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A repeated cross-sectional study was conducted to identify farm management, environment, weather, and landscape factors that
predict the count of generic Escherichia coli on spinach at the preharvest level. E. coli was enumerated for 955 spinach samples
collected on 12 farms in Texas and Colorado between 2010 and 2012. Farm management and environmental characteristics were
surveyed using a questionnaire. Weather and landscape data were obtained from National Resources Information databases. A
two-part mixed-effect negative binomial hurdle model, consisting of a logistic and zero-truncated negative binomial part with
farm and date as random effects, was used to identify factors affecting E. coli counts on spinach. Results indicated that the odds
of a contamination event (non-zero versus zero counts) vary by state (odds ratio [OR] � 108.1). Odds of contamination de-
creased with implementation of hygiene practices (OR � 0.06) and increased with an increasing average precipitation amount
(mm) in the past 29 days (OR � 3.5) and the application of manure (OR � 52.2). On contaminated spinach, E. coli counts in-
creased with the average precipitation amount over the past 29 days. The relationship between E. coli count and the average
maximum daily temperature over the 9 days prior to sampling followed a quadratic function with the highest bacterial count at
around 24°C. These findings indicate that the odds of a contamination event in spinach are determined by farm management,
environment, and weather factors. However, once the contamination event has occurred, the count of E. coli on spinach is deter-
mined by weather only.

Foodborne disease outbreaks associated with produce impose a
considerable public health burden (1). Among different pro-

duce commodities, leafy green vegetables have been identified as a
group of high concern from a microbiological safety perspective
due to their being implicated in multiple outbreaks of foodborne
disease with high numbers of illnesses worldwide (2). Indeed, leafy
green vegetables are commonly grown in open farm fields, where
they may be exposed to microbial contamination from soil, ma-
nure fertilizer, irrigation water, and intrusions of wild or domestic
animals, and they are likely to be consumed fresh or minimally
processed. Enteric foodborne pathogens, such as Salmonella and
Escherichia coli O157:H7, have been the main causative agents
responsible for foodborne outbreaks associated with leafy green
vegetables in the United States (3). These pathogens are spread in
the environment through feces of infected animals and humans
(4). While contamination of leafy greens with these foodborne
pathogens has major consequences (2), fortunately it occurs at a
low frequency (5, 6). The low frequency and heterogeneous dis-
tribution of these pathogens in the produce field make their de-
tection difficult, costly, and time-consuming. Instead indicator
organisms are routinely used by the industry, environmental
agencies, and public health organizations to verify effective imple-
mentation of good agricultural practices (GAPs) and good man-
ufacturing practices (GMPs) (7, 8). Generic E. coli has been used as
an indicator of fecal contamination on produce and to study risk
factors for such contamination. Previous studies have docu-

mented the usefulness of generic E. coli in predicting Salmonella
and E. coli O157:H7 persistence after manure and slurry applica-
tion in research settings (6, 9, 10). Recently, the European Food
Safety Authority (EFSA) took a new direction to define a criterion
at primary production of leafy greens that would be designated the
“hygiene criterion” (8). Generic E. coli was identified as suitable
for a hygiene criterion that could be considered for validation and
verification of GAPs and good hygiene practices (GHPs) and on
the basis of which growers could take appropriate corrective ac-
tions. The rationale was that because E. coli is not often detected
on leafy greens, is present in high numbers in fecal material (e.g.,
fresh manure), and declines in the soil or on leafy greens during
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primary production, it can be considered an indicator of a recent
exposure to risk factors for fecal contamination in which Salmo-
nella could be present (8). Thus, it is of interest to identify risk
factors for leafy green contamination with generic E. coli in order
to reduce the produce contamination with fecal material and the
associated foodborne pathogens and thereby prevent produce-
related foodborne illnesses.

Several studies (5, 6, 11–13) have been conducted to identify
the farm-related management practices, environmental, land-
scape, and weather factors affecting generic E. coli contamination
of produce at the preharvest level. According to these studies,
produce contamination with E. coli may occur from various
sources (e.g., soil amendments such as raw or improperly com-
posted manure [5, 6, 11, 13], contaminated irrigation water [6],
and fecal deposition through domestic animal and wildlife [6, 13])
and may be aggravated due to weather conditions that aid trans-
port of E. coli to produce (e.g., rain events) or increase the surviv-
ability and growth rate of E. coli (e.g., high humidity). They have
also shown that the probability of contamination decreased with
implementation of GAPs, such as providing toilets and hand-
washing facilities to field workers (6, 13) and avoiding application
of animal manure (5, 6, 11, 13). Our systematic review study (14)
indicated that the majority of these risk factors for contamination
with generic E. coli have been confirmed to play a role in produce
contamination with foodborne pathogens, such as Salmonella and
E. coli O157:H7.

Although numerous studies have evaluated farm-related fac-
tors influencing the microbial contamination of produce (5, 6,
11–13, 15–22), only a limited number of studies (16, 17, 23) ex-
amined the bacterial count on produce as affected by risk factors
other than the farming type (e.g., organic or conventional farm)
(5, 12, 18–20). Surprisingly, to our knowledge, no study has sys-
tematically assessed the impact of farm-related factors, including
management practices, environment, landscape, and weather fac-
tors, on the bacterial count on produce. Yet, bacterial count data
can provide valuable information for (i) evaluation of the efficacy
of decontamination practices, (ii) cross-contamination potential
throughout the food production and distribution chain, and (iii)
dose of human foodborne pathogen exposure. As a result, GAPs
should be designed not only to reduce the probability of produce
contamination but also to reduce the extent of contamination on
produce in terms of the bacterial count.

In practice the bacterial count ranges from zero, in a product
that is noncontaminated or contaminated under the lower detec-
tion limit, to some positive integer that reflects the upper limit of
detection for the employed enumeration method. Because count
data usually do not follow a normal distribution due to a low
frequency of high counts and excess of zero counts, a log10 trans-
formation is often used to approximate data normality that is
often necessary for parametric data analysis (24). The long-known
log-normal distribution of epiphytic bacterial populations on leaf
surfaces (25) provides a biological support for this practice. Pois-
son models are often considered the method of choice for analysis
of count data, but they are rarely adequate because they assume
the equality of mean and variance (26). Recently, alternative sta-
tistical methods have been proposed for the microbial count data
in the area of food safety (23, 24). That is because in practice, most
log10-transformed bacterial count data show relatively high heter-
ogeneity in the form of an excess number of zeros (“zero-infla-
tion”), excess in variance above that expected by Poisson distribu-

tion (“overdispersion”), or both. In analysis of bacterial count
data, researchers may therefore need to consider more flexible
models that are able to handle zero-inflation (zero-inflated Pois-
son [ZIP] and Poisson hurdle [PH] models), overdispersion (neg-
ative binomial [NB] model), or both (zero-inflated negative bino-
mial [ZINB] and negative binomial hurdle [NBH] models) (27),
depending on the characteristics of data. The above-mentioned
ZIP, PH, ZINB, and NBH models are all two-part models, albeit
with important differences. The hurdle (PH and NBH) models
address zero and non-zero counts separately, which would in the
context of bacterial counts on produce mean that all observed
zero counts are interpreted as noncontaminated samples, while
non-zero counts denote contaminated samples (discussed fur-
ther in Discussion). The zero-inflated (ZIP and ZINB) models
also model non-zero counts as contaminated samples, but they
partition zeros into two types, structural and ineligibility zeros,
with zeros obtained for samples contaminated under the detec-
tion limit as structural zeros, while the true zeros in case of
complete absence of contamination are modeled as ineligibility
zeros.

The objective of this study was to identify farm management,
environment, landscape, and weather factors that determine the
count of generic E. coli on spinach at the preharvest level. To
address this objective, we conducted a repeated cross-sectional
study on 12 spinach farms in Texas and Colorado, which involved
enumeration of generic E. coli on spinach and consideration of the
following four groups of risk factors: (i) management and (ii)
environmental characteristics of farms obtained through a survey
of farmers and local (iii) landscape and (iv) weather characteristics
obtained through spatial modeling from publicly available Na-
tional Resources Information (NRI) databases. Our previously
published studies (6, 13) described data on generic E. coli pres-
ence/absence on spinach in relation to the above-considered
groups of risk factors: specifically groups i and ii were considered
in reference 6, while all of groups i to iv were considered in refer-
ence 13. The present study introduces never before published data
on the count of generic E. coli on contaminated spinach and com-
bines the new data with previously described presence/absence
(i.e., non-zero and zero counts) data to evaluate in one step the
role of the above four groups of risk factors in determining the
count of E. coli on spinach.

MATERIALS AND METHODS
Sample collection. Sample collection was described in detail in our pre-
vious study (6). Briefly, over a 2-year period from 7 June 2010 to 10
February 2012, a total of 955 spinach samples were collected on 12 spinach
farms (8 in Texas and 4 in Colorado). The States of Texas and Colorado
are representative of the southwestern and western United States, respec-
tively, and are important vegetable production areas of the United States
(28) albeit with different spinach growing seasons. Spinach is grown in
Texas between November and March and in Colorado between April and
September. Each farm was visited on 1 to 5 sampling dates per growing
season for a total of 2 to 8 sampling dates over the study period. At each
visit, 5 spinach samples (4 from the field’s corners and an additional
sample from the field center) were collected from each of 1 to 6 fields per
farm. For each sample, we randomly collected more than 10 individual
leaves of multiple spinach plants in an area with a 5-meter radius. After
sample collection, individual samples were placed into individual
Whirl-Pak bags (Nasco, Fort Atkinson, WI). The location of each sam-
pling site was recorded using a hand-held global positioning system
(GPS) device (Garmin 12XL; Garmin, Ltd., Olathe, KS). All samples
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were stored in a cooler with ice packs, transported to a laboratory, and
processed within 48 h.

