-extremal

region where µe, µm and µNUT are all much greater than 1, and k tends to zero, while keeping

Qe, Qm and QNUT fixed. Note that this agreement of the entropy formulae occurs only in

the near-extremal region.

It is instructive to study the limit where the counting of the string states (2.40) on the

boundary of the BTZ black hole is valid. In this non-extremal case, the central charge is

given by c = 3ℓ/κ23, and we have L0+ L̄0 = M ℓ and L0 − L̄0 = J . The state counting gives

the expression S = 2π
√

1
6cNR + 2π

√
1
6cNL for the entropy, valid when NR + NL >> c.

This expression is in agreement with (2.40). The constraint on the level-numbers implies

that
M ℓ

3ℓ/κ23
=

cosh 2µwave

12 sinh µe sinhµm
∼ Qwave

6
√
QeQm

>> 1 . (2.42)

Again, we see that this constraint is independent of the NUT charge QNUT.

3 p-branes from flat space-time

In the previous section, we made use of the fact that the fourth charge of the 4-charge black

hole in D = 4 can be obtained from the Hopf reduction of the D = 5 3-charge black hole

on the fibre coordinate of the lens space S3/ZN , described as a U(1) bundle over S2. This

is a special case of general discussion that can be given for any N -charge p-brane solution

whose transverse space is four-dimensional; by a similar Hopf reduction we can obtain an

(N + 1)-charge p-brane solution in one dimension less [26]. In this section, we show that

if the effect of Kaluza-Klein massive modes is neglected, p-branes configurations can be

obtained from flat space-time by a sequence of dimensional reductions and oxidations, and

U-duality transformations. This provides an alternative way of constructing BPS p-brane

solitons, without needing to go through the process of explicitly solving the supergravity

equations of motion. In other words, the non-trivial BPS soliton solutions can be obtained

by acting with symmetry transformations on the trivial flat space-time solution. In this

context, therefore, U dualities play the rôle of solution-generating symmetries.
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3.1 D = 4 black holes from D = 5 Minkowski space-time

We begin with five-dimensional Minkowski space-time, written as

ds25 = −dt2 + dr2 + r2 dΩ2
3 , (3.1)

where dΩ2
3 is a metric on the unit 3-sphere. Exploiting the fact that S3 is a U(1) bundle

over S2, we may write the 3-sphere metric as

dΩ2
3 =

1
4dΩ

2
2 +

1
4 (dz +B)2 , (3.2)

where dΩ2
2 is the metric on the unit 2-sphere, and dB = Ω(2), the volume form on the unit

2-sphere. The U(1) fibre coordinate z has period 4π.

Adopting the standard Kaluza-Klein ansatz for the metric, we now reduce from D = 5

to D = 4 on a circle:

ds25 = e−φ1/
√
3 ds24 + e2φ1/

√
3 (dz1 +A1

(1))
2 . (3.3)

With this ansatz, the pure Einstein-Hilbert Lagrangian L5 = R ∗1l in D = 5 reduces to

L4 = R ∗1l− 1
2∗dφ1 ∧ dφ1 − 1

2e
√
3φ1 ∗F1

(2) ∧ F1
(2) . (3.4)

We may now apply the reduction (3.3) to the five-dimensional Minkowski space-time

(3.1), which is, of course, a solution of the pure gravity equations in D = 5. Writing dΩ2
3

as in (3.2), we take the compactification coordinate z1 to be the Hopf fibre coordinate z,

and the Kaluza-Klein vector A1
(1) = B. Thus from (3.3) we obtain the four-dimensional

configuration

ds24 = 1
2r
[
− dt2 + dr2 + 1

4r
2 dΩ2

2

]
,

e
− 2√

3
φ1 =

4

r2
, F1

(2) = dB = Ω(2) . (3.5)

This is necessarily a solution of the equations following from the dimensionally-reduced

Lagrangian (3.4).

We now make the coordinate transformation r = 2 ρ1/2, and define H = ρ−1, in terms

of which the four-dimensional solution (3.5) becomes

ds24 = −H−1/2 dt2 +H1/2 (dρ2 + ρ2 dΩ2
2) ,

e
− 2√

3
φ1 = H , F1

(2) = Ω(2) . (3.6)

We observe that H is a harmonic function in the flat three-dimensional “transverse space”

with metric dρ2 + ρ2 dΩ2
2.

14



The solution (3.6) is superficially like the standard four-dimensional single-charge ex-

tremal black hole. The only difference is that in (3.6) the harmonic function tends to

zero at infinity, while in the usual black hole solution one has H = 1 + Q/ρ, and the

harmonic function is asymptotically constant. In fact, although the metric (3.6) has the

same structure as the usual black hole in the near-horizon (ρ → 0 limit), its asymptotic

behaviour is quite different, and in fact it has no asymptotically Minkowskian limit. How-

ever it has been shown that, by any of a number of somewhat different procedures, one can

use U-duality transformations to change the values of the constant terms in the harmonic

functions in black-hole or p-brane solutions [9, 39, 41, 40]. The most convenient of these

for our purposes is the one introduced in [41]. This is a universal prescription, in which

one diagonally dimensionally reduces a D-dimensional p-brane on all its world-volume di-

mensions (including time), thereby obtaining a Euclidean instanton solution in D − p − 1

dimensions. The dimensionally-reduced Lagrangian describing this solution has a global

symmetry group that includes a number of independent SL(2, IR) factors, one associated

with each harmonic function. In fact there is an SL(2, IR)/O(1, 1) scalar coset associated

with each SL(2, IR) factor. By making SL(2, IR) transformations on a given solution, a

new one with harmonic functions that are shifted and scaled by constants can be obtained

[41]. The original motivation for transforming the harmonic functions was in fact to strip

off the constant terms, so that the black-hole or p-brane solution was transformed into its

near-horizon limit. Here, our interest lies in the opposite direction, in that we want to

transform the harmonic function H in (3.6) from the degenerate form H = ρ−1 into the

standard black-hole form where there is a constant term.

To apply the procedure of [41], we first diagonally reduce the solution (3.6) to D = 3,

with the metric ansatz

ds24 = e−φ2 ds23 − eφ2 (dt+A2
(1))

2 . (3.7)

Thus we obtain the three-dimensional configuration

ds23 = dρ2 + ρ2 dΩ2
2 ,

eφ = H , eϕ = 1 , (3.8)

F1
(2) = Ω , F2

(2) = 0 , F1
(1)2 = 0 ,

where we have defined the dilatonic scalars φ and ϕ by

φ = −
√
3
2 φ1 − 1

2φ2 , ϕ = −
√
3
2 φ2 +

1
2φ1 . (3.9)

The dimensionally-reduced Euclidean-signature theory in D = 3 has the Lagrangian

L3 = R ∗1l− 1
2∗dφ ∧ dφ− 1

2∗dϕ ∧ dϕ− 1
2e

−2φ ∗F1
(2) ∧ F1

(2)
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+1
2e

−φ−
√
3ϕ ∗F2

(2) ∧ F2
(2) +

1
2e

−φ+
√
3ϕ ∗F1

(1)2 ∧ F1
(1)2 , (3.10)

where F1
(2) = dA1

(1) − dA1
(0)2 A2

(1), F2
(2) = dA2

(1) and F1
(1)2 = dA1

(0)2. The unusual signs for the

kinetic terms for F2
(2) and F1

(1)2 are the consequence of having performed the dimensional

reduction on the time direction. The three-dimensional configuration (3.8) is a solution

of the equations of motion following from this Lagrangian. In fact, we may consistently

truncate the fields ϕ, A2
(1) and A1

(0)2 (which in any case vanish in our solution) in the

Lagrangian (3.10). In the resulting Lagrangian we then dualise A1
(1) to an axion χ, giving

the purely scalar Lagrangian

L3 = R ∗1l− 1
2∗dφ ∧ dφ+ 1

2e
2φ ∗dχ ∧ dχ . (3.11)

The unusual sign for the kinetic term for χ is the result of having performed a dualisation

in a Euclidean-signatured theory. The Lagrangian (3.11) has an SL(2, IR) global symmetry,

and in fact the scalars parameterise the coset SL(2, IR)/O(1, 1). Defining τ = χ + j e−φ,

where j satisfies j2 = 1 and j̄ = −j, the SL(2, IR) transformations can be written as

τ −→ a τ + b

c τ + d
, (3.12)

where ad− bc = 1.