Microbiological analyses. In the laboratory, 25 g of a spinach sample
was transferred into 75 ml phosphate-buffered saline (PBS) in a stom-
acher bag and then mixed with PBS for 2 min using a blender (Smasher
Lab Blender; AES-Chemunex, France). An aliquot of 1 ml of sample di-
lution and each four successive 1:10 serial dilutions was pipetted onto
Petrifilm E. coli/coliform count plates (3M Microbiology, St. Paul, MN).
Each count plate was then incubated at 37°C � 2°C for 48 h. Blue colonies
with gas bubbles were counted to enumerate generic E. coli colonies ac-
cording to the standard Petrifilm enumeration method (http://tmacog
.org/Environment/SWW_07/PetrifilmInterpretation.pdf), and the count
of generic E. coli for an individual sample was expressed as CFU/g. The
detection limit was 4 CFU/g of spinach. If no colonies were detected, the
count was recorded as zero. If the colony number was “too numerous to
count” (TNTC), it was recorded as 6 � 107 CFU/g, which was greater by a
first order of magnitude than the upper enumeration limit of 6 � 106

CFU/g (calculated based on the upper countable range for Petrifilm of 150
CFU and 1:10,000 serial dilution of the 1:4 diluted sample as 150 �
10,000 � 4 � 6 � 106).

Questionnaire data. Information on farm management and the envi-
ronment was obtained using a detailed questionnaire administered at
each farm visit and described in detail in reference 6. Briefly, the consid-
ered farm management information included 50 variables under the cat-
egories of human factors (7 variables), farm and field conditions (13 vari-
ables), pesticide (8 variables), chemical fertilizer (2 variables), manure
fertilizer (4 variables), compost fertilizer (2 variables), irrigation (10 vari-
ables), equipment (2 variables), routine microbial test (1 variable), and
time since planting of spinach (1 variable). Farm environment informa-
tion included 16 variables under the categories of terrain, buffer zone, and
proximity (11 variables), domestic/wild animals (4 variables), and farm
location (1 variable). Of those, five management and environmental fac-
tors (the use of portable toilets, the presence of training to use portable
toilets, the use of hand-washing stations, and the absence of grazing and
hay production in the field before planting of the spinach during the
current growing season) always co-occurred and were evaluated by using
a composite variable, “hygiene-field status.” Thus, 62 variables describing
farm management and environment were considered in the statistical
analyses here. Similar to our approach in reference 6, all continuous farm
management and environmental factors were median dichotomized for
regression models, because the linearity assumption was not met between
explanatory and outcome variables. For brevity, in Table 1, we list only
variables (previously defined in references 6 and 13) that were in univari-
able analyses significant at a P value of 0.2.

NRI databases. Collection and manipulation of weather and local
landscape variables were performed following the general procedure sug-
gested by Ivanek et al. (29) and described in detail in our previous study
(13). Briefly, weather and landscape information of interest were obtained
from the National Resource Information (NRI) databases based on the
GPS coordinates recorded for the individual spinach sampling locations.
From the National Oceanic and Atmospheric Administration-National
Climatic Data Center (http://www.ncdc.noaa.gov/), we obtained weather
information for 90 variables under the categories of ambient temperature
(54 variables), precipitation (18 variables), and wind speed (18 variables).
We used weather data recorded at one of the nearby 22 land-based
weather stations that was closest to the individual sampling location and
had records for the dates of interest. The average distance between the
individual farms and weather stations was 11.9 km (range, 1.5 to 34.7 km).
We considered average, minimum, and maximum daily ambient temper-
ature, because it is unclear which of these characteristics has the strongest
effect on E. coli count on spinach. The amount of precipitation recorded as
“trace” was assigned 0.0001 mm. A total of 18 variables were created for
each weather factor (average, minimum, and maximum temperatures,
precipitation, and wind speed) and considered in the study. Of the 18
variables, 4 were created to describe the weather characteristics on the day

of sample collection and on days 1, 2, and 3 prior to sample collection.
Additionally, we created 14 period variables describing the mean levels of
weather characteristics between the day of sample collection (day 0) and
days 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, and 29 prior to sample collection.
The reason for these point and period measures was to assess if weather
influences E. coli count on spinach instantly or cumulatively (29). For
brevity, in Table 1, we define only variables significant at a P value of 0.2 in
univariable analyses.

We also considered local landscape characteristics in terms of soil
properties and distance factors, which are described in detail in reference
13. Briefly, data on the soil property factors (4 variables: soil acidity, soil
texture, slope, and organic matter) were obtained from the Soil Survey
Geographic (SSURGO) database (http://websoilsurvey.nrcs.usda.gov/)
for each sampling location. The distance factors (2 variables) of interest
were the distances to the nearest water body and road from the individual
sampling location. Data on the locations of water bodies and roads in
Texas were, respectively, obtained from the National Hydrography and
TxDOT Roadways data sets of the Texas Natural Resources Information
System (http://www.tnris.org/). In Colorado, data on water bodies and
roads were, respectively, obtained from the Hydrography-1M and Trans-
portation-1M data sets of the Colorado Department of Natural Resources
(http://data.geocomm.com/catalog/US/61076/datalist.html). The data
on soil properties, hydrology, and roads were imported into ArcGIS 10
(ESRI, Redland, CA), reprojected into the Universal Transverse Mercator,
North American Datum of 1983, and overlaid with GPS coordinates of
spinach sampling locations. Then, for each sampling location we ex-
tracted soil property information and estimated the distances to the near-
est water body and road. Among the above landscape factors, a single
variable (soil acidity) was significant at a P value of 0.2 in univariable
analyses, and so it is the only landscape variable defined in Table 1.

Statistical analyses. All statistical analyses were performed using R
version 2.15.1 (R Foundation for Statistical Computing; http://www.r
-project.org/). The positive counts of generic E. coli on spinach samples
(including for two samples with E. coli TNTC and recorded as 6 � 107

CFU/g) were log10 transformed (because their distribution was highly
skewed) and rounded off to the nearest integer for regression modeling. A
single exception to this approach was a raw count of 2 CFU/g (obtained by
taking an average of two replicate plates with 4 CFU and 0 CFU). For
analysis, this count (2 CFU/g) was recorded as 4 CFU/g before log10 trans-
formation. Thus, the log10-transformed generic E. coli counts on contam-
inated spinach ranged from 1 to 8 log10 CFU/g, while noncontaminated
spinach was assigned a value of 0 log10 CFU/g. The excess of zeroes (892/
955 observations) in the data caused overdispersion: the arithmetic mean
and variance of generic E. coli counts among 955 observations were 0.213
and 0.899 log10 CFU/g, respectively. The classical Poisson regression
model, which assumes that variance is equal to the mean, or its extensions
(such as quasi-Poisson and NB regression models) are not useful for such
data, because those models may not yield a good fit for the distribution of
counts showing overdispersion due to zero inflation and extra variation in
the positive count data (27, 30). Indeed, the estimated dispersion param-
eter using the “dispersiontest” function in the AER package was 3.0 (al-
ternative hypothesis: true dispersion is greater than 1; P � 0.002), which
indicated overdispersion (26). Thus, for analysis of these data we consid-
ered the following two-part models: ZINB, ZIP, PH, and NBH, and we
compared their fit using the Akaike information criterion (AIC), which
was computed according to reference 30 as AIC � [AICP_count � (1 �
n�0/n)] � AICbinary, where AICP_count and AICbinary, respectively, corre-
spond to the values of AIC for the P_count and binary model parts defined
in the next paragraph and n and n�0, respectively, correspond to the total
number of samples and the subset with positive counts only. For the
variables included in the final mixed-effect model, AIC values were as
follows: ZINB, 641.6; ZIP, 640.9; PH, 543.7; and NBH, 521. Based on these
AIC values and the ability to handle both zero-inflation and overdisper-
sion (27, 30), a mixed-effect NBH model with farm (12 farms) and date
(37 dates) as random effects was considered the most appropriate model
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to analyze associations of individual explanatory (independent) variables
with the count of generic E. coli on spinach (dependent variable) in our
data.