In terms of the dualised axion field χ, the form of the 3-dimensional solution will be

the same as (3.8), except that now we will have χ = χ0 + H−1, where χ0 is an arbitrary

constant of integration. After performing an SL(2, IR) transformation, we therefore obtain

the new primed solution

ds23 = dρ2 + ρ2 dΩ2
2 ,

eφ
′

= H ′ ≡ 2c(c χ0 + d)
(
1 +

c χ0 + d

2c ρ

)
, eϕ = 1 , (3.13)

χ′ = H ′−1
+

aχ0 + b

c χ0 + d
, F2

(2) = 0 , F1
(1)2 = 0 .

(Quantities that are inert under SL(2, IR) are written without primes.)

Dualising the axion χ′ back to a potential A1
(1)

′
, and oxidising back to D = 4, we

obtain the new metric ds24 = −H ′−1/2 dt2 + H ′1/2 (dρ2 + ρ2 dΩ2
2). In order to put this in

the standard form, where it is asymptotic to the canonical form of the Minkowski metric,

we make the constant general coordinate transformations t → (2c(c χ0 + d))−1/4 t and

ρ → (2c(c χ0 + d))1/4 ρ. The final solution is given by

ds24 = −H̃−1/2 dt2 + H̃1/2 (dρ2 + ρ2 dΩ2
2) ,

e
− 2√

3
(φ1−φ0

1) = H̃ , F1
(2) = (c χ0 + d)2 Ω(2) , (3.14)
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where the new harmonic function H̃ and the dilaton modulus φ0
1 are given by

H̃ = 1 +
(c χ0 + d)2 e−

√
3

2
φ0
1

ρ
, e

√
3

2
φ0
1 = 2c (c χ0 + d) . (3.15)

More generally, we may introduce a second modulus parameter, namely a constant φ0

to supplement χ0 in the (φ, χ) system. This can be done by rescaling the coordinates in

(3.6), so that t = e−φ0 t′, ρ = eφ0 ρ′. Now following the same steps as before, we arrive at

the solution

ds24 = −H̃−1/2 dt2 + H̃1/2 (dρ2 + ρ2 dΩ2
2) ,

e
− 2√

3
(φ1−φ0

1) = H̃ , F1
(2) = (c χ0 + d)2 e−φ0 Ω(2) , (3.16)

where the new harmonic function H̃ and the dilaton modulus φ0
1 are given by

e
√

3
2
φ0
1 = 2c (c χ0 + d) e−φ0 , H̃ = 1 +

(c χ0 + d)2 e−φ0 e−
√

3
2
φ0
1

ρ
. (3.17)

The magnetic charge of this four-dimensional black-hole solution is given by

Q = 1
4π

∫
F2 = (c χ0 + d)2 e−φ0 . (3.18)

The free parameters φ0 and χ0 enable us to set the dilaton modulus φ0
1 and the magnetic

charge Q to any desired values. Note that if we oxidise this four-dimensional magnetic

black-hole solution to D = 5, we obtain the NUT solution (i.e. IR× Taub-NUT)

ds25 = −e
− 1√

3
φ0
1 dt2 + e

− 1√
3
φ0
1
(
H̃ (dρ2 + ρ2 dΩ2

2) + eφ
0
1 H̃−1 (dz1 +Q cos θ dφ)2

)
. (3.19)

The near-horizon limit, after making the replacement ρ = 1
4r

2, is

ds25 = −e
− 1√

3
φ0
1 dt2 +Qe

1
2
√
3
φ0
1 (dr2 + 1

4r
2 dΩ̃2

3) , (3.20)

where dΩ̃2
3 =

1
4dΩ

2
2+

1
4(dz/Q+cos θ dφ)2 is the metric on a the unit-radius lens space S3/ZQ.

Instead of oxidising the four-dimensional black hole (3.16) directly back to D = 5, we

can first perform a four-dimensional U-duality transformation to map the solution into one

where the charge becomes electric, and is carried by a 2-form field strength coming from

the 4-form of M-theory or the NS-NS 3-form of the type II string. For definiteness, let

us consider the case where after the U-duality transformation, it is F(2)12 that carries the

electric charge. This solution can be viewed as the vertical dimensional reduction of a

five-dimensional black hole, where the U(1) isometry on the transverse space is achieved

by making a continuous “stack” of black holes along the z7 axis. Viewed from distances
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r in the remaining transverse space that are large compared with the period of z7, one

may approximate the continuous stack by a periodic array of black holes. As we have

seen, there is already a natural U(1) isometry in the transverse space of an isotropic five-

dimensional black hole, namely the U(1) of the Hopf fibres of the foliating 3-spheres. We

can dimensionally reduce the new solution on this fibre coordinate, and then generate a

2-charge black hole in D = 4, with charges carried by the field strengths {F(2)12, ∗F7
(2)}.

Again, the new harmonic function associated with the field strength F7
(2) lacks a constant

term, and so we have to repeat the steps of reducing to D = 3 and performing an SL(2, IR)

transformation in order to introduce a constant term.

A discrete Weyl rotation can then again be used in D = 4 , to rotate the 2-charge black

hole to one that involves only the field strengths F(2)12 and F(2)34. This can be vertically

oxidised to D = 5, followed by another dimensional reduction on the U(1) Hopf fibre

coordinate of the foliating 3-spheres. This gives a 3-charge black hole in D = 4, supported

by the field strengths {F(2)12, F(2)34, ∗F7
(2)}. (Again, a constant term in the new harmonic

function can be introduced by following the steps described previously.) This 3-charge

configuration can be rotated by a Weyl duality transformation to {F(2)12, F(2)34, F(2)56}.
Repeating the vertical oxidation, followed by Hopf reduction, once more, we eventually

arrive at a 4-charge black hole in D = 4. There are in total 630 4-charge configurations in

maximal supergravity in D = 4, given by (2.1).

Note that we are not saying that there is a complete sequence of solution-mapping sym-

metries that takes us from the original 5-dimensional flat space-time to the four-dimensional

4-charge black hole. This is because there is one step in each of the processes of adding the

second, third and fourth charges which is not implemented purely by a symmetry transfor-

mation. This is the step where we vertically oxidise an N -charge black hole from D = 4

to D = 5. If the four-dimensional solution is literally the given black hole, with all other

four-dimensional fields vanishing, then the mathematical process of vertical oxidation gives

a uniform line of five-dimensional black holes distributed along the z7 axis. The harmonic

function describing the black holes with therefore have a dependence of the form 1 +Q/R

in D = 5, where R is the radial coordinate of the remaining 3-dimensional space transverse

to the line of black holes. In order to proceed with the next step of Hopf reduction, we

need instead to be able to consider an isotropic single black hole in D = 5, with harmonic

function of the form 1+Q/r2 where r is the radial coordinate of the full 4-dimensional space

transverse to the t coordinate. To justify this step, one first has to view the four-dimensional

black hole as an approximate solution that could be thought of as the dimensional reduc-
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tion of a periodic array of five-dimensional black holes. (This effectively means that one

is neglecting massive Kaluza-Klein modes in D = 4.) Sufficiently near to one of the black

holes in this array, it approximates to a genuinely isotropic five-dimensional black hole, with

no periodic identification of any of the Cartesian transverse coordinates. It is this solution,

with the transverse space then written in hyperspherical polar coordinates, that is then

used for the next step of Hopf reduction on the U(1) fibres of the foliating 3-spheres, in

order to generate the next charge in D = 4.