The NBH model assumes that a continuous outcome is generated by
two different processes; one determines occurrence of non-zero (i.e., pos-
itive) versus zero counts, and the other process governs the distribution of
positive counts (30). In the present study, this assumption was supported
by the model fit (AIC) results, and thus we considered the detection limit
(4 CFU/g, which after log10 transformation and rounding to the nearest
integer was converted to 1 log10 CFU/g) as a hurdle in analyzing bacterial
counts. If generic E. coli was found on a spinach sample (i.e., the count was
�1 log10 CFU/g), the hurdle was crossed. Whether the count is zero or
positive is generally described using a binary model (“binary” model
part). On the other hand, when the hurdle is crossed, the positive count is
described using a zero-truncated count model (“P_count” model part).
We used logistic regression (logit link: ln[p=/(1 � p=)], where p= is the

expected probability of contamination) to fit the odds of spinach being
contaminated (i.e., the count of �1 log10 CFU/g) versus not contami-
nated (i.e., the count is 0 log10 CFU/g) for the binary part of the NBH
model, whereas a zero-truncated negative binomial regression [log link:
ln(�=), where �= is the expected bacterial count on contaminated produce]
was used to fit the counts of generic E. coli on contaminated spinach (i.e.,
counts of �1 log10 CFU/g) for the P_count part of the NBH model. The
mixed-effect NBH model was implemented through glmmADMB func-
tion in the glmmADMB package (31) in R software to identify risk factors.
The multivariable binary and P_count model parts are, respectively, given
by the equations logit (pi=) �	0 �	1X1i �	2X2i � . . . �	kXki � eb-farm(i) �
eb-date(i), i � 1, . . ., n and log (�i=) � 
0 � 
1X1i � 
2X2i � . . . � 
kXki �
ec-farm(i) � ec-date(i) � ei, i � 1, . . ., n, where for the binary (P_count) part,
	0 (
0) is the intercept, 	1, . . . ., and 	k (
1, . . . ., and 
k) are the coeffi-
cients for the considered explanatory variables X1, . . . ., and Xk, eb-farm(i)

and eb-date(i) (ec-farm(i) and ec-date(i)) are the random effects of farm and

TABLE 1 Definitions of explanatory variables that were significant at the 20% level in the univariable mixed-effect negative binomial hurdle models
(with the random effects farm and date) in Table 4a

Factor and variable Description and level(s)b Unit

Farm management factors
Workers_time Time since last workers’ visit during CGS Days
Hygiene-field status Composite variable coded with 1 indicating use of portable toilets and washing stations in the field,

training to use portable toilets provided to staff/temporary workers, and absence of grazing and
hay production in the field before spinach planting and 0 indicating otherwise (1/0)

Organic Organic farming practices currently applied on farm (yes/no)
Organic_certified Organic farming certified by National Organic Program (yes/no)
Before_fallow Field condition before planting of spinach during CGS: fallow (yes/no)
Tillage_time Time since last tilling, rotavating, or aerating of soil for CGS (con) Days
Pesticide_time Time since last pesticide application during CGS (con) Days
Manure_application Manure spread on field for CGS (yes/no)
Manure_age Age of manure spread onto field for CGS (con) Wk
Irrigation_time Time since last irrigation during CGS (con) Days
Planting_time Time since planting spinach (con) Days

Environmental factors
Proximity_dairy Proximity within 10-mile radius of dairy farm (yes/no)
Proximity_beef Proximity within 10-mile radius of beef farm (yes/no)
Proximity_poultry Proximity within 10-mile radius of poultry farm (yes/no)
Proximity_residential Proximity within 10-mile radius of residential (yes/no)
Domestic_animal Domestic animal intrusion of field for CGS (yes/no)
Wildlife_control_fences Wildlife control methods of farm: fences (yes/no)
Wildlife_control_hunting Wildlife control methods of farm: hunting (yes/no)
State Farm location (Texas/Colorado as representative states of southern U.S./southwestern U.S.)

Weather factors
tm2 Avg daily temp on day 2 prior to SC °C
tmdXc Mean of avg daily temperatures in period between day of SC and day X prior to SC (X is 6, 7, 8, 9,

10, 15, 20, 25, or 29)
°C

ti2 Minimum daily temp on day 2 prior to SC °C
tidX Mean of the minimum daily temp between day of SC and day X prior to SC (X is 10 or 15) °C
tx3 Maximum daily temp on day 3 prior to SC °C
txdX Mean of maximum daily temp between day of SC and day X prior to SC (X is 3, 4, 5, 6, 7, 8, 9, 10,

15, 20, 25, or 29)
°C

ws2 Wind speed on day 2 prior to SC °C
pdX Mean amt of rain between day of SC and day X prior to SC (X is 1, 5, 6, 7, 8, 9, 10, 25, or 29) mm

Landscape factor
Soil_acidity Relative acidity/alkalinity of soil at a sampling location (6.1–7.9/7.9–9.0) pH

a These variables are a subset of the considered farm management and environmental factors defined in Table 2 in reference 6 and weather and landscape factors defined in Table 2
in reference 13.
b CGS, current growing season; con, continuous variable; SC, sample collection.
c For example, tmd7 denotes the mean of the average daily temperatures recorded for the period between the day of sample collection and day 7 prior to the day of sample
collection.
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date for spinach sample i, respectively, drawn from normal distributions
with variances �2

b-farm and �2
b-date (�2

c-farm and �2
c-date), respectively;

and ei is an error term. In the binary part, exp(	k) (that is, the odds ratio
[OR]) indicated the increase in the odds of spinach contamination with
generic E. coli for 1 unit increase in an explanatory variable, k, after ad-
justment for other predictors. Similarly, in the P_count part, exp(
k) (that
is, relative ratio [RR]) indicated the percentage change in the log10 count
of generic E. coli on a contaminated spinach sample for 1 unit increase in
an explanatory variable, k, after adjustment for other predictors.

To avoid colinearity, correlation analyses were conducted among ex-
planatory variables based on the phi coefficient for two categorical vari-
ables and Spearman’s correlation coefficient for two continuous variables
or one categorical variable and one continuous variable (26, 32). If high
colinearity or correlation was determined among factors (defined as r �
0.6), we selected the most biologically relevant factor for multivariable
modeling.

The final NBH model was developed in two steps: univariable and
multivariable analyses, which were conducted separately for the binary
and P_count parts of the model. Variables with a P value of �0.2 at the
univariable level were considered in multivariable modeling. Among the
significant variables (P values of �0.2), listed in Tables 1 and 4, high
correlation was determined among weather variables; therefore, we iden-
tified representative variables for multivariable regression analyses using a
principal component (PC) analysis after standardizing them to unit vari-
ance. In PC analysis for the binary and P_count model parts, we used all
955 observations and 63 positive counts only, respectively. Three criteria
were applied to determine how many components should be retained: (i)
visual examination of a scree plot of eigenvalues, (ii) the cumulative pro-
portion of variance accounted for by the PC analysis where a component
was retained if it explained at least 80% of the total variance, and (iii) the
interpretability criteria (defined as at least three variables with major load-
ings on each retained component, the same conceptual meaning among
the variables loading on the same component, and simple structure of the
rotated pattern with relatively high factor loading of a variable on only one
component and relatively small loading on other components) (33). For
multivariable analyses, we chose a representative weather variable for each
principal component, which was the most significant in the univariable
analyses and had good interpretability. We additionally used the PC
scores as explanatory variables in the univariable and multivariable anal-
yses instead of the individual weather variables.

In multivariable analyses, a manual backward stepwise selection was
used for the model selection approach (a P value of �0.05 based on the
Wald Z test). In this selection, an explanatory variable was retained if its
retention significantly reduced the AIC and the residual deviance
based on the likelihood ratio (LR) test (a P value of �0.05). Confound-
ing was determined to exist when addition of a potential confounder
changed the ln(OR) or ln(RR) of a risk factor by at least 20% (26) in the
binary or P_count part of the NBH model, respectively. Two-way in-
teraction terms were also considered in multivariable modeling. In the
P_count model part, a quadratic term for temperature (i.e., txd92) was
also considered because there appeared to be a curvilinear relationship
between temperature and the count of generic E. coli on spinach. In the
final model, colinearity among explanatory variables was examined by
using a variance inflation factor (VIF). A locally weighted scatter plot
smoothing curve was used to assess the linearity assumptions of continu-
ous explanatory variables with the transformed outcome in terms of
the link function: logit link for the binary part and log link for the
P_count part (26).

We evaluated the predictive performance of each of the two parts of
the final mixed-effect NBH model using a 3-fold cross-validation. The
binary part was assessed by a receiver operating characteristic (ROC)
curve (6). The predictive performance of the P_count part was assessed
using the normalized root mean squared error (NRMSE) expressed as a
percentage. NRMSE was calculated as the root mean squared error di-
vided by the difference between the maximum and minimum observed

generic E. coli counts. An NRMSE value close to zero indicates a good
predictive performance. In cross-validation, the whole data set was ran-
domly divided into three subsets of approximately equal sizes. Next, two
subsets were used to estimate the model’s coefficients by running both the
binary and P_count parts of the NBH model, and the third subset was
used to validate the corresponding predictive ability with the ROC curve
and NRMSE, respectively. This process was repeated three times, each
time with a different cross-validation subset. We also assessed an internal
validity of the binary and P_count parts of the final NBH model by eval-
uating the ROC curve and NRMSE produced through comparison of
predicted and observed values for the whole data set and the subset with
positive counts, respectively.

RESULTS

Among 955 tested spinach samples, 63 (6.6%) had positive counts
of generic E. coli (Table 2). After excluding samples with zero
count, the overall geometric mean count (� geometric stan-
dard deviation) of generic E. coli was 1,383.7 � 103.4 CFU/g.
The highest geometric mean count of generic E. coli was found
on a farm in Colorado (farm 2: 61,852.2 CFU/g). Only one of
the enrolled 12 farms (farm 1 in Colorado) had all samples with
zero counts. Most of sampled spinach was grown on the loam
(34%) and silty clay loam (33%) soil: specifically, these were
loam (70%) and clay loam (29%) soil in Colorado and silty clay
loam (63%) and clay loam (14%) soil in Texas. The enrolled
farms used either overhead (farms 1, 2, and 4 in Colorado and
farms 1 and 2 in Texas) or flood (farm 3 in Colorado and farms
3 to 8 in Texas) irrigation.