The five-dimensional metric is independent of the U(1) fibre coordinate, and hence mas-

sive Kaluza-Klein modes all rigorously vanish in the Hopf reduction. On the other hand, a

periodic array of five-dimensional black holes does depend on the compactifying coordinate

(along the periodic axis), and so Kaluza-Klein massive modes are non-zero after the dimen-

sional reduction. Thus to say that the N -charge and (N +1)-charge four-dimensional black

holes are equivalent under this vertical-oxidation/Hopf-reduction procedure is to ignore the

discrepancies in the massive Kaluza-Klein modes in four dimensions. This neglect of mas-

sive modes is in the same spirit as in the usual discussion of the U-duality symmetry group:

The Cremmer-Julia global symmetry groups in supergravities arise only when the massive

Kaluza-Klein modes are set to zero. One can see this from a string-theory standpoint by

noting, for example, that the 56-dimensional U-duality multiplet of four-dimensional single-

charge black holes come from the vertical and diagonal dimensional reduction of M-branes,

NUTs and waves in D = 11. Again, the vertical reduction steps involve the neglect of

Kaluza-Klein massive modes, while the diagonal reduction steps are on coordinates which

have genuine and exact U(1) isometries. In fact a similar philosophy to the one that in-

terprets all the four-dimensional black holes as coming from fewer fundamental objects in

D = 11 allows us to interpret all the black holes as coming from flat space in D = 5. In

both cases, the result follows once one ignores the massive Kaluza-Klein modes.

3.2 D-branes and NS-NS branes from D = 11 Minkowski space-time

The discussion of the previous section can easily be generalised to obtain ten-dimensional

p-branes from D = 11 Minkowski space-time. Thus to begin, we consider the eleven-

dimensional metric

ds211 = dxµ dxµ + dr2 + r2 dΩ2
3 . (3.21)

We again perform a dimensional reduction on the U(1) fibre coordinate in S3, giving rise

to D6-brane in D = 10 type IIA. (In order to introduce a constant term in the harmonic

function, we can diagonally dimensionally reduce on the world-volume to D = 3, perform
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an SL(2, IR) transformation, and diagonally oxidise back to D = 10. An alternative proce-

dure is to apply a sequence of IIA/IIB T-duality transformations and a type IIB S-duality

transformation to map the solution to a wave. The harmonic function describing the wave

can then be shifted and rescaled by general coordinate transformations [9, 39]. Yet an-

other possibility is to map the solution instead to an instanton in type IIB, and perform an

SL(2, IR) transformation there [40].)

Having obtained the D6-brane in the D = 10 type IIA theory, we can then use the

IIA/IIB T-duality that relates a Dp-brane to a D(p+1)-brane to generate all the D-branes

in ten dimensions. Using the S-duality of the type IIB theory, we can generate the NS-NS

string and 5-brane from the D-string and D5-brane respectively. The NS-NS string and

5-brane are T-dual to ten-dimensional waves and NUTs respectively.
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[15] M. Cvetič, H. Lü and C. Pope, Spacetimes of boosted p-branes and CFT in infinite

momentum frame, hep-th/9810123.

[16] S. Deger, A. Kaya, E. Sezgin, and P. Sundell, Spectrum of D = 6, N = 4B supergravity

on AdS3 × S3, hep-th/9804166.

[17] J. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle,

hep-th/9804085.

[18] J de Boer, Six-dimensional supergravity on S3×AdS3 and 2-d conformal field theory,

hep-th/9806104.

[19] F. Larsen, The perturbation spectrum of black holes in N=8 supergravity, hep-

th/9805208

[20] D. Gross and M. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys.

B226 (1983) 29; R.D. Sorkin, Kaluza-Klein Monopole, Phys. Rev. Lett. 51 (1983) 87.
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[32] M.J. Duff, H. Lü, C.N. Pope, Heterotic phase transitions and singularities of the gauge

dyonic string, Phys. Lett. B378 (1996) 101, hep-th/9603037.
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