Table 3 shows summary statistics for weather factors signifi-
cantly associated with the count of generic E. coli. For the univari-
able mixed-effect NBH analyses, Table 4 shows the variables asso-
ciated with the odds of spinach contamination with generic E. coli
(binary part) and the count of generic E. coli on contaminated
spinach (P_count part) at the 20% significance level. Among the
farm management and environmental factors, spinach was less
likely to be contaminated with generic E. coli in the presence of the
“hygiene-field status” (defined in Table 1) group of factors on the
sampled field. However, the odds of spinach contamination with
generic E. coli were significantly increased by the fallow condition
of the field before planting of spinach, the use of manure, and
domestic animal intrusion. The count of generic E. coli on con-
taminated spinach was significantly increased by application of
manure fertilizer and proximity (within 10 miles) of dairy, beef,
and poultry farms. The count of generic E. coli on contaminated
spinach was significantly reduced if the time since the last irriga-
tion was �5 days, if the farm applied fences to control wildlife
intrusion, or if a farm was located in Texas. Among weather fac-
tors, the odds of spinach contamination with generic E. coli were
significantly reduced when spinach was exposed to higher maxi-
mum temperature for 25 or 29 days before sample collection but
significantly increased when spinach was exposed to a larger amount
of rain for 29 days before sample collection. The count of generic E.
coli on contaminated spinach was significantly increased when
spinach was exposed to a higher mean and maximum temperature
for 8, 9, or 10 days before sample collection or a larger amount of
rain for 29 days before sample collection.

The PC analyses results showed that two PCs accounted for
85% of the total variability for weather variables significant at the
20% level in both of the univariable binary and P_count model
parts (Table 5). In both PC analyses, several variables describing
mean, minimum, and maximum daily temperatures were loaded
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on the first PC (named “temperature PC”). Several variables de-
scribing precipitation were loaded on the second PC. However, in
the P_count model part, minimum daily temperature on day 2
prior to sample collection and wind speed on day 2 prior to sample
collection were additionally loaded on the second PC. In the uni-
variable analysis of the P_count model part, the score for the tem-
perature PC was significantly associated with the count of generic
E. coli on contaminated spinach.

In the final mixed-effect NBH model (Table 6), the binary part
included the following factors: the presence of “hygiene-field sta-
tus” factors (OR � 0.06), the mean amount of precipitation (mm)
between the day of sample collection and day 29 prior (OR � 3.5),
the application of manure fertilizer (OR � 52.2), and farm loca-
tion in Texas (OR � 108.1). According to this final model, the
probability of spinach contamination with generic E. coli can be
estimated with the equation p= � exp (�5.97 � 2.88 � X1 �
1.24 � X2 � 3.96 � X3 � 4.68 � X4)/[1� exp (�5.97 � 2.88 � X1

� 1.24 � X2 � 3.96 � X3 � 4.68 � X4)], where X1 is the presence
of “hygiene-field status” factors (1 versus 0), X2 is the mean
amount of precipitation (mm) between the day of sample collec-
tion and day 29 prior (continuous), X3 is the application of ma-
nure fertilizer (where “yes” � 1 versus “no” � 0), X4 is the state
(where Texas � 1 versus Colorado � 0). For example, spinach
harvested on a farm in Texas (X4 � 1), that was exposed to an
average of 1.5 mm of rain over the period of 29 days before harvest
(X2 � 1.5), and which applied manure fertilizer (X3 � 1) and
provided portable toilets to field workers (X1 � 1), is predicted to
have 83.9% of spinach contaminated with generic E. coli: exp
(�5.97 � 2.88 � 1 � 1.24 � 1.5 � 3.96 � 1 � 4.68 � 1)/[1 � exp
(�5.97 � 2.88 � 1 � 1.24 � 1.5 � 3.96 � 1 � 4.68 � 1)] � 0.839.

The P_count part of the final NBH model included the mean
amount of rain (mm) for 29 days before sample collection (RR �
1.5 interpreted for txd9 � 0 [Table 6]), the mean of maximum
temperatures for 9 days before sample collection (RR � 12.2, in-
terpreted for pd29 � 0 [Table 6]), and a quadratic term for the
maximum daily temperature over the past 9 days. According to

this final model, the count of generic E. coli (log10 CFU/g) on
contaminated spinach can be estimated with the equation �= �
exp (�29.08 � 0.38 � X1 � 2.50 � X2 – 0.0523 � X2

2), where X1

is the mean amount of precipitation (mm) between the day of
sample collection and day 29 prior (continuous) and X2 is the
mean of maximum temperatures for 9 days before sample collec-
tion (continuous). For example, if over a period of 29 days prior to
harvest the mean amount of precipitation was 1 mm (X1 � 1) and
if over a period of 9 days prior to spinach harvest the mean of
maximum daily temperatures was 25°C (X2 � 25), the expected
count of generic E. coli is approximately 3.0 log10 CFU/g [exp
(�29.08 � 0.38 � 1 � 2.50 � 25 � 0.0523 � 252)]. These results
indicate that the predicted generic E. coli count on contaminated
spinach increases linearly between 0 and 3.2 mm of the observed
precipitation over the past 29 days (Fig. 1A). However, with an
increasing average maximum temperature over the past 9 days,
the count increases only until around 24°C, after which it de-
creases (Fig. 1B). When in multivariable modeling we used the
temperature PC score instead of the actual temperature variables,
the PC score was not significant and so was not retained in the final
model.

We detected a confounding effect of state on the association of
spinach contamination probability with the mean amount of rain
over the past 29 days (“pd29”) [crude OR � 2.4, adjusted OR �
2.9, and change of ln(OR) � 22.0%] and the use of manure [crude
OR � 10.4, adjusted OR � 68.9, and change of ln(OR) � 81.0%].
Also, the mean amount of rain for 29 days before sample collec-
tion seemed to have confounded the association between the “hy-
giene-field status” and the probability of spinach contamination
[crude OR � 0.14, adjusted OR � 0.05, and change of ln(OR) �
54.1%]. In cross-validation of the final binary part, the mean AUC
was 81.1% (range, 79.4% to 83.6%) (Fig. 2). Internal validation of
82.0% also showed good predictability of the model. For the final
P_count part, the NRMSE, averaged across cross-validation pre-
dictions, was 25% (range, 23% to 27%), with an internal valida-
tion of 22.6%.

TABLE 2 Generic Escherichia coli counts on spinach samplesa

State Farm
No. of collected
samples

No. of samples with positive
counts (%)b

Geometric mean
(CFU/g) Geometric SD

Minimum
(CFU/g)

Maximum
(CFU/g)

Colorado 1 115 0 (0)
2 120 24 (20.0) 61,852.2 11.9 264.0 1.2 � 107

3 120 2 (1.7) 37.9 24.1 4.0 3.6 � 102

4 120 1 (0.8) 4.0 4.0 4.0

Subtotal 475 27 (5.7) 25,018.3 35.6 4.0 2.9 � 106

Texas 1 120 11 (9.2) 619.0 82.2 8.0 6.0 � 107

2 120 4 (3.3) 11.1 5.0 4.0 1.2 � 102

3 10 1 (10.0) 4.0 4.0 4.0
4 95 7 (7.4) 188.5 39.8 4.0 2.6 � 104

5 25 7 (28.0) 168.0 315.9 6.0 6.0 � 107

6 60 1 (1.7) 20.0 20.0 20.0
7 10 1 (10.0) 40.0 40.0 40.0
8 40 4 (10.0) 202.7 72.9 4.0 8.8 � 104

Subtotal 480 36 (7.5) 157.8 62.2 4.0 6.0 � 107

a The geometric mean, geometric standard deviation, minimum, and maximum were estimated after excluding samples with zero counts.
b Prevalence.
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DISCUSSION

Our study investigated the role of farm management, environ-
ment, landscape, and weather factors in determining the count of
generic E. coli on spinach at the preharvest level. The results indi-
cated that the count of generic E. coli on spinach at the preharvest
level is jointly determined by meteorological (precipitation and
temperature), environmental (state), and management (imple-
mentation of hygiene practices and application of manure) fac-
tors. These risk factors were separated into those that determine
occurrence of a contamination event and those that affect the
bacterial count given that the contamination event has occurred.

Both parts of the mixed-effect NBH model identified the mean
amount of rain over 29 days before sample collection as a risk
factor for spinach contamination. Indeed, the odds of spinach
contamination with generic E. coli could increase by the short-
distance dispersal of generic E. coli on rainy days due to rain
splashing (34, 35), aerosols (34), or high humidity that occurs
before or after rain events (14, 36). Alternatively, flooding due to
heavy rain may also transmit generic E. coli to spinach plants and
increase the probability of spinach contamination (15). These
previously reported risk factors for an increase in the probability
of a contamination event may also partially explain the finding of

TABLE 3 Summary statistics for weather factors significantly associated with the count of generic Escherichia coli in the univariable negative
binomial hurdle models in Table 4a

Factor and variableb

Value for:

Total spinach samples (n � 955) Positive E. coli counts (n � 63) Zero E. coli counts (n � 892)

Mean Median Range Mean Median Range Mean Median Range

Temp (°C)
tm2 17.3 17.0 2.7–25.7 16.4 16.3 2.7–24.2 17.3 17.1 2.7–25.7
tmd6 17.1 16.7 3.5–22.8 16.3 15.9 3.5–20.6 17.1 16.8 3.5–22.8
tmd7 16.8 16.7 5.3–22.9 16.8 15.8 5.3–19.5 16.8 16.7 5.3–22.9
tmd8 16.6 16.7 6.7–23.2 16.9 15.7 6.7–18.4 16.6 16.7 6.7–23.2
tmd9 16.6 16.7 7.5–23.3 16.6 15.6 7.5–17.7 16.6 16.8 7.5–23.3
tmd10 16.7 16.7 7.8–23.3 16.7 15.6 7.8–17.7 16.7 16.8 7.8–23.3
tmd15 16.5 16.6 8.2–23.4 16.2 15.4 8.2–18.9 16.6 16.7 8.2–23.4
tmd20 17.1 16.7 8.6–23.4 15.5 15.3 8.6–19.3 17.5 16.8 8.6–23.4
tmd25 17.4 16.8 8.5–23.5 14.6 15.1 8.5–19.4 18.0 16.9 8.5–23.5
tmd29 17.4 16.6 8.4–23.3 13.6 14.8 8.4–19.3 17.5 16.7 8.4–23.3
ti2 10.0 9.6 �8.4–22.0 7.5 9.2 �8.4–22.0 10.0 9.7 �8.4–22.0
tid10 9.5 9.7 0.8–18.7 8.8 8.6 0.8–14.1 9.8 9.8 0.8–18.7
tid15 9.9 9.5 1.0–19.1 7.8 8.4 1.0–13.5 10.1 9.6 1.0–19.1
tx3 26.1 25.9 7.3–36.0 25.8 24.5 7.3–31.7 26.5 26.0 7.3–36.0
txd3 25.8 25.6 16.5–34.3 25.5 24.9 16.5–30.7 26.0 25.7 16.5–34.3
txd4 25.1 25.3 13.4–34.2 24.9 24.3 13.4–30.9 25.1 25.4 13.4–34.2
txd5 25.2 25.0 11.2–34.3 25.1 23.9 11.2–31.0 25.4 25.1 11.2–34.3
txd6 25.3 25.1 13.3–34.3 25.4 24.0 13.3–30.3 25.3 25.2 13.3–34.3
txd7 24.9 25.1 15.0–33.9 25.7 24.0 15.0–28.9 24.9 25.2 15.0–33.9
txd8 24.8 25.1 16.2–33.7 24.6 23.8 16.2–27.1 24.8 25.2 16.2–33.7
txd9 24.9 25.1 15.7–33.7 24.9 23.7 16.7–26.9 24.9 25.2 15.7–33.7
txd10 25.1 25.1 15.8–33.8 25.1 23.8 17.3–26.9 25.1 25.2 15.8–33.8
txd15 24.7 25.0 16.5–33.8 24.7 23.8 17.5–28.0 24.7 25.1 16.5–33.8
txd20 25.0 25.2 16.6–33.7 23.9 23.4 17.4–28.7 25.4 25.3 16.6–33.7
txd25 24.9 25.2 16.7–33.9 23.4 23.1 16.7–28.9 25.7 25.3 16.7–33.9
txd29 25.4 25.0 16.4–33.4 22.1 22.7 16.4–28.3 25.5 25.1 16.4–33.4

Wind speed (m/s)
ws2 3.0 3.6 1.3–8.7 3.1 3.6 1.8–8.7 3.0 3.6 1.3–8.7

Precipitation (mm)
pd1 0.0 0.6 0.0–6.0 0.0 0.1 0.0–4.4 0.0 0.6 0.0–6.0
pd5 0.0 1.6 0.0–14.4 1.9 2.8 0.0–14.4 0.0 1.5 0.0–14.4
pd6 0.1 1.5 0.0–13.2 2.0 2.5 0.0–13.2 0.1 1.4 0.0–13.2
pd7 0.2 1.4 0.0–11.5 2.2 2.3 0.0–11.5 0.2 1.3 0.0–11.5
pd8 0.1 1.3 0.0–10.2 2.0 2.1 0.0–10.2 0.1 1.2 0.0–10.2
pd9 0.1 1.3 0.0–9.2 1.8 2.0 0.0–9.2 0.1 1.2 0.0–9.2
pd10 0.3 1.3 0.0–8.4 1.6 1.9 0.0–8.4 0.3 1.2 0.0–8.4
pd25 0.6 1.0 0.0–4.3 1.4 1.5 0.0–3.7 0.6 1.0 0.0–4.3
pd29 0.6 1.0 0.0–3.8 1.7 1.7 0.0–3.2 0.6 1.0 0.0–3.8

a Only variables with P values of �0.20 in Table 4 are shown.
b tm2, average daily temperature on day 2 prior to sample collection (SC); tmdX, mean of the average daily temperatures (°C) in the period between the day of SC and day X prior
to SC; ti2, minimum temperature on day 2 prior to SC; tidX, mean of the minimum daily temperatures (°C) between the day of SC and day X prior to SC; tx3, maximum daily
temperature (°C) on day 3 prior to SC; txdX, mean of the maximum daily temperatures (°C) between the day of SC and day X prior to SC; ws2, wind speed on day 2 prior to SC;
pdX, mean amount of rain (mm) between the day of SC and day X prior to SC.
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TABLE 4 Variables associated with the count of generic Escherichia coli (log10 CFU/g) in the binary or P_count part of the univariable mixed-effect
negative binomial hurdle models (with the random effects farm and date)

Variable (comparison level)a

Reference or
unit

Binary part (binomial with logit link)
P_count part (zero-truncated negative binomial
with log link)

Coeffb SEc ORd 95% CIe P valuef Coeff SE RRg 95% CI P valuef

Farm management factors
Workers_time (�3 days) �3 days �1.15 0.66 0.32 0.09–1.15 0.081 �0.78 0.41 0.46 0.20–1.03 0.060
Hygiene-field status (level 1)h 0 �1.97 0.94 0.14 0.02–0.89 0.037
Organic (yes) No 1.30 0.81 3.7 0.8–17.9 0.109 0.57 0.30 1.77 0.99–3.16 0.055
Organic_certified (yes) No �4.52 2.46 0.01 0.00–1.34 0.066
Before_fallow (yes) No 1.76 0.83 5.8 1.2–29.4 0.033
Tillage_time (�17 days) �17 days �0.60 0.33 0.55 0.29–1.05 0.069
Pesticide_time (�10 days) �10 days �0.60 0.35 0.55 0.27–1.09 0.087
Manure_application (yes) No 2.34 1.07 10.4 1.3–84.3 0.029 0.75 0.29 2.12 1.19–3.75 0.010
Manure_age (�13 weeks) �13 weeks �0.47 0.32 0.63 0.34–1.16 0.139
Irrigation_time (�5 days) �5 days �0.83 0.26 0.44 0.26–0.73 0.002
Planting_time (�66 days) �66 days 0.78 0.55 2.2 0.7–6.5 0.158

Farm environmental factors
Proximity_dairy (yes) No 0.90 0.28 2.46 1.42–4.24 0.001
Proximity_beef (yes) No 2.20 1.44 9.0 0.5–152.0 0.126 0.90 0.28 2.46 1.42–4.24 0.001
Proximity_poultry (yes) No 2.43 1.38 11.4 0.8–169.5 0.077 0.90 0.28 2.46 1.42–4.24 0.001
Proximity_residential (yes) No 0.51 0.31 1.67 0.90–3.08 0.102
Domestic_animal (yes) No 1.96 0.93 7.1 1.2–43.4 0.034
Wildlife_control_fences (yes) No �1.83 1.41 0.16 0.01–2.53 0.194 �0.99 0.35 0.37 0.19–0.73 0.004
Wildlife_control_hunting (yes) No �2.78 1.99 0.06 0.00–3.08 0.163
State (Texas) Colorado 2.54 1.53 12.7 0.6–254.4 0.098 �0.62 0.31 0.54 0.29–0.99 0.045

Weather factors
tm2 0.05 0.04 1.05 0.97–1.14 0.196
tmd6 0.07 0.05 1.07 0.97–1.19 0.172
tmd7 °C �0.21 0.16 0.81 0.60–1.10 0.182 0.11 0.06 1.11 0.98–1.26 0.093
tmd8 °C �0.25 0.16 0.78 0.57–1.07 0.128 0.14 0.07 1.15 1.01–1.32 0.042
tmd9 °C �0.27 0.16 0.77 0.56–1.06 0.104 0.16 0.07 1.18 1.02–1.35 0.023
tmd10 °C �0.27 0.16 0.77 0.56–1.05 0.100 0.15 0.07 1.16 1.01–1.33 0.033
tmd15 °C �0.27 0.16 0.76 0.56–1.04 0.087
tmd20 °C �0.28 0.16 0.76 0.56–1.03 0.075
tmd25 °C �0.28 0.16 0.75 0.56–1.02 0.070
tmd29 °C �0.28 0.15 0.76 0.56–1.02 0.064
ti2 0.04 0.03 1.04 0.98–1.11 0.174
tid10 °C �0.20 0.15 0.82 0.61–1.10 0.178
tid15 °C �0.21 0.15 0.81 0.60–1.08 0.153
tx3 °C �0.15 0.10 0.87 0.72–1.04 0.130
txd3 °C �0.17 0.13 0.84 0.65–1.09 0.197
txd4 °C �0.18 0.12 0.84 0.66–1.06 0.147
txd5 °C �0.18 0.12 0.84 0.67–1.06 0.140
txd6 °C �0.18 0.13 0.83 0.65–1.06 0.142 0.07 0.05 1.07 0.97–1.17 0.159
txd7 °C �0.21 0.13 0.81 0.62–1.06 0.120 0.10 0.05 1.10 1.00–1.22 0.057
txd8 °C �0.23 0.13 0.80 0.61–1.04 0.089 0.13 0.05 1.14 1.03–1.26 0.009
txd9 °C �0.23 0.13 0.80 0.61–1.03 0.086 0.14 0.05 1.15 1.05–1.26 0.002
txd10 °C �0.22 0.13 0.80 0.62–1.04 0.099 0.14 0.05 1.15 1.05–1.26 0.003
txd15 °C �0.22 0.13 0.80 0.62–1.04 0.098 0.08 0.06 1.08 0.97–1.21 0.166
txd20 °C �0.26 0.13 0.77 0.60–1.00 0.053
txd25 °C �0.27 0.13 0.76 0.59–0.99 0.042
txd29 °C �0.28 0.13 0.76 0.59–0.98 0.034
ws2 0.15 0.11 1.16 0.94–1.44 0.163
pd1 mm �0.54 0.41 0.58 0.26–1.29 0.183
pd5 mm 0.17 0.12 1.18 0.94–1.48 0.147
pd6 mm 0.17 0.12 1.19 0.94–1.51 0.156
pd7 mm 0.21 0.14 1.23 0.93–1.63 0.143
pd8 mm 0.25 0.16 1.28 0.93–1.76 0.127
pd9 mm 0.30 0.18 1.36 0.96–1.92 0.087
pd10 mm 0.28 0.19 1.32 0.91–1.90 0.141

(Continued on following page)
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higher counts of generic E. coli on spinach after exposure to a
larger amount of rain for 29 days before sample collection. The
current study also enabled us to evaluate the changes in generic E.
coli count as affected by the amount of rain in multiple time win-
dows. In line with our result for the P_count part of the NBH
model, a previous study (37) showed that the population of Sal-
monella enterica serovar Thompson on cilantro leaves increased
when they were maintained for 2 days under wet conditions (50 or
60% relative humidity) and at 26°C.

In addition to the average precipitation during the 29-day pe-
riod before sample collection, the binary part of the final NBH
model identified significant associations of the presence of spin-
ach contamination with the “hygiene-field status” group, the ap-
plication of manure fertilizer, and state. The “hygiene-field status”
group was reported to have a protective factor on the probability
of spinach contamination with generic E. coli, when we considered
the farm management and environmental factors only (6) or
along with weather factors (13). However, interestingly, the “hy-
giene-field status” group of factors was not significant in univari-
able analyses for the P_count part of the model, despite the im-
portance of this group in the binary part. The final model of the
P_count part did not retain the use of manure fertilizer, although
the univariable analysis results showed that the use of manure
fertilizer was significantly associated with the count of generic E.
coli on contaminated spinach. Regarding the farm location (state),
the findings of the univariable analyses indicated the opposite ef-
fect of state on the probability of a contamination event (OR �
12.7) and on the extent (count) of microbial contamination given
a contamination event has occurred (RR � 0.54). Specifically,
spinach samples collected in Texas had higher odds of being con-
taminated but were more likely to be contaminated with low
counts (Table 2). This may be explained by relatively unfavorable
temperatures for generic E. coli counts (Fig. 1B) during the spin-
ach growing season in Texas compared to those in Colorado and
unique environments or practices on Texas farms compared to
Colorado that favor a higher frequency of contamination events.
For the 63 positive samples, the average of maximum tempera-
tures over 9 days before sample collection (txd9) in Texas ranged

between 16.7°C and 25.8°C (mean, 21.6°C), while in Colorado the
temperature ranged between 24.9°C and 26.9°C (mean, 26.6°C).
Indeed, the state factor dropped during multivariable modeling of
the P_count part when temperature and state were considered
simultaneously, supporting the finding that the state effect may be
a proxy for the differences in maximum temperatures during the
growing season.

The results of univariable analyses suggested that higher tem-
peratures over a period of time prior to sample collection may
have a protective effect on the odds of contamination but that they
may increase the risk of occurrence of higher counts of generic E.
coli on produce. However, neither of the temperature factors iden-
tified in the univariable analyses were retained in the binary part of
the final model, whereas in the P_count part, temperature was
identified as a risk factor, indicating that the extent of spinach
contamination with generic E. coli is significantly associated with
an average maximum daily temperature between the day of sam-
ple collection and day 9 prior to sample collection and that the
relationship between the bacterial count and temperature follows
a quadratic function peaking at around 24°C. It should be noted
that variables for the average maximum daily temperatures be-
tween the day of sample collection and day 8, 9, or 10 prior to
sample collection all produced similar results (albeit with the vari-
able for the 9-day time window showing the best fit). This wider
window of times for the influence of the maximum temperature
gives more confidence that this finding is not due to the type I
error and provides a more realistic biological support for a true
effect of temperature on bacterial counts than for example if a
single narrow window of time would be identified as a risk factor.
Consistent with the results obtained for the binary part in the
present study, our previous study using a mixed-effect logistic
regression model identified temperature as a protective factor in
the univariable analyses, but this factor was dropped from the final
multivariable model, which was contributed to a distorting effect
of state (13). Because of a higher frequency of contaminated sam-
ples and the lower temperatures during the growing season in
Texas, higher temperatures appeared to have a protective effect on
the odds of contamination (13). However, the results of the pres-

TABLE 4 (Continued)

Variable (comparison level)a

Reference or
unit

Binary part (binomial with logit link)
P_count part (zero-truncated negative binomial
with log link)

Coeffb SEc ORd 95% CIe P valuef Coeff SE RRg 95% CI P valuef

pd25 mm 0.58 0.37 1.78 0.86–3.68 0.121 0.24 0.14 1.27 0.96–1.68 0.097
pd29 mm 0.87 0.40 2.37 1.08–5.22 0.031 0.30 0.13 1.34 1.03–1.75 0.027

PC score
pc1 (“temperature PC score”) 0.26 0.14 1.29 0.98–1.7 0.069 �0.13 0.06 0.87 0.78–0.98 0.018

Landscape factor
Soil_acidity (pH 7.9–9.0) pH 6.1–7.9 �0.45 0.33 0.64 0.34–1.21 0.169

a Variables are defined in Table 1.
b Coeff, value of the regression coefficient.
c SE, standard error.
d OR, odds ratio.
e CI, confidence interval.
f Only variables with P values of �0.20 are shown.
g RR, relative risk.
h The OR and 95% CI apply to all factors within the composite variable “hygiene-field status.” Here, “level 1” indicates the presence of toilet training and use of toilets and washing
stations but absence of field grazing and hay production before planting of the spinach during the current growing season.
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ent study revealed that temperature is a risk factor for microbial
count on contaminated spinach, but it does not have any effect on
the odds of a contamination event. It has been well documented
that warm temperature (38) and high humidity (39) improve the
survival and growth rates of the generic E. coli population. Inter-
estingly, the relationship between the count of generic E. coli on
contaminated spinach and the average maximum daily tempera-
ture over the past 9 days follows a quadratic function that forms a
downward-opened parabola with maximum counts predicted for

temperatures around 24°C. Considering that the final model of
the P_count part did not retain any farm management, environ-
ment, and landscape factors, we can conclude that an increased
count of generic E. coli on spinach is mainly determined by favor-
able weather conditions defined by temperature around 24°C and
high humidity that support survival and growth of the microor-
ganism.

Univariable analysis indicated that the count of generic E. coli
on contaminated spinach significantly increased when the farm

TABLE 5 Principal component analysis for weather variables in Table 3

Variablea

Value for:

Binary part (binomial with logit link)b

P_count part (zero-truncated negative
binomial with log link)b

PC1 PC2 PC1 PC2

tmd7 �0.21 0.04
tmd8 �0.22 0.03 �0.32 0.10
tmd9 �0.22 0.01 �0.32 0.07
tmd10 �0.22 0.01 �0.31 0.05
tmd15 �0.22 0.05
tmd20 �0.21 0.06
tmd25 �0.21 0.08
tmd29 �0.20 0.07

ti2 �0.14 0.48

tid10 �0.18 0.11
tid15 �0.18 0.12

tx3 �0.19 0.01

txd3 �0.20 �0.03
txd4 �0.21 �0.04
txd5 �0.21 �0.05
txd6 �0.21 �0.05 �0.30 0.11
txd7 �0.21 �0.04 �0.32 0.02
txd8 �0.21 �0.05 �0.31 �0.10
txd9 �0.21 �0.06 �0.30 �0.12
txd10 �0.21 �0.06 �0.30 �0.14
txd15 �0.22 0.00 �0.30 �0.16
txd20 �0.22 0.01
txd25 �0.21 0.03
txd29 �0.21 0.03

ws2 �0.05 0.50

pd1 �0.01 0.16
pd5 0.02 0.36
pd6 0.02 0.36
pd7 0.01 0.36
pd8 0.01 0.37
pd9 0.01 0.36
pd10 0.01 0.35
pd25 0.05 0.26 �0.12 �0.40
pd29 0.05 0.24 �0.13 �0.46

StD (proportion of variance [%];
cumulative proportion [%])

4.49 (63; 63) 2.64 (22; 85) 3.27 (67; 67) 1.73 (19; 85)

a tmdX, mean of the average daily temperatures (°C) in the period between the day of sampling collection (SC) and day X prior to SC; ti2, minimum daily temperature (°C) on day
2 prior to SC; tidX, mean of the minimum daily temperatures (°C) between the day of SC and day X prior to SC; tx3, maximum daily temperature (°C) on day 3 prior to SC; txdX,
mean of the maximum daily temperatures (°C) between the day of SC and day X prior to SC; ws2, wind speed on day 2 prior to SC; pdX, mean amount of rain (mm) between the
day of SC and day X prior to SC.
b Boldface indicates the highest component loading a variable has in the particular model part.
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applied manure fertilizer (P � 0.010). Likewise, the univariable
result of the binary part indicated that the probability of a con-
tamination event increases significantly when the farm applies
manure fertilizer (P � 0.029). Islam et al. periodically investigated
the pathogen concentration (log10 CFU/g) on vegetables grown in
manure-amended soil inoculated with E. coli O157:H7 and Sal-
monella and concluded that contaminated manure could play an
important role in contaminating vegetables (40, 41). Another
study by Mukherjee et al. showed that manure increased the risk of
E. coli contamination of vegetables in organic and semiorganic
farms (11). Nevertheless, similar to our previous study (13), ex-
plained by the confounding effect of state on the association be-
tween manure use and spinach contamination event, manure use
was not retained in the final model of the binary part. The associ-
ation between manure use and microbial counts observed in the
univariable analysis of the P_count part may be a side effect of
high correlations between manure use and the average maximum
daily temperature for 9 days before sample collection (Spearman’s
correlation coefficient � 0.84; P � 0.001) and the average precip-
itation amount for 29 days before sample collection (Spearman’s
correlation coefficient � 0.73; P � 0.001).

Univariable analysis for generic E. coli count on contaminated
samples demonstrated that the proximity of dairy, beef, and
poultry farms identically increased the level of produce con-
tamination with generic E. coli. That is because all 63 positive
samples shared the same distribution of these proximity vari-
ables due to clustering of contaminated samples: 35 out of 63
positive samples (56%) were collected on 2 out of 12 enrolled
farms. Because interpreting individual proximity factors was
not meaningful, we could only conclude that the location of a
spinach farm near a livestock farm should be considered a risk
factor. Future research should address the role of proximity of

different livestock production systems in the extent (count) of
produce contamination.

An epidemiological study by Strawn et al. (22) reported that
irrigation of field more than 3 days prior to sample collection
reduced the odds of L. monocytogenes isolation from soil and drag
swab samples in a produce field. Similarly, our previous study (6)
showed that spinach irrigated more than 5 days prior to harvest
had nearly 76% lower odds of generic E. coli isolation compared to
spinach irrigated 5 days or less prior (OR � 0.24). However, im-
portantly, the univariable analysis in the present study indicated
that spinach grown on fields irrigated more than 5 days prior to
sample collection also had reduced counts of generic E. coli (RR �
0.44). This association between microbial count on produce and
the time of irrigation was previously demonstrated in controlled
trials (42, 43). In our study, irrigation lapse time was not retained
in the final model of the P_count part. That may be because irri-
gation management is dependent on weather conditions, which
are better predictors of the bacterial count than irrigation man-
agement. Indeed, the irrigation lapse time variable was negatively
correlated with the average maximum daily temperature for 9
days before sample collection (Spearman’s correlation coeffi-
cient � �0.69; P � 0.001) and the average precipitation amount
for 29 days before sample collection (Spearman’s correlation co-
efficient � �0.66; P � 0.001).

The present study showed borderline significant positive asso-
ciations of the organic versus conventional farming variable on
the odds of contamination (OR � 3.7; P � 0.109) and the count of
generic E. coli on contaminated spinach (RR � 1.77; P � 0.055)
(Table 4). Moreover, the results indicated a borderline significant
protective effect of the certified organic versus noncertified or-
ganic farming on the probability of contamination (OR � 0.01;
P � 0.066) (Table 4). These results further stimulate the contro-

TABLE 6 Final mixed-effect negative binomial hurdle model of risk factors associated with the count of generic Escherichia coli (log10 CFU/g) on
spinach (with the random effects farm and date)a

Variable (comparison level) Reference or unit Coeffb SEc OR or RRd 95% CIe P value

Binary part (binomial with logit link)
Intercept �5.97 1.58 NAf NA �.001
Hygiene-field status (level 1)g 0 �2.88 0.86 0.06 0.01–0.30 0.001
pd29h mm 1.24 0.38 3.5 1.7–7.2 0.001
Manure_application (yes) No 3.96 1.37 52.2 3.6–761.4 0.004
State (Texas) Colorado 4.68 1.52 108.1 5.5–2128.7 0.002

P_count part (zero-truncated negative binomial with
log link)

Intercept �29.08 12.02 NA NA 0.016
pd29i mm 0.38 0.11 1.5 1.2–1.8 �.001
txd9j °C 2.50 1.04 12.2 1.6–94.2 0.017
txd92 °C �0.0523 0.02 NA NA 0.021

a Variance component values (standard deviation) were 3.53 (1.88) for date and 0.10 (0.32) for farm in the binary part and 1.62e�7 (4.00e�4) for date and 0.77e�7 (2.77e�4) for
farm in the P_count part; in the final P_count part, the random effects were dropped because their effect was negligible. For the intercept-only model, variance component values
were 6.11 (2.47) for date and 0.94 (0.97) for farm in the binary part and 0.16 (0.40) for date and 0.11 (0.33) for farm in the P_count model.
b Coeff, value of the regression coefficient.
c SE, standard error.
d OR, odds ratio; RR, relative risk. In the column, ORs are shown for the binary part and RRs are shown for the P_count part.
e CI, confidence interval.
f NA, not applicable.
g The estimated OR (95% CI) applies to all factors within the composite variable “hygiene-field status” group. Here, “level 1” indicates the presence of toilet training and use of
toilets and washing stations but absence of field grazing and hay production before planting of the spinach during the current growing season.
h pd29, mean amount of rain between the day of sample collection (SC) and day 29 prior to SC.
i Estimate for the variable pd29 when txd9 is 0.
j Mean of the maximum daily temperatures between the day of SC and day 9 prior to SC; here the estimate is for the variable txd9 when pd29 is 0.
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versy about the effect of organic farm practices on microbial con-
tamination of produce at preharvest (5, 12, 18–20). For example,
several studies showed a higher E. coli prevalence on organic pro-
duce compared to conventionally grown produce (5, 20), but oth-
ers have not identified significant differences between the two
farming types (12, 18, 19). Similarly, published studies (19, 20)
have showed inconsistent results about the effect of organic prac-
tices on E. coli count on produce. A previous study highlighted
that humans can be exposed to different bacterial species, depend-

ing on the type of produce farming (i.e., organic or conventional)
(44). In our study, the organic versus conventional farming and
the certified organic versus noncertified organic farming variables
were not retained in either part of the final NBH model, suggesting
that organic farming is not a predictive factor, at least not major,
for the bacterial contamination probability or count. Nevertheless,
the observed differences between the roles of organic farming in the
probability and extent (count) of produce contamination could be
evaluated in future research.

Our results also identified the use of fences to control wildlife
intrusion as a protective factor reducing the count of generic E.
coli on contaminated spinach. Wildlife are well known as carriers
of pathogens causing foodborne illnesses. Strawn et al. (22) re-
ported that observation of wildlife within 3 days prior to sampling
increases odds of L. monocytogenes isolation from soil and drag
swab samples in a produce field. Other studies (15, 22) have also
suggested wildlife are an important source of pathogen transmis-
sion to produce. Nevertheless, to our knowledge, this is the first
epidemiological study that was able to show that the extent of micro-
bial contamination (count) on produce could be reduced by using
fences to control wildlife intrusion into a produce farm. However,
because of a high phi coefficient (0.71) against the proximity of dairy,
beef, and poultry farms and with 25% (16/63) missing observations,
this variable could not be retained in the final model.

In this study, spinach was collected at different times (between
15 and 123 days) after planting, and the length of time since plant-
ing was recorded for analysis (“Planting_time” variable, Table 1).
With this approach, we captured plants at different ages (and age-
related degrees of leaf rugosity) that cover the ranges of the typical
ages when baby, teenage, bunched, or freezer spinach is harvested.
Therefore, the “Planting_time” variable can be considered a proxy
for the otherwise presumably correlated plant growth stage, the
type of spinach at harvest, and rugosity. Because spinach on a

FIG 1 Predicted generic Escherichia coli counts (log10 CFU/g) (solid lines) and
ranges (dashed lines) on contaminated spinach samples for different values of
the mean amount of rain (mm) for 29 days before sample collection (pd29) (A)
and for different values of the mean of maximum temperatures (°C) for 9 days
before sample collection (txd9) (B). The median values of txd9 (24.94°C) and
pd29 (1.693 mm) were held constant for the various levels of pd29 and txd9
shown in panels A and B, respectively.

FIG 2 Receiver operating characteristic (ROC) curves for the 3-fold cross-
validation (dashed line) and internal validation (solid line) of the binary part.
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particular field may be cut 2 or 3 additional times in intervals of 20
to 30 days after the initial harvest cut (6), the harvest commodity
type alone may not fully explain the cumulative exposure of the
plant to the local environmental conditions since planting. In the
present study, the “Planting_time” variable was not associated
with the count of E. coli on contaminated spinach. Interestingly,
this variable was significantly associated with the probability of
spinach contamination with generic E. coli at the univariable level
and was part of the final multivariable statistical model when only
farm management (including the irrigation lapse time) and envi-
ronment factors were considered (6). In the present study (and in
reference 13), the “Planting_time” variable was significant in the
univariable analysis of the probability of spinach contamination
albeit at the 20% level (due to a slightly different random structure
of the data compared to those in reference 13). However, this
variable dropped during multivariable modeling where we also
considered weather (precipitation over the past month before
sampling). This is in agreement with the study by Gutiérrez-Ro-
dríguez et al. (45), which reported water availability as the domi-
nant factor in survival of E. coli in a field trial; water availability
depends on irrigation, which in turn depends on the local weather
(precipitation) providing the rationale for the link between spinach
contamination probability and weather. Overall, these results suggest
that the time since planting of spinach is a useful predictor of the
probability of spinach contamination, albeit its predictive ability
compared to those of other considered risk factors (e.g., precipita-
tion) seems lower. An alternative explanation may be that the time
since planting and precipitation over the past month before sampling
are both important component causes but of two different sufficient
causes (26) of an E. coli contamination event.

The analysis of E. coli counts on 955 spinach samples described
here was part of a larger study where the same 955 samples of
spinach, and additionally 191 drag samples of soil and 26 samples
of irrigation water, were tested for contamination with Listeria
monocytogenes, Salmonella spp., E. coli O157:H7, and Listeria spp.
(6). Listeria and Salmonella species were each detected in one spin-
ach sample, and interestingly, these two samples were both from
farm 2 in Colorado, which had by far the highest overall count of
E. coli. The Listeria-positive sample also had E. coli at the level of
105 log10 CFU/g, while E. coli was not detected in the Salmonella-
positive spinach sample. One soil drag sample was positive on the
same farm for Salmonella spp. These results support that detection
of generic E. coli in spinach at high levels could be considered an
indicator of a recent exposure to risk factors for Salmonella and
potentially other foodborne pathogens (46), as it has been envi-
sioned by the recent initiative of the EFSA to use E. coli as a hygiene
criterion in the production of leafy greens (8).

Collectively, risk factors identified in this study help predict the
count of generic E. coli on spinach. We identified a group of man-
agement, environment, and weather factors that increase the odds
of a contamination event. This is in agreement with our previous
studies (6, 13) that identified the same risk factors as predictors of
the odds of spinach contamination with generic E. coli. However,
the present study went further and identified risk factors that de-
termine the count of generic E. coli on contaminated spinach.
These newly identified factors may be utilized in risk assessments
of produce contamination along the production chain (47) to
better predict and explain the variability in produce contamina-
tion frequency and extent. Furthermore, the identified risk factors
could be used to improve control strategies for microbial count at

the preharvest level. For example, farmers could adapt their farm
management practices to weather (e.g., delay harvest after rainy
season or rush harvest before temperature increase). However, the
logistics of these changes may be difficult to implement on
commercial produce farms because weather is difficult to pre-
dict, and even if confidently predicted, changing management to
accommodate weather may cause a cascade of other management
changes, such as changes in produce sale times, which may be prede-
termined by contracts. Preventing occurrence of a contamination
event in the first place may be considered a more manageable and
potentially far more meaningful task than reducing microbial count
once the contamination has occurred. That may be the reason why
control strategies depending on weather conditions have not been
developed in the produce safety practices outlined in the Food Safety
Modernization Act (48), the Produce GAPs Harmonized Food Safety
Standard (49), Guide to Minimize Microbial Food Safety Hazards for
Fresh Fruits and Vegetables (50), and California Leafy Green Market-
ing Agreement (51). Instead, for example, the FDA, regarding
weather conditions, recommends that ready-to-eat crops that have
been in contact with floodwater should be excluded from the food
supply due to their potential exposure to a variety of contaminants
(52).

The structure of the final mixed-effect logistic regression
model in our previous study of the factors associated with the
presence of generic E. coli on spinach (13) is identical to the struc-
ture of the binary part of the final mixed-effect NBH model in this
study. Nevertheless, some of the results were slightly different be-
tween the two models. For example, the variable describing if the
farm applied hunting to control wildlife intrusion (Table 4) (P �
0.163) was considered a potentially important factor (P � 0.2) and
evaluated in the binary part of the multivariable model in this
study. However, due to a higher P value (P � 0.209), that variable
was not evaluated in the multivariable model in our previous study
(13). In addition, 95% confidence intervals (CIs) were slightly differ-
ent between the two final models: e.g., manure application had a
slightly narrower 95% CI (3.6 to 761.4) in the present model
than that reported in reference 13 (2.8 to 968.0). These minor
differences are likely due to the different statistical packages
used; our previous study (13) used the “lmer” function in the
“lme4” package (31, 53), whereas this study used “glm-
mADMB” function in the “glmmADMB” package.

While our choice of a mixed-effect NBH model to evaluate the
influence of farm management, environment, and weather factors
on the count of generic E. coli on spinach was supported by the
analysis of the model fit, the model also has good interpretability
and practicability. The NBH model consisting of the binary and
P_count parts is a suitable statistical method for analysis of the
microbial count data on produce in the presence of zero inflation
and overdispersion. Because this model simultaneously assesses
two different processes: one producing zero or non-zero counts
and the other producing positive counts (30), it allows analysis of
the microbial count data from two different perspectives. Caution
is needed in determining if the hurdle is crossed because a zero
count (a negative) can be a truly negative sample or a positive
sample but contaminated under the detection limit (i.e., false neg-
ative). A false negative may be a problem further down the pro-
duce production and distribution chain if conditions in the envi-
ronment are suitable for bacterial growth. However, in practice,
cross-contamination of produce may be considered an equally or
even more important factor that determines food safety risk of a
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produce commodity. Contamination under the detection limit
will not contribute meaningfully to the cross-contamination pro-
cess and can thus be considered to present a lower (but still pres-
ent) risk than a detectable level of contamination. In preharvest
practice, a hurdle model can be considered the most optimal mod-
eling choice because modeling predictions can be directly com-
pared and verified against observations. Nevertheless, only a small
number of previous studies have applied this model in the food
safety field, such as on samples from beef carcasses (24, 54). To our
knowledge, there are no other studies that investigated risk factors
of produce contamination with a microorganism using a hurdle
model. In this study, an NBH model enabled us to approach the
factors that were significantly associated with either the probability of
spinach contamination with generic E. coli or the count of generic E.
coli on contaminated spinach. Based on the predictability using
3-fold cross-validations, our results demonstrated that the probabil-
ity of spinach contamination with generic E. coli and the counts of
generic E. coli on contaminated spinach can be reliably predicted. To
our knowledge, this is the only published study that has modeled,
predicted, and validated bacterial counts on produce.

Our study has a few important limitations. There could be a
measurement error in the weather data, which were obtained
from weather stations that were up to 34.7 km away from the
spinach sampling locations. Irrigation water and soil were tested
for the presence of pathogens but were not tested for contamina-
tion with generic E. coli, which prevented us from correlating E.
coli contamination on spinach with contamination of irrigation
water and soil. However, even if such correlation results would be
available, the cross-sectional nature of the study design would not
provide a strong support for causal inference. The study was con-
ducted in only two states of the United States, which limits gener-
alization of study findings to other regions. The culture-based
detection, as applied in the present study, is unable to detect viable
but nonculturable (VBNC) cells, and this may vary across seasons
and time since planting (55). However, Moyne et al. reported that
under field conditions, the loss in culturability of E. coli O157:H7
was most likely due to cell death rather than an inability to form
colonies on standard media (55). The resurrection of VBNC has
been shown possible under optimal laboratory conditions (e.g.,
with temperature upshift or nutrient availability) (56). However,
it is unclear if VBNC cells of foodborne pathogens pose a risk to
animal or human health. For example, mice were orally or intra-
peritoneally inoculated with VBNC Salmonella enterica serovar
Typhimurium at doses exceeding the 50% lethal dose (LD50) val-
ues by approximately 3 orders of magnitude but failed to produce
detectable infection (57, 58).

In conclusion, our study showed that the farm management,
environment, and weather factors jointly influence the probability
of spinach contamination with generic E. coli, but once a contam-
ination event has occurred, only weather factors have an effect on
the generic E. coli count on contaminated spinach. These findings
improve our understanding of the mechanisms that determine the
bacterial count of generic E. coli on spinach (preharvest) and may
aid in the development of GAPs and risk assessments to improve
produce safety. Furthermore, this study may serve as a method-
ological template for identification of risk factors that determine
the microbial counts on spinach in other regions and on other
produce commodities.
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